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I. Introduction. This paper follows on from our work 

exhibiting Baer semigroups as an equational class and investi-

gating the connection between equational classes of lattices 

and equational classes of Baer semigroups [1]. Here we consider 

the particular case of Foulis semigroups and orthomodular 

lattices and, as is usual when one particularizes, we are 

rewarded with more specific results. This paper does not 

depend on [1] and may be read separately. However, a fair 

knowledge of Foulis semigroups and orthomodular lattices is 

assumed and we refer to Blyth and Oanowitz [2] for the basic 

theory and further references. 

In this paper we show that Foulis semigroups from an 

equational class when they are regarded as algebras of type 

<2,1,1,0> where the two unary operations are the involution 

and the focal map. We show that the class of Foulis semi-

groups coordinatizing the members of an equational class of 

orthomodular lattices is equational. Conversely, the class of 

orthomodular lattices coordinatized by the members of an 

equational class of Foulis semigroups is also equational. 

We exhibit a homomorphism from the lattice of equational 

classes of Foulis semigroups onto the lattice of equational 

classes of orthomodular lattices. 
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We generally follow the conventions of Gratzer [4], 

except that we rarely bother to distinguish between an algebra 

and its base set. We are ambidextrous in the way we write 

maps: homomorphisms are on the left and residuated maps 

on the right. We feel that this tends to clarify rather 

than confuse the situation. We skip over foundational 

difficulties, especially when dealing with the lattice of 

equational classes, because all these can be handled by 

standard tricks - see Gratzer [4] for details. 

2. Foulis semigroups. We fol 1ow Blyth and Janowi tz [2] in 

using the term Fouli s semi group for what was originally called 

a Baer *-semi group by Foulis [3]. We refer the reader to 

these two sources for the proofs of any assertions that we 

leave unproven. 

Definition 1. A Fouli s semi group is an algebra <F;•,*, 1,0> 

of type <2,1 ,1 ,0> such that 

(i) < F ; • ,0> is a semigroup with zero; 

(i i) * is an involution, i.e. for any x,y e F, 

x** = x and (xy)* = y*x*. If x = x* then 

x is self-adjoint. 

(iii) for each x e F the element x' is a 

self-adjoint idempotent or projection. 

(iv) for each x e F 

r(x) = (y|xy = 0} = x'F. 

In other words, the right annihilator of x 

is a principal right ideal generated by a projection. 
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The elements of F of the form x1 are called cl osed 

projecti ons . The map defined by x x ' is called the 

focal map, 1 = 0 ' is an identity in F and 1' = 0. 

Proposition 2. Condi ti on (iv) of_ Def i n i ti on 1_ i_s_ equivalent 

to 

( i v ) 1 x 'y ( xy ) ' = y ( xy ) 1 for al 1 x ,y e F. 

Proof. Since x1 is idempotent, (iv) is equivalent to: 

xy = 0 if and only if x'y = y. 

Suppose that (iv) holds. Then 

(xy)'F = {t|xyt = 0} 

= {11x1 yt = yt} 

and since (xy)' e (xy)'F, we get x'y(xy)' = y(xy)'. 

If, on the other hand, (iv)' holds, then substituting 

x = 1 in the formula gives us the identity yy' = 0. Hence, 

if x'y = y, then xy = xx'y = 0. If xy = 0, then substi-

tution in the formula gives us x'y = y. We have shown that 

xy = 0 if and only if x'y = y and so (iv) holds. 

Notice that (iv) was the only one of the defining 

properties of a Foulis semigroup that could not readily be 

expressed as an identity. Proposition 2 shows us that it can 

be so expressed and we have the following result. 

Corol1ary 3. The class of all Fouli s semi groups i s equational. 
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Foulis semigroups are of interest mainly because, if 

F is a Foulis semigroup, then the set of closed projections 

in F, P'(F), is an orthomodular lattice where the operations 

are given by the formulas: 

( 1 ) e A f = ( f1 e ) ' e ; 

(2) e 1 = e' ; 

(3) 0 = 0 

We denote the equational class of Foulis semigroups by s 

and the equational class of orthomodular lattices by&C. From 

the formul as (1) (3) the following i s clear. 

Proposition 4. (i) I_f h: F^ F 2 i_s_ â  Foul i s semi group 

homomorph ism, then h 1 : P'(F-j) P'(F 2 ) , the res tri cti on of 

h to. the closed projecti ons , i s an orthomodul ar 1 att i ce 

homomorph i sm. I_f h i_s_ onto, then h ' also onto . 

( i i ) I_f F-j ls_ a. s ubal gebra of F 2 where 

F-| and F 2 are Foulis semigroups, then P ' ( F-j ) i s a 

subal gebra of P'(F 2 ) as_ am orthomodul ar lattice. 

We denote the direct product of a family of algebras 

(A. |i eI) by n(A.|iel). It is straightforward to prove the 

following result. 

Proposition 5. Let (F.|iel) be a family of Foulis semigroups. 

Then n(P'(F^)|ieI) i_s_ i somorph i c as an orthomodul ar Tatti ce to 

P'(n(F i|1eI)). 

