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On the dimensional stability of compact 
zero-dimensional semilattices 

K. H. Hofmann and M. W. Mislove* 
Introduction : Let Z be the category of compact zero-
dimensional semilattice monoids and identity preserving 
homomorphisms. We consider the question when an object 
S e Z_ has the property that each homomorphic image is also 
in Z. Equivalently, for which S c Z_ is S/R e !Z for 
every closed congruence R on S? Lawson [ 2] has 
recently considered this question for mi !>e general 3, and 
he shows that each finite dimensional locally connected 
compact semilattice has no dimension raising homo-
morphisms. However, when applied to objects in Z, this 
result only shows that finite objects in Z are 
dimensionally stable. 

Our results are not comprehensive, indeed, they are 
somewhat scattered. However, they do serve our purpose, 
which is to provide an interesting and informative appli-
cation of the duality theory developed in [1]. 

/N 
Specifically, we assume that for S e Z, S = 

Z(S,2) e S_ (the category of discrete semilattice monoids 
and identity preserving homomorphisms); dually, that for^ 
S £ S, S = s(S, 2) £ Z; and that for S e Z or S, S * S. 
Moreover, that for S e Z_, S - (K(S ) ,v ) , where K(S ) is 
the set of local minima of S, and, that for k-^k^ eK(S), 
k-̂  v ~ n tk2)j tk^ being the set of points 
s £ S with k.s = k.. l i 
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Definition: An object S e Z is stable if for each 
closed congruence R on S, S/R e Z. Otherwise, S is 
called instable. 

Probably the most natural example of an instable 
object in Z is C, the Canter set in the unit interval 
1, under min multiplication. Indeed, if p : C I is 
the Caratheodory map, then p is a continuous surmorphism 
of semilattices. 

Moreover, the property of having I as a semilattice 
quotient is decisive for instable objects of Z. Clearly 
the condition is sufficient. Conversely, if S e Z is 
instable, then there is a compact semilattice T with a 
non-degenerate component K and a surmorphism f : S -»• T. 
T is a Lawson semilattice since S is (Z(S,2) separates 
the points of S), and so, if a,b e K, a t b, there is 
a homomorphism g : T I with g(a) i g(b). Assuming 
g(a) < g(b), g(T) 2 Cg(a),g(b)], and, if r:I +[g(a),g(b)] 
is the canonical semilattice retraction, we then have 
r o g o f : S [g(a),g(b)] is the desired surmorphism. 
We have proved: 

Proposition 1: S e Z_ is instable if and only if there is 
a continuous surmorphism f : S + I. 

This is a rather simple characterization of the 
instable objects in Z_; in fact too simple. It sheds 
little light on the structure of instable objects, and it 
utilizes an object outside the category Z_ to charac-
terize this notion. We now explore the possibility for a 
more inherent characterization and we begin by establish-
ing some properties of instable objects. 

Proposition 2: If S e Z is instable, then there is a 
perfect nondegenerate chain C £ S. 
Proof. Let S in Z be instable. Then, by Proposition 
1, there is a surmorphism f : S I. Define f : I S 

~ -1 
by f(s) = Af (s). Clearly f is monotone, (i.e. 
t < tT £ I implies f(t) < f(t')), f o f = l and 
?(f(s)) < s for each s e S. Moreover, if {t } ~ c I ' a aeD -with {t } t £ I, and t £ t for each a £ D, then a a£D a ' 
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then {f(t )} + f(t) and f(t ) < f(t) for each a e D. a aeD a 

Let C = f(I)x. C is a compact chain, and if ~ ° ° 
c e C \f(I), then c is not isolated in C . If c = ~ o ~ 1 ° f(t) for t > 0, then c = lim f(t—), and so c is 
again not isolated in CQ. Thus 0 = aCq is the only 
possible isolated point of CQ. We let C = CQ if 0 is 
not isolated in C , and C = C \ {0} otherwise. C is o o 
clear by the desired chain. 
Corollary: If S e Ẑ  is instable, then there is a sur-

A 

morphism f € S_(S,D) where D is an order dense chain. 
Proof : We let C be the chain guaranteed in Proposition A 2. Then i : C £ S implies i = f : S +> C. Since C 

A 

is a compact perfect chain, C = D in an order dense 
chain. 

The question of whether S e Z_ is instable if and 
only if S contains a compact perfect nondegenerate chain 
is settled in the negative by the following. 

X Lemma : Let X be a set. Then 2 e Z is stable. 
X 

Proof : Let f : 2 I be a homomorphism. Since 
X = lim{F c x : F is finite}, l=lim{Xf:F is finite} 
Thus, if t < 1, there is some finite F £ X with 
t < f(xF). Now, if y e 2X with f(y) < f(xF>> "then 
f(X F-y) = f(XF)f(y) = f(y). Therefore f(Xp • 2X) = 
f(2x) n [0,f(xF)] and since F is finite, Xp ' 2X is 
finite. Thus f is not surjective. 

Now, let = {r e (0,1] : r is rational}. Then 
^2 e S and ^2 = 2 ^ As we have just seen, 2^ is 0 
stable. However, there is a surmorphism x2 Q which 
extends the identity map on Q, and so, by duality, 2^ 
contains a compact perfect non-degenerate chaih. 

