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PLANAR LATTICES 

Robert W . Quackenbush^ 

This paper presents a brief survey of results about finite planar 

lattices. Unless otherwise stated, all lattices in this paper are finite. 

Anyone beginning the study of lattice theory quickly learns that 

it is important to be able to draw a picture of a lattice; i.e. the Hasse 

diagram of a lattice. Once he has become skilled in drawing lattice diagrams 

he soon notices that whenever the diagram is planar he has indeed drawn a 

lattice. That is, he does not have to check that all l.u.b.'s and g.X.b.'s 

exist. This heuristic principle can be formalized as a theorem. The 

following formulation is due to Harry Lakser. 

First we give a formal definition of the diagram of a poset. Let 

P be a poset on the n element set [p^, P
n
] • A diagram of P is 

a set of n points in the (x, y)-plane,, (x^, y^), (
x

n
J> y

R
) ? together 

with certain arcs between these points such that: 

a) If p. covers p . then y. > y . and there is an arc, a.. , 
i J i J Ji 

which is the graph of a continuous function of y with domain [y^, y^] , 

with a..(y.) = x. and a..(y.) = x . and with no other point, (x. , y, ) , 
ji i i J

1

 J j k k 

lying on a. . . 
Ji 

b) There are no other arcs than those of condition a). 

P is planar if it has a planar diagram (i.e. any two arcs intersect only at 
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an endpoint). Each arc can be thought of as directed from its bottom end 

point to its top endpoint. A path is an ascending sequence of connected arcs, 

i.e. a set of arcs forming the graph of a continuous function of y . Thus 

p. < p . if and only if there is a path from (x., y.) to (x., y.) . 
J ^ J J 

This definition of the diagram of a poset is a reasonable approxi-

mation to the way one draws posets. It has the advantage that the proof of 

the theorem uses only the intermediate value theorem for continuous functions 

rather than some version of the Jordan curve theorem. When drawing the diagram 

of what one hopes is a lattice, there is an obvious condition to be satisfied: 

avoid dangling points. More precisely, there must be exactly one point which 

is not the lower endpoint of an arc (the unit) and exactly one point which is 

not the upper endpoint of an arc (the zero). Lakser's theorem states that if 

the diagram is planar then this necessary condition is sufficient for the 

poset to be a lattice. 

Theorem: Let P be a finite poset with a planar diagram; if there 

is at most one element of P which has no cover and at most one element which 

covers no point then P is a lattice. 

Sketch of the proof: Since P is finite the "at most" in the state-

ment is equivalent to "exactly"; these points are necessarily the unit and zero 

of the poset. Now let p^, p^, P^j P^ be four points of P such that 

<

 ^3'
 < P

4 '
 <

 ^3'
 <

 '
 T

° th
3

*
1

 ^ is a lattice it is 

sufficient to show that there is a point p,. of P with p^ ^ p,_ , p^ ^ p^, 

PJ. ^ p^, p.. ^ p^ (and so we may as well assume that p^ is not comparable to 

513 



p^ and p^ is not comparable to p^) . Thus we have paths 

V a> a2 3•> /, (where a.
 #
 goes from (x , y ) to (x , y )) . We 

can also find points p
?
 such that p

&
 < p ^ p

6
 < p

2
, p

3
 < p

?
, p

4
 < p

? 

and such that the paths a' and ot intersect only at (x , y ) and 
6,1 6,2 6 6 

the paths o
1

-
 7
 and a,

 7
 intersect only at (x , y ) . Using planarity and 

J ̂  / y I i t 

the intermediate value theorem for continuous functions, a case by case analysis 

shows that such an element p,. must exist. 

Now let us turn to the problem of characterizing planar lattices. 

For distributive lattices this characterization is well-known. A distributive 

lattice is planar iff it is a sublattice of a direct product of two chains iff 

it does not contain the eight element boolean lattice as a sublattice iff no 

element covers more than two other elements iff no element is covered by more 

than two other elements iff it does not contain the poset of figure 1 as a sub-

poset. For modular lattices the following characterization is due to 

Rudolf Wille [1]. Recall that an element of a lattice is doubly irreducible if 

it cannot be written as a proper meet or a proper join. 

