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J.S. MAC NERNEY: A Personal Memory

John Sheridan Mac Nerney was a founding member of the editorial board of the
Houston Journal of Mathematics.

He was born in New York City on January 10, 1923 and died June 2, 1979 in
Houston. He attended Trinity College from 1939 to 1941. From the University of
Texas in Austin, he received his B.A. degree with highest honors in 1948 and his Ph.D.
degree in Mathematics in 1951 under the supervision of Professor H. S. Wall. He had
worked as a Vibration Analyst at United Aircraft Corporation in East Hartford,
Connecticut from 1941 to 1943, and had served in the United States Army Air Force
from 1943 to 1946. He taught at Northwestern University (1951-52), the University
of North Carolina (1952-67), and the University of Houston (1967-79).

Professor Mac Nerney was a member of the American Association for the
Advancement of Science, the American Mathematical Society, the Mathematics
Association of America, the North Carolina Academy of Sciences, the Elisha Mitchell
Scientific Society, Circolo Matematico di Palermo, Phi Beta Kappa, and Sigma Xi. He
was president of the North Carolina chapter of Sigma Xi, 1966-67. He was listed in
American Men of Science and Who’s Who in the South and Southwest from which
much of the above data was obtained.

John Mac Nerney was a mathematician, a teacher, and a friend. I have the highest
regard for him in all three categories. His mathematical interests were different from
mine, so I shall leave as an exercise for the reader to outline the highlights of his
contributions to Mathematical Analysis.

I was Mac’s colleague at the University of North Carolina during the academic
year 1964-65, and again at the University of Houston from 1967 until his death. Most
of the happy memories [ have from the year in Chapel Hill are of the friendship of me
and my wife, Kathie, and Mac and his wife, the lovely Kathleen Mary O’Connor
Mac Nerney, whom he married December 8, 1945.

It was Mac and Kathleen who helped us find and move into a house in Chapel



Hill. I remember Kathleen scrubbing the bathroom of that house from floor to ceiling.
They lined up a pediatrician for our daughter, Virginia, and an obstetrician at the
University Hospital for Kathie. When our second daughter, Carolyn, was born in
November, the only visitors the mother and baby were allowed were the father and
two sets of grandparents. We listed Mac and Kathleen as one of those sets.

Once, while we were in North Carolina, Kathie’s father sent us a case of Ranch
Style beans - a Texas delight not obtainable in Chapel Hill - which we shared with the
Mac Nerneys. When Kathie and our children preceded me home from an 18 month
stay in Australia in 1973, Mac and Kathleen welcomed them at the Houston Airport
with a one gallon can of Ranch Style beans.

As a colleague at Chapel Hill, Mac was the man who stumbled over the ropes with
me. Mac’s comment when I proved a theorem and then found that Burton Jones had
already done it was that I was lucky. After all, he pointed out, I had proved a good
theorem; I knew that as fine a mathematician as Burton Jones was interested in it; and
I didn’t have to write it up for publication. One evening [ devised what I thought was
an exceedingly clever argument which seemed to prove something I wanted to know.
My elation, however, turned first to deflation, when I noticed that if the argument
were correct, it would also settle the continuum hypothesis, and then to frustration,
when I could not find the error that I knew had to be there. The next afternoon, Mac
consented to listen to my argument, which he did until I reached a point at which I
found an error. And then we traded places for me to hear the argument he had worked
out the night before. As I recall, that one was a proof.

One of the stories Mac liked to tell was of a time when, as a graduate student at
Texas, he was in his office thinking about a problem. His friend Pat Porcelli came into
his office and sat in a chair. After a couple of hours of complete silence, Pat stood up,
commented that it had been a very productive afternoon, and left.

It is easy to paint a portrait of a man as a character. It is hard to paint a portrait

of a man of character. John Sheridan Mac Nerney was a good man.

Howard Cook
Houston 1980
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FINITELY ADDITIVE SET FUNCTIONS
I. ORDER-CHARACTERIZATION OF A PRE-RING OF SUBSETS OF A SET
J. S. Mac Nerney*

ABSTRACT. Suppose that {E,<} is an upper semi-lattice D,
which is an upper extension of the nondegenerate partially
ordered set R without a least element. It is shown that the
following statements (1) and (2) are equivalent. (1) There exists
a function v from R onto a collection Q of subsets of some set
such that (a) if uis an element of R and Y is a finite subset of R
then u <suppY if, and only if, y(u) is covered by the y-image of
Y, and (b) if G is a finite collection of members of Q then there
is a collection M of mutually exclusive members of Q such that
each set in the collection G is filled up by a finite subcollection
of M. (2) If G is a finite subset of R then there exists a subset M
of R such that (i) if X is a finite subset of M and y is an
element of M which does not belong to X then there is no
element t of R such that t <suppX and t<y, and (ii) each
element of G is the supremum in D of a finite subset of M. Proof
that (1) is a consequence of (2) is effected in terms of (A) the
set R” to which P belongs if, and only if, P is a subset of R which
has, and is maximal with respect to having, the property that if Y
is a finite subset of P then there is an element u of R such that,
for each element w of Y, u <w, and (B) the function y from R
such that if v belongs to R then 4(v) is the subset of R” to which

P belongs if, and only if, v belongs to P. A pre-ring is a collection
Q of subsets of a set such that the condition (1,b) is satisfied.

Introduction. The reader is invited to consider, as a central theme in much that
follows, the proposition that if G is a finite collection of (closed and bounded)
number intervals then there is a collection M of nonoverlapping number intervals such
that each interval in G is filled up by a finite subcollection of M.

Suppose that the ordered pair {E,<} is a partially ordered system D which is an
upper semi-lattice, and is an upper extension (in J. Schmidt’s sense [17]) of the

nondegenerate (i.e., having more than one element) partially ordered set R: R is a

*Presented to the American Mathematical Society on March 8, 1974,



2 J.S. MAC NERNEY

nondegenerate subset of E, the (implicit) partial ordering of R is the intersection with
R X R of the partial ordering < of the set E, and each element of E is the supremum
in D (supp) of a subset of R. Inasmuch as the present author would find it
inconvenient to refer to an empty set and does not do so, at least in the present
context, this initial supposition precludes a least element of E in D unless there is an
element o of R such that, for each element x of R, o <<x (see [17, page 40] for
relevant technical comment; there may be a reader who will find it convenient to
supply one of the implicitly intended phrases non-empty and non-void in each
instance of current reference to a set or a collection or a family). It should be noted
that < is a partial ordering in the sense described by G. Birkhoff [5], rather than in
the sense described by N. Dunford and J. T. Schwartz [8, page 4] ; Birkhoff [5, page
20] calls the latter type of relation a quasi-ordering. Apparently, therefore, it is
appropriate here to specify that, if each of x, y, and z is an element of E, (i) x <X,
(i) if x <y and y<x thenyis x, (iii) if x<yand y <zthen x<z,and (iv) if Gis
a finite subset of E then suppG is an element v of E such that if uisin G thenu<v
and, if w is an element of E such thatifuisin Gthenu<w,v<w.

If G is a collection each member of which is a set then G is said to fill up H
provided H is the set G* (R. L. Moore’s terminology and notation [15] for the sum of
all the sets in the collection G in case G is nondegenerate, and for the only member of
G in the alternative case); as usual [13, 15], such a collection G is said to cover H
provided H is a subset of G*. In the case that R is a collection of subsets of a set L and
< has the meaning “‘is a subset of,” one upper extension {E <} of R, which is an
upper semi-lattice, is the additive extension of R (T. H. Hildebrandt’s terminology
[12]), wherein H is an element of E only in case H is a subset of L which is filled up
by a finite subset of R. In this case it has been shown by J. von Neumann [22] that if
R is a half-ring of subsets of L then the additive extension of R is a ring of subsets of
L. One may recall that the essence of von Neumann’s argument [22, page 85 ff.] is a
proof that if G is a finite set of members of R then there is a collection M of mutually
exclusive members of R such that each set in the collection G is filled up by a finite
subcollection of M; similar argument leads to the same conclusion about R provided

only that R is a semi-ring as defined by P. R. Halmos [9, page 22] (such an argument
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is indicated by A. C. Zaanen [23, page 26]). The central idea of these arguments is
termed refinement pre-ring [6] or pre-ring [7] by W. M. Bogdanowicz.

DEFINITION. The statement that the collection Q of subsets of the set K is a
pre-ring means that if G is a finite collection of members of Q then there is a
collection M of mutually exclusive members of Q such that each set belonging to the
collection G is filled up by a finite subcollection of M.

The present author is led to this idea from consideration of integrals based on a
subdivision-refinement process. If F is a family of collections of subsets of a set K such
that (i) each member of F is a collection of mutually exclusive sets and (ii) if M and
M2 are members of F then there is a member M3 of F such that each set belonging to
M; or.to M5 is filled up by a finite subcollection of M3, it may be shown that F* is a
pre-ring of subsets of K. Conversely, if Q is a pre-ring of subsets of the set K and F is
the family of which M is a member only in case M is a finite collection of mutually
exclusive elements of Q, it is clear that the family F has the foregoing properties (i)
and (ii).

It is also clear that if Q is a pre-ring of subsets of K then the additive extension of
Q is a ring V such that each member of V either belongs to Q or is filled up by a finite
collection of mutually exclusive members of Q. Moreover, in this case, a finitely
additive function from Q to a set of numbers has only one finitely additive extension
to V. Indeed, one description of the condition that the collection V of subsets of K be
a ring is the following: if H is a finite collection of members of V then H* belongs to
V and there is a collection M of mutually exclusive members of V such that each set in
the collection H is filled up by a finite subcollection of M. It should be noted that this
notion of a ring of subsets of a set is the one frequently arising in treatments of
measure theory {9, 12, 22, 23], rather than that cited by Birkhoff [5, page 12];
Hildebrandt [12, page 146 ff.] calls the latter an additive and multiplicative class of
sets.

Now, here is a description of the Central Problem for which one solution is
provided in the present report.

