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ON THE DUALITY OF SEMILATTICES AND ITS APPLICATIONS 

TO LATTICE THEORY 

Karl Heinrich Hofmann, Michael Mislove and Albert Stralka 

This article reports on a monograph in which the 
authors discuss the duality between the category S_ of 
semilattices with identity and identity preserving mor-
phisms on one hand and the category of compact zero 
dimensional topological semilattices with identity and 
identity preserving continuous morphisms. 

In itself, this duality theory is not new. Various 
authors discovered the duality on objects some time ago 
and the full duality theory itself together with various 
ramifications was described in the context of other duality 
theories by Hofmann. The duality theory for discrete and 
compact abelian groups was introduced by Pontryagin with 
the express purpose of immediate applications to algebraic 
topology. It was soon applied in group theory, topology 
and analysis. Thus it became fruitful by producing results 
in either of two directions: from the discrete theory to 
the topological one and indeed also vice versa. By con-
trast, the duality of semilattices has not been noticed as 
a vehicle for applications at all. We hope to demonstrate 
that it, too can have useful applications to discrete and 
topological lattice theory and to the theory of compact 
semilattices as a part of compact abelian semigroup theory. 

I. As a first step we set apart a chapter describing 
basic functorial properties of the categories !3 and Z_ 
such as their completeness, cocompleteness, their having 
biproducts, and the existence of free functors (i.e. left 
adjoints for the obvious grounding functors into the 
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category Set of sets). We then give a proof of the 
duality theory which is based on a fairly general, yet 
useful functorial device which e.g. has been applied 
recently by Roeder to give a new proof of the self duality 
of locally compact abelian groups. This proof is based on 
some generalities on functorial density and continuous 
(i.e. limit or colimit preserving functors) which we 
describe in a preliminary chapter, preceding Chapter I, 
which in itself does not refer to semilattices. The proof 
of the duality theorem then proceeds as follows: We show 
that the category F of finite semilattices is co-dense 
in S_ and dense in Z_. It is very elementary to show that 
F is naturally dual to itself. Then we push the button 
and the functorial machinery yields the desired duality. 
The advantage is that this method allows generalizations 
beyond the application we have in mind. Alternative proofs 
of the duality are available in the literature. 

II. In the second chapter we view the duality theory 
as an instance of a character theory, thereby exhibiting 
its closeness to Pontryagin duality theory for abelian 
groups. This requires that we first give a description of 
the category Z_ from the view point of compact topological 
semigroups. We record a characterization theorem for zero 
dimensional compact semilattices known to semigroupers for 
some time, in which the existence of small semilattices, 
the existence of sufficiently many ultra-pseudometrics, and 
the separation of points by characters (and some other 
properties) are used to characterize the objects of Z. We 
introduce the concept of a local minimum m e S and give 
different semigroup theoretical characterizations: Indeed 
m is a local minimum iff {m} is isolated in Sm Iff 
im (the set {s e S | sm = m}) is open. Further m e S 
is called a strong local maximum iff there is a local mini-
mum n e S such that m is maximal in the ideal S \ in. 
We observe that the set of local minima is dense in S and 
in fact even in every principal ideal Ss, and that the 
set of strong local maxima is dense. 

In the second part of the chapter we correlate the 
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concepts of characters and filters; a_ character of S is 
a morphism S 2 (in IS, respectively Z) , a filter 
F £ S is a subsemilattice such that s e F implies ts e F . 
Since a function f : S 2 for a discrete S is a 

-1 character iff f (1) is a filter, we have the following. 

PROPOSITION. The character semilattice S of a discrete 
semilattice S is_ naturally isomorphic to the filter semi-
lattice ^(S) under intersection as operation. 

The search for a concrete realization of the character 
semilattice of a T e ob Z_ is a bit more involved. Firstly 
we observe that the underlying semilattice of T is in 
fact a complete lattice. We then prove the following 

PROPOSITION. Let k e T, where T is_ a compact zero 
dimensional semilattice. Then the following statements are 
equivalent : 

( 1 ) k is_ a local minimum of the topological semilat-
tice T. 

( 2 ) k is_ a compact element of the underlying 
complete lattice. 

We denote the sup-semilattice of all compact elements 
of a semilattice T by K(T)j recall that an element k 
of a semilattice T is compact iff k < sup X for some 
X c T implies the existence of a finite subset F c X 
with k < sup F. For each k e K(T) there is precisely 
one T-character f : T -> 2 with k = min f~ (1), and 
each T-character is so defined. 

