Proc. Univ. of Houston Lattice Theory Conf. Houston 1973

REPRESENTATIONS OF LATTICE-ORDERED RINGS

Klaus Keimel

In this paper we present two typical representation theorems for archimedean lattice-ordered rings with identity, a classical one by means of continuous extended real valued functions and a less classical one by means of continuous sections in sheaves.

0. Introduction.

The oldest question in the theory of lattice-ordered rings, groups, and vector spaces probably is the question of representations by real valued functions. In the forties F. MAEDA and T.OGASAWARA [17], H. NAKANO [19], T. OGASAWARA [20] and K. YOSIDA [23] and probably others established such representation theorems by continuous functions for vector lattices, M.H. STONE [22] and H. NAKANO [18] for lattice-ordered real algebras. (See also R.V. KADISON [13].) In the sixties, this question has been taken up in a more

general and modern presentation e.g. by S.J. BERNAU [1], M. HENRIKSEN and D.G. JOHNSON [9], D.G. JOHNSON [11], D.G. JOHNSON and J. KIST [12], J. KIST [15].

Our first theorem has been proved in various ways and various generality in almost all of the papers listed above. Our proof might contain some new aspects: It is a self-contained proof not using any ideal theory, based on a notion of characters like GELFAND's representation theorem for commutative C -algebras. In the case of lattice-ordered groups this idea is implicitely used by D.A. CHAMBLESS [4], in the case of Banach lattices it is explicitely used by H.H. SCHAEFER [24].

Our second representation theorem as well as its proof is inspired by GROTHENDIECK's construction of the affine scheme of a commutative ring with the one exception that to some extent the lattice operations are used instead of the ring operations. The sheaf associated with a latticeordered ring also reminds the sheaf of germs of continuous functions, although this second theorem applies to a much bigger class of lattice-ordered rings than that representable by extended real valued functions. As references for theorem 2 we give [7], [14], [15].

Representation by continuous extended real valued functions.

In this paper, rings are always supposed to have an identity e; but commutativity is not required (although archimedean f-rings turn our to be commutative).

DEFINITION 1. A <u>lattice-ordered ring</u> is a ring A endowed with a lattice order \leq in such a way that $a+b \geq 0$ and $ab \geq 0$ for all elements $a \geq 0$ and $b \geq 0$ in A. We denote by $A_{+} = \{a \in A \mid a \geq 0\}$ the <u>positive cone</u> of A, and by \vee and \wedge the lattice operations.

If A and A' are lattice-ordered rings, a function f:A \rightarrow A' is called an ℓ -homomorphism, if f is a ring and a lattice homomorphism (preserving the identity).

Unfortunately, only few things can be said about lattice-ordered rings in general. Usually one considers a more special class of lattice-ordered rings:

DEFINITION 2. A lattice-ordered ring A is called an <u>abstract function ring</u> (shortly f-<u>ring</u>) if A is a subdirect product of totally ordered rings.

BIRKHOFF and PIERCE [3] have shown that a latticeordered ring A is an f-ring if and only if one has: $a \wedge b = 0$ implies $a \wedge bc = 0 = a \wedge cb$ for all $c \in A_{+}$.

In a fist approach we call concrete function ring every ℓ -subring (i.e. subring and sublattice) of the f-ring C(X) of all continuous real valued functions on some topological space X. The answer to the question, whether every abstract function ring is isomorphic to a concrete function ring is obviously negative; for a non-archimedean field cannot be represented in this way.

DEFINITION 3. A lattice-ordered ring A is called <u>archi-</u> <u>medean</u>, if for every pair of elements a,b in A with $a \neq 0$ there is an integer n such that na $\leq b$.

BIRKHOFF and PIERCE [3] have shown that an archimedean lattice-ordered ring is an f-ring if and only if the identity e is a weak order unit, i.e. $e \land x > 0$ for every x > 0.

