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1. Introduction 

Traditionally, the algebraic properties of Boolean 

algebras are reduced to those of Boolean rings by a well-

known construction. A Boolean ring, however, has the double 

disadvantage of having torsion, and of not being applicable 

to the richer domain of distributive lattices. In this 

paper we describe another construction, or functor, called 

the valuation ring, which associates to every distributive 

lattice L a torsionless ring V(L) generated by idempotents. 

The lattice L can be recovered by giving a suitable order 

structure to the valuation ring V(L), and thus the entire 

theory of distributive lattices is reduced to that of a 

simple class of rings. For example, the representation 

theory of distributive lattices is subsumed to that of 

valuation rings, where standard methods of commutative 

algebra apply. 

The applications and further development of the present 

techniques lie in at least three directions. 

First, the valuation ring turns out to be a very simple 

way of functorially associating a ring to a simplicial 

complex; we surmise that simplicial homology will benefit 

from this association. 
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Second, the theory of pseudo-Boolean functions and pro-

gramming of Hammer and Rudeanu can be seen to be an informal 

use of valuation rings; this theory can gain from the rigorous 

foundation provided by the present ideas. 

Third, the notion of quantifier on a Boolean algebra 

can be transferred to the valuation ring, where it becomes a 

linear averaging operator; in this way, problems in first-

order logic can be translated into problems about commuting 

sets of averaging operators on commutative rings. The re-

sulting linearization of logic is probably the most promising 

outcome of the present investigations. 

The method of presentation is deliberately informal and 

discursive. Some of the proofs are barely sketched; we hope 

to give a thorough presentation elsewhere. 
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2. The Valuation Ring. The theory of distributive 

lattices is richer than the better known theory of Boolean 

algebras; nevertheless it has had an abnormal development, for 

a variety of reasons of which we shall recall two. First, 

Stone's representation theorem of 1936 for distributive lat-

tices closely imitated his representation theorem for Boolean 

algebras, and as a consequence turned out to be too contrived 

(I have yet to find a person who can state the entire theorem 

from memory.) Second, a strange prejudice circulated among 

mathematicians, to the effect that distributive lattices are 

just Boolean algebra1 s weak sisters. 

More recently, the picture seems to have brightened. 

The definitive representation theorem for distributive lat-

tices has been proved by H. A. Priestley ; it extends at long 

last to all distributive lattices the duality "distributive 

lattice - partially ordered sets", first noticed by Birkhoff 

for finite lattices. Strangely, Nachbin's theory of ordered 

topological spaces had been available since 1950, but nobody 

before Priestley had had the idea of taking a totally discon-

nected ordered topological space as the structure space for 

distributive lattices. 
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The second prejudice was more difficult to overcome; it 

paralleled the criticism of similar prejudices in other 

branches of mathematics. To stay on comparatively familiar 

ground, consider what happened in combinatorics. Here, it 

became clear a short while ago that the notion of set would 

have to be supplemented by a more pliable notion, which Knuth 

has called multiset. A multiset is simply a set where every 

element is assigned a multiplicity, positive negative or 

zero. Aside from the fact that multisets are found plenti-

fully in nature, they offer a decisive advantage over sets: 

they form a torsionless ring, whère addition and multipli-

cation are defined "elementwise" (Indeed, multisets are 

functions from a set to the integers.) Sets, on the other 

hand, have a more rigid algebraic structure: they form a 

Boolean algebra, or at best a distributive lattice. But it 

turns out that even for the study of Boolean operations on 

sets it is preferable to work with the ring of multisets, as 

was first noted by Whitney; unfortunately, his suggestion 

went unheeded until recently. 

It is this idea that I put forth a few years ago in my 

paper in the Rado Festschrift (It seems that publishing an 

idea in a Festschrift is the quickest way to have it forgotten.) 
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Given a distributive lattice L, can we associate to L a 

ring V(L) such that, if the lattice L were to be a lattice 

of sets, then V(L) would "automatically" turn out to be 

isomorphic to the ring of multisets over the same set? 

Such a ring V(L) is easily constructed as follows. 

To begin with, construct an intermediate ring F(L) consisting 

of all formal linear combinations of elements of L. Addition 

is defined formally, and multiplication in two steps: if 

x and y are elements of L, set x y = x y, then extend 

by bilinearity. 

Now, the main fact about the ring F(L) is that the sub-

module J generated by elements of the form 

x + y - x A y - x v y 

is an idealI The verification is easy. For any z e L, we 

must show that the element 

z (x + y - x A y - x v y) (*) 

belongs to J. Expanding this expression we find it equals 

z A x + z A y - z a (x A y ) - z A (x v y) . 
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We now use various identities satisfied in distributive 
lattices. The third term equals 

z A (x A y) = (z A x) A (z A y) 

using commutative, associative and idempotent laws for the 

meet operation A . The fourth term is simplified by the 

distributive law: 

z A (x v y) = (z A x) V (z A y) . (**) 

Making all these substitutions, we find that (*) equals 

z A x + z A y - (z A x) A (z A y) - (z A x) V (z A y) , 

which clearly belongs to the submodule J, thereby completing 

the proof that J is an ideal. 

Now define the valuation ring of the distributive lattice 

L to be the quotient ring V(L) = F(L)/J. 

Before proceeding any further, note the following amusing 

aside. To define the valuation ring, all we need is a set L, 

together with two binary operations A and v t say, such that, 

(a) the operation A is commutative, associative and idem-

potent, and (b) the distributive law (**) holds. Nothing else 
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is assumed of the operation v . Are these identities suf-
ficient to define a distributive lattice? 

