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Abstract. Necessary and sufficient conditions are derived 

for a given semilattice to be embeddable in a free semilattice. 

Introduction 

I'd like to talk today about a circle of ideas concerning 

free semilattices. The problems involved are fairly concrete, 

and yet in them you will see echoes of several higher-level con-

cepts dealt with in other papers at this conference. 

As you well know, the very structure of free lattices and 

free modular lattices presents some very difficult questions. 

The basic structure of free distributive lattices is somewhat 

more transparent, and yet still eludes even a simple count of 

elements in the finite case. 
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In contrast, the structure of free semilattices seems 

utterly trivial — so much so, in fact, that it is hard at first 

to imagine how a free semilattice could give rise to any inter-

esting questions at all. 

Specifically, let us consider join-semilattices (S, V), 

not necessarily with a 0-element or a 1-element. An example of 

such a semilattice is Fin(X), the semilattice of nonempty finite 

subsets of an arbitrary nonempty set X, with set-union being 

the operation. Our basic fact is that, for any nonempty set X 

of generators, the free semilattice FSL(X) on X is isomorphic 

to Fin(X). The isomorphism is the obvious one: For any 

e X, the element xn V ... V x of FSL(X) corre-V 3 n 7 1 n v 7 

sponds to } e Fin(X). 

§1. Horn's Problem 

A. Horn posed the following tempting "lunch-table problem." 

Problem 1. Clearly, FSL(X) and its subsemilattices obey 

the condition 

(*) every principal ideal is finite. 

Is (*) also a sufficient condition for a semilattice S to be 

isomorphically embeddable in a free semilattice? 
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One indication pointing in the direction of an affirmative 

answer is that every semilattice can "be isomorphically realized 

as a semilattice of subsets of itself; therefore the answer is 

always positive for finite semilattices. In a sense, then, the 

problem asks whether local embeddability is sufficient for 

global embeddability. 

The answer, interestingly, is no. A counterexample is the 

"ladder" R depicted in Figure la. 

As a ladder, R has certain deficiencies, but as a semi-

lattice, R will be a useful example throughout this talk. 
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To show that H is a genuine counterexample, let us suppose, 

on the contrary, that R could be embedded in FSL(X) for some 

X. Then there would be a corresponding subsemilattice of 

Fin(X), consisting of finite subsets of X with the inclusion 

relations indicated by Figure lb. For each n, AQ U B^ = A , 

so that B can differ from A by at most a few elements of n n ^ 
A„, a fixed finite set. Thus, if we watch A„ H B as n Cr ' O n 

varies, we must arrive at i and j (i < j) such that 

A a fl B. = A a fl B.. In other words, to go from A. to B. we O i O j ^ o 1 1 

lose the same elements as in going from A. to B.. Since «] J 
A. c A., we conclude that B. CB., in contradiction to Figure 1 3 i - 3 
lb. 

This proof settles Problem 1, but it simultaneously raises 

another question, to be known, out of turn, as 

Problem 3• Characterize those semilattices which can be 

embedded in a free semilattice. 

An equivalent problem, of course, is to characterize those 

semilattices which can be isomorphically represented by finite 

subsets of some set, under the union operation. A logical 

setting for an attack on this problem is therefore the general 

theory of representations of semilattices by sets. 
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§2. Representations of semilattices 

Let us review this theory. Many of the basic ideas are 

simply semilattice adaptations of the early distributive-lattice 

set-representations invented by Birkhoff and turned into a 

pretty, topological duality theory by Stone. Birkhoff and Frink 

[̂ 3] discussed meet-representations of arbitrary lattices, by 

ideals, which extend naturally to the semilattice case. Bruns 

developed and surveyed these ideas further, placing them 

in their most natural context. Recently, such ideas have been 

studied in terms of category theory and duality and there further 

developed. Several speakers at this conference have followed 

this approach, although the specific categories used have 

differed, in varying degrees, from the ones I'll be using im-

plicitly now. 