Every archimedean abstract function ring can be represented as a concrete function ring, if one generalises slightly the notion of concreteness: Let X be a topological space. Denote by E(X) the set of all continuous functions $f:U_f \rightarrow \mathbb{R}$, where U_f is any open dense subset of X. We identify two such functions $f:U_f \rightarrow \mathbb{R}$, $g:U_g \rightarrow \mathbb{R}$, if f and g agree on $U_f \cap U_g$. (Note that the intersection of two open dense subsets is open and dense.) Then E(X) is an f-ring.

A more formal construction of E(X) goes as follows: Let \mathcal{U} be the collection of all open dense subsets of X.

For each $U \in U$ consider C(U), the f-ring of all continuous real valued functions defined on U. If $U, V \in U$ and $V \subseteq U$, define the ℓ -homomorphism $\rho_U^V:C(U) \to C(V)$ to be the restriction map $f \mapsto f | V$. Then

$$E(X) = \lim_{U \in U} C(U)$$

With the exception of some rather special classes of spaces X, the f-ring E(X) cannot be represented in any C(Y), as one may conclude from some results of CHAMBLESS [5].

If we call <u>concrete</u> <u>function</u> <u>ring</u> every ℓ -subring of some E(X), we can state:

THEOREM 1. Every archimedean f-ring with identity can be represented as a concrete function ring.

One can prove something more precise by using the extended real line

 $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\},\$

endowed with the usual order and topology; we also use the usual conventions for addition and multiplication with $\pm \infty$, as far as reasonable.

A continuous function $f:X \to \mathbb{R}$ is called an almost finite extended real valued function, if the open set $U_f = \{x \in X \mid f(x) \neq \pm \infty\}$ is dense in X. The set D(X) of all these functions can be naturally embedded in E(X) by the assignment $f \mapsto f|U_f$. This allows us to consider D(X)as a subset of E(X). D(X) always is a sublattice of E(X), but it need not be a subring. Every ℓ -subring of E(X) contained in D(X) will be called an f-ring of continuous extended almost finite real valued functions. Now we state:

Theorem 1'. <u>Every archimedean f-ring (with identity</u> e) is <u>isomorphic to a lattice-ordered ring of continuous extended</u> <u>almost finite real valued functions defined on some compact</u> <u>Hausdorff space</u>.

The proof is carried out in several steps. In a sense, the whole proof is based on the following result credited to PICKERT [22] by FUCHS [6], but probably known for quite some time:

(a) THEOREM $(\alpha \rho \chi \iota \mu \epsilon \delta \eta \sigma (^1)$?). If A is an archimedean totally ordered ring with identity, then there is a unique order preserving isomorphism from A onto some subring of **R**.

(b) Let A be any f-ring with identity e. A function $\omega: A \rightarrow \overline{\mathbb{R}}$ is called a character of A, if it satisfies:

(1) $\omega(e) = 1$;

- (2) $\omega(a \lor b) = \omega(a) \lor \omega(b)$, $\omega(a \land b) = \omega(a) \land \omega(b)$
- (3) $\omega(a+b) = \omega(a) + \omega(b)$, $\omega(ab) = \omega(a)\omega(b)$, when-

ever the right hand side is defined in \mathbb{R} . Let X denote the set of all characters of A. Note that X is a subset of $\overline{\mathbb{R}}^{A}$. Endow $\overline{\mathbb{R}}^{A}$ with the product topolo-

(¹) Archimedes, Greek mathematician (287? to 212 b.c.)

gy which is compact Hausdorff. It is easily checked that X is a closed subset of \mathbb{R}^A . Consequently, X is a compact Hausdorff space, called the character space of A.

(c) For every a in A define a function $\hat{a}: X \to \overline{\mathbb{R}}$ by $\hat{a}(\omega) = \omega(a)$ for all $\omega \in X$. As \hat{a} is the a-th projection $\overline{\mathbb{R}}^A \to \overline{\mathbb{R}}$ restricted to X, it is a continuous function.