Nov/, the construction of the valuation ring is (like 

every other "construction") a functor from the category of 

distributive lattices to the category of rings. Thus, every 

distributive-lattice concept should have an analog for a 

certain sub-category of rings. For example, an ideal in 

the lattice-theoretic sense, namely, a subset I of L closed 

under joins and such that x v y e I for x e I and y e L, is, 

when considered as a subset of the valuation ring V(L), an 

ideal in V(L) in the ring-theoretic sense. 

The problem therefore arises of how to recover the 

lattice L from the valuation ring V(L). Let us consider two 

special cases. First, suppose that L is the lattice of all sub-

sets of a finite set S. Then the valuation ring V(L) is naturally 

isomorphic to a ring of multisets on the set S. This non-triv-

ial fact validates our claim that the valuation ring is in-

deed the algebraic analog of the ring of multisets. 

But now take an ordered set P, and let L=L(P) be the 

lattice of decreasing subsets of P; a subset D of P is 

decreasing, if x e D and y <_ x imply that y e D (decreasing 

sets are also called order-ideals, but we prefer the former 
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term, recently introduced by Priestley.) Lattice operations 

are unions and intersections of sets. Then it can be shown 

that V(L) is isomorphic as_ a ring to V(B) , where B is the 

Boolean algebra of subsets of P generated by decreasing 

sets. If P is a finite set, then B is the Boolean algebra 

of all subsets of P. 

In order to strengthen the structure of the valuation 

ring V(L) we must impose some order structure. We shall do it 

in the simplest way. A valuation ring V(L) will be a torsion-

less commutative ring generated by idempotents, with a dis-

tinguished sublattice L of idempotents, such that L gene-

rates the ring. In other words, L will be a subset of 

idempotents closed under products and under the operation 

x,y+x+y-xy . A morphism of valuation rings <J> : V(L)-*V(L') 

is a ring homomorphism which maps L into L'. Every 

valuation ring V(L) is the valuation ring of the set L 

considered as a distributive lattice, and the two will be 

identified. 

An element 

x = £ n(e)e f n( e ) > 0 
eeL — 

is called monotonie. Monotonie elements are closed under sums 
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and products, in other words they form a cone or semiring. 

It is possible to characterize a valuation ring in terms 

of this semiring C , as follows. 

A commutative ring R with identity will be called 

a valuation ring if it is endowed with a distinguished sub-

set, or cone, C , closed under sums and products, and 

forming a distributive lattice, such that: 

(a) The lattice operations in C are compatible with 

sums and products, that is f + (g /\ h) = (f + g) A (f + h) 

similarly with \/, for f,g and h in C , as well as all 

other identities satisfied in a lattice-ordered commutative 

ring which can be written without using subtraction; 

(b) Every element of C is a (finite) sum of idem-

potents belonging to C ; 

(c) Every element of R is the difference of two 

elements of C . 

This intrinsic characterization suggests the extension 

of the present theory to rings not generated by idempotents 

such an extension might give an extension of classical pre-

dicate loqic (see below.) 

The category of valuation rings is equivalent to the 

category of distributive lattices. It has a generator, 

namely, the valuation ring of the two-element lattice ; we 
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shall see that this fact can be used to obtain a represen-

tation theorem for valuation rings. Actually, more is true, 

but neither category theorists nor first-order logicians 

have yet invented a precise way of saying it, though the ap-

propriate term was introduced long ago by Birkhoff: the two 

categories (or first-order theories) are cryptomorphic. In 

other words, to every fact about one there "naturally" cor-

responds a fact about the other. The algebraic structure of 

a valuation ring is richer than that of a ring. It turns 

out that the linear functional 

e( E n(e)e) = £ n(e) 
eeL eeL 

is an augmentation of the ring, that is, it is a ring homo-

morphism. Setting 

f v g = e(g)f + e(f)g - fg, f, g e V(L) 

defines a second ring operation on V(L); actually, the same 
definition works for all augmented algebras. 

If L has a minimal element z and a maximal element 
u , then u acts as an identity and z as an integral 
(Sweedler) in V(L); that is, 

fz = c(f)z, f e L. 
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In the v-ring, the roles of u and z are reversed. From 
now on, we shall assume all valuation rings endowed with u 

and z , and morphisms to preserve u and z . 

The operation of complementation in a valuation ring R 
is defined as 

T (f) = e (f) (u + z) - f, f e R , 

so that in particular 

T (Z) = U, T (U) = Z, T (X) = U + Z - X 

if x is a positive idempotent. Note that the complementation 

T is idempotent. Indeed 

T2(f) = £(t(f)) (u + z) - Tf = 

= e (e (f ) (u + z) - f) (u + z) - e(f) (u + z) + f = 

= (2 e (f) - e (f ) ) (u + z) - e(f) (u + z) + f = f, 

as desired. As a further check that the complement T is 

indeed a strengthening of the classical lattice-theoretic 

complement, suppose R = V(L), and let x* be the complement 
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of x in L. Then check that T(X) = X'. Which identities 

in distributive lattices carry over to valuation rings? The 

answer is not hard to guess: all those identities where each 

variable occurs only once, that is, linearly. For example, the 

de Morgan law 

(x V y)' = x' A y' 

carries over to the identity 

X(f V g) = T (f ) X (g) , 

but the distributive law 

x A (y V z) = (x A y) V (x A z) 

does not, because the variable x occurs twice, or non-

linearly, on the right side. It does if one of the entries is 

idempotent, however. 

One of the more interesting identities that carry over 

to the valuation ring is the inclusion-exclusion principle. 

