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TIGHT RESIDUATED MAPPINGS 

by Erik A. Schreiner 

1. Introduction• In this note we examine the connection 

between certain residuated mappings on a complete lattice 

and the property of complete distributivity. A map T:L >M 
is residuated with T + as its residual if and only if the + & 
pair (T,T ) forms a Galois connection between L and M , the 

dual of M. With this in mind we consider tight residuated 

mappings which correspond with the tight Galois connections 

introduced by G. N. Raney [7]. Since Res(L) is a semigroup 

and a complete lattice, we are able to compose and join 

tight residuated maps to extend the result of Raney. 

In particular, we are able to characterize all complete 
homomorphisms with completely distributive images. Indeed, 
for any lattice, we present a method for finding the largest 
such complete homomorphism. 

Tight residuated mappings abound. They are the pointwise 

join in Res(L,M) of certain basic tight mappings which, by 

their simplicity, help to illuminate what is occuring. In 

view of the fact that it is possible to construct a tight 

residuated map on an atomic Boolean lattice whose image is 

nonmodular, it is necessary to ask which tight mappings lead 

to a connection with complete distributivity and which basic 

tight mappings are the key ones. The answers are, respectively, 

idempotent tight maps and decreasing basic tight maps. 
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The image of an idempotent tight residuated map is com-

pletely distributive. Conversely, if the image of an ar-

bitrary residuated map is completely distributive then one 

may find a tight idempotent with the same image. This is 

used to show that the completely distributive lattices are 

both injective and projective in the category of complete 

lattices with residuated mappings. Finally, the consider-

ation of idempotent basic tight maps leads to some simple 

proofs of certain well-known results concerning atomic 

Boolean lattices. 

2. Basic tight residuated maps. In this paper we consider 

only complete lattices. A map T:L >M is called residuated 
if the inverse image of every principal ideal is a principal 

ideal. With complete lattices, this is equivalent to being 

a complete join homomorphism. The basic properties and 

facts concerning residuated maps may be found in the book of 

Blyth and Janowitz [1]. Let Res(L,M) denote the set of all 

residuated maps from L to M and Res(L) = Res(L,L). Both 

are complete lattices under pointwise order while the latter 

is also a Baer semigroup. 

Z. Shmuely [8] has established a one-one correspondence 

between Res(L,M) and relations y G LxM which satisfy: 

(1) (a,b) £ y, x <_ a, y >_ b implies (x.y) € y. 
(2) y is a complete sublattice of L*M. 
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For such a y (called a G-relation) the map T(a) = A ^b | (a,b) € 

is the associated residuated map. For a given T € Res(L,M), 

The set a(T) =^(a,b) | T(a)<b^is the corresponding G-relation. 

Then 9+ 

Let 9 s LxM and define 

6+ = | for each (a,b) € e, x £ a or y >_ b^ . 
is a G-relation. Raney [7] defined his tight Galois con-
nections in terms of relations of the form 0+. (We have ad-
justed for the necessary dualization.) 

Definition 1. A map T £ Res(L,M) is tight if there exists a 

6 a LxM such that a(T) = 0+. 

Let 0 = . Then the tight map E^ obtained from 0+ is 

called a basic tight map and is defined by: 

o (o x < g 
E^ (x) = 

(h otherwise 
These maps are either nilpotent (if h ;< g) or idempotent 

(if h I g) . 

Theorem 2 (Shmuely) . T € Res(L,M) _is tight if and only if 
T = V ̂ E^ | (g,h) € for gome 0 c LxM. 

Proof: a (T) = 0 £a(Ej>) | (g,h) € eJ = a(V | ( g > h ) 6 ^ ) , 
+ where T is defined by 0 . 

Thus we focus our attention on basic tight maps. The 
set of basic tight maps. The set of basic tight maps and 
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the set of all tight maps both form two sided ideals of 
the semigroup Res(L). Hence (ii) and (iii) are equivalent 
in the following theorem [7, Theorem 4]. 

Theorem 3 (Raney). The following conditions are mutually 
equivalent : 

(i) L iŝ  completely distributive. 

(ii) The identity map in Res (L) i_s tight. 

(iii) All T in Res(L) are tight. 

