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I. Introduction. This paper follows on from our work

exhibiting Baer semigroups as an equational class and investi-
gating the connection between equational classes of lattices

and equational classes of Baer semigroups [1]. Here we consider
the particular case of Foulis semigroups and orthomodular
lattices and, as is usual when one particularizes, we are
rewarded with more specific results, This paper does not

depend on [1] and may be read separately. However, a fair
knowledge of Foulis semigroups and orthomodular lattices is
assumed and we refer to Blyth and Janowitz [2] for the basic

theory and further references.

In this paper we show that Foulis semigroups from an
equational class when they are regarded as algebras of type
<2,1,1,0> where the two unary operations are the involution
and the focal map. We show that the class of Foulis semi-
groups coordinatizing the members of an equational class of
orthomodular lattices is equational. Conversely, the class of
orthomodular lattices coordinatized by the members of an
equational class of Foulis semigroups is also equational.

We exhibit a homomorphism from the lattice of equational
classes of Foulis semigroups onto the lattice of equational

classes of orthomodular lattices.
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We generaliy follow the conventions of Gratzer [4],
except that we rarely bother to distinguish between an algebra
and its base set. We are ambidextrous in the way we write
maps: homomorphisms are on the left and residuated maps
on the right. We feel that this tends to clarify rather
than confuse the situation. We skip over foundational
difficulties, especially when dealing with the lattice of

equational classes, because all these can be handled by

standard tricks - see Gratzer [4] for details.

2. Foulis semigroups. We follow Blyth and Jdanowitz [2] in

using the term Foulis semigroup for what was originally called

a Baer *-semigroup by Foulis [3]. We refer the reader to

these two sources for the proofs of any assertions that we

leave unproven,

Definition 1. A Foulis semigroup is an algebra <Fj.,*,',0>

of type <2,1,1,0> such that
(i) <F3;.,0> is a semigroup with zero;

(ii) * dis an involution, i.e. for any x,y e F,

x** = x and (xy)* = y*x*. If x = x* then

x is self-adjoint.

(iii) for each x € F the element x' 1is a

self-adjoint idempotent or projection.

(iv) for each x ¢ F

0} = x'F.

it

r(x) = {y|xy
In other words, the right annihilator of x

is a principal right ideal generated by a projection.
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The elements of F of the form x' are called closed

projections. The map defined by x - x' 1is called the

focal map, 1 = 0' s an identity in F and 1' = 0.

Proposition 2. <Condition (iv) of Definition 1 is equivalent

to

(iv)"' x'y(xy)' = y(xy)' for all x,y ¢ F,

Proof. Since x' s idempotent, (iv) is equivalent to:

xy = 0 if and only if x'y = y.

Suppose that (iv) holds. Then

(xy)'F

{t|{xyt = 0}

{t|x'yt = yt}

and since (xy)' e (xy)'F, we get x'y(xy)' = y(xy)'.

If, on the other hand, (iv)' holds, then substituting
x =1 in the formula gives us the identity yy' = 0. Hence,
if x'y =y, then xy = xx'y = 0, If xy = 0, then substi-
tution in the formula gives us x'y = y. We have shown that
(

Xy = 0 if and only if x'y =y and so (iv) holds.

Notice that (iv) was the only one of the defining
properties of a Foulis semigroup that could not readily be
expressed as an identity. Proposition 2 shows us that it can

be so expressed and we have the following result.

Corollary 3. The class of all Foulis semigroups is equational.
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Foulis semigroups are of interest mainly because, if
F is a Foulis semigroup, then the set of closed projections
in F, P'(F), is an orthomodular lattice where the operations

are given by the formulas:

(1) e A f = (f'e)'e;
(2) el = e :
(3) 0 =0

We denote the equational class of Foulis semigroups by é
and the equational class of orthomodular lattices bycfi From

the formulas (1) =~ (3) the following is clear.

Proposition 4. (i) If h: Fy >~ F, s a Foulis semigroup

homomorphism, then h': P'(Fy) - P'(F,), the restriction of
r

h to the closed projections, is an orthomodular lattice

homomorphism., I h is onto, then h' is also onto.

(ii) If F, 1is a subalgebra of F, where

L

F and F, are Foulis semigroups, then P'(F]) is a

1 ==

subalgebra of P'(F,) as an orthomodular lattice.

We denote the direct product of a family of algebras
(Ailiel) by H(Ailial). It is straightforward to prove the

following result.