It was in fact this identity that originally motivated my 

definition of the valuation ring. Recall that in the 
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valuation ring, for positive idempotents X1,x2'* * *'x
n' one 

shows that 

x, V x „ V . . . V X = X, + ... - x, x0 - X, X ̂  - ... 1 2 n 1 n 1 2 1 3 

-x n_ 1x n + xi x2 x3 + ••• ~ ••• + ••• i xl x2 * * *Xn 

For arbitrary elements f ̂  , f 2 # . . . , fn one finds 

f l V f 2 V . . . V f n = z (-i) n" i + 1 s e(f 0 lf 0 2...f a i)f 0 ( i + 1 ) 1=1 a 

fa(i+2) fan 

where the inner sum ranges over all shuffles a of the 

indices 1,2,...,. n. This identity is valid more generally 

in any augmented algebra. 
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3. Canonical Idempotents 

Let S be a subset of the monotonie cone of V(L), 

then the subring generated by S is of the form V(L'), 

where L' is a sublattice of L . Furthermore, if S is 

finite-dimensional, so is V(L'). 

Now let L be a finite distributive lattice, and let 

P be the set of join-irreducibles of L , that is, of those 

elements p e L such that if p=xVy, then either p = x or 

p = y. Clearly every element of L is the unique irredun-

dant join of join-irreducibles. It is technically prefer-

able not to consider z as a join-irreducible. The join-

irreducibles are linearly independent. The Mobius function 

p(p,q) is the integer-valued function on P such that 

y(p,p) = 1 
\i (p,q) = 0 if p £ q 

Ey(p,q) = 0 for p < r. 
p£q<r 

Now set 

e(p) = E y(q,p)q. 
qeP 

It can be shown that the e(p) and z are a set of linearly 

independent 
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orthogonal idempotents spanning V(L), and that every xeL is a 

linear combination of the e(p) and z with coefficients 0 or 1; 
these properties uniquely characterize the e(p). We shall 

call them the canonical idempotents. If L is a sublattice 

of L1, then the canonical idempotents of L are sums of those 

of L', so we may define the canonical idempotents of an 

arbitrary distributive lattice L as the union of all canonical 

idempotents of finite sublattices of L. Every linearly in-

dependent subset of orthogonal idempotents is then a subset of 

the set of idempotents of a finite sublattice of L . 

The canonical idempotents can be used to derive criteria 
for the following: when is an f e V(L) actually a member of 
the lattice L, that ILS f GXplTGS sible by joins and meets of 
join-irreducibles? In other words, when is a linear combi-
nation 

f = Z c (p) p 
pcP 

actually expressible by the two lattice operations alone? 

This question is particularly important for free valuation 

rings (v. below). We shall answer it in two ways. 

Expressing f in terms of the canonical idempotents we 

have 
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f = £ a (p) e (p) 
P 

for some coefficients a, which can be computed in terms of the 

coefficients c . 

Now f e L if and only if 

(a) a(p) = 0 or 1 for all p e P, 

(b) if a(p) = 1 and q < p, then a(q) = 1. 

In other words, the p for which a(p) = 1 form a de-
creasing set of the set P of join-irreducibles. Since 

a(q) = £ c(p) 

this condition can be translated into one in terms of the c-

coefficients, which gives the following necessary and suf-

ficient condition for f e L: there exists a decreasing 

subset A (= lower order-ideal: if p e A and q < p then 

q e A) of join-irreducibles such that 

(*) c(q) = £ y(q,p). 
peA 

For a free valuation ring (v. below) this condition has an 

elegant topological formulation. The problem whose solution 
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we have just outlined can be restated in purely combinatorial 

terms: when can a linear combination of idempotents be 

built up by using only product x y and the operation 

x + y - x y = x V y ? There is at least one case when the 

Mobius function can be explicitly computed and thus the 

solution can be restated more explicitly, that is the free 

valuation ring on an ordered set Q. Let Q be a set of 

commuting idempotents subject to identities p q = p, 

which define a partial order p <_ q. The monotonie cone gene-

rated by sums and products in Q defines the structure of a 

valuation ring V(I.) , where L is the distributive lattice 

freely generated by the ordered set Q. Note that Q is not 

the set P of join-irreducibles of L; the set P is the set 

of all distinct products of elements of Q, thus, P is iso-

morphic to the distributive lattice of increasing sets of Q 

(order ideals). The Mobius function of P is calculated by 

the classical inclusion-exclusion principle, and the cano-

nical idempotents are qiven by the formulas 

|B| 
e (lip) = £ (-1) lip , S ç Q 
peS B peB 

for every antichain S of Q, the sum ranging over every 

superset B of S . 
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Using the canonical idempotents, we can define an order 

relation in V(L). For any monotonie f, the subring gene-

rated by f is of the form V(L") for a finite L". Since 

every g e V(L) is of the form g = f-h with monotonie f and 

h, it follows that g e V(L') for some finite L'. Hence 

g = E a(p)e(p) , 
peP 

where P is the set of meet-irreducibles of L1, and e(p) the 

canonical idempotents. Say g >_ 0 if a(p) 0 for all p. 

can be shown that this is an order relation which makes V(L) 

into a lattice-ordered ring. Note that this is a different 

order relation from the one defined by the monotonie cone. 

The canonical idempotents can be used to systematically 

solve systems of Boolean equations in a distributive lattice 

In fact the notion of pseudo-Boolean function of Hammer and 

Rudeanu is seen to be a special case of the valuation ring, 

and much of their theory can be extended to the present 

context. 
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4. Representation 

If L is finite, then for x e L we have 

x — E e (p) , 
p<x 

and in this way we obtain a representation of every x e L 

as the indicator function (characteristic function) of a de-

creasing subset of the set P of join-irreducibles. The 

monotonie cone of V(L) is thus represented as the cone of 

non-increasing functions on P, and V(L) is represented as 

the ring generated by the indicator functions of increasing 

subsets of P. We thus obtain a very simple proof of 

Birkhoff1 s theorem. 

We can extend this result to arbitrary valuation rings. 

