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INTRINSIC LATTICE AND SEMILATTICE TOPOLOGIES 

Jimmie D. Lawson 

I* Intrinsic Topology Functors. 
Lattices and semilattices differ i'rom many other alge-

braic structures in that there are several rather natural 
ways to dei'ine topologies i'rom the algebraic structure. This 
chapter is devoted to describing several or these construc-
tions and deriving some or their elementary properties. Some 
or the proofs that are quite straightforward are omitted. 

Definition 1.1. A topology ^ on a lattice L is intrinsic 
if i( is preserved by all automorphisms of L , i.e., if 
a 6 Aut (L) and U e K , then a(U) e k . 

Proposition 1.2. The following are equivalent for a topology 
*l{ on a lattice L : 
(1) 1( is intrinsic on L ; 
(2) Each automorphism of L is continuous w.r.t. ty ; 

(3) Each automorphism or L is a homeomorphism w.r.t. *U . 

Proposition 1.3. The intrinsic topologies are a complete 
sublattice containing 0 and 1 or the lattice of topologies 
on L . 

Proof. It is immediate that the discrete and indiscrete 
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topologies are intrinsic, that the intersection of any col-
lection or intrinsic topologies is again an intrinsic topo-
logy., and that the join of two intrinsic topologies is 
again an intrinsic topology. Hence the proposition follows. 

Definition 1.4. Let j denote the category whose objects 
are lattices and whose morphisms are lattice homomorphisms. 
Let denote the subcategory of consisting of the 
same objects and those morphisms which are isomorphisms. 
Let s£r denote the category whose objects are pairs 
where L is a lattice and t( is a topology on L and whose 
morphisms from (L^ty) to (l^y) are lattice homomorphisms 
which are continuous. An intrinsic topology for lattices 
is a functor from ^ to & which assigns to an L in 

an object (L,̂ <) in and to a morphism a:L1 L 2 

the morphism defined by a from (L-̂ ty) to (L2,r) in 
. Hence isomorphisms in £ must be continuous . 

A non-empty subset A of a lattice or lower semilattice 
lower complete if every non-empty subset B of A has a 

greatest lower bound which is again in A . Upper complete 
subsets are defined dually. A non-empty subset which is 
both upper and lower complete is complete. 

There are several natural definitions of convergence 
in a lattice. 
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Definition 1.5. Convergence in lattices . 
(1) A net {x )aGp in a lattice L is said to be ascending 
if a < S Implies x < xD . An ascending net fx } is — a — p ° a 
said to ascend (or converge) to x if x = sup ( x

a'a € D) . 
The notions of M descending net' ' and descend to x'' are 
defined dually. The notation is x t x(x X x ) if fx } . a v a ' a 
ascends (descends) to x . 
(2) A net fx 3 ^ in a lattice L is said to order con-
\ ) ^ ^ a^D 
verge to x (denoted x x) if there exists nets —- a 
{ya3a® ' fza5a® s u c h t h a t za * xa ̂  ya f°r a 1 1 a 6 D 

and z af x and ya4- x . 

(3) A net fx ) —-p. is said to order-star converge to x if V i a a6JJ a— 
every subnet of {x 3 has a subnet of It which order converges 

* to x . Order-star convergence is denoted x x . a 
(4) For a net £xoJa€E) a c o mPl e^ e lattice L , by defi-
nition, 

lim inf x = v A xQ , a a p>a
 3 

lim sup x = A V xD . a a p>a p 

A net {xa} is said to lower star converge to x if every 
subnet of fx ) has a subnet of it which has x as its 
lim inf . Upper star convergence is defined dually. 

A non-empty subset A of a lattice or semilattice is 

208 



lower Dedeklnd complete if every descending net in A de-
scends to some element of A . Upper Dedekind completeness 
and Dedekind completeness are defined in the predictable 
way. 

Proposition 1.6. Let L be a lattice. 
(1) If x t x or x >1 x , then x x . a a a 
(2) If x x , then so does any subnet. ' a 

* Hence x x implies x x . a a 
(3) If L is complete, then x x if and only if a 

x = lim sup x = lim inf x a a 

Proof. Parts (1) and (2) are straightforward. See 
[6, p. 244] for part (3). 

There are two basic methods of defining intrinsic 
topology functors. The first of these is declaring a set 
closed if it contains all of its limit points with respect 
to some convergence criterion. If the convergence criterion 
satisfies the condition that any convergent net still con-
verges to the same limit point if the domain of the net is 
restricted to a cofinal subset, then the closed sets defined 
in this way actually form a topology of closed sets. The 
four convergence criteria given in Definition 1.5 all satisfy 
this condition. 

209 



Definition 1.7. 

(a) The Dedekind topology (D) . 
(b) The order topology (0) . 
(c) The lower star topology (L^) . 

A subset A of a lattice L is closed in the Dedekind 
resp. order resp. lower star topology if whenever {x } is a net 
in A which ascends or descends resp. order converges resp. 
lower star converges to x , then x € A . 

(d) The chain topology (x) . A subset A of a lattice L 
is closed in the chain topology if for all chains C in A , 
A also contains sup C and inf C if they exist. 

A second method of defining intrinsic topologies in 
lattices is by declaring a certain collection of sets defined 
in order theoretic terms to be a subbasis for the closed 
(or open) sets. 

First however, we need to introduce certain terminology. 
If A is a subset of a lattice L , 

L(A) = {x € L: x < a for some a € A} 
M(A) = {y e L: a < y for some a € A) . 

The non-empty subset A is a semi-ideal if ,L(A) = A and 
an ideal if it is both a semi-ideal and a sublattice. A 
proper ideal I is completely irreducible if whenever I 
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is the intersection of a collection of ideals, then I is 
in the collection. Equivalently, I is an ideal which is 
maximal with respect to not containing some element x € L , 
x / 0 . 

Definition 1.6 (continued). 
(e) The interval topology (I) . A subbase of closed sets 
are all sets of the form L(x) and M(x) , x e L . 
( f) The complete topology (K) . A subbase of closed sets 
is defined by taking as a subbase for the closed sets all 
sets which contain all inf's and sup1s which exist of 
its non-empty subsets. In complete lattices, these are pre-
cisely the complete subsets. 

(&) The lower complete topology (LK) . A subbase of closed 
sets is defined by taking all Dedekind closed sets which are 
lower subsemilattices. 
(h) The semi-ideal topology (s) . A subbase for the closed 
sets Is given by all Dedekind closed semi-ideals together 
with sets satisfying the dual condition, i.e., M(A) = A and 
A is Dedekind closed. 
(i) The ideal topology (A) . A subbase for the open sets 
consists of all completely irreducible ideals and sets which 
satisfy the dual conditions. 

Before defining the last intrinsic topologies^ we need 
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to define another notion of convergence. 

Definition 1.9. If A is a subset of a lattice L , let 
A A denote the smallest Dedekind closed lower semilattice 
containing A . Av is defined dually. The net fx

a3 weakly 

order converges to x (denoted x >->x) if 
a 

(I) x e n (Xg-.p > a}A c L(x) and dually 
a p 

(ii) x e n {x > a)V c M(x) . a P 
The net weakly order star converges to x (denoted 

x if every subnet has a subset which weakly order con-a 
verges to x . 

The net {x ) weakly lower star converges to x 
(denoted x r^x) if condition (i) is satisfied for some N a ' ' 
subnet of every subnet of ( x

a ) . Weak upper star convergence 
is defined dually. 

Definition 1.10. 
(3) T h e weak order topology (WO) . 

The weak lower star topology (WL*) . 
A set A is closed in the weak order resp. weak lower 

star topology if whenever {x ) is a net in A which weak 
order star resp. weak lower star converges to x , then x e A . 