Let S be a join-semilattice and let X be a set. Al-

though our ultimate interest is representations by finite sub-

sets, we must work now with Pow(X), the set of all subsets 

[power set] of X. We regard Pow(X) as a semilattice under IJ-

Definition 2.1. A representation of S on X is a semi-

lattice homomorphism a : S -» Pow(X) such that 
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(i) the sets cr(s) distinguish points of X, i.e. no 

two distinct elements of X are contained in exactly 

the same subsets cr(s), s e S; and 

(ii) the sets o-(s) cover X, i.e., U _ cr(s) = X. 
S S o 

If a is one-to-one, i.e., an isomorphism, let us call cr 

"faithful." 

Bruns [5,6] does not initially require conditions (i) 

and (ii), but they will be convenient for our purposes and are 

not really restrictive. For example, if S can be embedded in 

a free semilattice on a set Y of generators, then, as we noted, 

S is isomorphic to a semilattice of finite subsets of Y; if Y 

is "reduced" to a smaller set X by deleting elements not used 

and by identifying elements not distinguished by the finite sub-

sets used, then we get a genuine faithful representation of S 

by finite subsets of X. 

For a given semilattice S, there are three "famous rep-

resentations" of S, all faithful: 

1. The "regular" representation, c . Here X = S and 

°reg(s) = ft £ S : S ^ t3' 

2. The "ideal representation," Here X = Id(S), the 

set of ideals of S (including fi), and 
crid(s) = fl e Id(S) : s { i} . 
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3. The "CMI" representation, or ^ Here X = CMl(ld(S)), 

the set of nonempty, completely meet-irreducible (c.m.i.) 

ideals of S, and again °"cmi(s) = {I e CMl(ld(S)) : s j. i}. 

(An element m < 1 of a complete lattice L is said to be 

completely (or strictly) meet-irreducible if m is not the meet 

of any set of strictly larger elements [2, p. 19^]. Equiv-

alently, there is a least element c > m in L. Notice that c 

covers m. Id(S) is an algebraic lattice, so has many c.m.i. 

elements; in fact, every element of an algebraic lattice is a 

meet of c.m.i. elements. If S has a 0-element, then $ is 

a legitimate c.m.i. element of Id(S), but for technical 

reasons we'll always explicitly exclude f) in discussion of 

c.m.i. ideals.) 

Each of the representations (l), (2), (3), has its own 

virtues : 

(1) is the simplest, most natural representation. (The 

dual version of (l) is even more natural: Each element of a 

meet-semilattice is represented by the principal ideal it 

generates.) 

(2) is the ultimate parent representation, in that any 

representation of S is equivalent to a "subrepresentation" of 

cr , obtained by restricting attention to some subset of Id(S). 
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(I'll clarify this terminology in a moment.) For example, cr reg 
corresponds to the set of principal ideals, and of course ^ ^ 

corresponds to the set of c.m.i. ideals. The association of 

each representation with a subset of Id(S) also provides a 

handy way of comparing the "size" of representations : Informally, 

we can write "cr c t" when the associated subsets of Id(S) are 

so related. 

(3) is an especially economical, efficient representation, 

as Birkhoff and Frink point out in the case of semilattice rep-

resentation of lattices . 

Before considering an example, let's clarify the terminology 

just used: Two representations S on sets 

are said to be equivalent if there is a one-to-one correspondence 

between X^ and X^ which makes cr̂ ( s ) correspond to s ) 

for each s e S. For a representation a of S on X, a 

subrepresentation of <r is any representation t of S ob-

tained by taking a subset Y of X and setting t(s) = cr(s) H Y. 

To be more graphic, we can say that "t is the intersection of 

cr with Y." Of course, even for faithful cr, it is possible 

to "lose faith" in passing from cr to T, if we strip away 

too many elements of X in forming Y. An obvious necessary and 

sufficient condition for t to be faithful is that cr be faith-

ful and that of any two representing sets cr(s-,) ̂  cr(sp), there 
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be an element of Y in one and not the other. If cr = o\ ,, id 
this condition is fulfilled if Y is the set of principal 

ideals or the set of nonempty c.m.i. ideals. 