CENTRAL PROBLEM. Find a necessary and sufficient condition on the set R,

relatively to D, that there should exist a function v from R onto a pre-ring of subsets
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of some set such that if u is an element of R and Y is a finite subset of R then
u<suppyY only in case y(u) is covered by the y-image of the set Y.

SOLUTION. It is shown that the following is such a necessary and sufficient
condition: if G is a finite subset of R then there is a subset M of R such that

(1) if X is a finite subset of M and y is a member of M which does not belong to
X then there is no element t of R such that t << suppX and t <y, and

(2) each element of G is the supremum in D of a finite subset of M.

Geometric Perspectives. In the context in which R is a pre-ring of subsets of a set
L, it is natural to define a partitioning of a member K of R, as is done by Halmos [9,
page 31] for the case that R is a semi-ring, to be a finite collection of mutually
exclusive members of R filling up K.

In a topological context, however, R. H. Bing [1] and E. E. Moise {14] have
been led to the notion of a partitioning of a continuous curve L as a finite collection G
of mutually exclusive connected open sets such that G* is dense in the set L. In the
case that G is a regular partitioning of L (each member of G being the interior of its
closure [3]), there is the “‘equivalent” collection M of closures of members of G: M
fills up L and no interior point of a member of M belongs to any other set in the
collection M. A primitive instance, of course, is the case that L is a (closed and
bounded) number interval and M is a finite collection of nonoverlapping subintervals
of L filling up L; this instance, and higher dimensional cases, occur in discussions of
the concept of ‘“‘an additive function of intervals” (e.g., in Hildebrandt [12]). The
popular replacement of intervals with left-closed intervals [9] or with right-closed
intervals [23] may be thought of as an informal description of such a function 7y as is
mentioned in the Central Problem of the present report.

There is also the notion of a brick partitioning G of a continuous curve L (the
elements of the regular partitioning G are further required to be uniformly locally
connected, as is the interior of the sum of the closures of each pair of elements of G):
it is known [2; 3, Theorem 10] that each continuous curve has a decreasing sequence
of brick partitionings. The results of Bing and E. E. Floyd (4] implicitly draw
attention to the collection R of all elements of the terms of some decreasing sequence

of brick partitionings of a continuous curve L, and to the upper extension {E,<}of R,
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in which E is the collection to which K belongs only in case K is the interior of the
sum of the closures of the elements of some finite subcollection of R, with < having
the meaning “is a subset of” as in the case of the additive extension of R.

In an investigation of (finitely additive) integrals, J. A. Reneke [16] has found
convenient the following postulate, among others, concerning a collection R of subsets
of a set L: there exists a function @ from R such that if v is a member of R then @(v) is
an element of v which belongs to no other member of any finite subcollection M of R,
containing v, such that no member of R lies in two members of M. A central part is
then played, in Reneke’s investigation, by the family F of all such finite collections M
of “‘relatively prime” members of R; it is further postulated there [16] that if A and B
are members of R such that some member of R lies in both of them then there is a
member M of F filling up B, with a subset filling up the common part of A and B, such
that if v is a member of M not lying in A then no member of R lies both in v and in A.
A partitioning of a member K of R is, in that context, a member of F which fills up K.
By reasoning as indicated in the Proof of [16, Theorem 2.1], it may be proved that if
G is a finite subcollection of R then there is a member M of F such that each member
of G is filled up by a subcollection of M. In one application of Reneke’s principal
results [16, page 106 ff.], it seems essential that the members of an element of F not
be required to be mutually exclusive.

In consequence of the postulates indicated in the preceding paragraph, each
member M of the family F has this property: if X is a subcollection of M and y is an
element of M which does not belong to X then no member of R lies both in X* and in
y. Suppose, on the contrary, that X is a subcollection of the member M of F and y is
an element of M which does not belong to X and t is an element of R which lies both
in X* and in y. There is a member N of F such that if z is t or z belongs to X then z is
filled up by a subcollection of N; let s be an element of N lying in t. Now, there is an
element z of X such that s lies in z, since, otherwise, @(s) would belong to an element
of N different from s. This involves a contradiction, since the element s of R lies in
both the elements y and z of M.

Algebraic Perspectives. There is a connection between present results and M. H.

Stone’s celebrated Representation Theorem for Boolean Rings [19, 20, 21, et.seq.]1 (J.
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Schmidt [18] has further references; J. L. Kelley [13, pages 81-83 and 168-169] has
encapsulated the pertinent portion of Stone’s resﬁ]ts). Although the Central Problem
is solved here independently of Stone’s Representation Theorem, it may be
appropriate here to indicate that connection. Suppose that V is a ring of subsets of the
set L (in the sense previously indicated), and E) is the subset of oL (the set of all
functions from L to the set of which the numbers O and 1 are the only elements) to
which x belongs only in case either x is the zero-function 8 on L or there is a member
g of V such that x(t) is 1 or 0 accordingly as the element t of L does or does not
belong to g; let < be the subset of EO X EO to which {x,y} belongs only in case it is
true that, for each element t of L, either x(t) is y(t) or x(t) =0 and y(t) = 1. The
ordered pair {E0,<0} is a distributive [5, page 12] and relatively complemented [5,
page 16] lattice with least element 8. The relevant portion of Stone’s Representation
Theorem is that every distributive and relatively complemented lattice with a
zero-element, and at least two other elements, arises this way - in the sense of
lattice-isomorphisms [5, page 24].

Suppose, now, that {E0,<0} is a lattice C which is distributive and relatively
complemented, with zero-element 6 and at least two other elements in the set E.
Consider the upper semi-lattice D = { E, <}, where E is the set of all elements of EO
different from 6 and < is the intersection with E X E of the partial ordering < of Eg.
There are two properties of D which can be established directly (and independently of
Stone’s Theorem, supra): (1) If M is a subset of E and there are not two elements x
and y of M such that, for some tin E, t < x and t <y, then, if X is a finite subset of M
and y is a member of M which does not belong to X, there is no element t of E such
that t <suppX and t <<y;(2) if G is a finite set of elements of E then there is a finite
set M of elements of E such that each element of G is the supremum in D of a subset
of M and there are not two elements x and y of M such that, for some t in E, t < x and
t <y. From the foregoing considerations, upon requiring R to be all of E in the
Central Problem and in the indicated Solution, one may see that the present results
provide an internal characterization of all such semi-lattices D.

The descriptive term ‘‘internal” is used here in contradistinction to such a

theorem, for example, as that which Kelley [13, page 150] attributes to Alexandroff
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and in which a locally compact Hausdorff space is characterized as a space S, with the
relative topology, obtained from a nondegenerate and compact Hausdorff space Sq by
omitting a single point from SO.

Finally, it may be noted that (in the sense of lattice-duality) a similar
specialization of the present results provides an internal characterization of lower
semi-lattices with a least element which are obtained from Boolean lattices
(distributive and complemented lattices with zero- and unit-elements) by omitting the
unit-element. If {E,<}is a lower semi-lattice A with a zero-element then, in order that
A should be of this type, it is necessary and sufficient that: if G is a finite subset of E
then there exists a subset M of E such that

(1) if X is a finite subset of M and y is a member of M which does not belong to
X then there is no element t of E such that ianX <tandy <t,and

(2) each element of G is the infimum in A of a finite subset of M.

No further attention is called, in the present report, to similarly dual results.

Necessity of the Condition. The initial supposition from the Introduction is
hereby invoked: the ordered pair { E,<} is a partially ordered system D which is an
upper semi-lattice, and is an upper extension of the nondegenerate partially ordered
set R.

Here is a notational device which serves to preclude ambiguity in case there is a
subset of R which is itself a member of R. If iy is a relation with initial set (or domain)
R then the y-image function, denoted by v, is the function to which the ordered pair
{U,H} belongs only in case U is a subset of R and H is the set to which t belongs only
in case there is an element s of U such that the ordered pair {s,t} belongs to
v: H=~7(U), the y-image of the set U.

THEOREM 0. If v is a function from R onto a pre-ring of subsets of the set L
such that, if uis an element of R and Y is a finite subset of R, u <suppY only in case
y(u) is a subset of Y (Y)* then the following statements are true:

(1) if M is a subset of R then, in order that no element of L should belong to
two members of v (M), it is necessary and sufficient that if X is a finite subset of M
and y is an element of M which does not belong to X then there is no element t of R

such that t SsuppXand t <y, and



8 J.S.MAC NERNEY

(2) if P is a subset of R, then, in order that it be true that if Y is a finite subset
of P then there is an element of L which belongs to every member of v (Y), it is
necessary and sufficient that if Y is a finite subset of P then there is an element u of R
such that, for each element wof Y, usw.

PROOF. With the observation that, under the indicated hypothesis, v is a
reversible transformation, the proof is accomplished in four steps.

STEP la: Suppose M is a subset of R such that no element of L belongs to two
members of ¥ (M), X is a finite subset of M, and y is an element of M which does not
belong to X. Suppose that there is an element t of R such that t <suppX and t <y,
so that (t) is a subset both of ¥y*(X)* and of ¥(y), and let p be an element of (t).
Since p belongs to ¥y’ (X)*, there is an element u of X such that p belongs to y(u).
Since y does not belong to X and +y is reversible, the element p of L belongs to both
«(u) and y(h). This involves a contradiction.

STEP 1b: Suppose M is a subset of R such that if X is a finite subset of M and y
is a member of M which does not belong to X then there is no element t of R such
that t < supDX and t <y. Suppose u and w are elements of M and p is an element of
L which belongs to both 4(u) and y(w). Since y’(R) is a pre-ring, there is a subset Z of
R such that 4y7(Z) is a collection of mutually exclusive sets and each of y(u) and y(w)
is filled up by a finite subcollection of ¥’(Z). Let v be a member of Z such that p
belongs to y(v): since p belongs to no member of y’(Z) different from y(v), y(v) is a
subset of both y(u) and v(w). Hence v is an element of R such that v<tuand v<<w,
This involves a contradiction.