Proposition 1.11. All the topologies (a)-(k) define intrinsic 
topology functors. 
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Definition 1.12. If (L,<) is a lattice, the dual lattice 
Is (L,>) . There is a factor 6 on ^ which assigns to 
a lattice the dual lattice and to a morphism the morphism 
between the dual lattices which as a function is the same as 
the original function. The functor ô restricted to is 
still a functor. A functor ôT corresponding to ô can be 
defined on & by assigning to (L,</̂ {) the triple (L,>,K) . 
Given an intrinsic topology functor P , one can define a 

i i 
dual functor T by r = ôTPô . The functor r is self-

t dual if r = r 

Proposition 1.13. Let p be an intrinsic topology functor 
which is self-dual. Then any anti-isomorphism between two 
lattices is continuous. 

Proof. Let a: (L, <) -> (L',<) be an anti-isomorphism. Then 
a: (L,>) (L ,<) is an isomorphism and-hence is continuous. 
Since the topology R assigns to (L,<) and (L,>) are the 
same, a: (L,<) (L',<) is continuous. 

proposition 1.14. Of the intrinsic topologies (a)-(k), only 
L̂ ., LK and WL^ fail to be self-dual. We denote their 
duals by U^ , UK and WU^ resp. 

Definition 1.15. The intrinsic topology functor p is finer 

than the intrinsic topology functor a if for each lattice 
L the topology r assigns to L is finer (i.e., has more 
open sets) than the topology A assigns to L . We write 
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A < F . The relation of ''finer than'' is a partial order 
on any subset of intrinsic topology functors. 

Definition 1.16. An intrinsic topology functor T is linear 
if for any lattice L and any maximal chain M in L , the 
topology which T assigns to L restricted to M is the 
same as the topology generated by taking the open intervals 
of M as a basis. 

proposition 1.17. All topologies (a) - (k) except A are 
linear. If r is a linear intrinsic topology functor, then 

r < x • 

Definition 1.18. A topology K on a lattice L is order com-
patible if it contains the interval topology and is contained 
in the Dedekind topology. An intrinsic topology functor T 

is order compatible if I < r < D . 

proposition 1.19. The intrinsic topology functors (a)-(k) 
are all order compatible except for A and X . 

proposition 1.20. Let L be a lattice, and let (x ) be an — a 

ascending net in L . 
(a) If %( is a topology on L courser than the Dedekind 
topology and if x ^ x , then Cx

aî converges to x in 
the topology of t( . 
(b) If fy is a topology on L finer than the interval 
topology and {x } clusters to x in ty , then x f x . cc cx 
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Proof. (a) First we show that f x
a) converges to x in 

the Dedekind topology. Let U be an open set in the Dedekind 
topology which contains x . If ( x

a) residually in 
tJ , then cofinally it lies in the complement of U . This 
cofinal collection of fx ) also ascends to x , and since a 
the complement of U is Dedekind closed, x e L\U , a contra-
diction. Hence fx ) is residually in U . Thus {x } a a 
converges to x in the Dedekind topology, and hence in any 
coarser topology. 
(b) Since fy is finer than the interval topology M(x ) a 
is closed for each a • If" x £ M(x ) , then the complement a 
of M( x

a) would be an open set containing x such that 
{ x j is residually not in this open set, an impossibility. 
Hence x < x for all a . Now suppose x < y for all a . a — a — 
Since L(y) Is closed and x^ e L(y) for all a , it fol-
lows that x e L(y), i.e., x < y . Thus x is the least 
upper bound, i.e., x

a t x • 

Corollary 1.21. Let L be a lattice, f x
a) a n ascending 

net In L , x e L , and t{ an order compatible topology 
on L . The following are equivalent. 

(1) x at x 5 
(2) ( x

aî converges to x ; 

(3) fx ) clusters to x . 
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Proof. (1) => (2) . Proposition 19(a). 
(2) => (3) . Immediate. 

(3) => (1) . Proposition 19(b). 

Proposition 1.22. The following is a Hasse diagram of the 
intrinsic topology functors considered for arbitrary lattices 
(since L^ is defined for complete lattices, it is omitted). 
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II. Convexity. 

Definition 2.1. The convexity functors c,c',o are functors 
from , the category of lattices with topologies and con-
tinuous homomorphisms, back into . The functors are de-
fined as follows: 
(a) The functor c assigns to an object (L,1() the object 
(L,c(1{)) where is the topology generated by the open, 
convex elements of l( ; 
(b) The functor c« assigns to an object (L,fy) the object 
(L,c(t{)) where c'(ty) is the topology whose closed sets are 
those generated by the closed, convex sets in . 
(c) The functor o assigns to an object the object 
(L, cj(ty)) where is generated by those open sets of ty 
which are increasing or decreasing, i.e., those U € t( such 
that M(U) - U or L(U) - U . 

Proposition 2.2. The functor c resp. c' resp. CT is a re-
flection (categorically) from into the full subcategory 
of lattices with a basis of open, convex sets, resp. with 
topology generated by closed, convex sets resp. with topology 
generated by open, increasing and open, decreasing sets. (For 
the functor c this means that the following triangle can 
always be filled in uniquely to be a commutative diagram for 
any morphism into a locally convex lattice (M,y) 
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(Ljc(v)) ^ 

( L ^ ) ^ (M,R) 

Similar statements hold for c' and CT .) 

Definition 2.3. An intrinsic topology functor r is convex 
resp. closed-convex resp. fully convex if r composed with 
c resp. c' resp. a is again r . 

Proposition 2.4. The topology is coarser than c (ty) 
and c'(K) ; furthermore c(o{V)) = c'(&(&)) = . Hence 
if an intrinsic topology functor is fully convex, it is both 
convex and closed-convex. 

Proof. Since increasing and decreasing sets are convex, every 
member of a(l() will be a member of c(ty) . The complements of 
the open increasing or open decreasing sets are closed de-
creasing or closed increasing sets. Hence the closed sets 
are generated by closed convex sets, and hence every element 
of a(U) is one of c ' (*U) . The rest of the proposition fol-
lows easily. 

Proposition 2.3. The intrinsic topology functors I, and 
à are all fully convex, hence convex and closed-convex. 

Proposition 2.6. Let r be an order compatible intrinsic 
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topology l'une tor. If r is convex, then I < T < c(D) . 
If r is fully convex, then I < r < S . 

Proof, If r < D and T is convex, then r = c(T) < c(D) . 
Similarly if r is fully convex, then r < a(D) . By Pro-
position 1.22 z < D ; hence a(D) > a(Z) = t, . On the 
other hand a subbasic closed set in A(D) is an increasing 
or decreasing set which is Dedekind closed, and hence in s 
Thus a(D) < S . Hence E - CT(D) and r < Z . 

III. Complete Lattices. 
The main purpose of this paper is to study intrinsic 

topologies in complete lattices and in compact topological 
lattices and semilattices. A basic and non-trivial result 
is the following result of Rennie ([19] or [20]). 

Theorem 3.1. For a complete lattice L , c(x) < 0 . 
(Note: Rennie denotes the topology c(x) by L ; we shall 
call it the convex order topology. Rennie actually proved this 
theorem for conditionally complete lattices.) 

Corollary 3.2. For a complete lattice L , c(0) = c(D) = 

c(X) . 

Proof. Since c is a functor on & , it follows from 
Proposition 1.22 that c(0) < c(D) < c(x) . But since 
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c ( X) < 0 and c is a reflection, c(y) < c(0) . 

Diagram 3.3. The following is a Hasse diagram for the prin-
cipal intrinsic topology functors which we have considered for 
the category of complete lattices. M. Stroble is preparing a 
master's thesis which contains a much more exhaustive account 
of relationships between intrinsic topologies. All dominations 
in the diagram are fairly easy to establish either by straight-
forward arguments or using earlier results. 