Note that for S e Z_, if there is a surmorphism 
f : S C, C the Canter semilattice, then S is instable. 
Moreover, by duality, this is equivalent to there being a 
monomorphism f : Q S, i.e. that there is a countable 
order-dense chain C c (K(S),v) with 0 e C . It is not o ~ o unreasonable to conjecture that this property characterizes 
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the instable objects in Z. 
As we shall see, this is not the case, but we do have 

the following. 
Theorem 1 : Let S e Z_ and suppose S is complete. Then 
the following are equivalent. 

a) S is instable. 
b) There is a surmorphism f e Z_(S,C). Moreover, if 

f : S I is any surmorphism, then there is a surmorphism 
f : S C with p*f = f, p : C I being the Caratheo-
dory map. 
Proof : Clearly b) implies a) . Let f : S I be a sur-
morphism. Define f : I -*• S as in Proposition 2. Note 
that, as I is connected, the points of discontinuity of 
f must be dense in I. Let 0 < t < 1 be one such point, 
and set s = f(t). Also, let u = Af(t,l], and k = 
v{k' e K(S) : kV < s}, where the supremum is taken in 
K(S). As s = v{k' e K(S) : k' < s}, where this supremum 
is in S, we have s < k. But, s = f(t) = lim f(t?) tT<t 
implies s £ K(S), whence s < k. 

Note that, for x e S with f(x) > t, f(xs) = 
f(x)f(s) = t, and so s'= f(t) ^ xs < x. Hence, if 
k' e K(S) with f(k') > t, s < k T, so k' > k" for each 
k" e K(S) with k" < s. Therefore k < kf. Now, f~1(t,l] 
is open in S as f is continuous, and so if x e f~^(t,l], 
then x = v(K(S) n Sx) implies there is k' e K(S) with 
k' < x and f(k') > t. Thus k < k', so k < x. There-
fore k < u. 

Let - 1 x 2 ky Ij = {(x,y) : x < t and 
y = 0} and = {(x,y) : t < x and y = 1}. Define 
f : S ^ I, u I9 by 

is a continuous surmorphism of S onto u If 
7T : I u 12 is a projection on the first coordinate, we 
clearly have IT O f = f. 

To finish our proof, we now find points 0 < t-̂  < t < 
t,. < 1 where f, and hence f are discontinuous, and 

(f(x),1) if k < x 
(f(x),0) if k i x 

Note that 
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split and each into subintervals in analogous 
fashion to what we just did for I. We continue this pro-
cess by induction to obtain a system of intervals whose 
limit is C, the Cantor set. This induces the desired 
factorization. 

To see that the above Theorem is false in general, we 
construct the following example. Let p : C I be the 
Carathdodory map, and let 

S = {(p(x),x) : x e C} £ I x I. 

For each local minimum 0 i k e C, choose a sequence 
{pn } c Ck \ {k} with p, < p, ,, and vp = rkn new - -̂ kn ^kn+1 ^kn 
v ( Ck \ {k} ) . Finally, let S = Sq u { CpCpk ) ,k) : k e K(C) ,nea)} . 
The local minima are precisely the points (p(pkn),k). 
Moreover, if tt : S I is the projection on the first 
coordinate, there is no factorization of TT through C. 
Indeed, suppose f : S C with p o f = TT . Let C e C 
be a local minimum with c i 0. Then f ^[c,l] is an 
open-closed subsemilattice of S, and so p = Af"~̂ "[c,l] e 
K(S). Hence p = (p(pkn),k) for some k 6 K(C) and n e u). 
If k' = v(Ck\{k}), then p k n < k' and, therefore, 
p(p k n) < P ( k 1 ) = p(k). Thus, TT(p(pkn) ,k)TR(p(k') ,kf ) = 
p(pkn). But tt( p (k ' ) ,k ' ) = p(k') = p (k) = 7r(p(k),k), 
whence f(p(k'),k') = f(p(k),k) or f(p(k),k) e K(C) and 
f(p(k'),k?) = v(Cf(p(k),k) \ {f(p(k),k)}). Since 
(p(p ),k) < (p(k),k), we have t = f(p(p. ),k) < xn _ jcn 
f(p(k),k). But p(pkn,k) = Af ±{t} implies f(p(kf),k! 

f(p(k),k) since (p(pkn),k) • (p(kf),kf) t (p'(pk ),k). 
Hence, the only other possibility is f(p(k),k) = t and 
fCp(kf),k') = v(Ct\{t}). But, then 

TT((p(pkn),k)(p(kf ),k*)) = p ( f ( ( p ( p k n ) , k ) ( p ( k ' ) , k ' ) ) ) 
= p(f(p(pkn),k)f(p(k'),k')) = 
= p(f(p(k'),k')) = TT ( p (k ' ) ,k ' ) = p(k') i 
* Tr(p(pkn) ,k)TT(p(k') ,k') , 

contradicting that TT is a morphism. 
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We note that this example does not, on the surface, 
show that an instable object in Z_ must have some map onto 
the Cantor semilattice. We feel that this property does 
hold for instable objects, but we are not able to settle 
the question. 
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