STEP 2a: Suppose P is a subset of R such that if Y is a finite subset of P then
there is an element of L which belongs to every member of ¥*(Y), and Y is a finite set
of elements of P. Let p be an element of L which belongs to every member of y(Y),
and Z be a subset of R such that y°(Z) is a collection of mutually exclusive sets and
each member of ¥°(Y) is filled up by a finite subcollection of ¥?(Z). Let u be a
member of Z such that p belongs to y(u): since p belongs to no member of ¥y*(Z)
different from ~(u), y(u) is a subset of each set in the collection y*(Y). Hence, for
each member w of Y, u < w.

STEP 2b: If Y is a finite set of elements of R and u is an element of R such that,
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for each element w of Y, u<<w then each element of y(u) is an element of L which
belongs to every set in the collection ¥(Y).

COROLLARY. The stipulated condition on R, relatively to D, is necessary for
the existence of a function ~ from R onto a pre-ring of subsets of some set such that if
u is an element of R and Y is a finite subset of R then u << supDY only in case it is
true that ~(u) is a subset of ¥ (Y)*.

PROOF. Suppose that v is such a function from R onto the pre-ring Q of subsets
of the set L, and G is a finite set of elements of R. As observed in the Proof of
Theorem O, vy is a reversible transformation. Since Q is a pre-ring, there exists a set M
of elements of R such that y*(M) is a collection of mutually exclusive members of Q
and each member of ¥”(G) is filled up by a finite subcollection of ¥ (M). By Theorem
0 (1), if X is a finite subset of M and y is an element of M which does not belong to X
then there is no element t of R such that t <suppX and t <y. Suppose that K is an
element of G, and let Z be a finite subset of M such that y(K) is filled up by y7(Z).
Since ¥(K) is the set y’(Z)*, it is true that K < suppZ. If x is an element of Z then
v(x) is a subset of y*(Z)*, which is y(K), so that x < K. Hence supDZ < K, so that K is
the supremum in D of the set Z. This establishes the Corollary.

Sufficiency of the Condition. The initial supposition from the Introduction is
again invoked: the ordered pair {E,<} is a partially ordered system D which is an
upper semi-lattice, and is an upper extension of the nondegenerate partially ordered
set R. There are two types of subsets of R, as indicated in the statement of Theorem
0, to which attention is now called.

DEFINITIONS. A type-1 setset of R is a subset M of R such that if X is a finite
subset of M and y is an element of M which does not belong to X then there is no
element t of R such thatt <suppXand t <y. A rype-2 subset of R is a subset P of R
such that if Y is a finite subset of P then there is an element u of R such that, for each
element w of Y, u < w. If J is one of the integers 1 and 2 then a full type-J subset of R
is a type-J subset of R which is not a proper subset of any type-J subset of R.

It is clear that, if J is one of the integers 1 and 2, each degenerate subset of R is a
type-J subset of R and every subset of any type-J subset of R is itself a type-J subset
of R. Moreover, by the familiar Maximality Principle (as formulated by M. Zorn [24]
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or, dually, by R. L. Moore [15, Theorem 39] - this is Theorem 121 in the 1932
Edition of [15]1), if J is one of the integers 1 and 2 then each type-J subset of R is a
subset of a full type-J subset of R. Now, the stipulated condition on R, relatively to D,
is assumed hereinafter as follows.

SUBDIVISION AXIOM. If G is a finite subset of R, there is a type-1 subset M of
R such that each element of G is the supremum in D of a finite subset of M.

Let R" denote the collection to which P belongs only in case P is a full type-2
subset of R, and vy be the function to which the ordered pair {u,hi} belongs only in
case u is an element of R and h is the set to which P belongs only in case P is a
member of R" to which u belongs. It may be noted that the assertion, that each
type-2. subset of R is a subset of a full type-2 subset of R, has the following
interpretation: if G is a type-2 subset of R then there is an element of R” which
belongs to every set in the collection y”(G). It is to be shown that y*(R) is a pre-ring of
subsets of R, and that if u is an element of R and Y is a finite subset of R then
u <suppY only in case y(u) is a subset of y”(Y)*. To this end, here is a sequence of
nine Theorems based on the Subdivision Axiom.

THEOREM 1. No type-1 subset of R has two subsets X and Y such that X is
finite and suppX = supDY.

PROOF. Suppose, on the contrary, that M is a type-1 subset of R, X is a finite
subset of M, Y is another subset of M, and suppX =suppY. If Y is finite then there is
an element v of one of the sets X and Y such that, if Z is the other one of the sets X
and Y, v< supDZ but v does not belong to Z; since Z is a finite subset of M, this
involves a contradiction. Therefore, Y is not finite and so there is an element w of Y
which does not belong to X. Now, w is an element of M and w << suppyX. This involves
a contradiction.

THEOREM 2. Suppose G is a finite set of elements of R, M is a type-1 subset of
R, and each element of G is the supremum in D of a finite subset of M. Then the set
W, to which u belongs only in case u is an element of M and there is an element h of G
such that u <\ h, is finite and suppW = suppG.

PROOF. By Theorem 1 no element of G is the supremum in D of two subsets of

M and, since G is finite, W is finite. Let f be the function to which {h,k} belongs only
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in case h is an element of G and k is the subset of M to which the element u of M
belongs only in case u< h. Since f’(G) is W and if h is an element of G then
h = suppf(h), it follows that suppG = suppW.

THEOREM 3. If M is a subset of R such that if u and v are elements of M then
there is no element t of R such that t <uand t <v, then M is a type-1 subset of R.

PROOF. Suppose that the subset M of R is not a type-1 subset of R. Let X be a
finite subset of M and y be an element of M which does not belong to X and t be an
element of R such that t <suppX and t <y. With reference to the Subdivision Axiom
and Theorems 1 and 2, let W be a finite type-1 subset of R such that supp,W = suppX
and if s is t or s belongs to X then s is the supremum in D of a subset of W. It follows
from Theorems 1 and 2 that, if r is an element of W, there is an element u of X such
that r <u. Let q be an element of W such that g <t, and u be an element of X such
that q <u. Now, u and y are elements of M and q is an element of R such that q <u
and q <.

THEOREM 4. The subset M of R is a type-1 subset of R only in case there is no
element of R which belongs to two members of v"(M).

PROOF. Suppose that M is a subset of R. It is clear from the Definitions that, if
M is a type-1 subset of R, no two members of M belong to any type-2 subset of R so
that no element of R”' belongs to two members of y°(M). If no element of R’' belongs
to two members of vy’ (M) then no two members of M belong to any type-2 subset of R
so that, by Theorem 3, M is a type-1 subset of R.

THEOREM 5. If P is an element of R'' and W is a finite type-1 subset of R such
that supDW belongs to P, then only one element of W belongs to P.

PROOF. Suppose, on the contrary, that u belongs to the member P of R” and W
is a finite type-1 subset of R such that u= suppW and it is not true that only one
element of W belongs to P. Since (from the Definitions) no two elements of any
type-1 subset of R can both belong to some type-2 subset of R, there is no element of
W which belongs to P. If Q is a finite subset of P to which u belongs then (1) there is
an element t of R such that if n belongs to Q then t<<n, (2) by the Subdivision
Axiom and Theorem 2 there is a finite type-1 subset X of R such that u = supp,X and

if s is t or s belongs to W then s is the supremum in D of a subset of X, (3) it follows
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from Theorem 2 that if v belongs to X then there is an element y of W such that v<y,
and therefore (4) there is an element y of W such that, for some element v of X, v <t
and v <y. Accordingly, there is a function g such that if Q is a finite subset of P then
g(Q) is the set to which y belongs only in case y belongs to W and there is an element v
of R such that if n belongs to Qthenv<<nand v<y.If Q and Q2 are finite subsets
of P and y belongs to g(Q1+Q2) then there is an element v of R such that if n belongs
to Qq or to Q, then v<Xn and v <y, so that y belongs to g(Qq) and to g(Qz). Since
the set W is finite, there is a finite subset QO of P such that, for each finite subset Q of
P, g(QO) is a subset of g(Q). Let z be an element of g(QO). Since z belongs to W, z does
not belong to P; if Q is a finite subset of P then z belongs to g(Q) so that there is an
element v of R such that if n belongs to Q then v<<n and v < z. Since P is a full type-2
subset of R, this involves a contradiction.

THEOREM 6. If u is an element of R then, for each finite type-1 subset W of R
such that u = suppW, y(u) is the set v (W)*.

PROOF. Suppose that u is an element of R and W is a finite type-1 subset of R
such that u=suppW. It is clear from the Definitions that, if t belongs to the full
type-2 subset P of R and t < u, u must belong to P. Hence, y*(W)* is a subset of y(u).
By Theorem 5, if P belongs to y(u) then there is only one set in the collection y*(W)
to which P belongs. Hence (u) is a subset of 4 (W)*.

THEOREM 7. If u is an element of R and Y is a finite subset of R such that
u <suppY, rhen y(u) is a subset of Y(Y)*.

PROOF. Suppose that u is an element of R and Y is a finite subset of R such
that u <<supp)Y. With reference to the Subdivision Axiom and Theorems | and 2, let
V be a finite type-1 subset of R such that suppyV = suppY and if s is u or s belongs to
Y then s is the supremum in D of a subset of V. It follows from Theorems | and 2 that
if t belongs to V then there is an element x of the set Y such that t < x and that there
is only one subset W of V such that u= suppW. If t is an element of W then, since
there is an element x of Y such that t <x, y(t) is a subset of ¥’ (Y)*. Now, y(u)is a
subset of ¥*(Y)* since, by Theorem 6, y(u) is the set y’(W)*.

THEOREM 8. If u is an element of R and Y is a finite subset of R such that ~(u)
is a subset of v’ (Y)*, then u <suppY.
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PROOF. Suppose that u is an element of R and Y is a finite subset of R and it is
not true that u < supDY. Let G be the sum of the set Y and the set of which u is the
only element. With reference to the Subdivision Axiom and Theorems 1 and 2, let V
be a finite type-1 subset of R such that suppV = suppyG and each element of G is the
supremum in D of a subset of V. By Theorem 2, suppyY is the supremum in D of the
set W to which s belongs only in case s is an element of V and there is an element t of
Y such that s <t. It follows from Theorem 6 that y*(Y)* is ¥y’ (W)*. Since it is not true
that u < suppyW, W is not V: let z be an element of V which does not belong to W, and
P be a full type-2 subset of R to which z belongs. By Theorem 2 there is an element h
of G such that z < h: it follows that h is u, so that P belongs to y(u). Since z does not
belong to W, it follows from Theorem 4 that P does not belong to any set in the
collection y’(W). Therefore, y(u) is not a subset of y”(Y)*.

