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Structure of Archimedean Lattices 

by Jorge Martinez 

Abstract An archimedean lattice is a complete algebraic lattice L with 

the property that for each compact element c £ L, the meet of the maximal elements 

in the interval [0, c] is 0. L is hyper-archimedean if it is archimedean, and for 

each x e L, [x, 1] is archimedean. The structure of these lattices is analysed 

from the point of view of their meet irreducible elements. If the lattices are 

also Brouwer, then the existence of complements for the compact elements charac-

terizes a particular class of hyper-archimedean lattices. 

The lattice of il-ideals of an archimedean lattice ordered group is archi-

medean, and that of a hyper-archimedean lattice ordered group is hyper-archi-

medean, In the hyper-archimedean case those arising as lattices of il-ideals are 

fully characterized. 

Finally, we examine the role played by these lattices in representations 

by lattices of open sets of some topological space. We point out a duality be-

tween algebraic, Brouwer lattices and certain T 0-spaces with bases of compact 

open sets. 

Notation and terminology Our set theoretic notation is as follows: if 

A and B are subsets of a set X then ( A C B) B denotes (proper) containment 

of A in B; A \ B is the complement of B in A. 

Our lattice theoretic and topological terminology is standard, except 

where expressly noted that it Is not. The terminology from the theory of lattice 

ordered groups is for the most part that of Conrad [5]. 
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1. Structure of archimedean and hyper-archimedean lattices We will be 

dealing exclusively with algebraic lattices: complete lattices generated by 

compact elements. We call an algebraic lattice archimedean if for each c e c(L), 

the semilattice of compact elements, the interval [0, c] has the property that 

the meet of its maximal elements is 0. The motivation for this notion comes 

from the theory of 2,-groups (abbreviation for lattice ordered groups): among 

the abelian Ji-groups the archimedean it-groups are characterized precisely by the 

condition that the lattice of its £-ideals be archimedean as defined above. 
G 

(Recall: an £-group^is archimedean if for each pair 0 £ a, b c G na £ b, for 

some natural number n.) This observation concerning the lattice of £-ideals of 

an archimedean £-group first appeared in [3], and is due to Roger Bleier. 

Let us call an algebraic lattice L hyper-archimedean if it is archimedean 

and for each x e L [x, 1] is archimedean. Again, here we are motivated by the 

theory of ^-groups: an £-group G is hyper-archimedean if it is archimedean, and 

each Jl-homomorphic image of G is archimedean. It is immediate then that G is hyper-

archimedean if and only its lattice of £-ideals is hyper-archimedean. 

We shall call an element t of a lattice L meet-irreducible if t« x X 

implies that t » x^ t for some jj e A. The notion of finite meet irreducibility is 

defined in the obvious manner. 

Below, let L be an algebraic lattice; the first three lemmas are well known. 

See [Z] or [7] . 

Lemma: If x < 1 in L then x is the meet of meet-irreducible elements. 

1.2 Lemma: The meet of all the meet-irreducible elements of L is 0. 
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1.3 Lemma: L is a Brouwer lattice if and only if L is distributive. 

(Note: A complete lattice B is Brouwer if and only if the following dis-

tributive law holds in B: a A (V^b^) = V-^ (a A b^) .) 

Now the first structure theorem on archimedean lattices! 

1.4 Proposition : Let L be an archimedean lattice, and 0 < c < d £ c(L). 

Then c and d have a value in common. Conversely, if L is a modular algebraic 

lattice, and any two comparable compact elements have a value in common, then 

L is archimedean. 

(Remark: p e L Is a value of c e c(L) if p is maximal with respect to not 

exceeding c. If p is a value of some compact element then p is meet-irreducible, 

and conversely. 

We shall provide a converse to show that we cannot dispense with modulari-

ty in the converse of 1.4 .) 

Proof: Suppose L is archimedean and 0 < c < d £ c(L). There is a maximal 

element m of [0, d] such that c jf m. Using Zorn's lemma pick y < m so that it 

is a value of c; one can easily show then that y is a value of d as well. 

Conversely, suppose L is modular, and c, d e c(L) with 0 < c < d. If p is 

a value of both c and d, then by modularity d A p is maximal in [0, d] and 

c £ d A p. This suffices to show L is archimedean. 

