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REPRESENTATIONS OF LATTICE-ORDERED RINGS 

Klaus Keimel 

In this paper we present two typical representation 
theorems for archimedean lattice-ordered rings with identi-
ty, a classical one by means of continuous extended real 
valued functions and a less classical one by means of con-
tinuous sections in sheaves. 

0. Introduction. 

The oldest question in the theory of lattice-ordered 
rings, groups, and vector spaces probably is the question 

of representations by real valued functions. In the forties 
F. MAEDA and T.OGASAWARA [17], H. NAKANO C193, T. OGASAWARA 
C2o] and K. YOSIDA [23] and probably others established 
such representation theorems by continuous functions for 
vector lattices, M.H. STONE [22] and H. NAKANO [18] for 
lattice-ordered real algebras. (See also R.V. KADISON [ 13 1) 
In the sixties, this question has been taken up in a more 
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general and modern presentation e.g. by S.J. BERNAU [1], M. 
HENRIKSEN and D.G. JOHNSON [9], D.G. JOHNSON [11], D.G. 
JOHNSON and J. KIST [12], J. KIST [15]. 

Our first theorem has been proved in various ways and 
various generality in almost all of the papers listed above. 
Our proof might contain some new aspects: It is a self-con-
tained proof not using any ideal theory, based on a notion 
of characters like GELFAND's representation theorem for 
commutative C -algebras. In the case of lattice-ordered 
groups this idea is implicitely used by D.A. CHAMBLESS [4], 
in the case of Banach lattices it is explicitely used by 
H.H. SCHAEFER [24]. 

Our second representation theorem as well as its proof 
is inspired by GROTHENDIECK's construction of the affine 
scheme of a commutative ring with the one exception that 
to some extent the lattice operations are used instead of 
the ring operations. The sheaf associated with a lattice-
ordered ring also reminds the sheaf of germs of continuous 
functions, although this second theorem applies to a much 
bigger class of lattice-ordered rings than that represen-
table by extended real valued functions. As references for 
theorem 2 we give [7], [14], [15]. 
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1. Representation by continuous extended real 
valued functions. 

In this paper, rings are always supposed to have an 
identity e ; but commutativity is not required (although 
archimedean f-rings turn our to be commutative). 

DEFINITION 1. A lattice-ordered ring is a ring A endowed 
with a lattice order ^ in such a way that a+b > 0 and 
ab > 0 for all elements a > 0 and b > 0 in A . We de-
note by A+ = {a e A I a > 0} the positive cone of A , and 
by v and A the lattice operations. 

If A and A' are lattice-ordered rings, a function 
f:A Af is called an £-homomorphism, if f is a ring and 
a lattice homomorphism (preserving the identity). 

Unfortunately, only few things can be said about lat-
tice-ordered rings in general. Usually one considers a more 
special class of lattice-ordered rings: 

DEFINITION 2. A lattice-ordered ring A is called an 
abstract function ring (shortly f-ring) if A is a subdi-
rect product of totally ordered rings. 

BIRKHOFF and PIERCE C3J have shown that a lattice-
ordered ring A is an f-ring if and only if one has: 

a A b = 0 implies a A b c = 0 = a A c b for all ceA+. 
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In a fist approach we call concrete function ring every 
£-subring (i.e. subring and sublattice) of the f-ring C(X) 
of all continuous real valued functions on some topological 
space X . The answer to the question, whether every ab-
stract function ring is isomorphic to a concrete function 
ring is obviously negative; for a non-archimedean field can-
not be represented in this way. 

DEFINITION 3. A lattice-ordered ring A is called archi-
medean, if for every pair of elements a,b in A with 
a f 0 there is an integer n such that na £ b . 

BIRKHOFF and PIERCE C3 D have shown that an archimedean 
lattice-ordered ring is an f-ring if and only if the iden-
tity e is a weak order unit, i.e. e A x > 0 for every 
x > 0 . 

