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This paper contains some preliminary studies of
free orthomodular lattices. An orthomodular lattice
(abbreviated: OML) 1is considered here as a (universal)
algebra with basic operations v, A, , 0, 1. All general
algebraic notions like subalgebra or homomorphism are to

be understood in this way.

We assume the basic notions of the theory of OMLs
to be known; the reader can find the necessary information

in [1]) and ([u].

In the first chapter we describe a method to present
a finitely generated OML as a direct product of a Boolean
algebra and an OML of a special type, which we call tightly
generated. We use this to describe certain OMLs which are
freely generated by some simple partially ordered sets. In
the second chapter we construct a special extension of an
OML L. Since it 1is generated by L and one additional element
we call it a one-point extension of L. We use this constructio
in the last chapter to prove that the free OML generated
by a three-element poset consisting of two comparable
elements and an element incomparable with both contains
an infinite chain. This answers a question posed by D.

'oulis.
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1. Some simple free OMLs

As is well known every interval of the form [0, <]
in an OML L can be made an OML by defining the ortho-
complement a* of an element a in [o, c] bv a® = a". c.
If ¢ is in the center of L, i. e. 1f ¢ commutes with
every element of L, then the map x —> xa c is a
homomorphism of L onto [O, c]; moreover, the map

X —» (xacy, xac) 1s in this case' an isomorphism

between L and the direct product [0, c¢"}<{0, c].

We start out by describing a simple but useful such
splitting of a finitely generated OML. To simplify
notation we define for an element a of an OML L:
al = a’ and a® = a. We say that an OML L is tightly
generated by a finité‘set G iff it is generated by G and

for every map 4 € 26 (i.e. §: 6 —> {0,1}) the equation
A\ x 30 1 5 hotas.

X €G

(1.1) Let L be an OML generated by a finite set G

and define c¢ =//QN//X:S(X). Then ¢ is in the center of L,

3e2® xeG
the OML [0,c"]is Boolean and the OML [0,c] is tightly
generated by ‘{XA cl xe G}. In particular is every
finitely generated OML the direct product of a Boolean

algebra and a tightly generated OML.

Proof. The element ¢ obviously commutes with every
element of G and hence with every element of L, which
means that it is in the center of L. To show that [0,c”]

is Boolean it is enough to show that any two elements
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XAC’, y/\C’

with x,y€ G commute in [0,

¢}, i.e.

that

((xacda(yac" N v xac dalyac ) = xac’

hnolds, where (y . c )%

in [0,c”]. But

((XAc ) alyac v (xac dalyac M)

(Xxayvacc dvl{xac")Ay"v c)ac™)) =

(xayarac)vlxay ac)

(x Ay A N/
& e 2® 26l 3c2% e
§(z) J(Z)
(\//\z ) v (NS Az =
de2® 2¢G Te2® 7eG
Stozo S o
Sigdnc 5(2) Jcaiwt
= X AC
£e2% 2
RICYERT

is the orthocomplement of ya ¢’

/\ 5(2))V(XAYA\//\ J(Z) =

In order to show that the OML [0O,c] is tightly generated

by {xsc| xe G} we define for a given & €2

:{xeGl e(x) =

have to prove that

03 and J

= {x¢G | e(x) =

2\ (xAac)A N(xac)ac)
x& H x €

holds, which is shown by the following little calculation:

N (xac)da  Nxac)aac =

A& H

coa Nx A N(x"v ™)

X €y xe 3

C A /\x«(C'v/\_X‘)

xX€ D

XE R x €3
caA AN\x A Nx" =
Xen x g2

H

NN 0 AN/ ¢

€6

$el2S xew

/\XE(X)A \/xl-E(x) =0,

X €@

completing the proof.

x e &

G,

1}. We then

0

As a first application of this we characterize the

free OML penerated by a

\
W L

NN

ement set.
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it is well known, the following simple proof, howeve: ,

seems to be new.

Let MO2 be the following OML:
1

o .
let py» P,» P3s P, be the atoms of the Boolean algebra 2",

(1.2) The OML 2ux M02 is freely generated by the

Proof. Let L be an OML generated by the set {x,y}.
With ¢ having the meaning of (1.1), L is isomorphic with
the direct product [0,c"]x [0,c]. Since [0,c”] is Boolean
and 1s generated by aﬁ at most two-element set it has at
most 2u elements. Since [0O,c] is tightly generated by an
at most two-element set it is a homomorphic image of MO?2
and, hence, has at most six elements. It follows that L
has at most 2“.6 = 96 elements.But the OML 2ux M0O2 has 9b
elements and is generated by {(plv Pyia)slpy v p3,b)}.vIt

follows that it is freely generated by this set.