1.5 Theorem: Suppose L is a hyper-archimedean lattice; then the subset 

of meet-irreducibles is trivially ordered. Conversely, if L is modular and the 

set of meet-irreducibles is trivially ordered, then L is hyper-archimedean. 
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Proof: Suppose first that L is hyper-archimedean. A meet-irreducible 

element t (in any complete lattice) always has a cover t: namely, the meet of 

all the eleeents that exceed t properly. Here we show that t = 1 for each meet-

irreducible element t. [t, 1] is an archimedean lattice in which t is the unique 

atom; if t < 1, one can show that a compact element d of [t, 1] exceeds t. This 

contradicts the fact that [t, 1] is archimedean. 

Conversely, suppose L is modular and the set { t^ J X e A } is the tri-

vially ordered set of meet-irreducibles. Then each one is maximal and their meet 

is 0 by lemma 1.2, so if c £ c(L) and c > 0 then some t fails to exceed c. By 

in M 

modularity c A t is maximal^[0, c] for each such t^, and the intersection of all 

these c A t^ is 0. This proves L is archimedean. 

If one observes that for each x < 1 { t^ | t^ ^ x } is the complete set 

of meet-irreducibles of [x, 1] the argument of the preceding paragraph shows 

[x, 1] is archimedean, and hence that L is hyper-archimedean. 

Examples : a) If E is any vector space, the lattice V(E) of subsoaces 
a-

of E is a hyper-archimedean, modular lattice. In fact, if R is any semisimple, 

Artinian ring and M is a left R-module then the lattice of submodules of M is 

hyper-archimedean. The author will explore this matter further elsewhere. 

b) Examples can be found of non-modular archimedean and hyper-archimedean 

lattices; see [ rj ]. 

c) Below we exhibit a lattice satisfying the condition of proposition 1.4 

which is not modular and not archimedean. 
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Notice also that this lattice satisfies the condition of theorem 1.6, but is not 

hyper-archimedean. 

We now direct our attention to archimedean, Brouwer lattice. Recall that 

in a complete Brouwer lattice it is true that for each pair of elements x and y 

the set { z j x A z y } has a unique largest element. In particular if y = 0, 

there is a largest element x 1 such that x A x* = 0. It is well known that this 

"complementation" is an auto-Galois connection on the Brouwer lattice. The set 

of all elements with the property that x = x" form a Boolean algebra in which 

the meet operation agrees with that of the underlying lattice. We shall refer 

to it as the Boolean algebra of polars and to its elements as polars. 

1.7 Proposition: Let L be an algebraic, Brouwer lattice. Then L is 

archimedean if and only if c' « A { all values of c }, for each c £ c(L). 

Proof: Suppose L is archimedean, and 0 < c £ c(L) and let { p^ | X £ A } 

be the set of values of c; since c A c' » 0 and p^ is prime, p^ > c', for each 

X £ A . If c' < A p^ there is a compact element d < A p^ so that d £ c', ie. 

d A c > 0. Since L is archimedean there is an m maximal below c such that 

d A c £ m. Let y be the largest element of L such that y A c « m; then y is a 

value of c, and so y » p^, for some y £ A . But then d £ y and hence d A c y A c 

• m, a contradiction. Thus c' » A p^. 

Using the same notation of the preceding paragraph, let us assume the 

indicated condition holds. It is not hard to see that the elements c A p^ are 

precisely the maximal elements of [0, c]. Now A ^ (c A p^) « c A (A^ p^) -

c A c' - 0 , and so L is archimedean. 
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If L(G) is the lattice of Jt-ideals of a hyper-archimedean &-group G then 
a. 

the set of prime elements of L(G) is trivially ordered; see [6]. As we shall see 

this is not true of any hyper-archimedean, Brouwer lattice. Also L(G) (for any 'V/ 

abelian 2,-group G) has the property that the meet of two compact elements is 

compact; once again this is not true in general in the abstract lattice setting. 

The above considerations may serve to motivate the following definitions. If 

L is an algebraic, Brouwer lattice we say it has the finite intersection property 

(FIP) if the meet of any two compact elements is compact. L has the compact 

splitting property (CSP) if each compact element of L is complemented, ie. if 

c V c 1 « 1, for each c e c(L). 

Our next theorem ties things together properly. 

1.8 Theorem: Let L be an algebraic,Brouwer lattice; the following are 

equivalent : 

(a) L has the CSP. 

(b) L has the FIP, and the set of primes of L is trivially ordered. 

In particular, with either of these conditions L is hyper-archimedean. 