It has come to my attention that I). Mowat [4] in his thesis 
considered basic tight maps (under the name "two point 
s.p. maps") and derived a similar result. 

3. Decreasing basic tight maps. A map T € Res(L) is decreasing 

if T(x) £ x for all x € L. A basic tight map E^ is decreasing 

if and only if the ordered pair (a,b) satisfies the condition; 

x j_ a implies x >_ b. Call such a pair (a,b) a decreasing 

pair. Pairs of the form (1,b) and (a,0) are always trivial 

decreasing pairs. The map E^ = 0 iff ( a ,b) is trivial. Let 

= 32 ̂ L) =j^(a,b) (a,b) a nontrivial decreasing pair on L ^ 

A central role in our study is played by maps of the form: 

F = (a,b) € b 2] . 

As usual, if i-s empty F is the zero map. Note that F 

is a tight decreasing map in Res(L). 
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In terms of our basic tight decreasing maps we have the 

following critical result of Raney [7, Theorem 5], 

Lemma 4. L is completely distributive if and only if 
x i. y implies there exists a decreasing Ê " in Res(L) with 

b ( x ) = b> Eb E? (x) = b, E^ (y) = 0 and b { y. 

Theorem 5. L is completely distributive if and only if 
the map F = v^E* | (a,b) € = i L in_ Res (L) . 

Proof: Sufficiency follows from Theorem 3. Necessity is 
established using Lemma 4. 

As we are interested in maps of the form of F above, the 

relation $2 may contain surplus pairs. If^(a^,b)| i £ s $2 

and a = Aa i ? then (a,b) € B2 and E^ dominates the other as-

sociated basic maps. Similarly, if^Çajb^) | i € $2 and 

b = v b i, then (a,b) € 32 with E^ again an upper bound. The 

resulting pair (a,b) in either case may be called a minimax 

pair. Let 3X = 3-^CL) = ^(a,b) € J (a,b) is minimax^ . Note 

that vj^|(a,b) e = v | (a,b) € 3 ^ . The mappings 

eliminated in our transition from $2 to B^ were all nilpotent maps 

We are primarily interested in maps of the form 
v ^E^ J (a,b) € 0 £ $^which are idempotent. This will always 

be the case if all the E^ are idempotent. However, the 

elimination of all nilpotents is too drastic a step in the 
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quest for an idempotent join. For if L is the closed 

unit interval [0,1] of the real numbers under the usual 

order, then L is completely distributive. The minimax 

decreasing pairs are all of the form (b,b) where b € (0,1). 

is r D ' r J 
the identity map on L. 

uci-icaoiJig JJCII i J dit; a. JL <J jl UJIC i ui m ^ u , u ̂  iviici t; u — ^ 

Thus all maps E^ are nilpotent yet V ̂  b € (0,1)^ i 

In order to eliminate the problems presented by isolated 

nilpotents in our study of idempotent tight maps we make 

one final adjustment to our relation. Let 

F = v I (a,b) € . Define 3 = 3(L) = £(a,b) € ^ | F(b) 
a 

Note that if there are no nilpotent decreasing maps E^, then 
3 = 3-̂  but not conversely. For the remainder of the paper 
we shall use the notation: 

E = V (a,b) 6 3 

We may then restate Theorem 5 as: 

L i_s completely distributive iff E i_s the identity in Res (L) . 

4. Idempotent tight residuated maps. 

Lemma 6. For any complete lattice L, E is an ddempotent 
decreasing tight map in Res(L). 

For an arbitrary map T £ Res(L), the image T(L) = M has the 
following properties: 
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(1) 0 ^ M. 

(2) (M,<) is a complete lattice. 

(3) The join in (M,<)_ is the same as the join in L. 

In general M is not a sublattice of L due to differing meet 

operations. Given a subset M of L satisfying the above 

properties, whether one can always find a T € Res(L) with 

T(L) = M is an open question. The following theorem presents 

a partial answer. (See also Mowat [4, Theorem 17, page 42] 

for a related result.) 

Theorem 7. Let M be a subset of L satisfying (1), (2) and (3) 

Then there exists an idempotent tight map T € Res(L) with 

T (L) = M if and only if (M,<) is completely distributive. 