Define P(L) as the set of all prime ideals of the ring V(L) 

generated by all canonical idempotents. Given any two prime 

ideals a,b e P (L) , such that a b and a / b, we can find two 

orthogonal idempotents e,f e E(L) such that e e a and f e b; 

now take a finite-dimensional sublattice L' for which V(L') 

contains both e and f as canonical idempotents; it is then 

easy to find an increasing element p and a decreasing set q 

such that e p = e and f q = f. 
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Now use the canonical idempotents, together with u and 

z, to define a compact totally order disconnected topology 

on the ordered set P(L). This topology, in view of the above 

remarks, enjoys the following property: given a,b not 

comparable, we can find an increasing clopen set p and a 

decreasing clopen set q such that a e p and b e q. Such a 

space is called totally order disconnected. 

One thus gets the following representation theorem: 

every valuation ring is isomorphic to the ring generated by 

the (monotonie) cone of integer-valued non-increasing con-

tinuous functions on a totally order-disconnected compact 

space. This representation theorem is easier than the 

direct representation theorems for lattices, even for Boolean 

algebras. 

Restated in categorical terms, the preceding argument 

can be made to prove the following. Consider the category Dis 

of distributive lattices having maximal element u and minimal 

element z, where morphisms are lattice-homomorphisms pre-

serving u and z, as well as the category Val of valuation 

rings,where morphisms are ring homomorphisms preserving u and 

z and the monotonie cone; finally, the category Mon of all 

rings of continuous integer functions on totally order dis-

connected compact spaces, endowed with the monotonie cone of 

594 



all non-Increasing functions, and morphisms consisting of all 

ring homomorphisms preserving the monotonie cone. The three 

categories are equivalent. (Note that in the category Mon 

the integral z requires special care.) By this equivalence, 

a host of questions relating to Boolean algebras and distri-

butive lattices can be simplified. 

A variant of the representation theorem replaces prime 

ideals by morphisms of V(L) into the valuation ring of the 

two-element distributive lattice. Another variant uses the 

representation in the finite case and constructs the space 

P(L) as a categorical limit. This last is perhaps the most 

satisfactory, though least familiar approach, since it ex-

hibits totally order disconnected spaces as pro-finite 

ordered sets. 
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5. Homology 

Let P be a finite ordered set. It is well-known 

that one can associate to P the homology groups of the 

simplicial complex £(P) whose faces are all the linearly 

ordered subsets of P , ordered by inclusion. If P is 

already a simplicial complex, one obtains ordinary simplicial 

homology. If P has a unique minimal element z, then the 

homology of P is trivial. More generally, the rank of the 

zero-th homology group Hq (E(P)) equals the number of con-

nected components in the Hasse diagram of the ordered set P, 

but an interpretation of the homology of P in terms of the 

order of P has not been given. 

Now, we can associate to P the valuation ring of the 

distributive lattice of its decreasing sets, by a (contra-

variant) functor. This leads to the suspicion that the 

homology of an ordered set may be defined in an algebraic 

way by means of the associated valuation ring. It turns out 

in fact that the Koszul complex construction gives a resolution 

which is closely related to the simplicial homology of 

Z(P). Because the technique is not familiar, we briefly 

describe it here. 

Suppose the valuation ring V(L), with set P of join-

irreducibles, acts on a module M . The most important case 
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occurs when M is a module of integer- or real-valued 

functions on a set S , and the action is obtained by as-

sociating to every p e P the indicator function of a sub-

set of S , followed by ordinary multiplication. In 

plain words, the ordered set P is "represented" by a family 

of subsets of 3 , where inclusion of subsets is isomorphic 

to the order of P . The homology of P thus should be a 

measure of the complexity of a system of sets, relative to 

unions and intersections. Note that different modules M 

can give rise to essentially distinct homologies for the 

same ordered set P . 

For simplicity denote the action of P on M by 

(p,m)+pm, and list the elements of P , say ,...,pn> 
Choose anticommutative variables e^,...,e generating an ex-

terior algebra: e.e . = - e .e. . (Note: these are not J 1 

members of V(L).) Let E^(M) be the module of all linear combi-
nations of elements of degree k , with coefficients in M , 
that is, of linear combinations of elements of the form 

m (e. e. ...e. ) , 0 k n , to e M . 
1 1 12 xk 

Define the boundary operator 9 of such an element by 

9(m e. e. ... e. ) = 
X1 12 xk 
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= p . m (e. ... e. ) - p . m (e. e. ... e. ) + ... -
X1 X2 Xk 12 11 3 xk 

- ... + (-1)^ ^ p. m (e. e. ... e. ) . 
Xk 1 1 12 1 k - l 

This is well defined in view of the anticommutativity of the 
2 

e^. It is easily verified that 8 = 0, so that we obtain a 

complex associating a resolution to P and M . 

Our claim is that simplicial homology of an ordered set 
P can be obtained from the Koszul complex of P considered 
as a subset of the valuation ring. 

The following questions may be worth investigating: 

(a) Starting with the valuation ring of an infinite 

distributive lattice L , is it possible to define its 

homology by approximation by finite sublattices, whose 

valuation ring is a subring of the valuation ring of L ? 

This might simplify the process of simplicial approximation. 

(b) In the finite ordered set P , the submodules M^ 
k-1 

generated by p^ - p^ + . . . + (-1) p^ • 

generate all of the valuation ring. Each of these 

alternating sums is the indicator of a subset of P; thus we 

obtain a sequence of increasingly complex subsets of P , 

whose union is the family of all subsets of P . It is 
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inevitable to conjecture that the dimensions of M^/M^ ^ 

should be related to the Betti numbers of P . This 

filtration provides a measure of the complexity of a subset 

of P , which can in turn be used for the study of Boolean 

functions (see below.) 

(c) The Koszul resolution may be expressed in terms of 

the canonical idempotents, instead of the join-irreducibles. 