PROPOSITION. The character semilattice T of a compact 
zero dimensional semilattice T i_s naturally isomorphic 
with the (sup) semilattice K(T) of compact elements of 
the underlying lattice of T. 

By our earlier observation we know that for T e ob 
the set of local minima, hence K(T) is dense in every 
principal ideal Tt of T. This rather directly implies 
that the underlying lattice of T is algebraic, i.e. is a 
complete lattice in which every element is a sup of the 
elements in K(T) which it dominates. We prove, con-
versely, that every algebraic lattice has a unique compact 
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zero dimensional semilattice topology relative to which 
K(T) is the set of local minima. Since it is not hard to 
see that a semilattice morphism T ->- T' between algebraic 
lattices is continuous relative to these topologies iff it 
is an order continuous lattice morphism, i.e. iff arbitrary 
infs and sups of upward directed sets are preserved, we 
have the following 
THEOREM. The category Z_ of compact zero dimensional 
semilattices and continuous identity preserving semilat-
tice morphisms is isomorphic to the category of algebraic 
lattices and order continuous semilattice morphisms (and 
this latter category is then dual to the category S of 
discrete semilattices and identity preserving semilattice 
morphisms). 

If we call a lattice T arithmetic if it is algebraic 
and if in addition K(T) is a sublattice, we have the 
COROLLARY. The category of lattices with identity and 
identity preserving semilattice morphisms is dual to the 
category of arithmetic lattices and order continuous semi-
lattice morphisms. 

III. The third chapter contains various applications 
of the duality theory to lattice theory. We begin with a 
preliminary section in which we record simple consequences 
of the duality, such as e.g. the following: If f e S u Z, 

/N 

then f is injective iff f is surjective. A family 
S S. of morphisms is a product diagram in one of the two 
categories iff the family S^ S is a coproduct diagram 
in the other. (In fact this holds for arbitrarily limits 
and colimits). Quotients are dual concepts for subobjects. 

We proceed to discuss concepts which are of key 
importance in lattice theory. 

A fundamental role is played by the prime elements in 
a semilattice. We say that p e S is prime iff ab < p 
implies a < p or b < p, and we call the set of primes 
Prime S. We say that S is primally generated iff Prime S 
generates S (in either £ or Z_; note that T e ob 
is generated by A £ T iff T is the smallest closed sub-
semilattice of T containing A). A morphism f : S ->• T 
between semilattices will not automatically preserve 
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primes; if indeed we have f(Prime S) c Prime T, then we 
call f a prime-morphism. A prime-morphism into 2 is a 
prime-character. A prime filter is a prime element in the 
filter semilattice. 

In a semilattice finite sups need not exist. Neverthe-
less, various concepts of distributivity are possible. We 
say that a semilattice is distributive iff -f"a(-t"b 0 Tc) = 
tab n fac for all a, b, c. We say that a morphism f: 
S + T is a sup-morphism iff f (Q) is a prime filter in S 
for every prime filter Q of T. These morphisms do pre-
serve existing sups if the prime filters of T separate the 
points. Thus all sup-characters of S ' (i.e. sup-morphisms 
S 4- 2) preserve existing sups. The duality theory sheds light 
on the mutual relation of these concepts: 
THEOREM. A morphism f ̂  S u Z i_s a prime morphism iff its ^ —. — — 
dual f is a sup-morphism. If S e ob S and T e ob Z is 
its dual then the following statements equivalent : 

(1) S is a distributive semilattice. (2) The sup-cha-
racters of S separate the points. (3) S is a subsemilat-
tice of a distributive lattice (such that the inclusion pre-
serves sups). (4) T is primally generated. (5) T is a 
distributive lattice. (6) T is a Brouwerian lattice. 
Further, the following statements are equivalent : 

(i) S is primally generated. (ii) T is a topological 
distributive lattice. (iii) The lattice characters of T se-
parate the points. (iv) K(T) is primally generated. 
Finally, the following are equivalent : 

S i_s a distributive lattice. (II) T is an arith-
metic distributive lattice. 

At this point we can easily tie in results of other dua-
lity theories which are exemplified by recent results of 
Keimel and Iiofmann (Memoir of the Amer. Math. Soc. 122 (1972)). 
We exemplify the amalgamation of these two theories by the 
following 
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THEOREM. The subcategory in Z of distributive lattices 
and lattice morphlsms is dual to the category of continuous 
maps between topological spaces X having the following 
properties : 

(a) X is_ a TQ-space in which every irreducible set 
is a singleton closure. (A set Z is irreduci-
ble in X if it is closed and not contained in 
the union of two closed subsets unless at least 
one of the two contains Z.) 