THEOREM 9. The collection v (R) is a pre-ring of subsets of the set R"".

PROOF. Suppose that G is a finite set of elements of R. By the Subdivision
Axiom, there is a type-1 subset M of R such that each element of G is the supremum
in D of a finite subset of M. Since G is nondegenerate, it follows that M is
nondegenerate. Since, by Theorem 8, the transformation v is reversible, it follows
from Theorem 4 that y*(M) is a collection of mutually exclusive sets. It follows from
Theorem 6 that each set in the collection 4*(G) is filled up by a finite subcollection of
7’ (M) . Therefore, v’(R) is a pre-ring of subsets of R"'.

Realizations. Throughout this section, R is understood to be a collection of
subsets of a set L and the implicit partial ordering has the meaning “lies in” or “is a
subset of,” and the upper semi-lattice D is understood to be the additive extension of
R so that if X is a subcollection of R then the assertion that H = supDX may be
replaced by the assertion that X fills up H (¢f. Introduction, third paragraph). Now, E
is the collection to which H belongs only in case H is a subset of L which is filled up
by a finite subcollection of R.

The Definitions from the preceding section take the following form: a type-1
subcollection of R is a subset M of R such that if X is a finite subset of M then no
element of R lies both in X* and in a member of M which does not belong to X; a

type-2 subcollection of R is a subset P of R such that if Y is a finite set of members of
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P then some element of R lies in all the sets in the collection Y. The Subdivision
Axiom takes the following form: if G is a finite subcollection of R then there is a
type-1 subcollection M of R such that each set belonging to G is filled up by a finite
subcollection of M.

It can not be proved that if Q is a collection of subsets of L such that the additive
extension of Q is a ring then Q is a pre-ring; this could not be proved even if it were
further stipulated that the additive extension of Q be an algebra (a ring to which L
itself belongs, [9, 12]) and that the common part of each two intersecting members of
Q should belong to Q. Consider the following Example.

EXAMPLE 1. Let L be the right-closed number interval (0,1], and Q be the
minimal collection of subsets of L determined as follows. Both (0,2/3] and (1/3,1]
belong to Q; if 0 <a <b <1 and both (a,a+2b/3] and (2a+b/3,b] belong to Q then

all five of the following sets belong to Q:
(a,7a+2b/9], (8atb/9,2a+b/3], (2atb/3,a+2b/3], (a+2b/3,a+8b/9], and (2a+7b/9,b].

Clearly the additive extension of Q is an algebra of subsets of L. If u and v are
intersecting members of Q neither of which is a subset of the other then uv belongs to
Q, but no one of the three sets u-uv, v-uv, and u+v either belongs to Q or is filled up
by a finite collection of mutually exclusive members of Q.

That Theorem 3 is not a consequence of the Definitions, independently of the
Subdivision Axiom, may be seen by considering the following Example.

EXAMPLE 2. Let L be the real line, and R be the collection of all number
intervals [s,t] such that s is an integer and t is s+2. Clearly there are not two members
u and v of R such that some member of R lies in both u and v. Each member of R,
however, lies in the sum of two other members of R.

It follows from the Subdivision Axiom (with the help of Theorem 5) that if P is a
full type-2 subcollection of R then P is a filter-base, i e., that if u and v are elements of
the member P of R then there is some element of P which lies in both u and v. That
this is not a consequence of the Definitions, independently of the Subdivision Axiom,
may be seen from the following Example.

EXAMPLE 3. Let L be any infinite set, R be the collection of all degenerate

subsets of L together with all complements (in L) of degenerate subsets of L, and P be
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the collection of all nondegenerate elements of R. Clearly P is a full type-2
subcollection of R. There are, however, no two elements of the collection P such that
some element of P lies in both of them. (This Example was called to the attention of
the present author by J. A. Schatz in a conversation which took place on May
8,1973))

The following Theorem may be proved on the basis of the Subdivision Axiom,
with the help of Theorems 7, 8, and 9.

THEOREM 10. If u and v are elements of R such that some element of R lies in
both of them and W is a finite type-1 subcollection of R of which some subset fills up
u and some subset fills up v, (i) there is a subset X of W such that X* lies in both u
and v and each element of R lying in both u and v lies in X*, and (ii) if v is not a
subset of u then there is a subset Y of W such that Y* lies in v, no element of R lies
both in u and in Y*, and if t is an element of R lying in v such that no element of R
lies both in uand in t then t lies in Y*.

It can not be proved on the basis of the Subdivision Axiom, however, that if u
and v are elements of R such that some element of R lies in both of them then some
subcollection of R fills up the common part of u and v, nor that if u is a proper subset
of v then some element of R lies in v-u, nor that even if some element of R does lie in
v-u then v-u is filled up by some subset of R. Indeed, none of these propositions could
be proved even if it were further stipulated that L itself should belong to the
collection R. Consider the following Example.

EXAMPLE 4. Let L be the interval [0,4] of real numbers, and R be the
collection consisting of L itself together with the six subsets of L enumerated as
follows: ty is the interval [0,3], ty is the interval [0,1] together with the number 2, ty
is the half-open interval [1,2), t3 is the half-open interval (2,3], t4 is the interval [3,4]
together with the number 2, tg is the interval [1,4]. Consider the collection M of
which the elements are the sets ty, ty, t3, and ty: it may be shown that M is a type-1
subcollection of R filling up L. There are three-element subcollections A and B of M
filling up tg and tg, respectively. The common part X of A and B is the set of which t,
and tg are the only elements, but the common part of t; and tg is the interval [1,3]:

X* is the sum of the sets [1,2) and (2,3], but no element of R which contains the
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number 2 is a subset of the interval [1,3]. Moreover, t) is a proper subset of L but no
element of R lies in L-tg, and t; is a proper subset of tg but t3 is the only element of
R which lies in tp-ty.

Contrary to what might be expected from the instances cited in the section on
Geometric Perspectives, it can not be proved on the basis of the Subdivision Axiom
that there is a function @ from R such that if v is an element of R then §(v) is an
element of L which belongs to v but does not belong to any other set in any type-1
subcollection of R containing v. Consider the following Example.

EXAMPLE 5. Let L be the interval [0,1] of real numbers, and R be the
collection of all subsets of L having positive (Lebesgue) measure. This may be shown:
a subcollection M of R is a type-1 subcollection of R provided there are not two
elements u and v of M such that some element of R lies in both u and v.

There are cases in which the pre-ring v°(R) of subsets of R’ has a simple
realization. One such case is the primitive instance cited earlier (Geometric
Perspectives, second paragraph). Consider the following final Example.

EXAMPLE 6. Let L be the real line, and R be the collection of all number
intervals. If P is a member of R then there exists a number ¢ such that either P
consists of all [a,b] such that a < ¢ <b or P consists of all [a,b] such thata<<c¢<b.
Let L" be the subset of L X L to which {c¢,m} belongs only in case m?2 = 1, with the
familiar lexicographic ordering: {c¢,m} < {d,n} only in case either cis d and m <n or
¢ <d. Let § be a function from R" into L' such that if P is in R" then 8(P) is {c,1} or
{c,-1}, accordingly as P consists of all [a,b] such that a<Xc <b or of all [a,b] such
that a <c <b. Now, § is a reversible transformation from R" onto L" and if [c,d] is
an element of R then the §-image of the set y([c,d]) is the L"-interval [{c,1},{d,-1}].

Summary. Suppose that R is a collection of subsets of the set L. It seems that
the idea of a nonoverlapping subcollection of R is adequately encompassed by the idea
of a type-1 subcollection of R. Accordingly, the following Definitions seem to be
appropriate.

DEFINITIONS. The subcollection M of R is nonoverlapping relatively to R
provided that if X is a finite subcollection of M then no member of R which is covered

by X lies in any member of M which does not belong to X. A function f from R to an
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additive Abelian semigroup is R-additive provided that if M is a finite subcollection of
R which is nonoverlapping relatively to R and M* belongs to R then f(M*)=
Zy in MEW).

It may be noted, in passing, that (i) one might say that the subcollection M of R
is nonoverlapping relatively to the collection T of subsets of L provided that if X isa
finite subcollection of M then no member of T which is covered by X lies in any
member of M which does not belong to X, and (ii) to say that the collection M of
members of R is nonoverlapping relatively to the collection L' of all degenerate
subsets of L, in the sense (i), would be equivalent to saying that M is a collection of
mutually exclusion members of R.

The Solution given for the Central Problem, in the present report, may be
interpreted as an assertion that the following Subdivision Axiom is a provision for the
existence of R-additive functions from R to the real numbers and for such functions
to be endowed with the usual properties of finitely additive functions. Indeed, it is a
consequence of that Solution that this Subdivision Axiom is a necessary and sufficient
condition on the collection R relatively to its additive extension for there to exist a
function v from R onto a pre-ring of subsets of some set such that, if u is a set in R
and Y is a finite subcollection of R, u is covered by the collection Y only in case y(u)
is covered by the y-image of Y.

SUBDIVISION AXIOM. [If G is a finite subcollection of R then there exists a
subcollection M of R which is nonoverlapping relatively to R such that each set
belonging to the collection G is filled up by a finite subcollection of M.

It may be noted that, in order that this Axiom should be satisfied, it is necessary
and sufficient that there should be at least one subdivision-refinement process for R,
i.e., at least one family F such that (i) each member of F is a subcollection of R which
is nonoverlapping relatively to R, (ii) if M; and M, are members of F then there is a
member M3 of F such that each set belonging to M or to My is filled up by a finite
subcollection of M3, and (iii) each set belonging to R is filled up by a finite
subcollection of F*. Moreover, if F is such a subdivision-refinement process for R and
v is the function indicated in the section entitled Sufficiency of the Condition, the

~v-image of each nondegenerate member of F is a collection of mutually exclusive sets,
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and the family y™(F) is itself a subdivision-refinement process for the y-image of the
collection R.