If cr is a representation of S on a set X, the equiv-

alent subrepresentation of a\ is easily constructed: each 

element x e X corresponds to the ideal I = {t e S : x jt cr(t)} 

e Id(S), and Y is the set of such ideals. This same corre-

spondence shows up as the basis of categorical duality theory, 

where ideals may appear as characters and Id(S) as the dual 

space of S. 

Let's look at all three standard representations in one 

particular setting. 

Example 2.2. Let S be Fin(X) itself,, for some set X, 

and let cr : S -* Pow(X) be simply the inclusion map. Thus, the 

elements of S are finite subsets of X; the ideals of S 

correspond naturally to arbitrary subsets of X. The subset A 

of X corresponds to the ideal I = {F e Fin(X) : F c A} of 

Fin(X). For each element of S, i.e., for each nonempty finite 

subset F of X, cr (F) consists of all finite subsets of X reg ' 

which do not contain F; consists of ideals corresponding 

to all subsets of X which do not contain F; and it is not hard 

to determine that cr
cmi(F) consists of ideals corresponding to 

those "cosingleton" subsets X - {x} for which x e F. Of the 
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three, only the CMI representation has finite representing sub-

sets even when X is infinite, so its pretense to economy is 

borne out in this instance. 

By the way, one feature of this example, namely, that ideals 

of S are "represented" by subsets of the same set X, leads to 

a generalization, in which Id(S) is regarded as a semilattice: 

Observation 2.3. If cr is a representation of a semi-

lattice S on a set X, then cr* is a representation of Id(S) 

on X, where or (I) = U x °"(s) for each I e Id(S). Even if 
S 0 - L 

* 

cr is faithful, though, cr may not be, as can be seen by rep-

resenting Pow(X) on X by the identity map, for an infinite 

set X. 
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§3• Economy of representation. 

We have now reviewed the three basic representations of a 

semilattice S. To judge from the example of the preceding 

section, the CMI representation, with its economy, will be the 

most useful for studying representations by finite subsets. In 

this connection, we have left one question as yet unanswered: 

Problem 2. In what sense is the CMI representation the 

most economical? 

Once this problem is settled, we'll be in a stronger posi-

tion to investigate embeddings in free semilattices. 

A natural conjecture in answer to Problem 2 would be that 

"cr . e cr" for all faithful representations cr of S. A glance 

at the example of the preceding section shows the falsity of this 

conjecture, however: For an infinite set X and S = Fin(X), 

cr . <t cr , even though cr . ( s ) is always finite. cmi c reg' cmiv ' ° 
Here's another try. The topological analogue of a finite 

set is a compact set, and, happily, compact subsets form a semi-

lattice under union, in any topological space. (The intersection 

of two compact sets may not be compact.) Topological representa-

tion theories, on the other hand, most naturally represent struc-

tures having a join operation by open subsets. Stone early 
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showed the advantage of performing a marriage of these two 

properties by considering open compact subsets; among spaces 

with many such subsets, the prime example - in fact the ideal 

example - is the Stone representation space of a Boolean algebra 

[£0,21]. The Stone space is Hausdorff; for semilattices, T Q 

spaces constitute a natural setting. 

An investigation provides the following solution to Problem 

2, with a few added frills. 

Theorem 3.1. Let cr : S -» Pow(X) be a faithful represent-

ation of a semilattice S on a set X. Then the following con-

ditions on cr are equivalent : 

( 1 ) V . c cr" ; v J cmi — 
(2) under some topology on X, every set cr(s) is compact and 

open ; 

(3) cr* is a faithful representation of Id(S) \ {̂ 3 on X; 

(i+) each (nonempty) c.m.i. ideal I of S has the form I 

for some x e X, where I = {t s S : x / c(t)}. 

[A proof of Theorem 3»1 is supplied in the Appendix.] 

Thus the CMI representation is the smallest faithful 

representation by open compact subsets. 
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In particular, every semilattice has a faithful representa-

tion by open compact subsets. 

The theorem immediately gives a fact, reminiscent of 

Example 2.2 (S = Fin(X)), which is exactly what we need: 

Corollary 3.2. For a semilattice S, the following are 

equivalent. 