Proposition 5. Let (F.|iel) ‘be a family of Foulis semigroups.

Then T(P'(F;)|iel) is isomorphic as an orthomodular lattice to

P (I(F,|ieD)).
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These two propositions will give us an immediate proof
of our first main result. But first we observe that the
mapping given by h > h' din Proposition 4 (i) is a functor
from the category of Foulis semigroups to the category of
orthomodular lattices. By Proposition 5 it is product-
preserving and in this situation one always gets a result

of the following type.

Theorem 6. Let c{? be an equational class of orthomodular

Tattices. Then

b)) = (FIF ¢ B, P'(F) e X))

is an equational class of Foulis semigroups.

Proof. It follows immediately from Propositions 4 and 5
that b(aq) is closed under the taking of homomorphic images,
subalgebras and direct products.

Actually, formulas (1)-(3) give us an immediate technique
for translating orthomodular lattice identities into Foulis
semigroup identities. This means that, given an equational base
for the equational class dq. we can in principle calculate an
equational base for the corresponding equational class of Foulis
semigroups bQX?). If ‘aﬁ is the equational class of
Boolean lattices, then b&iﬁ) is the class of all Foulis
semigroups satisfying the identity x'y' = y'x'. This follows
from the standard result [2, p. 201] that P'(F) 1is Boolean
if and only if ef = fe for all e,f ¢ P'(F).
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Foulis [3] showed that any orthomodular Tlattice is
isomorphic to the Tattice of closed projections of the Foulis
semigroup S(L) of residuated maps on L (see also [2]).
The involution is given by x¢* = (x*¢+)* where ¢+ denotes
the residual of ¢ and x € L. The closed projections
are precisely the Sasaki projections defined by
x¢y = (xVy*)Ay for x,y € L and the focal map is given by
¢' = ¢g where g = (1¢)i. We say that a Foulis semigroup

F coordinatizes L if L is isomorphic to P'(F).

Proposition 7. Let F be a Foulis semigroup and Jet

L = P'(F). The map h: F > S(L) defined by h(x) = by

where byt P'(F) -~ P'(F) 1is defined by e¢, = (ex) "'

for e e L is a Foulis semigroup homomorphism of F into

S(L). Moreover, if e,f e L, then ede = (er‘)Af.

Proof. Foulis [3] proved all this except the fact that
h preserves the local map. Observe that (¢X)' = ¢g where

g = (1¢,)" = (1x)""" = x" to get h(x') = [h{x)]".

3. Small Foulis semigroups. If F 1is a Foulis semigroup

and if x ¢ F is the product of closed projections i.e.
X = eje,...e  where e. e P'(F) for i = 1,2,...n, then
x* = e e 4...e; 1s also a product of closed projections

and x' is a closed projection. Therefore F the

O,
subsemigroup of F generated by P'(F), 1is a subalgebra
of F and is a Foulis semigroup coordinatizing P'(F).

We call a Foulis semigroup small when it is generated by its
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closed projections. Clearly any Foulis semigroup F has
a unique small subalgebra F0 coordinatizing P'(F). If
L is an orthomodular lattice we denote by SO(L) the small

Foulis semigroup of products of Sasaki projections on L.

Proposition 8. SO(L) is a homomorphic image of any small

Foulis semigroup coordinatizing L.

Proof. The homomorphism in Proposition 7 carries closed
projections onto closed projections.

We can now prove some partial converses to Proposition 4.

Proposition 9. Let h: L1 > L2 be an orthomodular lattice

homomorphism onto L2. There exists a unique Foulis semigroup

homomorphism k: SO(L]) - So(LZ) onto So(LZ) such that the

restriction of k to the closed projections in S (L,) coincides

with h.

Proof. Let ¢,(x) denote the Sasaki projection on Ly
generated by x ¢ L] and let ¢2(y) denote the Sasaki
projection on L2 gdenerated by y ¢ L2. A typical element
of SO(L]) is of the form “121 ¢i(x1) and we define the
map k by

k(i oq(xq)) = 100 o, (h(x5)).

Suppose that Higl ¢1(X1) = ij] ¢](yj) as maps on L].

If ue L, there exists u e Ly such that h(v) = u and

u H121 ¢2(h(x1))

h(v) HiQ] ¢2(h(xi))

hIv 12y 6q(xp)]
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since this expression is just an orthomodular Tattice polynomial.
This calculation shows that H121 ¢2(h(xi)) = HJT] ¢2(h(yj))
and hence the map k is well-defined.