(d) For all a,b in A we have:

 $(a \lor b)^{*} = \hat{a} \lor \hat{b}$ and $(a \land b)^{*} = \hat{a} \land \hat{b}$. For all $\omega \in X$ on has indeed $(\hat{a} \lor \hat{b})(\omega) = \hat{a}(\omega) \lor \hat{b}(\omega) = \omega(a) \lor \omega(b) = \omega(a \lor b) = (a \lor b)^{*}(\omega)$, and likewise for $\hat{a} \land \hat{b}$. In the same way one shows that

 $(a + b)^{\circ}(\omega) = (\hat{a} + \hat{b})(\omega)$ and $(ab)^{\circ}(\omega) = \hat{a}(\omega)\hat{b}(\omega)$ whenever $\hat{a}(\omega) + \hat{b}(\omega)$ and $\hat{a}(\omega)\hat{b}(\omega)$, respectively, are well defined in $\overline{\mathbb{R}}$.

(e) PROPOSITION. Let B be the ℓ -subring of all bounded elements of A, i.e. B is the set of all a ϵ A such that -ne $\leq a \leq$ ne for some n ϵ N. Then the assignment $a \mapsto \hat{a}$ gives an ℓ -homomorphism from B into C(X) the kernel of which is the set of all a such that na $\leq e$ for all integers n. In particular, if A is archimedean, this ℓ -homomorphism is injective.

Indeed, if $a \in B$, then $\hat{a}(\omega) = \omega(a) \in \mathbb{R}$ for every character ω . By (c) and (d), $a \leftrightarrow \hat{a}$ is then an ℓ -homomorphism from B into C(X). The assertion about the kernel

follows from the following lemma:

(f) LEMMA. If a is an element of A such that na $\leq e$ for some integer n, then there is a character ω of A such that $\omega(a) \neq 0$.

Proof. Let na \$ e . As A is a subdirect product of totally ordered rings, there is an ℓ -homomorphism α from A onto some totally ordered ring \overline{A} such that $\alpha(na) > \alpha(e)$. Denote $\overline{x} = \alpha(x)$ for all x . Now let \overline{B} be the ring of all bounded elements of \overline{A} and \overline{I} the set of all \overline{x} with $n\overline{x} < \overline{e}$ for all integers n . Then \overline{I} is a convex ideal of \overline{B} and $\overline{B}/\overline{I}$ is an archimedean totally ordered ring with identity. Using (a) we can find an order preserving homomorphism $\overline{\omega}:\overline{B} \rightarrow R$ such that $\overline{\omega}(\overline{e}) = 1$, whence $\overline{\omega}(a) \neq 0$. By defining $\overline{\omega}(\overline{x}) = \begin{cases} +\infty & \text{if } \overline{x} < n\overline{e} & \text{for all } n > 0 \\ -\infty & \text{if } \overline{x} > n\overline{e} & \text{for all } n > 0 \\ , \end{cases}$ we have extended $\overline{\omega}$ to a character of \overline{A} . Then $\omega = \overline{\omega} \circ \alpha$ is a character of A such that $\omega(a) \neq 0$.

In order to achieve the proof of theorem 1' we need two more lemmas. As in the preceding lemmas, we are working an an f-ring with identity, not necessarily archimedean.

(g) LEMMA. The sets of the form

 $V(f) = \{ \omega \in X \mid \hat{f}(\omega) = \omega(f) > 0 \}, \quad 0 \le f \le e, f \in A,$ constitute a basis of the topology on X.

Proof. We first note that, by the definition of the product topology on \mathbb{R}^A , the sets $\overline{V}(f,q) = \{\omega \in X \mid \omega(f) > q\}$ and $\underline{V}(f,q) = \{\omega \in X \mid \omega(f) < q\}$ with $f \in A$ and $q = \frac{n}{m} \in \mathbb{Q}$ form a subbasis of the topology on X. As $\omega(f) > \frac{n}{m}$ iff $\omega(mf) > n = \omega(ne)$ iff $\omega(mf - n) > 0$, we conclude that $\overline{V}(f,q) = \overline{V}(mf-ne,0) = V(mf-ne)$; likewise $\underline{V}(f,q) = V(ne-mf)$. Thus, the V(f), $f \in A$, already form a subbasis. They even form a basis, as $V(f) \cap V(g) = V(f \land g)$. As V(f) = $V((f \lor 0) \land e)$, we may restrict our attention to elements f with $0 \le f \le e$.