(1) S can be embedded in some free semilattice; 

(l1) S has a faithful representation by finite subsets of some 

set X; 

(2) the CMI representation of S is itself a representation 

by finite subsets. 

The only implication needing proof is (2). All we 

have to do for this proof is to give X of (l') the discrete 

topology and quote (2) (l) of Theorem 3.1. 

The theorem 3.1 gives us useful information even in the 

case where S is finite. For such an S, all nonempty ideals 

are principal and so correspond to elements. The nonempty CMI 

ideals correspond to the "uniquely covered" elements - elements 

covered by exactly one other element. For convenience, let 

NUC(S) denote the Number of Uniquely Covered elements of S. 

In the CMI representation, then, <J
cmi('t) consists of ideals 

corresponding to uniquely covered elements not > t. It follows 
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that l(Jcmi(t)l = NUC(S) - NUC[t, 1], where 1 is the top 

element of S, [t,l] denotes the closed interval 

{s e S : t < s < l], and |A| denotes the cardinality of a 

set A. Thus we obtain the following fact. 

Corollary 3.3. Let cr faithfully represent a finite 

semilattice S on a set X. then for each t e S, 

|cr(t)| > mjC(S) - MJC[t,l] . 

Proof. Again we put the discrete topology on X and 

quote (2)=» (1) of Theorem 3.1. X is necessarily finite. 

Here we have implicitly observed that for finite semi-

lattices, the CMI representation really is "contained" in any 

faithful representation. Of course, the CMI representation 

for finite semilattices is really nothing more than a dualized 

version of the familiar expression of lattice elements as joins 

of join-irreducibles. A direct proof of Corollary 3-3 would not 

be difficult. 

• The Characterization. 

Recall that our goal has been a solution of 

Problem 3. Characterize those semilattices which can be embedded 

in a free semilattice. 
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Actually, Corollary 3-2 deserves to be called an answer, in 

that it gives a criterion which is "intrinsic" to S (namely, 

that the CMI representation of S is itself a representation 

by finite subsets). By rephrasing this criterion, we obtain 

Solution 1. A semilattice S can be embedded in a free 

semilattice if and only if each element of S is contained in 

all except finitely many completely meet-irreducible ideals of S. 

In most situations, this criterion w o u l d cumbersome. It 

does apply nicely, though, to our original "ladder" semilattice 

R of Figure la. There the principal ideal generated by each 

b^ is plainly c.m.i., and none of these ideals contains aQ. 

Thus, the condition of Solution 1 fails, and R is not em-

beddable in a free semilattice. (Actually, Solution 1 was 

developed first and R was invented to conform to a failure of 

that criterion.) 

One ingredient Is missing from Solution 1: The requirement 

that all principal ideals be finite. This property is especially 

useful, because Corollary 3.3 gives us potentially relevant in-

formation about faithful representations of such a finite ideal, 

if not the whole semilattice. The following conjecture is nat-

ural: For each element t e S, look at representations of the 

various principal ideals containing t, regarded as semilattices 
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in their own right. (For each principal ideal, choose the most 

economical faithful representation possible.) If the size of 

subsets representing t remains bounded as the principal ideals 

get larger and larger, then S should have a faithful repre-

sentation which represents t by a finite set. If not, t 

should not be so representable. 

Let us incorporate this conjecture, for all t e S, into 

a proposed solution, using the estimate of Corollary 3-3- The 

principal ideal generated by an element s can be denoted by 

(s] . 

Solution 2. A semilattice S can be embedded in a free 

semilattice if and only if the following two conditions are met: 

(a) Every principal ideal of S is finite, and 

(b) for each t e S, NUC(s] - NUC[t,s] is bounded as s 

runs through {s : s > t}. 