Proof: (a) -*» (b) Suppose c, d e c(L) and c A d = xi* w i i e r e • t* i e x i a r e 

upward directed. 1 « d V d', so c « (c A d) V (c A d'), and hence c « ^iel^j.V' 

(c A d 1 ) ) . But then c = x ^ o V (c A d') for a suitable index i c ; this implies 

that c A d • Xi.Q. This suffices to show c A d is compact. 

If p < 

q are both prime, there is a c £ c(L) with c q yet c p. Since 

c A c ' - 0, c' £ p , and so 1 a c V c' 3 q V p = q, a contradiction. 

The converse of theorem 1.8 requires a technical lemma which we shall not 

prove; its proof may be found in [ f ] . 
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Lemma : Suppose L has the FIP; there is a one to one correspondence 

between minimal primes of L and ultrafilters of c(L).T This correspondence is 

given as follows: if p is a minimal prime, let N(p) = { c £ c(L) j c £ p }; its 

inverse assigns to an ultrafilter M of c(L) the element V { c 1 j c £ M }. 

(t Filter here means proper filter; an ultrafilter is a maximal filter.) 

1.9.1 Corollary: If L has the FIP, then p £ L is a minimal prime if and 

only if p = V { c' | c £ p, c £ c(L) }. If p is a minimal prime and p > d e c(L), 

then p £ d' . 

Now let us prove that (b) implies (a) in theorem 1.8: suppose c £ c(L) yet 

c V c* < 1 . Let p be a meet irreducible so that p > c V c'; by assumption p is a 

minimal prime, and so by 1.9.1 p ^ c + p ^ c ' , a contradiction. This completes 

the proof of theorem 1.8 . 

We should check that the pair of conditions contained in (b) of 1.8 are 

irredundant. So consider an infinite set X with the finite complement topology, 

and let L « 0(X), the lattice of open sets of X; this is a hyper-archimedean, 

Brouwer lattice (interpreting infinite meets as interiors of intersections of 

open sets.) However, L has the FIP (each x £ L is compact) while 0 is prime. 

On the other hand let X « { x-^, x^> ..., y, z }, and X* = X \ { y , z}. Any 

subset of X' shall be open , and the open neighbourhoods of y (resp. z) are the 

sets with a finite complement in X'. Again let L = 0(X); L is a hyper-archimedean, 

Brouwer lattice in which every prime is maximal, yet if U » X \ { y } and V » X \ { z } , 

then U and V are compact whereas X' » U fl V is not. The author owes this example 

to Jed Keesling. 
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We close this section with a rather striking analogue of a well known 

result about archimedean ^-groups. For its proof we refer the reader to [ f ]. 

1.10 Theorem: Suppose L is an archimedean, Brouwer lattice and x £ L is 

a polar. Then [x, 1] is archimedean. 

2. Realizations of hyper-archimedean, Brouwer lattices as lattices of 

il-ideals We were motivated to study this concept of an archimedean lattice 

in order to discover which lattices arise as the lattice L(G) of Jl-ideals of 

an archimedean il-group G. Although some necessary conditions become obvious 

rather early in the game, (such as: the lattice must be an archimedean, Brouwer 

lattice with the FIP plus a good deal more), the problem is in general quite 

hard. In the case of hyper-archimedean il-groups the matter as a lot simpler; 

we can fully characterize those lattices arising as the lattice of £-ideals 

of a hyper-archimedean £-group. 

2.1 Theorem: A hyper-archimedean, Brouwer lattice L arises as the lattice 

of I-ideals of an it-group if and only if L has the CSP. 

Proof: The necessity is well known (see [£]), so we pass to a sketch of 

the proof of the sufficiency; further details may be found in [ f J. Let { p^ | 

A £ A } be the family of primes of L, and G* be the it-group of integer-valued 

functions on A with finite range; alternatively, the it-group of integral step 

functions on A. We define a mapping a: c(L) G* by: ca-^ = 1, if c £ p^, and 0 

if c < p-^. It is easy to verify that a is a lattice embedding. 

Let G be the it-subgroup of G* generated by^'Lya, and P(G) denote its lattice 

of principal i-ideals; these are the compact elements of L(G). Define a mapping 
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T: C(L) -> P(G) by letting cT » G(ca) - the 5,-ideal generated by cO in G. Once 

again it is easily verified that T is a lattice embedding, so one is only left 

with proving that T is onto. Once this is done c(L) and P(G) are isomorphic 

lattices, and hence so are L and L(G). It is here that one uses the full force 

of the CSP, in the following way: if 0 ^ g e G expressible by g 3 m^(c^a) + ... 