(h) LEMMA. If A is archimedean, one has $a = \bigvee_{n \in \mathbb{N}} (a \land ne)$ for all $a \in A_+$.

Proof. By the way of contradiction, we suppose that there is an element b in A such that $a \land ne \leq b < a$ for all $n \in \mathbb{N}$. As 0 < a-b and as e is a weak order unit, $e \land (a-b) > 0$. The element $d = e \land (a-b)$ satisfies $0 < d \leq e$ and $d \leq a$. Under the hypothesis that $(n-1)d \leq a$, we can conclude that $(n-1)d \leq (n-1)e \land a \leq b$, which together with $d \leq a-b$ implies $nd \leq a$. Thus, we have shown by induction that $nd \leq a$ for all $n \in \mathbb{N}$ which is incompatible with the archimedean hypothesis.

(j) Now we are ready to achieve the proof of theorem 1': We first show that $\hat{a} = \hat{b}$ implies a = b. As a = (av0)-(-av0), it suffices to consider the case where $a,b \ge 0$. If $\hat{a} = \hat{b}$,

then $\hat{a} \wedge n \cdot 1 = \hat{b} \wedge n \cdot 1$ for all $n \in \mathbb{N}$, whence $(a \wedge ne)^{-} = (b \wedge ne)^{-}$ for all $n \in \mathbb{N}$ by (d). As $a \wedge ne$ and $b \wedge ne$ are bounded, we conclude that $a \wedge ne = b \wedge ne$ for all $n \in \mathbb{N}$ by (e). Hence, a = b by (h). Now we prove that $\hat{a} \in D(X)$: If U is an open subset of X such that, for exemple, $\hat{a}(\omega) = +\infty$ for all $\omega \in U$, then by (g) we may suppose that U = V(f) for some f in A with $0 \leq f \leq e$, and we conclude that $\hat{a} = (a+f)^{-}$. Consequently, f = 0 by the preceding, i.e. $U = V(f) = \emptyset$. Finally, (d) shows that $a \mapsto \hat{a}$ is an ℓ -homomorphism.

REMARKS. 1. Using property (g), one can show easily that $(\bigvee_{i \in I} a_i)^{\circ} = \bigvee_{i \in I} \hat{a}_i$, whenever $\bigvee_{i \in I} a_i$ exists in A. The same holds for arbitrary meets.

2. Every archimedean f-ring without nilpotent elements can be embedded in an f-ring with identity which is archimedean, too. Consequently, all archimedean f-rings with identity have representations as concrete function rings.

3. Let $\psi: Y \to X$ be a continuous map of topological spaces such that $\psi^{-1}(U)$ is dense in Y for every dense open subset U of X. For every $f \in E(X)$ the function $f \circ \psi$ belongs to E(X). Thus, we obtain an ℓ -homomorphism $E(\psi):E(X) \to E(Y)$; moreover, D(X) is mapped into D(Y). If, in addition, the image $\psi(Y)$ is dense in X, then $E(\psi)$ is injective. This gives the idea, how to obtain

representations of A on other spaces Y from the above representation on the character space X. We list two cases:

Let $\pi: P \rightarrow X$ be the projective cover of the character space X of the archimedean f-ring A (cf.GLEASON [8]). Then π is surjective and has the property required above. Moreover, P is extremally disconnected, compact and Hausdorff. Thus, we obtain a representation of A in E(P) for some extremally disconnected compact Hausdorff space P. One can show that this representation of A is just the representation of BERNAU [1].

In a similar way one can obtain JOHNSON's [10] and KIST's [15] representation theorems from theorem 1'; for the character space X is homeomorphic with the "space of maximal ℓ -ideals"; further there is a continuous map from the space of all "prime ℓ -ideals" of A onto X which has all the required properties.

2. Representation by continuous sections in sheaves.

This section is not as self-contained as the first. But the proofs are complete. We refer to [14] and [15] for further information.