This conjectured solution is true. Half of the proof, at 

least, is immediate: Suppose S can be embedded in a free 

semilattice. Then S has a representation cr by finite subsets 

of a set X. For any t e S and s > t, cr restricted to (s] 

is an isomorphism of (s] into Pow(X). This restriction might 

not meet our technical requirements for being a representation, 

but by discarding some elements of X and identifying others, 
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l s ) 
as discussed in Section 2, we get a genuine representation cr } 

of (s] on a "smaller" set XQ. By Corollary 3 .3 , 

NUC(s] - MJC[t,s] < which is at most |cr(t)|, a 

"bound not depending on s . 

For the other half of the proof, I'd like to describe a. 

method which is simple and pretty, if a knowledge of ultra-

products is presupposed: Suppose S satisfies (a) and (b) (s) (and is not itself finite). For each s e S, let cr J be a 
(s) (s) 

representation of the ideal (s] on a set X , with cr J 

being equivalent to the CMI representation of (s]. S can be 

embedded in an ultraproduct of its principal ideals by taking a 

suitable ultrafilter U on S (one among whose members are all 

principal dual ideals of S [_10, Corollary, p. 2 7 ] ) ; thus 

S eu Fi (s]/ll. The corresponding ultraproduct of the representa-
S tion is a faithful representation cr of II (s]/ll on the 

s 
set X = n x ( S V u . "Restricted" to S, or becomes a faithful 

(s) representation, with cr(t) being essentially H J{t)/\x. 

Since |(/S\t)| = NUC(s] - NUC[t,s], which is bounded as s 

runs through {s : s > t}, the ultraproduct expression for 

cr(t) yields a finite set. 

(Does there exist an alternate proof which constructs the 

representation of S explicitly, while avoiding any form of the 

axiom of choice?) 
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§5. Applications. 

Let's apply Solution # ? in several cases. 

Example 5.1. Let S be the "ladder" semilattice R of 

Figure la. For t = a^, s runs through the a . 

NUC(a 1 - NUC[a^,a 1 = 2n - n = n, which is unbounded. Therefore v n O n 
R is not embeddable, as we know. 

Example 5.2. Let S be the semilattice depicted in Figure 

2. S is really a modular lattice consisting of N x N 

(N = {0,1,2,...}) with additional elements c. adjoined. 

(0,0) 

( M ) 

/ 

Figure 2 
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For t = (m,n) and s = (m,,n'), we get NUC(s] - NUC[t,s] = 

(m1 + n' + [a certain number of cj:]) - ([m* - m] + [n' - n] + 

[a certain number of oi] ) = m + n + : c^ < (m^n'), 

c. (m,n)} | < m + n + | {c. : c. (m,n)} | = m + n + max(m,n). l — l l 
The computations where s and/or t is among the c^ differ by 

at most 1 from the same answer, for suitable m = n or 

m' = n'. Thus NUC(s] - NUC[t,s] is bounded, for each t, and 

the semilattice of Figure 2 is_ embeddable in a free semilattice. 

Example 5-3- Let V be an infinite-dimensional vector 

space over a finite field GF(q), and let S be its (semi-) 

lattice of finite-dimensional subspaces. Because (s] (i..e, 

[0,s]) is relatively complemented, the only uniquely covered 

elements are its "coatoms." Since [0,s] is self-dual, we can 

count its atoms (one-dimensional subspaces) instead; if s is a 

space of dimension n, this count is (qn-l)/(q-1), the number 

of nonzero vectors divided by the number of vectors in a one-

dimensional subspace. If t is k-dimensional, [t,s] is iso-

morphic to the subspace lattice of an (n-k)-dimensional vector 

space, so that the same kind of calculation applies. Thus 

WUC(s] - MJC[t,s] = [(qn-l)/(q-1)] - [(qn~k-l)/(q-1)] 

= q11 k( qk-l)/( q-1), which is unbounded for fixed k as n -» °°. 

Therefore S cannot be embedded in a free semilattice, even 

though its principal ideals are finite. 
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Further examples, for which the calculations are interesting 

but will not be carried out here, are these : 

Example Let T be an infinite set, and let S be 

the (semi-) lattice consisting of those partitions of T which 

have only finitely many nontrivial classes. In other words, S 

is the semilattice of compact elements of the full partition 

lattice of T. 