Diagram 3.3 

Proposition 3.4. For complete lattices, 
E - <7(-x) = a(£) = a(0) = cr(WO) = 

Proof. By Proposition 2.6 we have CT(D) < S 
a reflection and E is fully convex 

Since a is 
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x: = a(s) < ^(0),a(WO),CT(WL#),a(c(x)) < a(D) < S , which 
shows all equalities except 2 = c(x) • Now 
S - CT(E) < or(x) - aa(x) < °c(x) < 2 ; hence S = a(x) . 

Because of the extensive collapsing that takes place 
at c(0) and E , these two intrinsic topology functors 
are of special interest. They are the finest linear topologies 
that are convex and fully convex resp. 

We turn now to consideration of the behavior of these 
topologies with respect to subspaces, products, and homomor-
phic images. 

A. Subspaces. Most intrinsic topologies of Diagram 3.3 
are hereditary for complete sublattices. 

Proposition 3.5. Let L be a complete lattice and let M 
be a complete subset of L . Then for the functors 

D, 0, ¥0, WLgj., LK, K, L^, and I the topology assigned 
to M agrees with the one assigned to L restricted to M . 
For s and c(0) the identity function on M is continuous 
from the topology assigned to M to the subspace topology 
and vice-versa for A . 

Proof. All the verifications are quite straight-forward. For 
A note that an ideal P in M maximal with respect to missing 
x• € M can be extended to an ideal in L maximal with respect 
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to missing x whose intersection with M is P . 

Note that a complete sublattice is closed in the K 
topology and hence in any finer topology on L . 

B. Products. Proposition 3.6. Let {L :a € A) be a collection a 

of complete lattices. For all intrinsic topology functors of 
Diagram 3.3 the identity function from n with the topology 
assigned to it by the functor to the product topology of the 
topologies assigned to each coordinate Is continuous. The 
interval topology I is productive. 

C. Homomorphic images. Continuity in intrinsic topologies 
we are considering is closely related to the preservation of 
limits of increasing and decreasing nets. 

Definition 3.7. Let L and M be complete lattices. An 
order-preserving function f from L into M is linearly 
complete if for any chain C in L f(inf C) = inf f(C) 
and f(sup C) = sup (f(C)) ; f is complete if for any 
x af x and we have f(xft) f f(x) and f(yp)i f(y) . 
Note that for the case f is a homomorphism, f is complete 
if and only if f preserves arbitrary Joins and meets. 

Proposition 3.8. Let f be an order-preserving function from 
L to M which is continuous from the Dedekind (chain) topology 
on L to the interval topology on M . Then f is complete 
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(linearly complete). 

Proof. Let x T x . By Proposition 1.20(a) {x ) converges cc a 
to x in the Dedekind topology. Hence (f(x

a)} converges 
to f(x) in the interval topology on M . By 1.20(b) 
f(x^)f f(x) . Similarly x implies f(x f(x) . 
Hence f is complete. 

The linearly complete case is analogous. 

Proposition 3.9. Let L and M be complete lattices and 
let f be an order-preserving function from L into M . 
The following are equivalent: 
(1) f is continuous from L into M for the intrinsic 
topology r where r = x* c ( x ) = C ( E ) > o r 

E = a(x) - A(D) ; 

(2) f is complete; 

(3) f is linearly complete. 

Proof. Suppose f is continuous for c(D) . Then 
(L,D) (L,c(D)) I (M,C(D) ) (M,I) is continuous. Hence 
by 3.8 f is complete. 

Conversely suppose f is complete. Let U be a basic 
convex open set in M which has Dedekind closed complement. 
Then f~^"(U) is convex and it follows easily since f is 
complete L\f~^(lJ) = f~"~*"(M\U) is Dedekind closed since 
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M\U is. Hence f*~1(U) is open in L . Thus f is continuous 
from (L,c(D)) to (M,c(D)) . Hence if r = c(D) , 
(1) is equivalent to (2). 

In a strictly analogous manner (1) is equivalent to (3) 
if r = c(x) . But since for complete lattices, c(x) = c(D) , 
we have (2) is equivalent to (3). 

The proofs that (1) is equivalent to (2) for T = D and 
(1) is equivalent to (3) for T = X and cr(x) = s follow 
the pattern of the previous proofs. 

proposition 3.10. Let L and M be complete lattices and f 
a lower homomorphism (i.e., f(xAy) = f(x)Af(y)) from L into 
M . Then f is complete if and only if f is continuous for 
the intrinsic topology T where r = L^ , WL^ , or LK . 

Proof. That f is complete if f is continuous for r fol-
lows from 3.8 in a fashion analogous to the use of 3.8 in the 
proof of 3.9. 

Conversely, suppose f is complete. For any non-empty 
subset A of L , let a = inf A . We show f(a) = inf f(A) . 
Now the set {a^ ... Aa

n: n e w , e A for I = 1, 
directed by itself descends down to a . Then the image net 
{f(a1)A ... Af(a ): n € m 9 ai g A for i = 1,«'.,n) descends 
to f(a) (by completeness) and to inf (f(A)) (by its definition). 

Since f is complete and we have just seen that f pre-
serves arbitrary inf's , it follows easily that f is 
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continuous for L^ since f(v A xftv = v(f(A xfi)) = 
a p>a ' a |3>a p 

= V A f(x ) . 
a 3>a p 

Let B be a lower subsemilattice of Y which is Dede-
-1 

kind closed. Since f is complete f (B) is Dedekind closed 
and since f is a lower homomorphism f-1(B) is a subsemi-
lattice. Hence f is continuous for LK . 

To show continuity for WL^ , we first note that the 
inverse image of a point is a Dedekind closed lower subsemi-
lattice and hence contains its inf . Suppose that the 
net {xa) weakly lower order converges to x , i.e., 

x e n {Xpip > a)A r: L(x) . 
a 

Let B be a Dedekind closed lower semilattice containing 
residually many of the set {f(x )} . Then f-1(B) contains cc 
residually many of the set and we have just seen that 

(B) is a Dedekind closed lower subsemilattice. Hence 
it must be the case x g , and hence f(x) € B . 
Thus 

f(x)cn {f(xB):P > a}A . a p 

Let A be a Dedekind closed lower semilattice containing 
residually many of {x ) . Since f is a lower homomorphism, 

(X 

f'(A) is a lower semilattice. Let {y } be an ascending 
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resp. descending net in converging to y . Then 

fl A is a Dedekind closed lower semilattice, and 
hence has a least element a . If y < yr , then Y Y — ô 

f( a
Y
A a

ô) = f(ay)Af(aô) = yyAyô = yy ; hence 
ay = ay A a

ô * i.e., ay < a^ . Thus {a^} is an ascending 
resp. descending net in A . Since A is Dedekind closed, 
the limit a of {a^) is in A . Since f is complete 
y = f(a) € f(A) . Thus f(A) is Dedekind closed. 

Now let b € n {f(x > a)A . 
a p 

Then for any a 9 f'({x :3 > a)A) is a Dedekind closed lower 
subsemilattice of M and hence contains (f(Xp):|3 > a}A 9 
and in particular contains b . Let t be the least element a 
of f - 1 ( b ) n [x^:|3 > a}A . Then {t^} is an increasing net 
and increases to some element t . Since f ^(b) is Dedekind 
closed, t € f (b) . Since {t } is eventually in any set U> 
l>B:p > a)A * "then t e n {xft:p > a) . Thus t < x . Hence p a p — 

b = f(t) < f(x) . Thus {f(x )} weakly lower order converges 
to f(x) . From this fact it follows easily that f is con-
tinuous for WL^ . 

proposition 3.11. Let L be a complete lattice and f a ho-
momorphism from L into M . Then f is complete if and 
only if f is continuous for the intrinsic topology r where 
r = 0 , K , or I . 
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Proof. That f continuous implies f is complete follows 
as in 3.9 and 3.10 . We saw in 3.10 that a complete lower 
homomorphism preserves arbitrary meets. Hence f preserves 
arbitrary joins and meets. It follows easily that the inverse 
of* a closed set is closed with respect to the order topology; 
hence f is continuous for 0 . 