+ m^Cc^a), then this expression can be rewritten so that the compact elements of 

L that appear are pairwise disjoint. 

2.1.1 Corollary : If G is a hyper-archimedean &-çroup then one cannot tell 

from the lattice of £-ideals whether G is embeddable as an ^-subgroup of a group 

of real valued step functions. 

3. Topological realizations of algebraic, Brouwer lattices and dualities 

For further amplification on the material in this section the reader is urged to 

consult Bruns [ 4 ] , Hofmann & Keimel [ £]» Martinez [ lo] and Schmidt [12.], plus 

probably many, many others. 

If L is an algebraic, Brouwer lattice, let I(L) denote the set of meet-

irreducibles, and P(L) denote the set of primes of L . Topologize P(L) by taking 

for its open sets the sets P(x) ° { p e P(L) I p > x }, for all x £ L; topologize 

I(L) with the subspace topology. Then P(L) is a -space with a base of compact, % u 

open sets, (it is spectral in the terminology of [ S ],) and I(L) also has a base 

of compact, open sets and is t^: every point is isolated in its closure* Bruns 

[4] first dealt with this separation axiom and called it ^x/2' Moreover, L is 

isomorphic with the lattice of open sets of both P(L) and I(L). 

Let us say that a topological space X coordinatizes L if L - 0(X), the 
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lattices of open sets of X. Bruns [4J showed that if X is a T -coordinatization 
o 

of L then X is homeomorphic to a set B, with I(L) Çz B C P(L), having the subspace 
% % 'V a» 

topology of P(L). It can easily be shown that I(L) is (up to homeomorphism) the 
% 'X/ 

only t-.-coordinatization, and likewise P(L) the only spectral one. The author 

will take up coordinatizations of non-algebraic lattices elsewhere. 

Coordinatizations by P(L) gives rise to a duality between the category of 

algebraic, Brouwer lattices and lattice homomorphisms preserving all joins, and 

the category of spectral spaces with bases of compact, open sets, together with 

all continuous mappings, see [J ]. Coordinatization by I(L) also gives rise to 

a duality; qua objects, a one to one correspondence between algebraic, Brouwer 

lattices and t-^-spaces with bases of compact, open sets. The morphism-classes 

pertinent to this duality are so restricted so as not to merit discussion here. 

Presumably, any "canonical" association of a set B, with I(L) Ç" B Çi P(L), with L 

will produce a new duality, and it is a reasonable question whether every duality 

arises in this manner. 

The theorem below interprets in terms of the I(L)-duality what topological 

conditions go with some of the lattice-theoretic notion discussed in this paper. 

Theorem: Let L be an algebraic, Brouwer lattice. 

i) L is archimedean if and only if each basic compact, open set of I(L) 

has in the subspace topology a dense set of points whose closures are singletons. 

ii) L is hyper-archimedean if and only if I(L) is T-, . 

iii) L satisfies the CSP if and only if I(L) is Hausdorff. 
a. 

iv) I(L) is discrete if and only if L is Boolean. 

For proofs of these consult [/#]. 

304 



Bibliography 

A. Bigard, Groupes archimediens et hyper-archiraediens; Séminaire Dubreil, 

et. al., 2 1 e , no. 2 (1967-68). 

G. Birkhoff, Lattice Theory; Amer. Math. Soc. Colloq. Publ., Vol. XXV, (1967). 

R. Bleier & P. Conrad, The lattice of closed ideals and a*-extensions of 

an abelian Jl-group; preprint. 

G. Bruns, Darstellungen und Erweiterungen geordneter Mengen II; J. reine, 

angew. Math. Vol. 210, 1 -23 (1962). 

P. Conrad, Lattice Ordered Groups; Tulane University (1970). 

P. Conrad, Epi-archimedean lattice ordered groups; preprint. 

G. Gratzer, Universal Algebra; Van Nostrand (1968). 

K. II. Hofmann & K. Keimel, A general character theory for partially ordered 

sets and lattices; Memoirs Amer. Math. Soc. 122 (1972). 

J. Martinez, Archimedean lattices; preprint. 

J. Martinez, Topological coordinatizations and hyper-archimedean lattices; 

preprint. 

B. Mitchell, Theory of Categories; Academic Press (1965). 

J . Schmidt, Boolean duality extended; preprint. 

305 