489 



These two propositions will give us an immediate proof 

of our first main result. But first we observe that the 

mapping given by h h ' in Proposition 4 (i) is a functor 

from the category of Foulis semigroups to the category of 

orthomodular lattices. By Proposition 5 it is product-

preserving and in this situation one always gets a result 

of the following type. 

i s an equational class of Fouli s semi groups. 

Proof. It follows immediately from Propositions 4 and 5 

that b ( ^ ) is closed under the taking of homomorphic images, 

subalgebras and direct products. 

Actually, formulas (l)-(3) give us an immediate technique 

for translating orthomodular lattice identities into Foulis 

semigroup identities. This means that, given an equational base 

for the equational class o ^ , we can in principle calculate an 

equational base for the corresponding equational class of Foulis 

semigroups b(<^). If afj is the equational class of 

Boolean lattices, then b(d^) is the class of all Foulis 

semigroups satisfying the identity x'y' = y'x'. This follows 

from the standard result [2, p. 201] that P'(F) is Boolean 

if and only if ef = fe for all e,f e P'(F). 

Theorem 6. equati onal class of orthomodular 

lattices. Then 

b ( ^ ) = {F | F e ( 3 , P'(F) e ^ } 
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Foulis [3] showed that any orthomodular lattice is 

isomorphic to the lattice of closed projections of the Foulis 

semigroup S(L) of residuated maps on L (see also [2]). 

The involution is given by x<J>* = (x^4")*4" where <J>+ denotes 

the residual of <j> and x e L. The closed projections 

are precisely the Sasaki projections defined by 

*<l>y = (*Vy L)Ay f° r x,y e L and the focal map is given by 

(j>1 = cj)g where g = (ltj))A. We say that a Foulis semigroup 

F coordi nati zes L if L is isomorphic to P'(F) . 

Proposition 7. Let F b_e a. Foul i s semi group and let 

L = P ' ( F) . TJh_e_ ma]3 h : F -> S(L) défi ned b^ h(x) = cb 
J\ 

where <J>V: P'(F) P'(F) is defined by e4>__ = (ex) 1 ' x — — _ — x 

for e e L i_s_ a Foulis semi group homomorph i sm of F into 

S ( L) . Moreover, i f e ,f e L, then e(j)f = ( eVfA )Af. 

Proof. Foulis [3] proved all this except the fact that 

h preserves the local map. Observe that (<{>„)' = <}>_ where 
x g 

g = ( H x ) ' = ( l x ) ' " = x' to get h ( x1 ) = [h(x)]' . 

3. Small Foulis semigroups. If F i s a Foulis semi g roup 

and if x e F is the product of closed projections i.e. 

x = e~i e2 ' ' ' e n w h e r e ej e P ' ( F) for i = 1 ,2 ,. . . n , then 

x* = enen_-j . . . e-j is also a product of closed projections 

and x1 is a closed projection. Therefore F , the 

s ubsemi group of F generated by P'(F) , is a subalgebra 

of F and is a Foulis semigroup coordinatizing P'(F). 

We call a Foulis semigroup small when it is generated by its 
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closed projections. Clearly any Foulis semigroup F has 

a unique small subalgebra F q coordinatizing P'(F). If 

L is an orthomodular lattice we denote by S
0 ( L ) the small 

Foulis semigroup of products of Sasaki projections on L. 

Proposition 8. S
0 ( L ) ij5_ â  homomorph i c image of any smal 1 

Foul i s semi group coordi n'a ti zing L . 

Proof. The homomorphism in Proposition 7 carries closed 

projections onto closed projections. 

We can now prove some partial converses to Proposition 4. 

Proposition 9. Let h: L-j + L^ b_e cU]_ orthomodul ar 1 a tti ce 

homomorph i sm onto L 2 . There exists â  unique Fouli s semi group 

homomorph i sm k: S Q ( L ) + S Q ( L ̂  ) onto s
0 ( L 2 ) such that the 

restri cti on of k to the closed projecti ons i n S Q ( L ^ ) coi ncides 

wi th h . 

Proof. Let (f)-j(x) denote the Sasaki projection on L-j 

generated by x E L ] and let <J>2(y) denote the Sasaki 

projection on L 2 generated by y e L 2 . A typical element 

of S Q( L-j ) is of the form Jl.^ 4>̂  fx-f ) a n d w e define the 

map k by 

k(n i2 1 4»! (x1 ) ) = n . ^ 4> 2(h( X i)). 

Suppose that n^-j ^(x..) = n 4> -j ( yj ) as maps on L^ . 

If u e L2 there exists u £ L-j such that h(v) = u and 

u n i 2 1 <J>2(h(x.)) 

= h(v) n . ^ 4>2(h(x1)) 

= h[v n ^ (xi ) ] 
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since this expression is just an orthomodular lattice polynomial. 

Th i s calculation shows that n ^ ^ <f>2(h(x.)) = Il^-j <J>2 ( h (y j ) ) 

and hence the map k is well-defined. 