We also saw in 3.9 that the inverse of a Dedekind closed 
set is Dedekind closed, and since f is a homomorphism, the 
inverse of a lattice is a lattice. Hence f is continuous 
with respect to K . 

If L(y) is a subbasic closed set in M with the inter-
val topology, then f (L(y)) is a Dedekind closed sublattice, 

-1 and hence has a largest element x . Then f (L(y)) = L(x) 
-1 

and hence is closed. Dually f~ (M(y)) is closed. Thus f 
is continuous. 
Proposition 3.12. Let f,L and M as in 3.11. If f is a 
complete homomorphism, then f is continuous for the intrinsic 
topology à . 

Proof. Let U in M be a subbasic open set, an Ideal maximal 
-1 

with respect to missing y . Then f (U) is an ideal maximal 
with respect to missing x , the least element of f_1(y) . 
Hence f is continuous. 

Propositions 3.9 through 3.12 allow one to consider the 
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IV. Complete Semilattices. 
A meet semilattice S is said to be complete if every 

non-empty subset has a greatest lower bound and if every 
ascending net ascends to some element of S . For complete 
semilattices S if x e S then L(x) is a complete lattice 
(if 0 4 A c L(x) , then sup A = inf {b:a € A implies a < b}). 
Hence if S has a 1 , S is a complete lattice. 

Many of the intrinsic topologies for complete lattices 
together with their properties transfer to complete semilattices. 
As a matter of fact the ones which are not self-dual were 
motivated by the semilattice case. Also the functors c , 
c! , and a can be defined for the category of complete 
semilattices. 

Proposition 4.1. Let S be a complete semilattice. Then 
c(D) = c(x) on S . 

Proof. Since D < x have c(D) < c(x) • We show c(\) < D . 
It will then follow that c(x) = c(c(x)) < e(D) , completing the 
proof. 

Let U be a basic convex open set in c(x) . We show 
U is open in D by showing that its complement is closed. 
Suppose {x^} is a net in S\U and x a ^ x where x e U . 
Let A be a maximal descending i.e., downward directed 
family containing the set {xa) i n M(x)\U . 
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intrinsic topologies within a larger framework. They can be 
viewed as functors from the category of complete lattices with 
morphisms complete homomorphisms to the category of complete 
lattices with a topology and morphisms continuous homomor-
phisms. We summarize some of the results of this section. 

Proposition 3.13. Let f be a homomorphism from a complete 
lattice L into a complete lattice M . 

The following are equivalent: 
(1) f is continuous for any intrinsic topology r of* Dia-
gram 3.3 except A ; 
(2) f is complete; 
(3) f is linearly complete; 
(4) the inverse of a point has a least and greatest element. 

Proof. That (1) and (2) are equivalent follows from 3.9, 3.10, 
and 3.11. That (2) and (3) are equivalent follows from 3.9. 
From the proof of 3.10 it follows that (2) implies (4). From the 
proof that (2) (1) for the interval topology I , all that 
was needed was that f satisfy (4) . Hence (4) implies (1) 
for r = I . 

Problem 3.14. Given the hypotheses of Proposition 3.13, for 
which intrinsic topologies is f a closed map? 
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We note first that M(A) = A . For If A is descending, 
then M(A) is descending. Also if b > a for some a e A , 
then we have b > a > x . Since a jL U and U is convex, 
we have b fL U . Hence M(A) is a descending family in 
M(x)\U which contains A . Since A is maximal, M(A) = A . 

Secondly we note A is a subsemilattice. For if 
a,b G A , then since A is descending there exists c € A 
such that a > c and b > c . Thus aAb > c . Since 
A = M(A) , aAb e A . 

Thirdly we note that if p e M(x) , then p e A if 
pAa i U for all a e A . For in this case (PAA) U A is a. 
descending set missing U and containing A , and hence 
must be A by maximality of A . 

Now let P be a maximal chain In A , and let p = inf P . 
Since A n U - 0 and U is open in c(x) hence x » 
we have p £ U . Let a e A . Then by the second note aAP c A . 
Since p = inf P , we have aAp = inf (aAP) . But again since 
U is X open, aAp ^ U . Hence by the third note p e A . 
Hence by the second note if b € A , then bAp e A . But 
bAp U M is then a chain; thus bAp e M by maximality of M 
in A . Thus bAP = p since p = inf M . Hence p = inf A . 
But x = inf fxa) > inf A = p . Since p € M(x) , x < p . 
Hence x = p . This is impossible since x e U and p fi U . 
Thus If x x , (x ) c S\U , then x € S\U . 
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If x f x where {x^} c S\U , then applying the ct ot 
techniques of the preceding part of the proof to the complete 
lattice L(x) and the open set U n L(x) , we obtain that 
x £ U . Hence U is open in D , which is the needed result 
to complete the proof. 

Diagram k.2. The following is a diagram of" intrinsic topology 
functors for complete semilattices. 

Diagram k.2 

All of these topologies were considered for complete 
lattices In section 3. Analogous results remain valid for 
complete semilattices and the proofs require only minor mo-
dification. The following two propositions are examples. 

proposition 4.3. Let S and T be complete semilattices and let 
f be a homomorphism from S into T . The following are 
equivalent: 
(1) f Is complete; 
(2) f is linearly complete;-
(3) f is continuous for the intrinsic topologies r assigns 
to S and T where r is any intrinsic topology of 
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Diagram 4.2 except I 

Proof. The proofs that f being complete is equivalent to 
f being continuous for D , WL^ , L̂ . , LK, c(D) or S 
are the same as in section 3; also the same proof holds to 
show f being linearly complete is equivalent to f being 
continuous for X or c(x) . Since by 4.1 c(x) = c(D) , we 
have (2) is equivalent to (1). 

proposition Let S be a complete semilattice and T 
a complete subsemilattice. Then the topology that the in-
trinsic topology functor T assigns to T agrees with the 
one restricted to T that r assigns to S for 
r - WL^, L*, LK, D and X . 

Proof. Straightforward. 

We now define a functor from the category of complete 
semilattices and complete (semilattice) homomorphisms to the 
category of complete distributive lattices and complete 
(lattice) homomorphisms. 

For a complete semilattice S let |JL(S) be the set of 
all non-empty semi-ideals that are Dedekind closed ordered 
by inclusion. Since the finite union and arbitrary intersection 
of Dedekind closed semi-ideals is another such, ^(S) is a 
complete distributive lattice. If S and T are complete 
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semilattices and f is a complete homomorphism from S into 
T , define |a(f):^(S) H-(T) by H(f)(A) - L(f(A) ) . 

proposition 4.5. The ^ defined in the preceding paragraph 
is indeed a functor from the category of complete semilattices 
and complete morphisms to the category of complete distributive 
lattices and complete morphisms. 

Before the proof of the theorem, we first establish 
two lemmas. 

Lemma 1. If A and B are semi-ideals in S , then 
AaB = AflB . 

Proof. Since AAR C A and AAB C B , we have AAB C AFLB . 

Conversely if x E AflB , then x = XAX e AAB . 

Lemma 2. If A is a Dedekind complete subsemilattice of a 
semilattice S , then L(A) is Dedekind closed. 

Proof. The set L(A) clearly contains limits of descending 
nets. Let f x

a) a n ascending net in L(A), x f x . Since 
A is a subsemilattice and Dedekind complete, M( x

a) ^ A 
has a least element a a for each a . Then {aa} is an 
ascending net which ascends to a e A , since A is Dedekind 
complete. Then x < a , and hence x € L(A) . 