Prospectus. In a second report, it will be assumed that R is a pre-ring of subsets
of a set L, filling up L, and a new representation (cf. Hildebrandt [10, 11] or Dunford
and Schwartz [8, page 392 ff.]) will be given for the dual of a normed linear space
{S,ll*II} such that: S is the space to which f belongs only in case f is a finitely additive
function from R to the (real or complex) numbers and there exists a nonnegative
number b such that if M is a finite collection of mutually exclusive members of R then
Et in le(t)l < b, in which case ||f|| is the least such b. That analysis will be presented
in the somewhat more general context wherein the members f of S are functions from
R to a complete (real or complex) inner product space {Y{-,->}, with norm [-]
corresponding to the inner product function (<,*) and the preceding inequalities
replaced by Et in M[If(t)[l < b. Representations are given for the space C of all
continuous linear transformations in the space {S,||*||}, for the space D of all
continuous linear transformations from {S,)||+||} to the scalars, and for the space E of
all continuous linear transformations from {S,*||} to {Y,I-0}. Each of these
representations is a linear isomorphism, is an isometry (with respect to the usual
norm), and is determined by integrals based on the general subdivision-refinement
process F, to which M belongs only in case M is a finite subcollection of R and no

element of L belongs to two sets in M.
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FINITELY ADDITIVE SET FUNCTIONS
II. LINEAR OPERATIONS ON A SPACE OF FUNCTIONS OF BOUNDED VARIATION
J. S. Mac Nerney*

ABSTRACT. Let S be the space of all functions of bounded
variation on [0,1] which are anchored at 0, St be the set of all
real nondecreasing functions in S, and, for each t in [0,1] and f
in S, P,f be the function h in S such that h(u) is f(u) or f(t)
accordmgly asu<toruz=t. The equatlons AQY()(t) = N(Pya),
for A in the dual D of S and e in ST and t in [0,1], define a lmear
isomorphism A from D onto the set of all functions g from st
into S such that (1) there is a b2 0 such that if « is in s* and
0<u<v<l then [glaXv)-glaXu)l< b[a(v)<«(u)] {the least
such b is the norm of the member A'l(g) of D}and (2) if a and
B are in S and there is a ¢ >0 such that [a(M)a(u)] <
c[B(V)-B(w)] for 0 <u<v<1 then g(a)(t) = f§[dg(B)de] /d for
each t in (0,1]. If g= A(A) and f is in S then A(f) is an integral in
this sense: for each « in St such that Hellinger’s
(subdnv1s10n refinement) integral foldflz/da exists, A(f)=
fO [dg(a)df]} /da. All this remains true in case, from the
beginning, all the functions in S are further required to be
right-continuous at each number between O and 1. These, and
related results about representation of linear operations, are
presented in the somewhat more general context wherein S is a
space of finitely additive set functions from a pre-ring R to a
complete inner product space Y, and the norm of a function h in
S is the total variation of h relatively to the usual norm on Y.
There are also, then, representations of the space E of all
continuous linear functions from S to the evaluation-space Y of
S: E, with the standard norm, is shown to have the additional
natural structure of a B*-algebra with an identity.

Introduction. The reader is invited to consider, as primitive instances of the
present situation, the following two possible cases: (1) L is the real line (i.e., the set
of all real numbers) and R is the collection of all right-closed intervals of real numbers,
and (2) L is the set of all nonnegative integers and R is the collection of all degenerate

subsets (i.e., one-element subsets) of L.

*Presented to the American Mathematical Society on November 23, 1974.
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Initially, in this report, it is supposed that R is a pre-ring of subsets of aset L [1,
2, 15] filling up L, i.e., that R is a collection of subsets of the set L, filling up L, such
that if G is a finite collection of members of R then there is a collection M of mutually
exclusive members of R such that each set belonging to the collection G is filled up by
a finite subcollection of M; the letter F stands for the family of all finite
subcollections M of R such that no element of L belongs to two sets in M. If {X,|*] }is
a normed linear space, h is a function from R to X, and K is a subset of L which is
filled up by some subcollection of R then the statement that T = f K /Fh (with respect
to the norm |[+]), the integral over K relatively to F of the function h, means that T is
in X and, if € is a positive number, there is a member M of F filling up a subset of K
such that, if W is a member of F filling up a subset of K and each set in M is filled up
by a subcollection of W, |T - Zyin Wh(v)l <e. This is a slight extension of the usual
notion of a subdivision-refinement integral, or o-integral, wherein it would be assumed
that some member of F actually fills up the set K (as, e.g., by T. H. Hildebrandt [8,
page 27 ff.] and A. Kolmogoroff [11, page 682 ff.]). If X is the real line or the
complex plane, |+| is understood to be the absolute value or modulus function and the
parenthetical phrase involving the norm |+| is implicit.

The ordered pair {Y{-,*)} is supposed to be a nondegenerate complete (real or
complex) inner product space, the norm corresponding to the inner product function
(+,*) is denoted by [‘[, and the phrase ‘“‘the scalars” refers to the real line or to the
complex plane accordingly as {Y(-,-)} is a real or a complex space. Elementary
properties of such spaces (as in M. H. Stone [24] and J. von Neumann [25, 26]) are
used without explicit reference. The letter j denotes a conjugation in {Y{+,9)}, as
defined by Stone [24, page 357]:jis a transformation from Y to Y such that j2 is the
identity function on Y and (¢ jn ={n,§) for every § and n in Y. The set of all linear
transformations from Y to Y is denoted by L(Y); if B is a member of L(Y) which is
continuous (with respect to [|-[) then B* denotes the adjoint of B with respect to the
inner product ¢+,+), so that if {§n} isin Y X Y then (¢ B*n) = (B¢ ,n. If G is a function
from R to L(Y) and § is in Y, G+£{ is the function from R such that (G-£)(t) = G(t)¢
for t in R. It may be noted that the equations W(n)(§) =<£,jn) = nj§), for fand nin Y,

would define a linear isomorphism ¥ from Y onto the space of all linear functions
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from Y to the scalars, continuous with respect to [*[|, and ¥ would be an isometry
with respect to the usual norm on the ¥-image of Y.

Let S be the family consisting of all functions f from R to Y such that (i) fis
finitely additive in the sense that if the member M of F fills up the member u of R
then Z; i, pMf(t) = f(u) and (i1) f is of bounded variation in the sense that there is a
nonnegative number b such that Z; ;. MIUMI <b for every M in F: the least such
number b is the toral variation of f and is denoted by ||f||. From the completeness of Y
with respect to [-[, it is clear that S, coupled with the function ||«||, is a linear
normed complete space (a space of type B, a Banach space); in case Y is finite
dimensional, it is linearly homeomorphic to a space sometimes {3, page 160] denoted
by ba(L,Ry,Y), the points of which are finitely additive extensions of functions in Sy
to the ring RA which is generated by R. Such extensions to RA, although available,
are of only peripheral interest here. Attention will be drawn to linear operations on a
certain type of subspace of .

Of central interest are the following three functions: (1) the function P from R
such that, for each t in R, P, is the function from SO to Sq such that if fis in SO then,
for each u in R, Ptf(u) is 0 or Zvin Mf(v) accordingly as u does not intersect t or M is
a member of F filling up the common part of u and t, (2) the function V from So
such that if f is in S then Vf is the function from R such that, for each t in R,
VI(t) = [IPfIl Gf £ is in So and £ is in Y, Vf-§ denotes the function from R to Y such
that (Vf-£)(t) = [|Pfli§ for each t.in R), and (3) the function J from Sg to SO such
that (Jf)(t) = j(f(t)) for each fin Sy and t in R. The following formulas, valid for {u,t}
in RX R and f in SO and ¢ in Y, may be noted: PuPt = PtPu, HPtVf-EI] = []z[lft F[]flj,
and [IJf]l = IIf}f.

/

Suppose, now, that S is a nondegenerate linear subspace of Sy, closed with
respect to the norm ||-||, such that if t is in R and fisin S and { is in Y then the
function P Vf-£ belongs to S. It may be noted that So» itself, is such a linear subspace
S. Here is a description of the Central Problem for which some solutions are provided
in the present report.

CENTRAL PROBLEM. Find an isometrically isomorphic representation, which

is determined by integration over L relatively to F, for each of the following:
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(1) the linear space D consisting of all continuous linear functions from the
space {S,||*ll} to the scalars - the norm of the member X\ of D is the least nonnegative
number b such that if fisin S then |A(f)| < biif]|,

(2) the linear space E consisting of all continuous linear functions from the space
{S,II*l1} to the space {Y,[[*} - the norm of the member u of E is the least nonnegative
number b such that if f is in S then [Ju(f){] < blf]], and

(3) a linear space C(S,X) consisting of all continuous linear transformations
(normed in the usual way) from {S,||-||} to a linear normed complete space {X,j] } of
functions from some set RO into Y with this property: if s is in Rg then there is a
positive number p such that, for every member g of X, {lg(s)[ < plgi.