In this way, one obtains an expression for the boundary in 

terms of the Mobius function. Is it possible in this way to 

relate the homology to the Mobius function? Judging by the 

example of geometric lattices, it should be. 

(d) It is an open question to construct free resolutions 

for the valuation ring. Taking the elements of P as 

generators, one has the relations 

p q = X c ( r ) r 
reP 

for suitable coefficients c(r), easily computed in terms of 

the Mobius function of P . But these relations are not 

independent, considered as a module over V(L). What are 

their dependencies? The question is not trivial even in the 

case of a valuation ring freely generated by an ordered set 

Q , as considered above,where the only relations are of the 
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form pq = p. These relations are not independent; a smaller 

generating set is obtained by taking only those where q 

covers p; but even these are not always independent. The 

question of a free resolution is worth investigating, if only 

because of the possible connection with the characteristic 

polynomial of the ordered set P , which, as has been ob-

served, shares some of the properties of the Hilbert poly-

nomial . 

In terms of the canonical idempotents, a set of rela-

tions is given by the orthogonality relations. However, 

these are seldom independent; their dependencies depend on 

linear relations satisfied by the Mobius function. 
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6. Propositional Calculus 

Classical propositional logic is equivalent to the 

study of the free valuation ring V(L) generated by a sequence 

of idempotents x^ fJ^' • • • • e l e m e n t s of this ring will be 

called Boolean polynomials. The axiomatic of pronositional 

logic amount to an axiomatic for rings generated by idem-

potents. The constants u and z in the ring V(L) corres-

pond to the propositional constants for truth and falsehood. 

The implication p o q for idempotent p and q turns out to 

equal u - p + p g, and the deduction theorem states that if 

P,q are idempotents and p>q, then pj> q « u. Verifying that a 

statement is a tautology amounts to showing that it equals u. 

The present context leads to a re-examination of some of 

the concepts of classical logic, and we shall consider a few 

by way of example. 

Suppose f,g e V(L) are not idempotents. Is it possible 

to give a meaning to "f implies g"? For monotonie (or even 

non-negative) f and g, the natural extension is f <_ g. 

For a given sequence f ̂  , . . . , f 2 of Boolean polynomials, 

not necessarily idempotent, one can define the information 

of the sequence to be the sublattice L' of L generated by 

the sequence (with or without taking complements). The com-

plexity of the sequence can then be described by finding a 
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resolution of the set of generators of L', that is the join-
irreducibles of L1, in the sense of generators and relations. 
The relations describe, in an intuitive way, the various ways 
of proving a subset of the f^ from another subset, and the 
relations between relations give a meaning to the 
notion "two proofs are equivalent." The Koszul complex built 
on P or directly on the f^ also gives information on the 
complexity of Boolean functions. Thus, the study of 
complexity of Boolean polynomials can be reduced to techniques 
of commutative algebra. 

The duality of classical logic is preserved in the valu-
ation ring: interchanging joins and meets simply interchanges 
the roles of u and z , and u becomes the integral, whereas 
z is theiunit. 

The canonical idempotents of the free valuation ring can 

be explicitly computed. Any subset A of generators de-

defines a join-irreducible 

and gives for the canonical idempotents e(A) the formula 

e (A) = I \i{A,B)XB 
B̂<J> 
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If A is the set x^,,...,x n, then this can be rewritten as 

e(A) = X 1X 2 ... xn (u - x n + 1) (u - x n + 2) ... . 

When is a Boolean polynomial a Boolean function? This 

question can be interpreted in two ways, according as one 

admits just meets and joins, or complementation as well. 

Every Boolean polynomial can be uniquely written as a linear 

combination of canonical idempotents; it is a Boolean function 

(including complementation) if every coefficient 

in such an expression is 0 or 1. It is a Boolean function, 

expressed by joins and meets only, if and only if the coef-

ficients which equal 1 form a decreasing set of P . 

Suppose now that a Boolean polynomial f is given in 

the form 

( * ) f = I c(A)xa , A 

where A ranges over a finite set of idempotents. What conditions 

must the numerical coefficients c(A) satisfy, in order that f 

be a Boolean function built up out of joins and meets (but not 

complements)? An elegant answer can be given using the notion 

of Euler characteristic of a simplicial complex, namely, a 
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family of sets closed under the operation of taking subsets. 
If I is a finite such simplicial complex, and A a member, 
or "face" of then the relative simplicial complex (E,A) 
consists of those faces of E which contain the face A; 
let denote the Euler characteristic of the relative 

simplicial complex (J],A). The answer to our question is: a 
Boolean polynomial (*) is a lattice polynomial if and only if 

c (A) + 1 = -

for some simplicial complex £ of subsets of the set of join-

irreducibles; A ranges through the faces of E , and 

c(A) = 0 otherwise. 

Now consider the representation of a Boolean polynomial 

f in terms of joins, meets and complements x = u-x. In 

terms of the canonical idempotents a necessary and sufficient 

condition is that 

f = E c (A) e (A) + u E ( .| c (A) | -c (A) ) /2 , 
A A 

with c(A) = + 1. Again, this can be turned into a condition in 

terms of the generators x^,but we shall not do so. The repre-

sentation in terms of joins, meets and complements is not 

unique, as is well-known, and the theory of prime implicants 
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can be developed along present lines. So can the classical 

theory of Boolean equations. 

A (propositional) theory is an ideal in the free valua-

tion ring, generated by Boolean functions, that is, by 

members of L ; in this case the quotient is again a valuation 

ring, in general not free; again, the complexity of the axiom 

system can be investigated by generators and relations, or by 

finding a suitable basis for the axioms in the valuation ring. 