Every archimedean abstract function ring can be repre-
sented as a concrete function ring, if one generalises 
slightly the notion of concreteness: Let X be a topologi-
cal space. Denote by E(X) the set of all continuous func-
tions f « U^ -> 1R , where U^ is any open dense subset of 
X . We identify two such functions f:Uf Jl , g:U -> TR , S 
if f and g agree on U^ n U^ . (Note that the inter-
section of two open dense subsets is open and dense.) Then 
E(X) is an f-ring. 

A more formal construction of E(X) goes as follows: 
Let U be the collection of all open dense subsets of X . 
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For each U e U consider C(U) , the £-ring of all con-
tinuous real valued functions defined on U . If U,V e U 
and V c U , define the £-homomorphism p^:C(U) ^ C(V) to 
be the restriction map f f IV . Then 

E (X) = ljm C(U) . 
UeU 

With the exception of some rather special classes of spaces 
X , the f-ring E(X) cannot be represented in any C(Y) , 
as one may conclude from some results of CHAMBLESS C5l. 

If we call concrete function ring every £-subring of 
some E(X) , we can state: 

THEOREM 1. Every archimedean f-ring with identity can be 
represented as a concrete function ring. 

One can prove something more precise by using the ex-
tended real line 

Ë = -R U { -00 , +œ } , 
endowed with the usual order and topology; we also use the 
usual conventions for addition and multiplication with 
too , as far as reasonable. 

A continuous function f:X -> IR is called an almost 
finite extended real valued function, if the open set U£ = 
= {x e X | f(x) f too } is dense in X . The set D(X) of 
all these functions can be naturally embedded in E(X) by 
the assignment f »-> f|U^ . This allows us to consider D(X) 
as a subset of E(X) . D(X) always is a sublattiçe of E(X), 
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but it need not be a subring. Every £-subring of E(X) con-
tained in D(X) will be called an f-ring of continuous 
extended almost finite real valued functions. Now we state: 

Theorem 1'. Every archimedean f-ring (with identity e) is 
isomorphic to a lattice-ordered ring of continuous extended 
almost finite real valued functions defined on some compact 
Hausdorff space. 

The proof is carried out in several steps. In a sense, 
the whole proof is based on the following result credited to 
PICKERT [22] by FUCHS [6], but probably known for quite 
some time: 

(a) THEOREM (apxiyeSncr ( 1) ? ). If A is an archimedean 
totally ordered ring with identity, then there is a unique 
order preserving isomorphism from A onto some subring of TR. 

(b) Let A be any f-ring with identity e . A function 
OJ:A IR is called a character of A , if it satisfies: 

(1) u(e) = 1 ; 
(2) w(avb) = w(a) v w(b) , w(aAb) = w(a) A 

(3) w(a+b) = 6J(a) + w(b) , w(ab) = w(a)w(b) , when-
ever the right hand side is defined in IR. 

Let X denote the set of all characters of A . Note that 
— A — A X is a subset of IR . Endow IR with the product topolo-

-| ( ) Archimedes, Greek mathematician (287? to 212 b.c.) 
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gy which is compact Hausdorff. It is easily checked that X 
rrA 

is a closed subset of IK . Consequently, X is a compact 
Hausdorff space, called the character space of A . 
(c) For every a in A define a function â : X -> IR by 
â(>) = a) for all œ e X . As â is the a-th projection 
—A — TR -»• IR restricted to X , it is a continuous function. 

(d) For all a,b in A we have: 
(a v b ) â v b and (a A b)" = â A b. 

For all œ e X on has indeed (â v b) O ) = â(w) v Ê(<d) = 
= oj(a) v <d(b) = w(a v b) = (a v b)^(oj) , and likewise for 

A, â A b . In the same way one shows that 
(a + b)~0) = (â + b)(w) and ( a b ^ O ) = 

whenever Â ( A J ) + 6(OJ) and Â ( O J ) 6 ( O J ) , respectively, are 
well defined in IR . 

(e) PROPOSITION. Let B be the ^-subring of all bounded 
elements of A , i.e. B is the set of all a e A such 
that -ne < a < ne for some n e IN . Then the assignment 
a H- â gives an £-homomorphism from B into C(X) the ker-
nel of which is the set of all a such that na < e for 
all integers n . In particular, if A is archimedean, this 
£-homomorphism is infective. 