In connection with the discovery by F. Riesz [21] concerning the dual of the
space of all continuous (real or complex) functions on the unit interval, there seems to
be some special interest in the aforementioned linear space D, even when it arises
subject to the following (admissible) conditions: (i) R consists of all subsets t of [0,1]
such that t is one of the types [0,p], (p,al, and (q,1], for numbers p and q such that
0<p<qg<1,(ii) the space Y is one-dimensional, and (iii) the subspace S consists of
all functions f in Sg such that, if e >0 and 0 <p <1, there is a number r in (p,1]
such that if q is a number in (p,r] then |[f((p,q])| <e€ (¢f. Chapter Il of Riesz and
Sz.-Nagy [22], concerning the connection between S and the dual of a space of
continuous functions). There is T. H. Hildebrandt’s representation [6,7] for D, under
the conditions that the space Y is one-dimensional and S is Sg» but there [7] the total
variation norm is replaced by the supremum norm on the finitely additive extensions
of members of SO to the ring RA generated by R (c¢f. footnote on page 374 and
remarks on pages 392-393 of Dunford and Schwartz [3]): Hildebrandt’s
representation is determined by Stieltjes-type integration over R, relatively to the
family of all finite collections of mutually exclusive subsets of Rp filling up Ry
There are, also, R. D. Mauldin’s contributions [16, 17] to the theory of the space D.
In Mauldin’s departure [17] beyond scalar-valued measures, hypotheses on the space
{Y,[-0} are relaxed from those of the present treatment but countably additive
extensions are assumed for the members of S (as in [16]), and questions of cardinality

persist. The investigation reported here has been independent of Mauldin’s work but
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points of contact occur in use of Hellinger-type integrals for recovery of functionals.

Description of Solutions. Let S* be the V-image of S and H be a function from
S* such that, for each « in S+, H, is the family to which f belongs only in case fis a
finitely additive function from R to Y and there is a finitely additive function h from
R to the nonnegative numbers such that fL/Fh exists and l]f(t)[l2 < a(t)h(t) foreach t
in R - so that f is in SO and ||f]|2 < fL/Fa fL/Fh (by Schwarz’s inequality). It is clear
that if fisin S then Vf is a member o of ST such that f belongs to H,.

It is shown that there exists a function Q from S+, opposite to Solutions of the
Central Problem, such that

(1) if @is in St then Hy, is a linear subspace of S, Q, is an inner product for H,
such that the space {H,,Q,} is complete, if t is in R then the restriction of P, to H, is
a Q-orthogonal projection in {H,,Q,}, and the restriction of J to H,, is a conjugation
in {H,,Qq}.

(2) there is a function 7 from the subset of st x s* to which {8} belongs only
in case H, is a subset of HB’ in which case m(o,f) is a function from Hﬁ to H, to which
{g,h} belongs only in case Qu(f.h) = Qﬁ(f,g) for each f in H,, and

(3) the ordered triple {H,Q,m} determines an inverse limit system in the sense
that if each of «, 8, and « is in ST then (i) If Hy, is a subset of Hﬁ then w(a,B) is a
continuous linear transformation from {Hﬁ’Qﬂ} to {H,,Q,}, (i) if Hy, is a subset of
Hﬁ and HB is a subset of H’Y then m(e,7y) is the composite transformation m(a,B)7(B,Y),
and (iii) if Hy, is Hﬁ then m(B,) is the inverse of w(a,f).

Such a function Q from st is provided by a variant of an integral which was

introduced by E. Hellinger [4], and extended by J. Radon [18] : the variant is

Quf.8) = f . f@/a for each ain ST and {f,g} in Hy, X Hy,

/

with Hellinger’s notational convention to the effect that, for each set t in the
collection R,E&Q (t)is QO or f(t) tg(t)) accordingly as a(t) is O or not. It is shown that if
each of a and § is in St then H,, is a subset of Hﬁ only in case there is a nonnegative
number ¢ such that at) <c f(t) for each t in R, in which case the transformation

m(a,p) is given by the formulas

(o, B)g)(t),8) = ft F {g,a-8)/p for g in HB, tinR,and £in Y.

/
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Moreover, if each of o and g is in St then Hoz+6 is the vector sum of H,, and HB, and
there is a member vy of St such that H7 is the common part of H,, and HB’ and Q,y is
QQ+Q5 on H,y X Il,y. The degenerate space {HO,QO} corresponds to the zero member
of S: omission of {HO,QO} would entail awkwardness of description here, inasmuch
as it is shown (Theorem 10) that the H-image of St is a distributive lattice (relatively
to the relation “‘is a subset of”’) with least element HO.

Consistently with standard usage (e.g., by J. L. Kelley, I. Namioka, et al. [10,
page 111]), the inverse limit space determined by the ordered triple {H,Q,n} is the
linear space to which g belongs only in case g is a function from St such that, for each
o in S+, g(o) is a function belonging to H, and if § is a member of St such that H,isa
subset of Hﬁ then g(a) = w(a,B)g(f): inv-lim-{H,Q,m} denotes this space. It may be
noted that there has been no prior assertion of the existence of a non-zero point in
this inverse limit space.

REPRESENTATION OF D. The equations (A(A)(x)(t),j§) = A(Pa-§), for Ain D
and « in ST and t in R and £ in Y, define a linear isomorphism A from D onto the
subspace of inv-lim-{ H,Q,m7} to which the point g of inv-lim{ H,Q,n} belongs only in
case there is a nonnegative number b such that, for each « in St and t in R,
[lg(a)(t)[| < b o(t), in which case the norm of the member A'l(g) of D is the least such
number b. If the ordered pair {\,g} belongs to A and f is in S then A(f) is an integral
over L relatively to F in the following sense: for each « in S* such that f belongs to
Hg, Mf) = IL/F {g(a),ID/ex.

Now, let INV-LIM-{H,Q.7} denote the linear space to which G belongs only in
case G is a function from ST such that, for each « in S+, G(a) is a finitely additive
function from R to L(Y) and, if § is in Y, G(«)-£ belongs to H,, and if § is a member
of ST such that H, is a subset of Hﬁ then G(o)* £ = m(a,B)(G(B) - £).

REPRESENTATION OF E. The equations w(u)(a)(t)¢ = u(Pia-£), for u in E
and « in ST and t in R and £in Y, define a linear isomorphism w from E onto the
subspace of INV-LIM-{H,Q,r} to which the point G of INV-LIM-{H,Q,r} belongs
only in case there is a nonnegative number b such that, for each o in St and t in R and
£in Y, [G()()EN < b at)(€]l, in which case the norm of the member w'l(G) of E is

the least such number b. If the ordered pair { £,G} belongs to w and f is in S then u(f)
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is an integral over L relatively to F in the following sense: for each o in S* such that f
belongs to H,, u(f) = fL/FG(oz)-f/oz with respect to [J*[.

In the preceding Representation, Hellinger’s notational convention persists to the
effect that, for each set t in the collection R, G—((oxl)—i(t) is the point 0 or
G(a)()f(t)/a(t) in Y accordingly as a(t) is the number O or not. Moreover, it is shown
that if G is in the w-image of E then so is the function G’, defined by: G'(a)(t) =
G(o)(t)* for ain Stand tinR. Hence, there is a natural norm-preserving involution in
E, to which the ordered pair {uu'} belongs only incaseu isin Eandu' = w'l(co(j.t)'),
ie,uPaf)n = (E,u'(Ptcx'n)) for ain St and t in R and {¢ntinY XY.

Now, let N be the function from St such that, for each « in S+, N, is the norm
for H,, corresponding to the inner product Q, - so that N (f) = Qa(f,f)l/2 for each f
in Hy,. Let C be the space of all continuous linear transformations in {S,|f*[|}, normed
in the usual manner: the norm of the member B of C is the least nonnegative number
b such that if f is a member of S then [|Bf[| < b|if]].

REPRESENTATION OF E IN C. The equations ({(u)f)(t) = u(Pf), for u in E
and f in S and t in R, define an isometric linear isomorphism ¢ from E onto the
subspace of C to which the member B of C belongs only in case, for each t in R and f
in S, B(P{f) = Py(Bf). In order that the linear transformation B from S into S should
belong to the {-image of E, it is necessary and sufficient that (i) for each tin R and f
in S, B(Pf) =,P((Bf), (ii) for each a in S+, B should map H,, into H, and (iii) there
should exist a nonnegative number b such that, for each « in ST and f in He,
Ny (Bf) < b N(f), in which case the norm of the member f'l(B) of E is the least such

number b. If the ordered pair {u,B} belongs to ¢ and fis in S then u(f) = '{L I:Bfwith

/

respect to [[*[].
Each of the foregoing integral representations is effected by the existence of a

function N from S* such that, for each « in S+, I1,, is a function from F such that if M

(01

is in F then M (M) is an orthogonal projection in the space {Hona} with the

property that if each of f and g is a member of H, then

Qulf - MLM)Eg - T (M)g) = Quf2) - Zy 1 M-BE(D);

there are, of course, the associated inequalities (for all such «, M, and f)
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I - TGO < No( - ODD2 /o

In terms of the Representation ¢, there is a natural multiplication defined in E:
Bytug = {‘l(i'(]xl)g‘(,uz)) for {:“1)“2} in E X E. The identity element e of E, for this
multiplication, is given by: e(f) = fL/Ff for fin S. It is shown that if u is in E then, for
each a in S+, the restriction to Hy, of ¢(u') is the adjoint (with respect to Q) of the
restriction to H, of {(u). Let {X,(*,*)} be the direct sum over ST of the spaces
{Hg,Qg}: X is the linear space to which f belongs only in case f is a function from st
such that, for each 8in S+, fB is a member of HB and there is a positive number p such
that Z, in oNa(fa)z < p for each finite subset g of S+, and (f,g) = 2,Q,(fy.8,) for
{f,g} in X X X. Now, it is clear from the aforementioned facts about ¢ and ¢ that the
equations

(Z(w)f,2) = Z,Qu(§W)fy.ey), foru in Eand {fglin X X X,
define an isometric involution-preserving algebra-isomorphism Z from E onto what is
sometimes [20, 23] called a B*-algebra of continuous linear transformations in the
space {X,(*,*)}. Identification of the Z-image of E in the algebra Ag of all continuous
linear transformations in {X,(+,*) } may be made by considering: the algebra A of all
members B of Ay with a representation ¥ such that
(Bf,g) = Z,Qu(W(B)yfy:8,) for {fig} in X X X,

where, for each « in S+, W¥(B),, is a continuous linear transformation in {Ha,Qa} and
there is a positive number p such that N, (¥(B),h) < p N (h) for each « in Stand hin
Ha; the algebra A, of all members B of Aj such that ifaisin St and tisin R and h is
in H, then ‘If(B)aPth = Pt‘I'(B)ah; and, finally, the algebra A3 of all members B of Ay
such that if o and 8 are members of ST such that H, is a subset of Hﬁ then W(B),,, is
the restriction to H,, of the transformation ‘II(B)ﬁ. It is shown (Theorem 25) that the
Z-image A3 of E is weakly closed in the algebra AO'

It is the aforementioned family of orthogonal projections IT (M), for « in ST and
M in F, which makes available the general representation (Theorem 20) for any such
space C(S,X) as is indicated in the statement of the Central Problem. This latter
representation £, defined in terms of INV-LIM-{H,Q,7}, may be viewed as an

extension of the representation w of the space E.
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The Inverse Limit System.