Finding the canonical idempotents explicitly amounts to solving 

the decision problem for the theory. We shall illustrate the 

simplicity of the use of the valuation ring by an example 

from combinatorics. 

Recall that a geometry on a finite set S is a family 

of n-subsets called bases such that if (a^,...,a^) and 

(b^, . . . , b ) are bases, then for some i , both (b^, , . . . , a^) 
A 

and ( a ^ , . . . , . . . , b n ) are bases. A fundamental problem 

is that of deciding which statements about bases follows from 

this axiom. 

Now one can restate the axiom as an identity in the 

valuation ring generated by idempotents ) which 

take the value 1 if the a^ form a basis, and 0 otherwise. 

The basis axiom then turns into a linear identity, which, 

simplified by the inclusion-exclusion principle, is 
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(a^,...,an) (b1,...,fc>n) = (b1,a2,...,an) ...fbn)V 

V , a 2 ' ' ' * 'al'b3 ' * " * V ^ ̂ bn'a2 ' * * * 

n 
( b ^ , b 2 , . . . - S (b^,a2,...an) . . . . . . , b n ) -

A 

A 

• b^) 4" • • • • 

This identity can be analyzed by Young's method of stan-
dard tableaux. In this way, a decision procedure can be 
found for combinatorial geometry, and the powerful tech-
niques of representations of the symmetric group can be 
brought to bear on the problem. 
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7. Averaging Operators 

An averaging operator on a valuation ring V(L) 

is a linear operator A such that 

(1) A u = u , A z = z . 

(2) A(fAg) = Af Ag. 

(3) If f is in the monotonie cone, so is Af. 

Sometimes these operators go by the name of Reynolds ope-
rators. In probability, they are called conditional expecta-
tions . We shall investigate the structure of averaging ope-
rators. To this end, it is convenient to consider valuation 
rings with coefficients in an arbitrary commutative ring R 
with identity subject to conditions to be specified later, 
and written V(L,R). 

The range of an averaging operator A is a valuation 
ring of the form V(L'), where L' is a sublattice of L . 
For every x e L we have 

(*) A x = E c (x,e)e , c(x,eXe R , 
eeP 

where P is the set of canonical idempotents of L' other 

than z , and the sum is finite. We shall characterize an 

averaging operator by properties of the coefficients c(x,e). 
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Since A e = e for e e P we infer that if x /y e = z, 

then A x A e = z, or, as we shall say, the support of Ax 

contains the support of x . Furthermore, we infer 

(1) c(x A e,e) = c(x,e) . 
(2) c(e,e) = 1 , e e P . 

From the fact that A is linear, or A(x v y) + A(xy) = 

Ax + Ay we add the property 

(3) c(x A y,e) + c(x V y,e) * c(x,e) + c(y,e), x,yeL, 

in other words, for fixed e the function c is a valu-

ation on the lattice L . Finally, we have that A z = z, so 

(4) c(z,e) = 0 

and A u = u , whence 

c(u,e) = 1 . 

When the lattice L' is finite, and when P is the 

set of canonical idempotents of L' , conditions (1) - (4) 

on the coefficients c define a unique averaging operator. 
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When L' is not finite, the right side of (*) is not 

well-defined; to handle this case, we introduce a seemingly 

special class of averaging operators. For every finite sub-

lattice 7T of L' , let A^ be an averaging operator whose 

range is the valuation ring V(tt) , considered as a subring of 

V (L) . If a is a sublattice of tt , we assume that 

(**) A A = A , ' a TT a ' 

in other words, the operators A^ form a martingale as TT 

runs through all finite sublattices of L' . Now set, for 

x e L 

(***) A x = lim A_ x 
TT tr 

where the limit on the right side means the following: for 

every x e L there is a sufficiently large sublattice ir of 

L' such that A x = A x, and A x = x for all sublattices o TT a 
of : L ' containing TT . We shall say that such an averaging 
operator is obtained by finite approximation. 

Condition (**) implies a condition on the coefficients 
c , derived as follows. Writing 

A x = I c(x,e)e; A x = E c(x,f)f, 
° eeP feQ 
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where P and Q are the sets of canonical idempotents of 

a and it, we find 

A A x = £ £ c(x,f)c(f,e)e = a ÏÏ £ e f 

= £ c(x,e)e , 
e 

and hence 

£ c(x,f)c(f,e) = c(x,e) . 
f 

Since a is a sublattice of TT , each canonical idempotent of 
ÏÏ is contained in a unique canonical idempotent of a , and 
the preceding sum simplifies to 

£ c(x,f)c(f,e) = c(x,e) . 
f <e 

Replacing x by xf for a fixed canonical idempotent f of o, 

this gives 

£ c(xfQ,f)c(ffe) = c(xfQ,e). 
f <e 

But c(xf ,f) = 0 unless f = f . and this sum simplifies to o o ^ 
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c(xf ,f )c(f ,e) = c(xf ,e) , o ' o o' o' ' 

which in turn can be restated in more elegant form as 

(5) c(x,ef)c(f,e) = c(xf,e) . 

This is the condition for a cocycle in homology. Finally, 
consider the limit condition (***). If A x is given by the 
right side of (*), and if f is any canonical idempotent of 
L', then 

A(xf) = fAx = £ c(x,e)ef = £ c(x,ef) ef 
e e 

and thus we have that c(x,e) = c(x,f) for any f £ e; in other 

words, we require :(6) for every x e L and every canonical 

idempotent e of L' such that 

A x = £ c(x,e)e with c(x,e) ^ 0 
e 

one has c(x,e) = c (x, f ) for every canonical idempotent f of 
L1 contained in e. 