Indeed, if a e B , then â(w) = w(a) € TR for every 
character ai . By (c) and (d) , a â is then an £-homomor-
phism from B into C(X) . The assertion about the kernel 
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follows from the following lemma: 

(f) LEMMA. If a is an element of A such that na £ e 
for some integer n , then there is a character w of A 
such that w(a) f 0 . 

Proof. Let na £ e . As A is a subdirect product of 
totally ordered rings, there is an £-homomorphism a from 
A onto some totally ordered ring A such that a(na) > a( 
Denote x = a(x) for all x . Now let B be the ring of 
all bounded elements of A and I the set of all x with 
nx < ê for all integers n . Then I is a convex ideal of 
B and B/I is an archimedean totally ordered ring with 
identity. Using (a) we can find an order preserving homomor 
phism w:B R such that w(e) = 1 , whence w(a) f 0 . By 
defining _ _ r+°° if x < ne for all n > 0 , 

0 ) ( X ) = < 

-00 if x > ne for all n > 0 , 
we have extended œ to a character of A . Then u = œ°a 
is a character of A such that w(a) ^ 0 . 

In order to achieve the proof of theorem 1' we need 
two more lemmas. As in the preceding lemmas, we are working 
an an f-ring with identity, not necessarily archimedean. 

(g) LEMMA. The sets of the form 
V(f) = U £ X I ?(» = w(f) > 0} , 0 < f < e , f € A, 

constitute a basis of the topology on X . 
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Proof. We first note that, by the definition of the product 
A ~ topology on R , the sets V(f,q) = {toe X I <u(f) > q } 

and V(f,q) = (w eX I w(f) < q} with f e A and q = ^ e <& 
form a subbasis of the topology on X . As w(f) > H iff 
oj(mf) > n = w(ne) iff w(mf - n) > 0 , we conclude that 
V(f,q) = V(mf-ne,0) = V(mf-ne) ; likewise V(f,q) =V(ne-mf). 
Thus, the V(f) , f e A , already form a subbasis. They 
even form a basis, as V(f) n V(g) = V(f A g) .As V(f) = 
V((fvO)Ae) , we may restrict our attention to elements f 
with 0 < f < e . 

(h) LEMMA. If A is archimedean, one has a = \/(a A ne) 
nelN 

for all a e A+ . 

Proof. By the way of contradiction, we suppose that 
there is an element b in A such that a A ne ^ b < a 
for all n e IN . As 0 < a-b and as e is a weak order 
unit, e A (a-b) > 0 . The element d = e A (a-b) satis-
fies 0 < d < e and d < a . Under the hypothesis that 
(n-1)d < a , we can conclude that (n-1)d ^ (n-1)e A a ^ b , 
which together with d s a-b implies nd ^ a . Thus, we 
have shown by induction that nd ^ a for all n e IN which 
is incompatible with the archimedean hypothesis. 

(j) Now we are ready to achieve the proof of theorem 1': We 
first show that â = S implies a = b . As a = (avO)-(-avO) , 
it suffices to consider the case where a,b > 0 . If â = S, 
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then â A n*1 = Ê A n*1 for all n e IN , whence (a A ne)A = 
(b A ne)A for all n e IN by (d) .As a A ne and b A ne 
are bounded, we conclude that a A ne = b A ne for all 
n e IN by (e) . Hence, a = b by (h) . Now we prove that 
â e D(X): If U is an open subset of X such that, for 
exemple, â(oj) = +00 for all OJ e U , then by (g) we may 
suppose that U = V(f) for some f in A with 0 < f < e, 
and we conclude that â = (a+f)~ . Consequently, f = 0 by 
the preceding, i.e. U = V(f) = 0 . Finally, (d) shows that 
a h* â is an £-homomorphism. 

REMARKS. 1. Using property (g), one can show easily 
that = V > whenever \ / a^ exists in A . 

ie I ie I ieI 
The same holds for arbitrary meets. 

2. Every archimedean f-ring without nilpotent elements 
can be embedded in an f-ring with identity which is archime-
dean, too. Consequently, all archimedean f-rings with iden-
tity have representations as concrete function rings. 