THEOREM 1. Suppose f is a finitely additive function from R to Y, w is in S+,
and if v is a member of R such that «(v) =0 then f(v) =0. Then, if M and W are
members of F such that each set in M is filled up by a subset of W,

2 in MUEI2/a(s) < 24 1) wlfOI%/a(t).
PROOF. It follows from Schwarz’s inequality as applied to finite sums, together

with Hellinger’s notational convention to the effect that I]f(v)]]z/oz(v) be interpreted as
the number O in case a(v) = 0, that if U is a member of F then
IZy in UEWI2 < (By i pHEODZ S 2y 1 U Zy i UIEO T2/,

Hence, the conclusion is a consequence of the finitely additive character of f.

THEOREM 2. If fisa finitely additive function from R to Y and o is in Stand b
is a nonnegative number then the following three statements are equivalent:

(1) there is a finitely additive function h from R to a set of nonnegative numbers
such that fL/Fh < band, foreach tin R, [If(t)ﬂ2 < a(t)h(t),

(2) if Mis a member of F then, for each function x fromMto Y,
24 in M(f(u),x(u))[2 <bZ,in Ma(u)[]x(u)[]z, and

(3) if vis a member of R such that a(v) =0 then f(v) = 0 and, for each member
Mof F, £, iy mIfw 12 /au) <b.

PROOF. If the statement (3) is true then it is a consequence of Theorem 1 that
the equations h(t) = ft/F[]f[lz/a, for t in R, define a finitely additive function h from R
which fulfills the conditions given in the statement (1).

If, now, the statement (1) is true then, for each member M of F and each

function X fromMto Y,

(24 in MEW X < T, i m{h@a(u)} 1/2[|x(u)[]’

so that the statement (2) is a consequence of Schwarz’s inequality.

If, finally, the statement (2) is true then (i) it is clear that if v is a member of R
such that a(v) =0 then f(v) =0, and (ii) if M is a member of F and x is the function
defined by x(u) =0 or f(u)/a(u) for u in M, accordingly as a(u) is O or not, then the
inequality indicated in the statement (3) is apparent.

THEOREM 3. If ais in St then (1) H, is a linear subspace of S, (2) thereisa
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norm N, for H,, such that if fis in H,, then Na(i')2 =f ﬂfl]z/a, (3) iffisin H, then

L/F
lIE112 < Ny(£)2

fL/Fa’ and (4) H,, is complete with respect to N,

Theorem 3 may be proved as a consequence of Theorems 1 and 2, with the help
of the observations that, for each « in S+, (i) Theorem 2 provides additional
characterizations of the family H, and (i) if f is in H, then N(f) is the square root
of the least nonnegative number b such that one of the three numbered statements
indicated in Theorem 2 is true.

THEOREM 4. If ais in ST then the family U, to which g belongs only in case
there is a member M of F and a function x from M to Y such that g is the function
Zy in MPuax(u), is a linear subspace of H,.

PROOF. It follows from the definition of the function P that, if uisin R and W
is a member of F filling up u and fis in Sos P, f=Z i, wPif- It is clear that, if tis in R
and o is in St and £isin Y, (P H)(W)] < o(u)&] for each u in R so that the
function Pia-£ belongs to the family H,.

Suppose « is in st Itis clear, from the linearity of H, that U, is a subset of H.
Suppose M is a member of F, x is a function from M to Y, and W is a member of F
such that each set in M is filled up by a subcollection of W. Let K be a function from
M such that if u is in M then K(u) is the subset of W to which the element t of W
belongs only in case t lies in u. There is a function z from W to Y such that (i) if the
member t of W lies in the member u of M then z(t) is x(u) and (ii) if the member t of
W does not lie in any member of M then z(t) is 0. If u is in M then K(u) is a member of
F filling up u; hence

Zy in MPu@ X = 2y jn MZ¢ in K(u)Pi@* @) = Z¢ jn wPrer().
The assertion of the Theorem follows, with the help of the fact that if M; and M2 are
members of F then there is a member W of F such that each set in M; or M5 is filled
up by a subcollection of W,

THEOREM 5. If ais in ST and tis in R then each of J and Pt maps H, into H,
and, for each fin H,, N, (Jf) = N (D) and Nm(Ptf)2 = ft/Fl]fl]zla.

PROOF. Suppose « is in ST, The assertions concerning the function I are

immediate consequences of the definitions since [if(t)[ = (f(t)[ for each f in H, and

each t in R. Suppose f is in Hy, h is such a function from R as is indicated in the
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statement (1) of Theorem 2 with b= Na(ﬂz, and t isin R. Ifuisin Rand M is a
member of F filling up the common part of u and t,
[PEW)1? < (Zy i MEWD? < (Zy i M WM 122 < au)h(w).

Hence, Pif belongs to H, and No(P¢D) < N(D). The indicated integral formula for
Na(Ptf)z may be verified by considering members of F having subcollections filling up
t, in conjunction with the formula for N, indicated in Theorem 3.

THEOREM 6. If « is in S+, then (1) there is a function Qy from Ha X ch such
that Q(fg) = fL/F(f,g)/a for each {fg} in H, X Hy, (2) Q, is an inner product for
H, to which Ny is the corresponding norm, (3) the restriction of J to Hy is a

conjugation in {Hy,Qq,}, and (4) for each {f,g} in H,, X Hyand tin R

Qu(Pif.8) = ft F(f,g)/ot = Qu(f.Pg),

/
so that the restriction of P toH,isa Qgrorthogonal projection in {Ha,Qa} .

PROOF. Suppose « is in S*. The existence of the function Q, from H, X H,, as
indicated in (1), is a simple consequence of the following equations:

24 in MUfWe) (2 /aCu) - 4 in MOfW-8w)0%/a(u) = 4 Re 24 in M) g(u)/e(u)
for {fg} in H, X H, and each M in the family F, with the customary notational
convention (c¢f. Theorem 1) in case there is a member u of M such that a(u) = 0. It is
similarly clear that if f is in H,, then Quf,h)= Na(f)Z, and that Q, is an inner product

for H,, so that (2) is true. Moreover, since J maps H, into H, and 32 is the identity on
Sg and, for each {f,g} in H, X H,and Min F,
Zy in MIfWjgu)/a(u) = T, ;) mée(w) fu)/e(u),

it follows that the restriction of J to H, is a conjugation in {Hg,Qu} - Now, lettbe a
member of R. It is clear that P,[2 =P, on S and, by Theorem 5, P maps H,, into H,,,. If
{fg}is in H, X H,, then the indicated integral formula for Qa(Ptf,g), and that for
Qa(f,Ptg), may be verified by considering members of F having subcollections filling
up t, in conjunction with the formula for Q Wwhich is given in (1). Thus, the
restriction of Pt to H, is Hermitian with respect to the inner product Qg and so is a
Q-orthogonal projection of H,, onto a closed linear subspace of {Hy Qq -

THEOREM 7. If ais in ST then (1) iffisin Hyand tisin Rand ¢ isin Y then
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{(),8) = Quf,Pro§), (2) the family U, (as described in Theorem 4) is a dense linear
subspace of {Ha,Qa }, and (3) H, is a linear subspace of S.

PROOF. Suppose « is in S*. It should be recalled that if t is in R and £isinY
then Pia-£ is a member of S. Since S is a linear subspace of Sg»> Uy Is 2 subset of S; by
Theorem 4, Ua is a linear subspace of H,.

If fis in Hy, and t isin R and & is in Y then, for every member W of the family F
filling up the set t,

{(1).6) = 2, in W, = 2, i wiw)(a-§)(u)/ou),

so that, in accordance with assertion (4) of Theorem 6,

0.0 = I (0 Bfo = Quf Pyx-).

This establishes assertion (1). Since the space {H,,Q,} is complete, if U, were not
dense in this space then there would be a non-zero member f of H belonging to the
Q,-orthogonal complement (in Hg) of U, - this would involve a contradiction to (1).
Hence, assertion (2) is true.

Suppose, now, that f is a member of H, which does not belong to S. If g is a

member of the family Ua then, by the assertion (3) of Theorem 3,

el < 2
Il <Ng(f-9)7 f o

Since U, is dense in {Hg,Q,}, and S is closed with respect to the norm ||-|, this
involves a contradiction.

THEOREM 8. Suppose that o is in st and, for each M in F, N (M) is the
function from H,, determined as follows: if { is in H, and x is a function from M to Y
such that, for each t in M, x(t) is 0 or f(t)/c(t) accordingly as a(t) is O or not, then
,M)f = 24 in MPraex(t). Then

(1) if M is in F, M (M) is the Qy-orthogonal projection from H,, onto the subset
of Uy (¢f. Theorem 4) to which the member g of U, belongs only in case there is a
function x from M to Y such that g = Z; in MPta-x(t), and

(2) if {fghisin Hy X Hyand M is in F,

Quf - ()T g - 1, (M)g) = Qu(£:0) - Ey 1 M-2(D).

PROOF. For each M in F, let U,(M) be the subset of U, indicated in the
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assertion (1). If M is in F then, for each function x from M to Y, it follows from
Theorem 7 that

Na(Zt jn MPrrx(0)? = Z¢ ) MaOIx(®12,
whence U,(M) is a closed linear subspace of {H,.,Q,}; moreover, for each such M and

x, if f is in H,, then by Theorem 7, for each vin M and nin Y,
Qulf - Z¢ iy MPrx(t),Pyan) = (V) - a(v)x(v), .