This last condition puts a strong restriction on the 
sublattice L'. For suppose f < x; then c(x,f) = 1 by (1) 
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and hence c(x,e) = 1; thus, if c(x,e) ^ 1, then no f < e 

is contained in x . Again, if f x = z, then c(x,f) = 0 by 

(4); thus, if c(x,e) ? 0, then any canonical iderupotent f 

such that f meets e also meets x , that is, f A x ^ z. 

We conclude that there is a maximal f e L' contained in x, 

call it V'xf and a minimal e c L' containing x, call it ,3x • 

The (non-linear I) operators on L 

x V x , 

are quantifiers (universal and existential) in the sense of 
Halmos, and the sublattice L' must be relatively complete 
in L. 

We thus find that on the right side of (*) one term 
always is c(x, Vx)Vx, with c(x, Vx) = 1; of the remaining 
terms, c(x,e) ^ 0 only if e < -Jx. ,A function c (x,e) defined 
for x c L and for all non-zero canonical idempotents e e L ' , 

satisfying condition (1) - (6) is called a fibering of L1 by 
L. We have shown that every averaging operator obtained by 
finite approximation determines a fibering; conversely, every 
fibering determines an averaging operator, assuming that L' 
is relatively complete in L. 
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Any further statement about the existence of a fibering 

for a given pair L and L' depends on more delicate 

measure-theoretic questions. If L and L' are Boolean 

algebras, the existence of a "universal" fibering can be e 

established, but this requires a previous classification of 

subalgebras of a Boolean algebra (Haharam ), and cannot be 

undertaken here. The case of interest in predicate logic 

is worked out below. 
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8. Quantifiers. 

Every relatively complete Boolean subalgebra L' 
of a Boolean algebra L defines two quantifiers, the ex-
istential quantifier 

_.. x = inf {y: y x , v e L'} 

and the universal quantifier 

V x = sup {y : y <_ x, y e L1} 

We have seen that every non-trivial averaging operator on 
the valuation ring V(L,R) defines two such quantifiers. Is 
it possible to reverse the process? In other words, given 
L and L' , we wish to construct an averaging operator: 

A x = E c(x,e)e 
e 

where e ranges over the canonical idempotents of L' , with 

the following properties: 

(a) for x e L, the support of x, that is, £{e: c(x,e)^0}, 
is the idempotent j x 

614 



(b) for x e L , the idempotent V x coincides with 

£{e: c (x,e) = 1}. 

Vie shall solve this problem in a special case, which is strong 

enough to include the quantifiers of predicate logic. It 

will be simpler to describe the construction in set-theoretic 

language. Thus, we are given two sets S and T , and on S 

a Boolean algebra L' of subsets freely generated by elements 

'W1 ,y2 ,w2 ' Y3 'w3 ' • • • such that = We identifv L1 

with the Boolean alnebra of S-cylinder sets in the product 

S x T. Now take a Boolean algebra of T-cylinder sets, freely 

generated by z,,z0,... . 

Now let L be the Boolean alaebra of subsets of S x T 

generated by the and w^. The quantifiers from L 

to L' can be explicitly described as follows: 

(1) If x belongs to the Boolean subalgebra generated 

Set 

y, + t, 1 1 

by the y. and w. , set V x = x and J x 1 1 x; 

(2) Set J (x v y) v 
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and V(x A y) = V x A Vy for all x,y e L; 

(3) Set 

x. = y . + w. , —! v. = y. , l J i l J l 71 ' 

J (x. x. ... x. ) = (y. + w. ) ... (y. + w. ) , 
1 2 n 11 X1 l2 xn 

V x . = y . . ^ y . = y . i x l ' y l l 

V(x. v — Vx, ) = y. \/ ... Vy, , 1 -, 1 1-, 1 n i n 

J x. = ! 

V x. = y. + w v l 21 : 

In view of the known properties of quantifiers (Halmos) 

this gives __ x for all x in L . We can now construct the 

averaging operator of L onto L' , by choosing a suitable 

universal ring of coefficients. 

Set 

A x . = y. + c(x..w.)w. l 11 I ' l l 
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where the coefficients c belong to an as yet unspecified 

ring. Define A(x. x. ... x. ) by induction, writing 
11 l2 1n 

A(xt...x ) for simplicity. Having defined A(x, ...x ,) we i n ± n—i 

have 

A(Xl...xn) = A(x1...xn_1(yn + tn)) = 

= ynA(x1...xn_1) + A(x1...xn_1tn) , 

so we set 

A(x1...xn_1tn) = c(x1...xn_1xn, w1...wn)w1...wn . 

Let R be the commutative ring with identity generated 
by these values of c , together with conditions (1) - (6) of 

the preceding Section. Condition (6) is made specific by 

stating that 

cCx^-.x , w±. . .wnf) = c(x1...xn, w^.-.w^ 

for any idempotent f in the range of A . These conditions 

determine the values of c uniquely, and in fact make it a 

fibering of L by L* . 
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To simplify the computation of A x , write 

x. = p. + q., where p. = y. - w. + t. is a cylinder set, and 1 1 1 1 1 1 1 
q. = w. - t.. Then ai l l 

A x . = p. + c (x., w.)w. , l * l l ' l l ' 

as is easily checked. 

As an example of computation with the averaging operator 

A , let us verify that 

A(x1X2) + A (x^x2 ) = • 

Now, 

AfXj^) = y xP 2
 + c(x1,w1)p2w1 + c^2' W2* yl W2 + 

+ c (x̂ x"2 ,w^w2) w^w2 , 

and 
A(x1X2) = y xy 2 + c^ x' wl^2 Wl + c^ x2' w2^ yl w2 + 

+ c (x1x2 ,w^w2) w 1w 2 . 