Theorem: A modular lattice FU is planar iff ftï - {d 6 Hï|d is 

doubly irreducible} is a planar distributive lattice iff ÎTl does not contain 

any of the posets of figures 1 and 2 as a subposet. 

For lattices in general there is no finite set of posets which can be 

used to test planarity. In fact, planarity for lattices is not a first order 

property. This result is due to K . Baker, P. Fishburn, and F. Roberts [2] . 

To see this, consider the fence posets of figure 3 and the crown posets of 
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figure 4. Adding a zero and unit to each turns them into lattices. Notice 

that the fence lattices are planar but that the crown lattices are not planar. 

In [2] it is pointed out that an appropriate ultraproduct of fence lattices 

is isomorphic to an appropriate ultraproduct of crown lattices. Since ultra-

products preserve first order properties, planarity cannot be a first order 

property. In particular, there is no finite list of posets such that planar 

lattices are characterized by the absence of these posets as subposets. 

Problem 1: Is there a finite list of posets which test planarity 

in the variety generated by N ^ ? 

Problem 2: Is there a finite list of families of posets which tests 

planarity for all lattices? (The set of crowns would likely be a family in 

this list). 

It seems clear that there ought to be some nice connection between 

planar lattices and planar graphs. Such a connection has been found by 

Craig Piatt [4]. If £ is a lattice (with 0 as zero and 1 as unit) then 

G(£) , the graph of £ , has the same points as £ and has a directed edge 

from x to y if and only if x is covered by y ; G*(<£) , the augmented 

graph of £ , is G(£) together with a directed edge from 1 to 0 . 

Theorem (C.R. Piatt): £ is a planar lattice iff G* (£) is a planar 

graph. 

Sketch of the proof: If £ is a planar lattice then clearly 

G*(<£) is a planar graph. Conversely suppose G
Vf

(<£) is a planar graph. Note 

that we may assume that the edge from 1 to 0 is on the outside of the graph. 
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Consider the other outside path from 0 to 1 : 0, x- . . . . . x , 1 . An 
1 n 

induction argument proves that the path is directed in the order given; that 

is, in Z x^ covers 0 , x ^
+
 covers x^ for i = 1, n - 1 , and 1 

covers
 x

n
 • Another induction argument shows that one of the x^'s is doubly-

irreducible. Finally an induction on the size of £ is made using the 

statement: If |<£ \ = m , G*(<£) is planar with 0, x^, x , 1 an outside 

path from 0 to 1 then <£ is planar and can be drawn with straight lines so 

that 0, x^, x^, 1 is an outside path in the diagram of Z . 

Corollary: Every planar lattice has a planar diagram in which all 

arcs are straight lines. 

Planar lattices form a subclass of the class of dismantlable lattices. 

A lattice is dismantlable if every sublattice contains a doubly irreducible 

element. More picturesquely, a lattice is dismantlable if one can keep throwing 

away doubly irreducible elements until nothing is left. Every planar lattice 

has a doubly irreducible element (see [2]) and a sublattice of a planar lattice 

is planar. Hence planar lattices are dismantlable. A recent result of David 

Kelly and Ivan Rival proves that dismantlable lattices are characterized by 

the absence of crowns. 

Theorem [3]: A lattice is dismantlable if and only if it contains 

no crown poset as a subposet. A modular lattice is dismantlable if and only 

if it does not contain the crown of order 3 (i.e. figure 1) as a subposet. 

A distributive lattice is dismantlable if and only if it is planar. 
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All the material above refers to finite lattices; however it is often 

the case that one needs an infinite lattice for a particular problem. Thus it 

would be useful to have analogs of the above results (especially Lakser's 

theorem) for infinite planar lattices. 

Problem 3: Develop a theory of infinite planar lattices. 

Figure 4: The crown of order m (m ^ 3) 

517 



REFERENCES 

[1] R. Wille 

[2] K . Baker, P. Fishburn and 
F. Roberts 

[3] D. Kelly and I. Rival 

[4] C. Platt 

Department of Mathematics 
University of Manitoba 
Winnipeg, Manitoba, Canada 

On modular lattices of order 
dimension two, preprint. 

Partial orders of dimension 2, 
interval orders, and interval 
graphs, The Rand Corp., P-4376, 
(1970). 

Crowns, fences, and dismantlable 
lattices, preprint. 

Planar lattices and planar graphs, 
preprint. 

518 