Proof (of Proposition 4.5). We have seen already that H(S) is 
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is a complete distributive lattice if S is a complete 
semilattice. Let f:S T be a complete homomorphism of 
complete semilattices. Let A be a Dedekind closed semi-
ideal in S . Then f(A) is a subsemilattice of T . Since 
a complete semilattice homomorphism preserves arbitrary meets, 
f(A) is lower complete. Let {y~3 a in f(A), \X 

y„t y • For each a, 3a e A such that f(a ) = . Since 
CL a a' cl 

A is a semi-ideal the least element b of f~"̂ (y ) is cl w 0/ 
also in A . The net ( b

a3 is increasing, and hence increases 
to b e A . Since f is complete y = f(b) G f(A) . Thus 
f(A) is Dedekind closed (and thus Dedekind complete). Hence 
by Lemma 2 L( f (A) ) is Dedekind closed. Thus |j(f) is 
indeed a function from |i(S) to n(T) . 

Let A and B be Dedekind closed ideals in S . Then 

L(f(AUB)) = L(f(A) U f(B)) = L(f(A)) U L(f(B)) 

and using Lemma 1 

L ( f (AflB) ) - L( f (AAB) ) - L(f(A)Af(B)) = L( f (A) ) AL( f (B) ) 

= L( f (A) ) n L( f (B) ) ; hence |~i(f) is a homomorphism. 
Let {A^) be a descending family of Dedekind closed 

semi^ideals. Then A <1 A where A = n A~ . We have easily a a. «y a 
that 

L(f(A)) = L(f(n A )) c L(n f(A j) c n L(f(Aa)) a a u a 
Conversely let y e n L(f(A )) . For each a , let a 

a a 
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be the least element of A such that y < f(a ) . For 
indices a , 3 , then f(a^Aap) = f(aa)Af(ap) > y . Hence 

since a„AaR € A AA = Aft H AD , we have a Aa = a = a u , p ° l P u ' P a 3 a 3 
Hence [a ) is a constant net a € n A = A . Thus y € L(f(A)) a a a 

Now let {Aa} be a net increasing to A . Then for 
all a , A c A implies L(f(A ))c L(f(A)) . Hence L(f(A)) cc oc 
Is an upper bound. Suppose B is a Dedekind closed semi-
ideal In T containing all L(f(A )) . Since f is complete, 
f_1(B) is Dedekind closed and a semi-ideal which contains 
A^ for all a . Thus f_1(B) 3 A , and hence B 3 L(r(A) ) . 
Thus L(f(A)) is the join of the set {L(f(A ))} . OC 

Thus p.(f) is a complete homomorphism. The other func-
torial properties for follow easily. 

V. Algebraically Continuous Operations. 

Definition 5.1. Let S be a complete semilattice. Then 

the meet operation is said to be algebraically continuous 
if for any x + x and any y € S , then x Ay t x/\y . In this a a 
case S is said to be meet-continuous. 

One has always that if x ^ x , then x Ay J, xAy > or (X a 
more generally, if x^J, x and y^i- y , then ^ A y ^ • 

proposition 5.2. The meet operation in a complete semilattice 
S Is algebraically continuous if and only if x f x and 
y pt y implies x^Ay^f • 
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Proof. The second condition easily Implies the first by 
taking the constant net consisting of the element y . Con-
versely, let x f x and y Bf y . Then xAy > x Ayft for all 

oc p (X p 
choices of a and 3 . Suppose z > x AyD for all a * 3 . — a P 
If a is fixed, x Ay Ay . Hence z > x Ay for all a . a ^ 3 1 a J — a 
But x Ay f x Ay ; hence z > xAy , i.e., xAy is the join a. 
or {xaAyp} • 

Proposition 5.3. The meet operation in a complete lattice is 
algebraically continuous if and only if ( x

aî order converges 
to x and {y } order converges to y implies {x Ay 1 p a p 

order converges to XAy . 

Proof. See [6, p. 248]. 

Proposition 5.4. In a complete semilattice (lattice) S the 
following are equivalent: 
(1) S is meet continuous; 
(2) For y € Y , the function from S into S which sends 
x to XAy is continuous for the intrinsic topology r ; 

(3) The meet operation is continuous from S x S with the 
r topology to S with the r topology for the intrinsic 
topology functor F . 

For the semilattice case T may be chosen to be any 
topology of Diagram 4.2 except I , and for the lattice case 
any topology of Diagram 3.3 except K, I or A . 
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Proof. Since the function x xAy for a fixed y is a 
semilattice homomorphism and since one has always x 

(X 

implies XgAyJ, XAy , the function is a complete homomorphism 
for every y if and only if S is meet continuous. The 
equivalence of (1) and (2) now follows from Proposition 4.3 
for the semilattice case, and Propositions 3.9 and 3.10 cover 
all the lattice cases except 0 . Proposition 5.3 shows that 
if the lattice S is meet continuous then translation by y 
is a continuous function in the order topology for each y 
(show the Inverse of a closed set is closed). If translation 
by y is continuous in the order topology for each y then 
Proposition 3.8 implies each translation is complete, and hence 
that S is meet continuous. 

The meet operation from S x S to S is a semilattice 
homomorphism which satisfies if (x ,y ),J/(x,y) , then oc cc 
x Ay xAy . Hence by Proposition 5.2 the meet operation is a a, 
complete if and only if S Is meet continuous. The proof 
that (1) and (3) are equivalent now parallels the proof that 
(1) and (2) were equivalent. 

Lemma 5.5. Let S be a semilattice endowed with a topology 
y for which the functions x XAy are continuous for 
every y e S . If U e K , then M(U) € %/ . 

Proof. M(U) = u {x:xAy e U) ; each set in the union is 
yeU 
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open since translation by y is continuous. 

Proposition 5.6. Let L be a complete lattice which is both 
meet- and join-continuous. Then on L the c(D) and S 
topologies. 

Proof. Let U be open and convex in the c(D) topology. By 
5.4 the translation functions x XAy are continuous for 
the c(D) topology. Hence by Lemma 5.5 and its dual, M(U) 
and L(U) are open in c(D) . Hence since E = a(D) = a(c(D)) , 
L(U) and M(U) are open in £ . Since U is convex, 
U = L(U) n M(U) is open £ . Since continuity always holds 
in the reverse direction, the proposition is established. 

VI. Topological Semilattices and Lattices. 
The central and most difficult results of the paper lie 

in this and the last section. They concern the problem of 
starting with a compact topology on a semilattice or lattice 
and trying to identify it as an intrinsic topology. 

Definition 6.1. Let S be a semilattice endowed with a to-
pology l( . If the function from S into S defined by 
x XAy is continuous for each y e S , then S is a semi-
topological semilattice. If the meet operation from S x S 
with the product topology into S is continuous and S is 
Hausdorff, then S is a topological semilattice. A lattice 
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L endowed with a topology y Is a semltopological (topological) 
lattice if L is a semitopological (topological) semilattice 
with respect to both the meet and the join operations. 

Proposition 6.2. Let (S,t() be a compact Hausdorff semito-
pological semilattice. Then S is complete and %{ is order 
compatible. 

Proof. Let x e S . Then L(x) = SA{x} is compact since S 
is compact and translation is continuous; thus L(x) is closed 
since S is Hausdorff. Now M(x) = (y:yAX = x) is closed 
since {x] is closed and translation by x is continuous. 
Thus we have the identity function from (S,1() (S,I) is con-
tinuous . 

Now let fx ) be an increasing net in S . Then fx } cr L a 
clusters to x for some x e S since S is compact. By 
Proposition 1.20(b), x t x • A similar result holds for 
decreasing nets. Hence S Is Dedekind complete (and hence 
complete) and the net ( x

a} must converge to its least upper 
bound If increasing and greatest lower bound if decreasing. 
This implies (S,D) (SjU) is continuous, i.e., (S,t() is 
order compatible. 

proposition 6.3. Let S be a compact Hausdorff first countable 
semitopological semilattice. If a sequence {x

n3n-l clusters 
to x , then there exists a subsequence for which x is the 
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lim ini' or both the subsequence and any subsequence of the 
subsequence. 