3. Let \P:Y X be a continuous map of topological 
-1 

spaces such that 1jj (U) is dense in Y for every dense 
open subset U of X . For every f e E(X) the function 
fo\p belongs to E(X) . Thus, we obtain an £-homomorphism 
EO):E(X) + E(Y) ; moreover, D(X) is mapped into D(Y) . 
If, in addition, the image \{J(Y) is dense in X , then 
E(ijj) is injective. This gives the idea, how to obtain 
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representations of A on other spaces Y from the above 
representation on the character space X . We list two cases: 

Let TT:P X be the projective cover of the character 
space X of the archimedean f-ring A (cf.GLEASON [8]). 
Then IT is surjective and has the property required above. 
Moreover, P is extremally disconnected, compact and Haus-
dorff. Thus, we obtain a representation of A in E(P) 
for some extremally disconnected compact Hausdorff space P. 
One can show that this representation of A is just the 
representation of BERNAU C1H. 

In a similar way one can obtain JOHNSON'S [10] and 
KIST's [15] representation theorems from theorem 11; for 
the character space X is homeomorphic with the "space of 
maximal £-ideals"; further there is a continuous map from 
the space of all "prime ^-ideals" of A onto X which has 
all the required properties. 

2.Representation by continuous sections in sheaves. 

This section is not as self-contained as the first. 
But the proofs are complete. We refer to [14] and [15] for 
further information. 

Let A be an arbitrary f-ring (with identity e ). A 
subset I of A is called an l-ideal, if I is a ring 
ideal and a convex sublattice. For an £-ideal I , the 
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the quotient ring A/I becomes an f-ring by defining 
a+i < b+I if there is an xel with a ^ b + x . For every 
subset C of A , we define C1 = (xeA I IxMcl = 0 ̂ /ceC}. 
Then C1 is an &-ideal, called polar ideal. 

DEFINITION 4. The f-ring A is called quasi-local, if A 
has a unique maximal £-ideal. 

DEFINITION 5. A sheaf of [quasi-local3 f-rings is a triple 
F = (E,n,X) , where E and X are topological spaces and 
n:E X is a local homeomorphism; moreover, every stalk 

_ -J 
E = n (x) , xeX , has to bear the structure of a [quasi-
local] f-ring in such a way that the functions 

(x,y) h- x+y , (x,y) h» xy , (x,y) h> xAy 
from 

u (E x E ) into E are continuous, where 
xeX x x 

U (E X E ) C E X E is endowed with the topology induced 
X

X X 
from the product space Ex E . 

DEFINITION 6. Let F = (E,n,X) be a sheaf of [quasi-local] 
f-rings. Call section of F every continuous function 
<j:X ^ E such that a(x) e E for all xeX . Denote by TF 
the set of all sections of F . By defining on rF addition, 
multiplication and order pointwise, rF becomes an f-ring, 
in fact , an £-subring of the direct product of the stalks. 

Now we are ready to state: 
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THEOREM 2. For every f-ring A (with identity e) there is a 
sheaf F = (E ,n ,X) o_f quasi-local f-rings over a compact 
Hausdorff space X such that A is_ isomorphic to the f-ring 
TF of al1 (continuous global) sections of F 

The proof is carried out in several steps. Let B be 
the f-ring of all bounded elements of A . We use the charac-
ter space X of A and the representation a H- â:B + C(X) 
established in Proposition (e) of section 1. 

(a) For every vex , let I be the union of all the polars 
a1 , where a runs through all elements of A such that 
<u(a) > 0 . Then I is an £-ideal. Let A = A/I v J Ù) OJ U) 

(b) CONSTRUCTION. Let E be the disjoint union of the quo-
tient rings A^ X . For every aeA , define 

a : X -»• E by a fw) = a+I e A, . ÙJ Ù) 

It is easily shown that the sets of the form a(U) with 
aeA and UCX open, form a basis of a topology on E such 
that the triple F =(E,n,X) is a sheaf of f-rings, where 
n :E X is the obvious projection which maps A^ onto <u . 
The stalks of F are the f-rings A^ . Moreover, every a 
is a section of F and the assignment a a:A + TF is an 
£~homomorphism. 