Let A be an arbitrary f-ring (with identity e). A subset I of A is called an ℓ -<u>ideal</u>, if I is a ring ideal and a convex sublattice. For an ℓ -ideal I, the

the quotient ring A/I becomes an f-ring by defining a+I \leq b+I if there is an x \in I with a \leq b+x. For every subset C of A, we define C¹ = {x \in A | |x| \wedge |c| = 0 \forall c \in C}. Then C¹ is an ℓ -ideal, called <u>polar</u> ℓ -<u>ideal</u>.

DEFINITION 4. The f-ring A is called <u>quasi-local</u>, if A has a unique maximal ℓ -ideal.

DEFINITION 5. A sheaf of [quasi-local] f-rings is a triple F = (E, n, X), where E and X are topological spaces and $n: E \rightarrow X$ is a local homeomorphism; moreover, every stalk $E_x = n^{-1}(x)$, $x \in X$, has to bear the structure of a [quasilocal] f-ring in such a way that the functions

 $(x,y) \mapsto x+y$, $(x,y) \mapsto xy$, $(x,y) \mapsto x^y$ from $\bigcup_{x \in X} (E_x \times E_x)$ into E are continuous, where $\bigcup_{x \in X} (E_x \times E_x) \subset E \times E$ is endowed with the topology induced from the product space $E \times E$.

DEFINITION 6. Let F = (E,n,X) be a sheaf of [quasi-local] f-rings. Call <u>section</u> of F every continuous function $\sigma: X \rightarrow E$ such that $\sigma(x) \in E_x$ for all $x \in X$. Denote by ΓF the set of all sections of F. By defining on ΓF addition, multiplication and order pointwise, ΓF becomes an f-ring, in fact , an ℓ -subring of the direct product of the stalks.

Now we are ready to state:

THEOREM 2. For every f-ring A (with identity e) there is a sheaf F = (E,n,X) of quasi-local f-rings over a compact Hausdorff space X such that A is isomorphic to the f-ring ΓF of all (continuous global) sections of F.

The proof is carried out in several steps. Let B be the f-ring of all bounded elements of A. We use the character space X of A and the representation $a \mapsto \hat{a}: B \to C(X)$ established in Proposition (e) of section 1.

(a) For every $\omega \in X$, let I_{ω} be the union of all the polars a^{\perp} , where a runs through all elements of A such that $\omega(a) > 0$. Then I_{ω} is an ℓ -ideal. Let $A_{\omega} = A/I_{\omega}$.

(b) CONSTRUCTION. Let E be the disjoint union of the quotient rings A_{ω} , $\omega \in X$. For every $a \in A$, define

 $\tilde{a}: X \rightarrow E$ by $a(\omega) = a + I_{\omega} \in A_{\omega}$.

It is easily shown that the sets of the form $\tilde{a}(U)$ with $a \in A$ and $U \subset X$ open, form a basis of a topology on E such that the triple F = (E, n, X) is a sheaf of f-rings, where $n: E \rightarrow X$ is the obvious projection which maps A_{ω} onto ω . The stalks of F are the f-rings A_{ω} . Moreover, every \tilde{a} is a section of F and the assignment $a \Rightarrow \tilde{a}: A \Rightarrow \Gamma F$ is an ℓ -homomorphism.

(c) LEMMA. Let U be an open neighborhood of $\omega_0 \in X$. There is an element p in A₊ such that $\tilde{p}(\omega_0) = \tilde{e}(\omega_0)$ and $\tilde{p}(\omega) = 0$ for all $\omega \notin U$.

Proof. By lemma (g) in section 1, there is an element f in A₊ such that $\omega_0 \in V(f) \subset U$. Then $\omega_0(f) > 0$ and $\omega(f) = 0$ for all $\omega \notin U$. After replacing f by nf^e for a suitably large n, we may suppose that $\omega_0(f) = 1$. Now let g = 3f-e and h = 2f-e. We use the notation $x_+ = xv0$ and $x_- = -xv0$ and note that $x_+^x_- = 0$. Let

$$P = g_{+}^{\perp}$$
 and $Q = h_{+}^{\perp}$.