(b ) X has a basis of quasicompact open sets (i.e. 
every open set is the union of the quasi-compact 
open subsets which it contains). 

Thus the category of these spaces is equivalent to the 
category of distributive semilattices and prime morphisms. 
Remark. The spaces described in (a) and (b) have been 
called spectral spaces since they occur, e.g., as the 
spectra of commutative rings. 

In a subsequent section we proceed to discuss Boolean 
lattices in S_ and in Z_ (a Boolean lattice in Z_ is a 
Boolean topological lattice and as such is equivalent to a 
compact topological Boolean algebra). Recall that a semi-
lattice in S is free (over Set) iff it is the u -
semilattice of all finite subsets of some set X. We 

X 
denote such a semilattice by 2 (since indeed it is the 
coproduct of X copies of 2) . The category Z_ has a 
free functor from the category ZComp of compact zero 
dimensional spaces (which is left adjoint to the forgetful 
functor). It associates with a space X e ZComp the u -
semilattice C(X) of all closed subsets of X with the 
Hausdorff topology. We say that such a semilattice is free 
over ZComp. We have the 
THEOREM. Let S e ob S and T e ob Z its dual. Then 

(a) S is_ a Boolean lattice iff T i_s free over 
ZComp 

(b) S is free over Set iff T is_ a Boolean topo-
logical lattice. 

In particular, the compact topological Boolean lat-
. X tices are precisely the 2 for some set X. 

A morphism f e S_ u Z_ between Boolean objects in 
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either category is a_ Boolean morphism (i.e. preserves 
complements) iff its dual f i_s co-atomic (i.e. maps all 
co-atoms in its domain into the set of co-atoms of the 
co-domain.) (A co-atom a is an element which is maximal 
relative to the property a < 1.). 

In a further section we complement the work of Kimura 
and Horn about the injectives and projectives in S. 

The results are as follows: 
THEOREM. Let S e ob S_ and T £ ob Z be its dual. Then 
the following are equivalent. 
( 1 ) S _is pro j ective in _5 ( 2 ) S is_ a retract of some 2 
( 3 ) S is_ a distributive lattice with t s finite for all 
s e S (4) S is_ primally generated and tp is_ finite for 
all p e Prime S (5) T is_ inj ective in Z (B) T is a 

X 
retract of some 2 ( 7 ) T i_s a distributive arithmetic 
lattice such that Tk is_ finite for all k e K(T) (8) T 
is a distributive arithmetic and topological lattice such 
that Tk is finite for all k £ K(T). 
Furthermore, the following conditions are equivalent: 
(i) S is inj ective in S. (ii) S is a retract of a 
complete Boolean lattice. (iii) S is a complete 
Brouwerian lattice. (iv) T i_s pro j ective in Z. (v) T 
is a retract of some free obj ect (over Set) . (vi) T is_ 
a retract of some C(E) with an extremally disconnected 
space E. 

IV. In a final chapter we discuss application of 
duality theory to the theory of compact semilattices. 
A portion of this is presented in another contribution 
(K. H. Hofmann and M. Mislove, Stability in compact zero 
dimensional semilattices). As an example of material not 
presented at this conference which will be discussed in 
detail in the monograph let us mention the following 
results. If X is a topological space we may associate 
with it two cardinals, its weight w(X) = min {a | there 
is a basis for the topology of X of cardinality a} and 
its density character d(X) = min {a | there is a dense 
subset of X of cardinality a}. These cardinals in a 
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sense describe the size of the space X. We then have the 
following 
THEOREM. Let T _be a compact zero dimensional semilattice 
and S its dual semilattice. Then w(T) = card S < 2 d ( T ). 
In fact if, for a cardinal a we let log a denote the 
smallest cardinal b with a < , then d(T) = log card S. 

We also use duality to characterize extremally discon-
nected objects in Z: 

THEOREM. Let T be a zero dimensional compact semilattice. 
Then the following are equivalent statements. 

1) T is_ extremally disconnected. 
2) Every converging sequence is finally constant. 
3) T satisfies the ascending chain condition and for 

each t the set of minimal elements in ft \ {t} 
is finite. 

4) T is_ finite. 

An account of the history of the subject and detailed 
references are to follow in the complete presentation of 
the material indicated in this report. 