Adding, 
A(X±X2) + A(X1X2) = Y1(Y2+P2) + C ^XL'WL^Y2+P2^ W1 + 
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+ yl W2 + C ' W 1 W 2 ^ W 1 W 2 ' 

where we have used the additivity of e . But Y2+P2+w2 = u' 

and furthermore c(x^,w^w2) = c(x^,w^) by condition (6) in 

the definition of a fibering. Simplifying, the right side 

is seen to equal y^ + c^xl'wl^wl' a s desired. 

One retrieves the quantifiers from the averaging ope-

rator by the following algorithm: 

(1) Write A x as the sum of multiples of disjoint 

idempotents,where the multiples are values of c; 

(2) To get _J. x, replace by 1 all coefficients which 

are non-zero, and take the sum of the resulting idempotents; 

(3) To get Vx, replace by 0 all coefficients which do 

not equal 1, and take the sum of the remaining idempotents. 

We shall informally illustrate the connection with the 
decision problem for the predicate calculus. Let x^,x2,... 
be predicates in two individual variables: F1(x,y),F2(x,y),... 

and let the y. and w. be predicates in one individual variable l l 
such as G(y). In order to analyze the validity or satisfi-

ability of a formula in the predicate calculus quantified 

in the single variable x, and not necessarily in prenex 

normal form, reason as follows. Every predicate F^(x,y) can 

be decomposed into the disjoint sum of three predicates: 

F.n(x,y), corresponding to the set of x for which no y 
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exists for which F^(x,y) is true, F^(x,y), corresponding to 
the set of x for which there exists some y such that 
F^(x,y) is true, and F^2 (x,y), corresponding to the set of 
x for which F^(x,y) is true irrespective of y. Clearly 
F±(x,y) = Fi0(x,y) + Fi;i(x,y) + F ± 2 (x,y) . Now Fi]L(x,y) 
corresponds to t^, and F^2(x,y) corresponds to y^. We as-
sign predicates G.(x) and H.(x) = F.~(x,y) to t. and y., 

" l l i2 '1 l y l ' 
so that we have 

A F (x,y) = C (F, Gi) G± (x) + H± (x) . 

By this technique, and its extension to several variables, 

every formula of the predicate calculus is seen to be equiva-

lent to a formula in a valuation ring endowed with commuting 

averaging operators. In other words, problems of first-order 

logic, such as the decision problem, can be shown to be 

equivalent to algebraic problems for valuation rings with 

averaging operators. 

The case of several commuting quantifiers is technically 

more complex, but the idea is the same: one considers a 

Boolean algebra generated by disjoint parellelepipeds of a 

very special kind in an n-cube; the expression of quanti-

fiers by averaging operator is akin to an Herband expansion, 
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but the linear structure of the valuation ring allows con-

siderable simplifications. We hope to take up these matters 

elsewhere. 

621 



9. Logic and Probability. 

In the present context, the algebra of real random 
variables on a probability space can be viewed as a close 
analog of a valuation ring, the only difference being that 
infinite sums of idempotents are allowed. In fact, the 
passage from predicate logic - i.e., a valuation ring with a 
set of commuting averagincr operators - to probability is 
achieved by the following steps: 

(1) Assign a probability measure y to the canonical 
idempotents; 

(2) Define an L-space norm on the valuation ring by 
setting 

|Ea(e)e| = E|a(e)|p(e) ? 
e 

(3) Complete the resulting normed linear space, thereby 

obtaining an L-space, representable as the space of all inte-

grable functions. 

(4) Represent every averaging operator as a conditional 

expectation operator (in the sense of probability.) Once the 

restriction that every element of the range be finite-valued 

is removed, one can show that a conditional expectation 

operator always exists. 
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The resulting structure is richer than that of a 

probability space, because it is endowed in addition with a 

monotonie cone of non-decreasing functions. 

By this process certain questions of predicate logic can 

be seen to be analogous to questions in probability, and new 

questions in probability are suggested by the analogy - . 

For example, does the decision problem for averaging operators 

make sense? Problems of model theory, which can be re-

phrased and simplified in the context of valuation rings, 

have analogs for probability spaces. The intriguing possi-

bility arises of handling the decision problem of predicate 

logic by the techniques of probability. 
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It was L. Solomon who first introduced what we have 

called canonical idempotents, but his construction remained 

obscure for several years; he called it the Mobius algebra 

of an ordered set. A few years later, the present writer 

introduced the notion of valuation ring of a distributive 

lattice, quite unaware that it might be related (at least in 
n 

the finite case) with Solomon's Mobius algebra. It was R, 
Davis who proved the isomorphism of the two structures; 
successively, C. Greene made the calculations with canonical 
idempotents obvious, and used them to systematically derive 
properties of the Mobius function. It must be pointed out 
however that the valuation ring is more general than the j» , , 
Mobius algebra, since it does not require any fmiteness 

assumptions. 

The valuation ring was later studied by Geissinger in 

a series of papers; to him is due the existence of an aug-

mentation, the integral, and the elegant duality, which ex-

tends to all valuation rings the duality of Boolean algebras. 

The representation of distributive lattices in terms of 

totally order disconnected spaces was recently discovered by 

Priestley ; we have given here the valuation-ring version, 

which is slightly simpler and tells more. The notion of 
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quantifier on a Boolean algebra was introduced by Everett and 

Ulam and extensively studied by Ilalmos and others, but the 

precise connection with averaging operators seems to be new, 

though the analogy had been noted by Wright. Averaging ope-

rators on spaces of continuous functions have an extensive 

literature (Brainerd, Kelley, Wright); in the present con-

text they have not been previously considered. 

It seems astonishing that the use of the valuation ring 

as a technique of proof and as a decision procedure should 

not have been realized and exploited, even for the proposi-

tional calculus. We hope the present paper will contribute 

to correct this neglect. 

The conjectured connection between the homology of an 

ordered set and the Koszul complex also seems to be new, and 

we hope its potential usefulness in studies of computational 

complexity will also be developed. 
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