In a similar fashion one can determine the structure

of the OML which is freely generated by the poset
yd
(1)
% >
i.e. by the set {x,y,z} with the relations x <z and y s z.

If an OML L is generated by a set of this kind and if ¢ is

400



defined as in (1.1) it is easy to see that {0,c] is s-ill
tightly generated by the set {x. Cc,ya cS and hence is a
homomorphic image of M0O2. The Boolean algebra [0,c”] s in
this case generated by the set {xrc ,y ac’ ,zac ]
satisfying x ~ac y,yac sz ¢c”. From this it follows easilv
that [0,c”] has at most 25 elements. We thus obtain that

L has at most 25.6 = 192 elements. Again, if PqsPysPgsD, D¢
are the atoms of 2° and if a,b have the meaning of (1..J,

Sx M0O2 1is

it is easy to see that the 192-element OML 2
generated by the set {(piv pz,a),(pi~vp3,b),(pé,1)}, the
elements of which are in the appﬁbriate position. We thus

have:

(1.3) The free OML generated by the poset (1) is

isomorphic with 25x MO2.

By a slightly more elaborate argument but using the
same method it is easy to determine the OML which is fre..

generated by the poset

We leave this to the reader.
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2. The nne-noint extension of an OML

R

The problem of determining the structure of an
L freelv generated by a poset P becomes considerably rire
difficult if P contains elements x,y,z, where x is
incomparable with both v and z. We are far from being abin
to solve it’s word problem. The aim of the rest of this
paper is to show that every such OML contains an infinite

chain.

As a first step towards this goal we describe a
special extension of an orthocomplemented lattice
(abbreviated: OCL) which we hope might have other applicarions
than the one given in this paper. We start out with a
definition.

Definition. A quasi-ideal in an OCL L is a subset A

of L which satisfies tha following conditions:
1. 0O €A,
2. 1f a« A and b £a then be A,
3. if ae A then a"¢ A,
. if McA, if /M exists and if VM¢EA then ()0 A,

5. for every xe L: N ([0,x]nA) exists.

Note that condition 5 is alwais fulfilled if all chains
in L have bounded lenght, the only case we are dealing witn
in this paper.

We want to construct an OCL E which contains L as a
sub-poset, has the same zero and unit as L, the ortho-
complementation of which extends the orthocomplementation

of L and which is generated by L and one additional element.

402



We do not know whether our extension can be described by

some universal property.

Let A be a quasi-ideal in an OCL L. Define
A° = {a’| ac A}. Let s,s” be arbitrary elements. In order
to make our construction set-theoretically sound we have
to make the somewhat technical assumption that the sets
L, Ax{s“}and A"x s} are pairwise disjoint. We then

define the underlying set of our extension to be
E = Lu(Ax {S"}) v (A" x isy).

To avoid confusion we denote the partial ordering of L

by " sL" and the join-operation in L by " \/L". We now

define a relation < in E by:

a<b 1iff one of the following conditions holds:

1. a,b&L and a <.b,

L

2. a€elL, b = (x,s”) and a €;X,

3. aeA, b = (x,s) and a €1 X,

4. a = (x,8°), be A" and x sLb,

5. a = (x,8"), b = (y,s”) and x 1Yo
6. a = (xy8), bel and x «;b,

7. a = (x,s8), b = (y,s) and x €Y.