Example 5•5• Again let T be an infinite set and let S 

be the dual of the meet-semilattice of "cocompact" partitions of 

T; i.e., the partitions of T into finitely many pieces.. 

Finally, let us consider this case: 

Example ^.6. Let S be any distributive lattice in which 

all principal ideals are finite. In a finite distributive lattice 

D, the number of meet-irreducible elements equals the length 

i(D); therefore NUC(s] - NUC[t,s] - ^([0,s]) - i([t,s]) = 

i([0,t]), a fixed,, hence bounded, quantity as s varies. Thus 

such a lattice, regarded as a semilattice, can always be embedded 

in a free semilattice. (Horn and Kimura [12] have shown that 

any distributive lattice of this type is projective as a semi-

lattice, from which the embeddability is also immediate.) 
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Appendix : Proof of Theorem 3 . 1 . 

Let's follow the order {1) ( 3) ==> ( 2) ( k) ( 1) . 

(1)=> (3) : By assumption, cr is equivalent to the inter-

section of cr with some subset Y of Id(S) such that 

CMl( Id( S) ) c Y. Then a* is equivalent to H Y." (o"id* 

is nothing more than the regular representation of Id(S).) 

Since each nonempty ideal I of S is an intersection of non-

empty c.m.i. ideals and so is uniquely identifiable by which 
* c.m.i. ideals do or do not contain I, o\, fl Y, and hence 7 id 7 

cr , is one-to-one on Id(S) \ [ft] . 

(3)=> (2): Let X be given the topology for which the 

sets o~(s) themselves form a subbase for the open sets. Since 

cr is a complete join -isomorphism, taking joins in 

Id(S) \ {fi} to unions in Pow(X) \ the fact that the 

principal ideals (s] are compact elements of S [10,? Lemma 

2, p. 21] translates into the statement that any covering of 

one of the chosen subbasic sets by other subbasic sets has a 

finite subcover. Alexander's Subbase Theorem [13, p. 139] 

then asserts that each subbasic set cr(s) is compact in the 

generated topology adopted for X. 
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(2)=^ (J+): Without loss of generality, we may assume that 

S consists of open compact subsets of the topological space X; 

the members of S cover X. Let I be a nonempty c.m.i. 

ideal of S. We must find an x e X such that 1 = 1 , where x 
I = {s : x / s]. Let I+ be the unique smallest ideal pro-

perly containing I, and let sQ be an element of I + not in 

I. The members of I do not cover sQ; if they did, the union 

of the members of some (nonempty) finite subcover would contain 

SQ and would also be in I, forcing e Ij contrary to 

assumption. Let x, then, be a point of sQ not covered by any 

member of I. By definition, I 3 I. To prove I =1, let us X X 
consider s / I and show s ̂  i.e., x e s : The join of 

I and the principal ideal (s], I V (s], properly contains I, 
+ + 

so I c I v (s]. sQ e I implies that sQ e I V (s], in other 

words, that s^ c t U s for some t e S. Since x e s^ and 

x f. t, we must have x e s, as desired. 

(1)- It suffices to consider the case where 

X c Id(S) and cr = cr fi X. But in this case, for each x, 

the ideal I coincides with x itself. Thus the condition x 
of (l), that X include all c.m.i. ideals, reduces to (J+). 
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Remark. Our choice of conventions regarding 0 as an 

Ideal, etc., become relevant in the proof just concluded. To 
-X-

have cr be an isomorphism on all of Id(S) in (3) of Theorem 

3.1, for instance, we could either (a) include f> as a c.m.i. 

ideal, or (b) exclude ft as an ideal. If (a), then repre-

senting sets cr(s) cannot be allowed to be empty, or else (l) 

fails; furthermore, c.m.i. ideals no longer correspond only 

to uniquely covered elements in the case of a finite lattice, so 

that the "NUC" calculations must be altered. If (b), then 

no longer contains all representations, unless the repre-

senting sets o(s), s e S, are required to have empty inter-

section - a condition with other side effects. Of course, the 

conventions adopted do, unhappily, give Id(S) one more element 

than S when S is a finite lattice. 
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