Proof: Given a tight idempotent T, the restriction of T to M 

is the identity map and may be shown to be tight as a map 

in Res(M). Thus (M,<) is completely distributive by Theorem 3 

Conversely, if (M,<0 is completely distributive, the identity 

(a,b) £ 3(M) | . Since each E^ may 

trivially be extended to a map in Res(L), the desired idem-

(a,b) € 3 CM) 

map on M is E^ = v J E^ 

potent in Res(L) is T = v E^ 1 -
To see that the idempotency of T is essential, consider 

3 
the Boolean lattice 2_ with atoms a,b,c and respective com-
plements d = a', e = b', f = c'. The image of the tight map 
T = E^ v Ej v Er is nonmodular. c a r 

525 



In the next theorem we combine the fact that the residual 
T + sets up an isomorphism between the image of T and the 
image of T +, appropriate duality and the extension of the 
identity used in Theorem 7. 

Theorem 8. Let T £ Res(L,M) be an onto map. If M is 
completely distributive, then T = S'P where P i s a tight 
idempotent in Res(L) and S is_ an isomorphism. 

Proof: The following commutative diagram may be obtained: 

P(L) 
V 

= N-

T 

N 

->M 
/N 

W 

->W = T (M) 

The restricted maps P N and T W are isomorphisms. 

Corollary 9 (Crown [2]) . A completely distributive lattice 

is both inj ective and proj ective in the category of complete 

lattices with residuated maps. 

Proof : It is enough to show that if M is completely dis-
tributive, for every monomorphism P € Res(M,L) there is a 
T € Res (L,M) such that T'P = IM. This follows easily from 
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Theorem 7. Thus M is infective. Dually, or by use of 

Theorem 8, M is projective. 

Theorem 10. The map E is_ a complete homomorphism of L 
onto a completely distributive image. Moreover, E is_ the 
largest complete homomorphism with a completely dis -
tributive image. 

Proof: E is a decreasing idempotent, thus a complete homo-
morphism by [3, Theorem 3.6]. Since E is also tight, E(L) 
is completely distributive. 

For any complete homomorphism onto a completely distributive 

image, consider the complete congruence © generated and the 

associated lattice L/^. The identity map on L/q is generated 

from pairs (a,b) in B(L/0). These may be pulled back to 

obtain pairs (a,b) in $(L). The given homomorphism thus 

was of the form Ê  

E in Res(L). 
! (a,b) £ 8 c 3(L) { which is less than 

f a » ) I E^ (a,b) c e | is idempotent Thus for each 6 c 3 such that v 

we obtain a complete homomorphism with completely distributive 
image, and all such homomorphisms are of this form. If dis-
tinct subrelations of 3 give rise to distinct maps, as will 
be the case if there are no nilpotents associated with 3, 
we have a means of enumerating such homomorphisms. 

527 



We now turn our attention to idempotent basic decreasing 

maps. An element b is the image of an idempotent decreasing 
a 

E^ if and only if [b,l] is a completely prime dual ideal, 

that is, in Raney's terms, b is a completely join-irreducible 

element. His result [5, Theorem 2] may thus be stated in 

terms of decreasing maps. 

Theorem 11. L is_ isomorphic to a complete ring of sets if 
and only if = E and B(L) contains no nilpotent pairs. 

a 
If L is (dual) semicomplemented, all decreasing E^ are 
idempotents. They may be characterized by the conditions: 
b is an atom, a is a dual atom, a and b are complements, 
and a is a distributive element. Combining this with the 
properties of the map E provides simple proofs of the 
following well-known results. 

12. A (dual) semicomplemented completely distributive 

is an atomic Boolean lattice. 

Theorem 13. Any two of the following conditions on a 
complete lattice imply the third. 

(i) L is_ atomistic. 

(ii) L is completely distributive. 

(iii) L is a Boolean lattice. 

Theorem 
lattice 

Finally, we combine these observations with the remark fol-

lowing Theorem 10. 
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Theorem 14, Let L b̂ e a complete (dual) semi complemented 

lattice. Then every completely distributive complete 

homomorphic image of L is an atomic Boolean lattice. 
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