The map k 1is clearly a semigroup homomorphism preserving
the zero and the involution. To prove that k preserves
the focal map remember that [n121 ¢](xi)]' = ¢](y) where
y = [1 H121 ¢](x1)]l. Since this expression is an orthomodular
lattice polynomial it follows that h(y) = [1 H121 ¢2(h(x1.))]L

and so we get

k(I Dy 0 (x) 1) = ko7 (0)
9,(h(y))
[k(Hig] ¢](X1))]'

n

This completes the proof.

Proposition 10. Let L] be a subalgebra of L2 as

orthomodular Tattices. There is a small Foulis semigroup

Fy coordinatizing Ly and F; is a subalgebra of S _(L,).

Proof. If x e L, Tlet o(x) denote the Sasaki projection on

L2 generated by x. Form the set

Fpoo= (0,0 6(x9) | x; e Ly, no> 13,

i.e. F] is the set of all products of Sasaki projections
on L2 generated by elements of L]. F1 is clearly a
subsemigroup of So(LZ) closed under involution and containing

the zero. If X; € L1 for 1 =1,2,...,n, then
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y =1 Hig] ¢(x1) £ L1 since it is just an orthomodular
lattice polynomial. Since [I[ig1 ¢(Xi)]l = o(y*) we get
that F1 is closed under the focal map and is hence a
subalgebra of SO(L). Since [Hi21 ¢(xi)]" = ¢(y), it
follows that the closed projections of F1 are exactly
those generated by elements of L] and L] is isomorphic
to P'(F]) since the Tattice operations can be expressed
in terms of Foulis semigroup operations.

Note that it is, in general, not true that So(L])
is isomorphic to a subalgebra of So(LZ)‘ This is because
products of Sasaki projections generated by elements of
L] may be equal as mappings on L] but not when they are

regarded as mappings on L,. However, S _(L,;) 1is a
2 o' 1

homomorphic image of F1.

4, Equational classes, We are now ready to prove our second

main result, the converse to theorem 6.

Theorem 11. If 631 is an equational class of Foulis semi-

groups, then

L(B)) = (LIL el S (L) e &)

is an equational class of orthomodular lattices.

Proof. Proposition 9 implies that z(&a) is closed under
the taking of homomorphic images and Propositions 8 and 10
imply that Z(d%) is closed under the formation of
subalgebras. If (L.[iel) 1is a family of members of z(@])
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then Proposition 8 implies that SO(H(LilieI)) is a homo-
morphic image of the unique small subalgebra of
H(SO(Li)IisI) and therefore H(Lifiel) is in Q(éﬁ). This
proves that z(é%) is an equational class.

In this case it is not as easy to see how identities
may be carried over, but it is again possible in principle.
The general idea is to take the Foulis semigroup 1déntity
and write it as an orthomodular lattice identity in terms
of products of Sasaki projections. For example, the Foulis
semigroup identity xy = yx goes over to the orthomodular
lattice identity e¢f¢g = e¢g¢f (it is equivalent to assume
that only two Sasaki projections commute). It is not
immediately transparent that this determines the equational
class of Boolean lattices.

Note that if 4% is an equational class of Foulis
semigroups, then SO(L) £ é% if and only if L s

coordinatized by F for some F ¢ &%. Therefore

Qiﬁﬂ) = {L|L ¢ X, L is isomorphic to P'(F) for some
F e@]}.

Let B, L denote the Tattices of equational classes of
Foulis semigroups and orthomodular lattices respectively.
Then &: B »~ L and b: L ~ B are monotone maps and we can

readily prove the following.

Proposition 12. (i) (b)) =& for any & ¢ L;
(ii) b(z(@])) 3@] for anyG] e B.
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The inclusion in part (ii) may be strict, i.e. one
equational class of orthomodular lattices may be coordinatized
by many different equational classes of Foulis semigroups.

As an example of this observe that the class of Boolean lattices
is coordinatized by each of the following equational classes
of Foulis semigroups:

(i) Boolean lattices themselves;

(ii) pseudo-complemented semilattices;

(iii) commutative Foulis semigroups.

Corollary 13. The map & 1is residuated and b is its residual.

It follows from this that & preserves Jjoins and
it is straightforward to check that it also preserves meets
since the meet in the lattice of equational classes is inter-

section (there are some foundational difficulties here).

Theorem 14. The map &: B » L is a complete lattice

homomorphism.

This result illustrates the main point of this paper:
that a study of B should give information about the

structure of L.
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