Proof. Let be a countable base at x . Set V Q = W^ . 
* Pick V^ , an open set, such that x € V 1 c V^ c W^ and 

XAV^ C W^ . Pick an open set 0 such that XAO C V^ . Pick 
yn = € 0 fi V-, . Suppose and {y. = x J1 n^ 1 L iJi^O 2. n^Ji=l 
have been chosen satisfying for all i=l,*'',k-l : 
(1) V i is open; 
(2) x e V i c V* c W i n V j_ 1 ; 
(3) V.Ay,., c v ^ ; 
(4) y^ G V. and xAyi G V± . 
Then by regularity there exists an open set U such that * 
x e II c II c W^ 0 • Since e Vk~l 5 there exists 
an open set c U such that x e and V^Ay^ i c • 
Pick an open set P such that P c and XAP <Z V^ . 
Pick y^ = x G P . Continuing the process inductively one 

r -oo 

gets a sequence of open sets { V \ j Q and a subsequence 
of {xn} satisfying (l)-(4). 

Now for positive integers n and k , 

yn
Ayn+lA- • • • Ayn+k 6 yn A • • • Ayn+k-2A(yn+k-lAVn+k) 

C ynA ... Ayn+k-2AVn+k-l 

c ynA ... AVn+k_2 

c V n 
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For a fixed n, - ynA ... Ayn+k is a decreasing sequence. 
Hence by Proposition 6.2 we have z^ ^ ^ z n

 an<^ secluence f z
n 

converges to . Since each z e V we have ° n n,k n 
* 00 z e V c ¥ . If n < m , then z < z (since z = A y . n n n — n — m v n . J i 

00 

and z
ra = A y-) • Hence {z } increases to some z , and 

hence converges to z . Since the sequence is eventually * * 
In V for each n , we have z e n V c n W . Hence ïi 2"1 3T1 
z = x . This shows x is the lim inf of the subsequence 
{y^} . By techniques analogous to those already employed, 
one shows that any subsequence of (yn3 has lim inf in 
fl¥n ; hence the 11m inf must be x . 

Definition 6.4. If S is a semilattice, the graph of the 
partial order on S is the set 

Gr(<) ^ {(x,y) e S x S: x < y) . 

A basic fact concerning topological semilattices is the 
following well-known result. 

Proposition 6.5. A topological semilattice has closed graph 
In the product topology. 

Proof. Let S be a topological semilattice. Then S is 
is Hausdorff; so the diagonal A of S x S is a closed 
set. Define a continuous function f:S x S S x S by 
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f(x,y) - (x,xAy) ; then Gr(<) - f (A) and hence is closed. 

Theorem 6.6. Let S be a compact Hausdorff semitopological 
semilattice. Then S is a topological semilattice (and 
hence Gr(<) closed). 

Proof. First we assume S is in addition metrizable. In 
this case we wish to show that Gr(<) is closed. Let 
{(xn,yn)}^_1 be a sequence in Gr(<) which converges to (x,y) 
in the product topology of S x S . By Proposition 6.3 there 
exists a subsequence C x

n > ) such that 

x = v A x 
i J>i nj 

For the subsequence of the (yn) corresponding to the one chosen 
for {x } ,• there exists by 6.3 again a subsequence of this 
subsequence with y as the lim inf . Denote this sub-sub-
sequence by {yn) and the corresponding one for ( x

n3 by 
( x

n) (by 6.3 the latter still has x as its lim inf). Then 

x = v A x ' < v A y' - y . 
n m>n n m>n 

Thus (x,y) e Gr(<) . Now by Proposition 7 A of [16] a compact 
Hausdorff semitopological semilattice with closed graph is a 
topological semilattice. This concludes the proof for the 
case S is metrizable. 
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The non-metrizable case follows from a reduction to the 
metric case. The reduction is analogous to that given in Theorem 
5.1 of [16]. I am currently preparing for future publication 
a general reduction technique which will include both cases. 

Proposition 6.7. Let S be a complete semilattice (lattice). 
Then the graph of the partial order is closed in the topology 
r assigns to S x S for T = D, WL^ , and 
LK(T - X, D, 0, WO, L^, WL* , and LK) . 

Proof. Most of the proofs follow easily from the definition 
of the topology. Assume {(x ,y )) is a net in Gr(<) which cx oc 
weakly lower converges to (x,y) . Then 
x e H {x : 3 > a}A c: n L({y :(3 > a)A) ; the latter containment 

a a A holds because L({y^: 3 > a) ) is lower complete and Dedekind 
closed (as we saw in Lemma 2 of Proposition 4.5) and contains 
[xn : 3 > a) . Let z„ be the least element of fy : (3 > a}A L (3 — J a 3 
which is larger than x . Then {z } is an increasing net which a 
is eventually in each 3 > 0c]A , thus if z e S is the 
point such that z f z , then 

x < z € n {y : 3 > a}A c= L(y) . 
a p 

Hence x < y . The case for weak lower star convergence 
follows from the above by taking subnets. 

Note that Gr(<) is lower complete, and hence closed in 
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the LK topology. 

If Gr(<) is closed, then Gr(>) is closed for an 
intrinsic topology since the coordinate reversing function 
is an automorphism. Hence A = Gr(<) H Gr(>) is closed. 
If the intrinsic topology is also productive, then of 
necessity it must be Hausdorff. Since E. E. Floyd [8] 
has given an example of a non-Hausdorff complete lattice 
with respect to every linear topology, it follows that any 
lattice topology in Proposition 6.7 is not productive for 
this lattice (that the order is productive is incorrectly 
stated in [9]). 

The next proposition is a key tool in identifying a 
topology as an intrinsic topology. First, however, we Intro 
duce some additional notation. If A is a subset of a 
complete semilattice S , then 

A + = {x: there is a net fx. ) in A with x * 
G a 1 

and A~ is defined dually. 

Proposition 6.8. Let S be a compact topological semi-
lattice and let T be a subsemilattice of S . Then 
T* = T" + _ + . If T is a semi-ideal then T* = T + + . 
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Proof. Since T is closed, it is Dedekind closed by Propo-
( i 

sition 6.2. Hence T 3 t . 
* 

Conversely, let x e T . Choose by continuity of 
multiplication a sequence f w

n
: n e satisfying for all n 

(i) X e W^ , W n = W* 
(II) W N A M N C W ^ . 

Choose for each n an element x n € W^ H T . By techniques 
00 analogous to those in 6.3 we have z = A x. e w . Hence n . i n i=n 

z = v z = v A x is in n W . Since T is a subsemi-
n n

 n m>n n _ ne^ n 

lattice, we have z n e T~ . Hence z e T~ . Thus 
(T"

+
) n ( n w ) 4 0 . 

negu 
—+ i 

Now T is a subsemilattice since a L a , b X b im-
plies a^A b^J, aAb (always) and a f a and b af b implies 
a A b 1s aAb (by joint continuity). Also by condition (ii) QC »» 
H W R is a compact semilattice. Hence w , the meet of 

new 
(T"+) n ( n W ) ^ 0 is the limit of a descending net in -+ n€a) -+-
T (and hence is in T ) and is in n W . 

neuu 
¥e show that w , the meet of (T""+) H ( n M ) , is 

neu) n 

less than or equal to x . If not, by closed graph, there 
exists an open set A containing w and an open set B con 
taining x such that if a e A and b e B , then a / b , 
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However, when one was choosing all the (Wn) in the earlier 
part of the proof, they could have been chosen so that W n c B 
for all n . If z was again the lim inf of fxn) , each 
x n e W n , then z € B and z G T~+ . Hence w < z , a 
contradiction. 