The map k is clearly a semigroup homomorphism preserving 

the zero and the involution. To prove that k preserves 

the focal map remember that 4>-| ( x . ) ] 1 = (j)-j(y) where 

y = [1 n i = 1 cf) -j ( x -j ) l • Since this expression i s an orth omodul ar 

1 atti ce polynomi al it follows that h (y) = [1 n^-j (j>2 ( h ( x.. ) ) J 1 

and so we get 

M C n . ^ 4» l(x 1)3 i) = k(<^(y)) 

= <J>2(h (y)) 

= [ M n . ^ 4>l(x1))3-

This completes the proof. 

Proposi tion 10. Let L-j be_ a_ subal gebra of L 2 as 

orthomodular 1 atti ces . There i s a_ smal 1 Foulis semi group 

F-j coordi nati zing L-j and F-j is a subalgebra of S Q( L 2) . 

Proof. I f x e L 2 let <j>( x) denote the Sasaki pro jecti on on 

L 2 generated by x. Form the set 

F-j = T n 21 4»(x1 ) | x . e L-j , n > 1} , 

i.e. F-j is the set of all products of Sasaki pro jecti ons 

on L 2 generated by elements of L-j . F-j is clearly a 

subsemi group of S Q ( L 2 ) closed under i nvoluti on and containing 

the zero . I f x. e L-j for i = 1 ,2 ,. . . ,n, then 
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y = 1 n ^ i (x 1 ) e L-| since it is just an orthomodular 

lattice polynomial. Since [n^-j <J>(x.)]' = ^(y 1) we get 

that F-j is closed under the focal map and is hence a 

s ubal gebra of S Q ( L ) . Since [ n ^ ] ^ ( x -j ) ] 1 1 = 4> (y ) , it 

follows that the closed projections of F-j are exactly 

those generated by elements of L-j and L-j is isomorphic 

to P'(F-j) since the lattice operations can be expressed 

in terms of Foulis semigroup operations. 

Note that it is, in general, not true that S
0 ( L ] ) 

is isomorphic to a subalgebra of S (L^)- This is because 

products of Sasaki projections generated by elements of 

L-j may be equal as mappings on L-j but not when they are 

regarded as mappings on L H o w e v e r , S Q(L^) is a 

homomorphic image of F-j . 

4. Equational classes. We are now ready to prove our second 

main result, the converse to theorem 6. 

Theorem 11. If i_s_ aĵ  equational class of Fou 1 is semi-

groups , then 

= {L|L e < < S 0(L) e 

is an equational class of orthomodular lattices. 

Proof. Proposition 9 implies that is closed under 

the taking of homomorphic images and Propositions 8 and 10 

imply that is closed under the formation of 

subalgebras. If ( L ^ i e l ) is a family of members of 
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then Proposition 8 implies that S (n(L^|ieI)) is a homo-

morph i c image of the unique small subalgebra of 

n(S (L^ ) | iel) and therefore n ( L i | i e I ) i s in ) . This 

proves that I ) is an equational class. 

In this case it is not as easy to see how identities 

may be c a r r i e d over, but it is again possible in principle. 

The general idea i s to take the Foulis semi group i denti ty 

and write it as an orthomodular lattice i denti ty in terms 

of products of Sasaki projections. For example, the Foulis 

semi group i denti ty xy = yx goes over to the orthomodular 

lattice i den ti ty etp̂ cp = e ̂  g ̂  -p ( 1 t i s equivalent to ass ume 

that only two Sasaki projections commute). It is not 

immedi ately trans parent that this determi nes the equational 

class of Boolean lattices. 

Note that if ^ is an equational class of Fouli s 

s emi g ro ups , then S (L) e if and only if L i s o I 

coordi nati zed by F for some F e Therefore 

a ) = { l | l. «r, L i s isomorphic to P1 ( F) for some 

F e d^ }. 

Let B_, I denote the 1 atti ces of equational classes of 

Foulis semi groups and orthomodular lattices respectively. 

Then I : B_ ^ L. and b : L_ B_ are monotone maps and we can 

readily prove the following. 

Propos i ti on 12. ( i for any e L ; 

( i i ) b ( £ ) ) for any <2^ e B. 
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The inclusion in part (ii) may be strict, i.e. one 

equational class of orthomodular lattices may be coordinatized 

by many different equational classes of Foulis semigroups. 

As an example of this observe that the class of Boolean lattices 

is coordinatized by each of the following equational classes 

of Foulis semigroups: 

(i) Boolean lattices themselves; 

(ii) pseudo-complemented semi 1attices ; 

(iii) commutative Foulis semigroups. 

Corollary 13. The map I i_s_ res i duated and b i t s res i dual . 

It follows from this that £ preserves joins and 

it is straightforward to check that it also preserves meets 

since the meet in the lattice of equational classes is inter-

section (there are some foundational difficulties here). 

Theorem 14. The map i: B̂  + I is_ complete lattice 

homomorphism. 

This result illustrates the main point of this paper: 

that a study of B̂  should give information about the 

structure of L. 
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