We have $\omega_0(h_+) = (2\omega_0(f) - \omega_0(e)) \vee 0 = 1$, whence $Q = h_+^{\perp} \subset I_{\omega_0}$. For every $\omega \notin U$, one has $\omega(g_-) = \omega(e-3f) \vee 0$ $= (\omega(e) - 3\omega(f)) \vee 0 = 1$, Hence, $P^{\perp} \subset g_-^{\perp} \subset I_{\omega}$. The ℓ -ideal $P^{\perp}+Q$ contains $g_+ + h_- = (3f-e)\vee 0 + (e-2f)\vee 0$, and this element is not contained in any proper ℓ -ideal of A, as its image in every non zero totally ordered ring is easily seen to be strictly positive. Consequently, $P^{\perp}+Q = A$. Thus, there are positive elements $p \in P^{\perp}$ and $q \in Q$ such that p+q = e. This means that p+Q = e+Q and consequently $p+I_{\omega_0} = e+I_{\omega_0}$ and $p \in I_{\omega}$ for all $\omega \notin U$; thus, p has the required properties.

(d) LEMMA. A is a quasi-local f-ring for every $\omega \in X$.

Proof. We first note that I_{ω} is contained in ker ω . From (c) it follows that $I_{\omega} \notin \ker \omega'$ for every $\omega' \neq \omega$. Let M_{ω} be the greatest ℓ -ideal of A contained in ker ω , i.e. M_{ω} is the sum of all ℓ -ideals contained in ker ω . Then M_{ω} is a maximal ℓ -ideal of A. It is the unique maximal ℓ -ideal containing I_{ω} ; indeed, every maximal

l-ideal is easily seen to be contained in the kernel of some character.

(e) LEMMA.
$$\bigcap_{\omega \in X} I_{\omega} = \{0\}$$

Proof. Suppose that $b \in I_{\omega}$ for all $\omega \in X$. Then $b \in a_{\omega}^{\perp}$ for some element a_{ω} satisfying $\omega(a_{\omega}) > 0$. After replacing a_{ω} by na_{ω} for a suitable n, we may suppose that $\omega(a_{\omega}) > 1$. The sets $W(a_{\omega}) = \{\omega' \mid \omega'(a_{\omega}) > 1\}$ are open in X and cover X. Hence, there is a finite subset F in X such that $X = \bigcup_{\omega \in F} W(a_{\omega})$. Let $a = \bigvee_{\omega \in F} a_{\omega}$. Then $\omega(a) > 1$ for all $\omega \in X$, whence a > e; further $|b| \wedge a = 0$ as $b \in a_{\omega}^{\perp}$ for all ω . As e and consequently a is aweak order unit, this implies b = 0.

(f) The proof of theorem2 will be achieved, if we show that the assignment $a \mapsto \tilde{a} : A \to \Gamma F$ is bijective. The injectivity is a straightforward consequence of lemma (e). For the surjectivity let σ be an arbitrary section of F. We want to find an element a in A such that $\tilde{a} = \sigma$. As $\sigma = (\sigma \vee 0) + (\sigma \wedge 0)$, we may restrict ourselves to the case $\sigma \ge 0$. By the construction of the sheaf F, for every $\omega \in X$ there is an element $a_{\omega} \in A_{+}$ such that $\tilde{a}_{\omega}(\omega) = \sigma(\omega)$. If two sections of a sheaf coincide in a point, they agree in awhole neighborhood; hence, there is a neighborhood U_{ω} of ω such that $\sigma | U_{\omega} = \tilde{a}_{\omega} | U_{\omega}$. By lemma. By lemma (c), there is an element $p_{\omega} \in A_{+}$ such that $\tilde{p}_{\omega}(\omega) = \tilde{e}(\omega)$ and $\tilde{p}_{\omega}(\omega') = 0$

for all $\omega' \notin U_{\omega}$. One may suppose $p_{\omega} \le e$. Let $b_{\omega} = a_{\omega} p_{\omega}$; then $\widetilde{b}_{\omega}(\omega) = \sigma(\omega)$ and $\widetilde{b}_{\omega} \le \sigma$. Let V_{ω} be an open neighborhood of ω such that $\widetilde{b}_{\omega} | V_{\omega} = \sigma | V_{\omega}$. The V_{ω} , $\omega \in X$, form an open covering of X. As X is compact, we may find a finite subset $F \in X$ such that the V_{ω} with $\omega \in F$ already form a covering of X. Let $a = \bigvee_{\omega \in F} b_{\omega}$. Then $\widetilde{a} = \sigma$.