Now let D be the set of all sequences {Wn:n g uj} 
satisfying (i) and (ii). If {W {V } e D , we define 
{Wn} > {V^} if ¥ n c V n for all n . It is straightforward 
to verify that is a directed set. For each (Wn) , 

i_ choose w , the meet of (T ) n ( H W ) . This defines 
neui) n 

an ascending net with all elements in the net below x . Since 
any closed neighborhood of x can be chosen as a W^ for 
some sequence in the net, and the w chosen for this sequence 
will be in W^ > then eventually the net is in any open set l—f-around x . Thus it ascends to x . Hence x e T . Thus 
* - + - + 

T = T . 
If T is a semi-ideal, then T~ = T . To finish the 

proof, we show T = T . We actually show T is a semi-
ideal. Let a e T and let x < a . Then there exists an 
ascending net in T such that a ta , By continuity 
of the meet operations a ^ t SAX = x . Since T is a semi-a ideal, a AX G T for all a . Hence x G T+ . This concludes a 
the proof. 

Theorem 6.9. Let (S,t() bo a compact topological semilattice 
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If fx 3 converges to x in fy , then {x } weakly lower cx oc 
converges to x . Conversely if Cx

a3 weakly lower star 
converges to x , then {x ) converges to x in y . Hence a 
the topology U is the WL^ topology. 

Proof. Suppose {x } converges to x in fy . By Proposition 
6.8 for any a , the set {x^: 3' > a}A is closed in k 

(since it is a Dedekind closed semilattice). Hence 
x e n (x : '3 > a)A . 

a p 

Suppose y e n {xB: 3 > a)A . If y K x , then there 
a p 

exist by closed graph open sets A and B such that y e A , 
x e B and if a e A, b e B , then a ̂  b . There exists an 
index Y such that if a > y , then x e V where 
x e V° d V c B . Then P = {x : a > Y} c B . Now P is a 
closed, hence compact. Then L(P) is closed [17, p. 
and hence Dedekind closed. L(P) is also a subsemilattice. 
If t e L(P) , then there exists b e B such that t < b . 
Hence t £ A . Thus n {xft: 3 > a)A

 c { x . p > y}A
 c L(p) # a P P 

But y £ L(P) , a contradiction. Thus n {xR: 3 > a)A c L(x) . 
a p 

Hence fx 3 weakly lower converges to x . 
Conversely, let ( x

a3 weakly lower star converge to x . 
If {x 3 fails to converge to x , then there exists y e S , a 
y £ x such that fx } clusters to y . Then a subnet of the a 
{x ) converges to x . Since {x ) weakly lower star con-
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verges to x , a subnet of this subnet weakly lower converges 

to x . But this sub-subnet still converges to y , and 
hence by the f irst part of the proof weakly lower converges 
to y . Since a net can weakly lower converge to a most 
one point, x = y , a contradiction. Thus {x } converges cc 
to x . 

Theorem 6.10. Let be a compact topological lattice. 
Then {x } converges to x in ty if and only if {x ) weakly & a 
order converges to x . The c (0), WO, WL^ , and £ topolo-
gies agree and are equal to l( . 

Proof. If Cx
a3 converges to x , then by Theorem 6.9 and 

its dual it weakly lower converges and weakly upper converges 
to x . Hence weakly order converges to x . 

Conversely let {x } weakly order converge to x . Then CC 

if {x
a3 fails to converge to x , some subnet converges to 

y ^ x . Then the subnet weakly order converges to y by 
the first part of the proof. Hence 

y e n {x : p. > a.}A c n {x : p > a.}A c L(x) ; 
a. Pi J a. p J 
J 3 

similarly y e M(x) . Thus y = x , a contradiction. 
It now follows immediately that l{ = WO . By Theorem 6.9, 

l( = WL^ . By Diagram 3.3, (L,¥0) -> (L,Z) is continuous. 
By Proposition 5.6, s = c(0) . By [17, p. 48], since L has 
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closed graph, the closed semi-ideals of L and the closed 
dual semi-ideals form a subbase for the closed sets. Hence 
(L, £) (L,t() is continuous, i.e., they agree. 

An alternate proof that %{ = c(0) may be found in [15]. 

Problem 6«11. Must 1{ in 6.10 also be the 0-topology? 

The characterizations in this section are quite useful in 
the study of topological semilattices and lattices. They 
reduce the study to certain algebraic categories with continuous 
homomorphisms corresponding to complete homomorphisms. 

VII. Small Semilattices and Lattices. 
An important class of topological semilattices (lattices) 

are those which possess a basis of neighborhoods at each point 
which are subsemilattices (sublattices). We say such semi-
lattices (lattices) have small semilattices (lattices). Some 
of the basic properties of semilattices with small semilattices 
may be found in [13]. 

proposition 7.1. Let (S,?̂ ) be a compact topological semi-
lattice with small semilattices. Then the L^* a n d LK 
topologies agree and are all equal to U , Furthermore a net 
[x ) converges to x in K if and only if {x ) lower a a 

star converges to x . 
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Proof. We begin with the last assertion first. Let fx } 
a 

converge to x in ty . Then for any fixed a , let 

Y„ = A X Since [(y ,xQ): |3 > a} is a subset of Gr(<) 
a |3>a P a P -

for any fixed a and Gr(<) is closed, we have y < x ~ cx — 
for all a . Given any neighborhood N of x , there exists 

•x-a neighborhood M of x such that M c N and M is a 

subsemilattice. There exists an index y such that x e M a 
for a > Y . Since M is a subsemilattice all finite meets 

•x-of the set {x : a > Y 3 are again in M ; hence y c e M cx p 
for p > Y Then {y 3 is eventually in any open set around —" a 
x , and so must ascend to x . Thus x is the lim inf of 
the net * 

Conversely, let fx
a3 lower star converge to x . If 

{x 1 clusters to y , then there is a subnet which converges. 
By the first of this proof any subnet of this subnet must have 
y for its lim inf. Hence y = x , and thus ( x

a 3 converges 
to x . 

It follows easily from what we have just shown that 

K = L* . By 6.9 K = WL* . 
We show t( = LK by showing LK is Hausdorff; this will 

be sufficient since (S,fy) is compact and = (S,L#) (S, 
is continuous (Diagram 4.2). 

Let x , y e S , x / y . We may assume x £ y . Since 
S has small semilattices, there exists z < x , z e S\L(y) , 
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such that x e M(z)° . Then M(z) and (S\M(z))* are 
lower complete sets. Their complements are open sets in LK 
separating x and y . 

Proposition 7.2. Let be a compact topological lattice 
such that each point has a basis of* neighborhoods which are sub-
lattices. Then fx

a3 converges to x in y if and only if 
f x ! order converges to x . Furthermore y = 0 = I and all a ^ 
topologies in between 0 and I in Diagram 3.3. 

Proof. If {x ] converges to x in y , then by the first a 

part of the proof of 7.1 and its dual, tx
a3 order converges 

to x . 
Conversely suppose ( x

a3 order converges to x . Then 
{x ) converges to x in the order topology and hence con-a 
verges to x in the WO topology (Diagram 3.3) which is the 
y topology (6.10). Hence it follows that y is the order 
topology. 

Again we complete the proof by showing I is Hausdorff. 
Suppose fx

a3 a in L • Then since L is compact 
Hausdorff, some subnet converges to some x , and hence by 
the first part of the proof order converges to x . By a 
result of K . Atsumi [4, Theorem 3] L with the interval 
topology is Hausdorff. 
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We now turn our attention to the converse problem. We 
wish to postulate algebraic conditionswhich will be suffi-
cient to insure that a semilattice admits a topology with 
small semilattices. First, however, we give a preliminary 
result concerning compactness. This generalizes results o f 
Frink, who showed the interval topology was compact In a 
complete lattice [9], and Insel, who showed the complete 
topology was compact in a complete lattice [11]. 