(c) LEMMA. Let U be an open neighborhood of O)q e X . There 
is an element p in A^ such that p O ) = efoj ) and + r v o o 
p(w) = 0 for all <4U . 
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Proof. By lemma (g) in section 1, there is an element 
f in A^ such that <u e V(f) c U . Then w (f) > 0 and + o o 
oj(f) = 0 for all . After replacing f by nfAe for 
a suitably large n , we may suppose that w

0(f) = 1 • Now 
let g = 3f-e and h = 2f-e. We use the notation x+ = xvO 
and x_ = -xvO and note that x+

Ax_ = 0 . Let 
P = g +

1 and Q = h+
x . 

We have w (hi = (2OJ (f) - CJ (e)) v 0 = 1 , whence o + o o 
Q = h +

± C I . For every o^U , one has w(g_) - ,w(e-3f)vO 
o 

= O(e) - 3w(f)) v 0 = 1 , Hence, P1 c g_1 c 'I . The 
£-ideal PX+Q contains g+ + h_ = (3f-e)vO + (e-2£)vo , and 
this element is not contained in any proper £-ideal of A , 
as its image in every non zero totally ordered ring is easi-
ly seen to be strictly positive. Consequently, PX+Q = A . 
Thus, there are positive elements peP1 and qeQ such that 
p+q = e . This means that p+Q = e+Q and consequently 
p+X = e+I and pel for all w^U : thus, p has the 
* 6J 0) r 0) J r O O required properties. 

(d) LEMMA. A^ is a quasi-local f-ring for every weX . 

Proof. We first note that I is contained in ker œ. Ù) 

From (c) it follows that I i ker a* for every u' f œ . 
Let M be the greatest £-ideal of A contained in ker w, Ù) 

i.e. M is the sum of all ^-ideals contained in ker a . Ù) 

Then M is a maximal £-ideal of A . It is the unique Ù) 

maximal £-ideal containing I ; indeed, every maximal (A) 
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£-ideal is easily seen to be contained in the kernel of 
some character. 

(e) LEMMA. O I = {0> . 
we X " 

Proof. Suppose that b e l for all weX . Then 
b e a 1 for some element a satisfying co(a ) > 0 . After 

U) U) ' 0 v 6U 
replacing a^ by na^ for a suitable n , we may suppose 
that w(aj > 1 . The sets W(a ) = (w' I > 1} are 
open in X and cover X . Hence, there is a finite subset 
F in X such that X = (J W(a ) . Let a = V a . Then weF weF 
6u(a) > 1 for all weX ,whence a > e ; further IblAa = 0 
as b e a^1 for all w . As e and consequently a is a 
weak order unit, this implies b = 0 . 

(f) The proof of theorem2 will be achieved, if we show that 
the assignment a H- a : A -> FF is bijective. The injectivi-
ty is a straightforward consequence of lemma (e). For the 
surjectivity let o be an arbitrary section of F . We want 
to find an element a in A such that a = a .As 
a = (avO) + (QAO) , we may restrict ourselves to the case 
a > 0 . By the construction of the sheaf F , for every weX 

rv» there is an element a e A^ such that a fw) = crO) . If Ù) + 0) v J K J 

two sections of a sheaf coincide in a point, they agree in a 
whole neighborhood; hence, there is a neighborhood U^ of o> 
such that a|U = a IU .By lemma. By lemma (c), there is CO OJ CJ 7 J V ^ » 
an element p e AJ such that p O ) = e(W) and p (OJ') = 0 6̂1) + c 0) r 0) 
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for all w'iU . One may suppose p <e. Let b =a p : then 
T ÙJ ^ 0) CJ OJ^CJ 9 

•NJ 

b^(w)=a(6j) and Let V^ be an open neighborhood of OJ 

such that b |V =a|V . The V , weX, form an open covering Ù) 1 0) 1 ù) 6J c & 

of X . As X is compact, we may find a finite subset FcX 
such that the V^ with weF already form a covering of X . 
Let a= V b . Then a=a . 
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