<u>References</u>

[1]	Bernau, S.J.: Unique representation of archimedean lattice groups and normal archimedean lattice rings. Proc.London Math.Soc.(3) <u>15</u> (1965) 599-631.
[2]	Bigard, A.: Contribution à la théorie des groupes réticulés. Thèse sci.math.,Paris (1969)
[3]	Birkhoff, G. und Pierce, R.S.: Lattice-ordered rings. Anais Acad.Brasil.Ci. <u>28</u> (1956) 41-69.
[4]	Chambless, D.A.: Representation of 1-groups by almost finite quotient maps. Proc.Amer.Math.Soc.28 (1971), 59-62.
[5]	Chambless, D.A.: The 1-group of almost-finite continuous functions.
[6]	Fuchs, L.: Partially ordered algebraic systems. Pergamon Press, Oxford (1963)
[7]	Hofmann, K.H.: Representation of algebras by continuous sections. Bull.Amer.Math.Soc. 78(1972), 291-373.
[8]	Gleason, A.M.: Projective covers of topological spaces. Ill.J.Math. <u>2</u> (1958), 482-489.
[9]	Henriksen, M., Johnson, D.G.: On the structure of a class of archimedean lattice ordered algebras. Fund.Math.50 (1961), 73-93.
[10]	Isbell, J.R.: A structure space for certain lattice ordered groups and rings. J.London Math.Soc. 40 (1965), 63-71.
[11]	Johnson, D.G.: On a representation theory for a class of archimedean lattice ordered rings.

[12]	Johnson, D.G. and Kist, J.E.: Prime ideals in vector lattices. Can.J.Math. <u>14</u> (1962), 517-528.
[13]	Kadison, R.V.: A representation theory for commutative topological algebra. Memoirs Amer.Math.Soc. <u>7</u> (1951).
[14]	Keimel, K.: Représentation de groupes et d'anneaux réti- culés par des sections dans des faisceaux. Thèse Sci.math., Paris (1970).
[15]	Keimel, K.: The respresentation of lattice-ordered groups and rings by sections in sheaves. Lecture Notes in Math.,Springer-Verlag, <u>248</u> (1971), 1-96.
[16]	Kist, J.: Respresentation of archimedean function rings. Ill.J.Math. 7 (1963), 269-278.
[17]	Maeda, F., Ogasawara, T.: Respresentation of vector lattices (Japanese). J.Sci.Hiroshima Univ.Math.Rev.10 (1949), 544.
[18]	Nakano, H.: On the product of relative spectra. Ann.Math. <u>49</u> (1948), 281-315.
[19]	Nakano, H.: Modern Spectral Theory. Tokyo Math. Book Series, vol. II, Maruzen, Tokyo,1950.
[20]	Ogasawara, T.: Theory of vector lattices I, II. J.Sci.Hiroshima Univ.(A) <u>12</u> (1942), 37-100 and 13 (1944), 41-161 (Japanese).
[21]	Pickert, G.: Einführung in die höhere Algebra. Göttingen (1951).
[22]	Stone, M.H.: A general theory of spectra. Proc.Nat.Acad.Sci.USA I. <u>26</u> (1940), 280-283 II. <u>27</u> (1941), 83- 87.
[23]	Yosida, K.: On the representation of a vector lattice. Proc.Imp.Acad.Tokyo <u>18</u> (1941-42), 339-343.
[24]	Schaefer, H.H.: On the representation of Banach lattices by continuous numerical functions. Math.Z. <u>125</u> (1972), 215-232