Proposition 7.3. Let S be a complete semilattice. Then 
S with the LK topology Is compact. 

Proof. Let [A ) be a collection of Dedekind closed lower a 
subsemilattices of S with the finite intersection property. 
For each finite subset [A ) pick the least element of 
n 1 «n 
Q A . With the finite subsets ordered by inclusion, these cx 
least elements form an ascending net and hence ascend to some 
element a . Since each A is Dedekind closed, a e n A a a a 
Since the Dedekind closed lower subsemilattices form a 
subbase for the closed sets of S , by Alexander's lemma, 
L is compact. 

We are now ready for a converse to Proposition 7.1. 

Proposition 7 A. Let S be a complete semilattice in which 
the meet operation is algebraically continuous and the 
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LK topology is Hausdorff. Then S with the LK topology is 
a compact topological semilattice with small semilattices. 

Proof. By 7.3 S is compact. By 5.4 the meet operation 
is separately continuous for LK . Hence by 6.6 S is a 
topological semilattice. 

We show now that S has small semilattices. We first 
consider the case that S has a largest element 1 , and 
show S has small semilattices at 1 . Let U be an open 
set, 1 € U . Since Gr(<) is closed, by a result of 
Nachbin [17]* there Is a convex open set V with 1 g V c U . 
Then A = S\V Is compact and decreasing. 

Since the LK topology is Hausdorff, for each a € A , 
there exist basic open sets P a and Q a in the LK topology 
with a e P0 , 1 e Q , and PQ n = 0 . P„ is the com-ci d d cl a 
plement of finitely many complete subsemilattices. Finitely many 

n 
of the {P •a e A) cover A , say A c U P. . Let a i 
Q = n Qi . For each P ± , let S\P± = S ^ U ... U be 

the representation of the complement of P^ in terms of com-
plete subsemilattices. Consider all possible sets of the form 
S-, . fl ... OS where 1 < j. < m. for each ' i . Each 

such intersection is a subset of V and the union of all such 
intersections contain Q . Since there are only finitely many 
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such intersections and each such is closed, some such inter-
section, call it T , must have an interior. Since T is 
a complete subsemilattice T has a least element t . 

By continuity of the meet operation, M(T°) is an open 
set containing 1 . Note that M(t) r> M(T°); hence M(t) is 
a neighborhood of 1 . Since A is decreasing, M(t) c V . 
Since M(t) is a subsemilattice, S has small semilattices 
at 1 . 

Now let x e S . It follows easily that the LK topology 
restricted to L(x) agrees with the LK topology on L(x) . 
Since x is the largest element of L(x) , it follows from 
the first part that L(x) has small semilattices at x . 
By [13] this implies S has small semilattices at x . 

proposition 7.5. Let L be a complete lattice in which the 
meet and join operations are algebraically continuous and the 
complete topology K is Hausdorff. Then L equipped with 
the complete topology is a compact topological lattice with a 
basis of sublattices. 

Proof. Since LK is compact, K is Hausdorff, and 
(L,LK) (L,K) is continuous, the K and LK topologies 
agree. Hence by 7.4 and its dual L is a compact topological 
lattice with a basis of subsemilattices with respect to each 
operation. 
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Let x e L, and U an open neighborhood of x . Let V be an 
open, convex set such that x e V c= U . Then there exists a 
lower subsemilattice T such that x e T° c: T c T* <= V - . 
Then T will be a compact lower subsemilattice and hence 
have a least element t . Let P be an upper subsemilattice 

O * ° such that x € P c p c T . Let p be the greatest element 
o o 

of P . Then x e p = P n T° c L(p) n M(t) - [t,p] c V , 
the last inclusion holding since V is convex. Then [t,p] 
is a sublattice, a neighborhood of x , and a subset of U . 
Hence L has a basis of sublattices. 

Propositions 7 A and 7.5 would be significantly improved 
if it were possible to find a ''reasonable' 1 algebraic condition 
to replace the hypothesis that LK or K be Hausdorff. 

VIII. Comments - Historical and Otherwise 
Intrinsic topologies in lattices first appeared with 

G. Birkhoff's definition of the order topology in the late 
1930's [5]. Shortly thereafter 0. Frink [9] introduced the 
interval topology and studied basic properties of the order 
and interval topologies. 

Interest revived in intrinsic topologies in the middle 
50's with the work of B. C. Rennie [19, 20], Frink's intro-
duction of the ideal topology [10], the work of A. J. Ward [23] 
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and E. E. Floyd's examples of lattices with pathological in-
trinsic topologies [8]. Rennie's work contains germs of 
several of the developments pursued here. 

About this time A. D. Wallace initiated interest in to-
pological lattices [22] and early investigations in this area, 
were carried out by L. W. Anderson [1, 2, 3] in the late 50's. 
During this same period E. S. Wolk introduced the concept of 
order compatible topologies [24], and T. Naito gave a necessary 
and sufficient condition for all such topologies to be identical 
in a complete lattice [18]. 

In the 601 s A. J. Insel introduced and studied the com-
plete topology [11, 12]. D. Strauss [21] appears to be the 
first to investigate intrinsic topologies in compact topological 
lattices. Some additions were given by T. H. Choe in [7]. 
Recently I had shown that any compact topological lattice 
has the c(0) topology [15]. An implicit algebraic charac-
terization of the topology of a compact topological semilattice 
Is also included. 

A problem of recurring interest in intrinsic topologies 
relates to the Hausdorffness of certain topologies, in par-
ticular the interval topology. Ward [23] and K. Atsumi [4] 
for instance treat this latter problem. Floyd's example [8] 
shows that the order topology may fail to be Hausdorff. 
Insel [12] gave necessary and sufficient conditions for the 
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complete topology to be Hausdorff. Strauss [21] characterized 
those compact topological lattices in which the interval 
topology is Hausdorff. propositions 7.2 and 7.5 are essentially 
her results. Recently I published an example of a compact 
distributive topological lattice in which the interval topology 
is not Hausdorff [14]. 

The preceding is by no means an exhaustive account of 
the work in intrinsic topologies, but rather should be con-
sidered as a background out of which this paper grew. 

There are several directions for future investigation. 
The Hasse diagram of the relation between the various intrin-
sic topologies needs to be rigorously verified for the following 
classes; complete lattices and semilattices, complete alge-
braically continuous lattices and semilattices and compact 
topological semilattices and lattices. A complete list of 
counter-examples even for Diagram 3.3 to show it is the best 
possible is not known. Other interesting classes in which to 
study intrinsic topologies might be vector lattices and equa-
tionally compact semilattices and lattices. A complete semi-
lattice S inherits many topologies as a subspace of the com-
plete lattice |a(S) (see Section 4). How do these relate 
to the topologies already given to S directly? 

The ideal topology has been frequently ignored in the 
considerations of this paper. In particular, what can be said 
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about it in compact topological lattices? 
The considerations of this paper may be generalized to 

arbitrary lattices in a variety of ways. Many of the functors 
considered are already defined for all lattices. Another 
method of extension of an intrinsic topology functor defined on 
complete lattices is to take the completion by cuts of an 
arbitrary lattice and give the lattice the subspace topology. 
Alternately, one may declare a set open if and only if its 
intersection with each complete sublattice is open with respect 
to some intrinsic topology functor F » Most of even the 
basic properties of these extensions remain unexplored. 

Finally, the definition of intrinsic topology given here 
(automorphisms are continuous) is somewhat artificial. A pre-
cise definition of intrinsic topologies in terms of generating 
a topology from the algebra needs to be given in logic and set 
language and basic properties of such topologies explored. 
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