It requires some tedious checking that this is indeed a
partial ordering of E. It is obvious that this partial
ordering extends the partial ordering of L and that the
bounds of L are also the bounds of E. We omit the proof
that this partial ordering makes E a lattice. For the

convenience of the reader we list explicitely all the
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joins of elements of E. The meets are obtained dual.v.
In the following, x and y are elements of L and a,b :re

elements of E. The joins are then given by:

avb = X vy if a = x, Db y and x v.yveA or

L

if a = x, b vy and (x€ A or yvg A) or

H

if a = x, b (vys™) and x v,y ¢ A" or

L
if a = xe€A and b = (y,s) or

if a = (xy8"), b = (v,s") and x vy ¢EE or

if a = (x,s8") and b = (y,s),

avhb :(meyﬁ) if a = xeA, b = yeA mm_x»Ly¢A o

if a = xeA and b = (y,s) or

if a = (x,s) and b = (y,s),
avb = (x vLy,s') if a = x,b = (y,s") and x vLy<¢A or

if a = (x,s"), b = (y,s”) and x vy A
avb = A([x vLy,llq A") if a = x, b = (y,s") and x .:;'¢A4A

It is important to note that the join in L of two elements
x,ye L differs from their join in E iff x,y € A and x .,v¢ A,

and dually.

It is now easy to see that the orthocomplementation
of L extends to an orthocomplementation of E by the

definition:

(x,8) = (x",s8") and (x,s" )" = (x",s).
Since for every x€ A: x v (0,s8") = (x,s”) and dually for
every xe A"t x a(1,s) = (x,s) it follows that every

element of E is the join of an element of L and the element .

(0,8”) or the complement of such join, in particular, that*
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E is generated by the set L vy {(1,s)%. For the applicat .n
we have in mind it is finally important to observe tha' [

is an OML if L is an OML. The proof of this is again lest

to the reader.

3. Existence of infinite chains

In this chapter we sketch a proof of the existence
of an OML L which is generated by althree—element poset
P = {x,y,z} satisfying y <z and which contains an infinite
chain. As a first step we construct an infinite OML L
generated by such a poset P,-in which all maximal chains
have four elements. Instead of giving an explicite set-
theoretical construction, we modify Greechie’s method [3]
for graphical rebresentations of OMLs and simply draw a

"graph" of such an OML L. Here it is:

e eme
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This graph is to be understood in the follwinpg wav. ‘+e
vertices of each triangle represent the atoms of an «igh:'-
element Boolean algebra. The bounds 0,1 of each of trese
Boolean algebras are "identified" and whenever two vertices
of two triangles are connected by a line the atoms
represented by the connected vertices are "identifie"

and so are thelir complements. Our construction is a s cial
case of "Creechie s paste job" and it follows easily from
‘[3] that our graph 1f interpreted this way represents
indeed an OML. It is finally easy to see that this OML

is generated by the elements x,y,z indicated in the graph
and hence also by the elements x,y,z, which are in the

appropriate position.

From the graph it is obvious that there exists a

countably infinite sequence bo,b 'bn"°' of co-atom-

L
in L which satisfy the following conditions:
(A1) If O<’as:bi, O<bs bj and 1 # 3 then avb = 1,

(A2) if O< bs~bj and i # j then b vb; = 1.
From (A2) it follows:

(1) if i # j then b} ¢b.

9

and from (Al) we obtain:
(2) if i # j then [0,b;1n [0,b,] = {o}.
Put
A, = (o,ho]u[o,bll.
This 1s obviously a quasi-ideal. Let
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Ll z Lu(/\oxtSiS)u(A;x 181‘3)
be the one-point extension corresponding to it. We now
define recursively a sequence (L_) ~ of OMLs and a
nne«ecow

sequence (An)n<xv where An is the quasi-ideal

An - [O,(l,sn)Jka [O’bn+i]Lh
in L_and
n

Ln~1 = LnU(Anxisn-yl )v-(Anx’lS

n419)'
It is easy to prove by induction that these sequences

have the following properties:

(B1) If 0«<, a < (1’Sn)’ 0<y b= bj‘and n+ls j then a ‘LP: 1

L. "L, L, -
(B2) if O <th stbj and n+1 < j then b VLMfO’Sn) = 1,

(B3) if n+1 = j then [o,(1,sn)]L%n [o,bj]LM = {0}.

It follows from these properties that for every n, AL is
indeed a quasi-ideal of Ln and that for elements a,bel, ,

a vy b # a vad‘b only holds 1i1f a VLWb = 1 and dually

for meets. This means that every generating set of L is
also a generating set of every Ln, in particular that
every Ln is generated by P. This then is also true for
the direct limit of the family (Ln)n<nq , defined in the
obvious fashion. But this direct limit contains the
infinite chain {(1,sn)( n <'n3, proving that the OML

which is freely generated by the poset P contains an

infinite chain.
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