This establishes the assertion (1). Suppose, now, that {f,g} is in Hy X H, and M is in

F: it follows from assertion (1) that
Qu(f - T (M)fg - My (M)g) = Qu(f,8) - QoM (M, M ((M)g).
If each of x and y is a function from M to Y such that, for each t in M,
x(t) = 0 or f(t)/o(t) and y(t) = 0 or g(t)/a(t)

accordingly as «(t) is O or not, then (again by Theorem 7)

Qu(MaMETG(MR) = Ty i MAOKOYE) = Z¢ 1 i (0).

THEOREM 9. If each of o and 8 is in st then, in order that Ha should be a
subset of Hﬁ, it is necessary and sufficient that there be a nonnegative number c such
that o(t) < ¢ B(t) for each t in R, in which case n(a,B) is a continuous linear

transformation from {Hﬁ’Qﬁ} to {Hg,Q} given by the formlas

{(m(a,B)g)(t),8 = ft F(g,oz-s)/ﬁfor gin Hﬁ, tinR,and¢in'Y.

/
PROOF. Suppose each of o and § belongs to S*. It is clear from Theorem 2 that

the indicated condition is sufficient for H, to be a subset of HB. Suppose, now, that
Hoz is a subset of Hﬁ- By Theorem 7, if f is in Ha and t is in R and £ is in Y then
Q(f.Pi-§) = f(t),8 = Qﬁ(f,PtB-E). Therefore, if M is in F and x is a function from M
to Y then, for each f in H,
Q.24 i MPre-x(t)) = Qﬁ(f,Z‘,t in MP8x(1).

Since, by Theorems 4 and 7, the family Uﬁ is a dense linear subspace of {HB’Qﬁ}’ it
follows that {Hg,,Q,} is continuously included in {Hﬁ’Qﬁ}’ i.e., that the identity
transformation on H, is a continuous linear transformation from {H,,Q,} into
{Hﬁ’Qﬁ}' Hence, the transformation m(a,f), to which {g,h} belongs only in case g is in
Hﬁ and h is in Hy and Q,(f,g)= Qﬁ(f,g) for each f in H,, is a continuous linear
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transformation from {Hﬁ»Qﬁ} into {HwQa} . Thus, there exists a nonnegative number
c such that

Qq(m(eB)g,m(«,B)g) < ¢ Qu(e.g) for each g in Hg,
and, if tisin R and £ isin Y, the ordered pair {Ptﬂ-E,Pta-g} belongs to m(a,f) so that
a(t)ﬂiﬂz = QuPrarg PocE) < ¢ Qg(Ptﬁ'E,Ptﬁ'E) =c B(t)l]é[lz, whence it follows that
a(t) < ¢ B(t); finally, if g is in HB andtisinRand §isin Y,

(m(eB)e)(1),8) = Qu(m(a.B)g.Pra§) = Qplg.Pr-k) = [ ‘ F(g,a'E)/B ,

/
the latter formula being justified on the basis of Theorem 6. For the continuous
inclusion of {Hona} in {Hﬁ,Qﬁ}, one has von Neumann’s extension (see Stone’s
footnote [24, page iv]) of the Hellinger-Toeplitz Theorem (c¢f Rudin [23, page 110]).

THEOREM 10. If each of a and Bis in S+, the following statements are true:

0] Hoz+6 is the vector sum of H,, and Hﬁ, to which h belongs only in case there
isa member {f,g}of Hy, X Hgsuch that f +g=h,

(2) the fornulas y(t) = ft/Faﬁ/(o&B)fortin R, define a member y of}S+ such that
H’Y is the common part HaHﬁ of Hy and Hﬁ and Q7 =Qut Qﬁ on H7 X H’Y’ and

(3) for every member vy of ST, the common part of H,, and Hﬁ+'y is the vector
sum of HaHﬁ and Hoszy'

PROOF. Supposing that each of a and Bis in S+, one sees from the linearity of S
that a+f belongs to S*. It follows from Theorem 9 that each of H,, and Hﬁ is a subset
of Hpyg; moreover, if h is in He4g then the formulas

f = w(o,etf)h and g = 7(B,+B)h
define a member {f,g} of H, X HB such that f+g= w(a+f,a+8)h = h. Hence, the
statement (1) is true.

Now, by the type of reasoning employed in the Proof of Theorem 6, here are

formulas for the function v which are equivalent to those indicated in (2):

WD) = %laOBO1 % o (-B)2/(actB) for each t in R.

/

Hence, the indicated formulas define a finitely additive function vy from R to the

nonnegative numbers. Moreover, by Theorem 9, foreach §in Y

v+£ = m(ootB)(B£) = m(Botf)a§),
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so that y-£ belongs to H, and to HB’ v belongs to S+, and H’Y is a subset of the
common part HaHﬁ of H, and Hﬁ~ Clearly, Qa+Qﬁ is an inner product Q' for HaH{i
such that the space {HaHﬁ,Q' }is complete. Moreover, if fis in HaHﬁ then

Q'(f,Pyy+£) = Qu(Pyf,m(ccotB)(B-£)) + Qp(Pyfm(BctB)(ec-£))
= QuagPif,B-6) + Quip(Pfiac§)

= Qg LR () £) = (K(1).5)
for every tin R and £ in Y; hence, if M is in F and x is a function fromM to Y,
IZ¢ 1 MEDXIN < QU,DE 5 MyOIXDIZ,
so that, by Theorem 2, f belongs to H’Y and Q,y(f,f) < Q'(f,f): thus, H’Y is chHﬁ’ Since
(by the foregoing secondary description of ) [a(t)+8(t)]y(t) < a(t)B(t) for each tin

R, it follows that if f is in H’Y then, foreach M in F,
002 102 £
ZyinMg W+ 2Zyin MT(U) <Zuin MT(u)’

2 2 2 — -
so that N ()< + NB(f) < N,y(f) . Therefore, Q/(f,f) + Qﬁ(f,f) Q,Y(f,f) for every f in
H’Y' Now, by the type of reasoning indicated in the first part of the Proof of Theorem
6,Qnt QB = Q7 on H’Y X H,),. Therefore (2) is true.

Apropos of the statement (3), now, let v be any member of st. By (1), Hﬁ+,y is
the vector sum of Hﬁ and H,),; hence, the vector sum of HaHﬁ and Hozﬂy is a subset of

HOIHB+7' By (2), there is a member & of St such that, for each t in R,

)=/ ¢ Fa'(5+7)/(<x+3+'7) </J t /Faﬂ/ (otp) + f ¢ oy/(aty)

/ /F
and Hg is HozHﬁ+7; by (1) and (2) and Theorem 9, Hg is a subset of the vector sum of
HaHB and HaH,y. This completes the Proof of Theorem 10.

Representation of Linear Operations. It should be recalled that inv-lim- {H,Q,7 }
denotes the linear space to which g belongs only in case g is a function from st such
that, for each « in S+, g(o) is a member of H,, and if § is a member of S* such that H,
is a subset of Hﬁ then g(a) = w(o,B)g(B); and INV-LIM-{H,Q,7} denotes the linear
space to which G belongs only in case (i) G is a function from St to a set of finitely
additive functions from R to L(Y) and (ii) if nisin Y then there is a member g of the

space inv-lim-{H,Q,7 } such that g(a) = G(a)*n for every a in ST. One may note that,
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by Theorem 9, if B is in L(Y) then there is a member G of INV-LIM-{H,Q,7} such
that, for each ain ST and t in R and £ in Y, G(e)(t)¢ = a(t)BE.

THEOREM 11. If a is in st ana g is a finitely additive function from R to Y and
b is a nonnegative number, then the following two statements are equivalent:

(1) iftisin R then lg(t)[| < b a(t), and

(2) g belongs to Hy, and, for each fin H,, IQa(g,f)I < b||f]l.

PROOF. Suppose « is in Stand gisa finitely additive function from R to Y and

b is a nonnegative number. If the statement (2) is true and t is in R then
Ke(t),0)] = 1Qq8.Py )] < blIPye-£ll = b a(t) £
for each £in Y, so that [|g(t)[] <b o(t).
Suppose that if t is in R then [lg(t)[] <b «(t). It follows from Theorems 2 and 3
that g belongs to Hy and No(g)? <b® [ g IF s in He, then

124 in M<g—&ﬁ(u)| < I in PN < bIIfl

for each M in F, so that |Q,(g,f)}| < bl/fll.

THEOREM 12. The equations (A(N\)(a)(1),i§ = N(Po*A), for N in D and acin st
and t in R and § in Y, define a linear isomorphism A from the space D onto the
subspace of inv-lim- {H,Q,r} to which the point g of inv-lim-{H,Q,r} belongs only in
case there is a nonnegative number b such that, for each o in St and tin R, [g(e)()[ <
b a(t), in which case the norm of the member A'l(g) of D is the least such number b.
If the ordered pair {\,g} belongs to A and f is in S then N(f) is an integral over L
relatively to F in the following sense: for each « in St such thar £ belongs to H,,\f) =
f U F(g(oz) JD/a.

PROOF. Suppose that b is the norm of the member X of D. It is clear that the
equations (g(a)(t),i® = M(Pya-£), for « in ST and tin R and £ in Y, define a function g
from ST to a set of finitely additive functions from R to Y, and that (for each such o,
t, and §) Kg(a)(t) j&) < b (t)(£[; by Theorem 11, if ais in S+, g(a) belongs to H,, and
IQa(g,f)l < blIf|| for each fin H,. If ecis in Stand Misin F then, for each fin H,

) {g(a),J D
o

uin M (u) = )\(HQ(M)D

so that, by Theorems 3 and 8, Mf) = Qg (g(a),Jf). If « and § are members of St such
that H, is a subset of Hﬁ then, for each f in H,,



FINITELY ADDITIVE SET FUNCTIONS 37

Qql&(e),H) = AID) = Qple(B).h)
so that g belongs to inv-lim-{H,Q,7}. All other allegations involved in Theorem 12
may be established by similar appeals to preceding Theorems, with the help of the fact
that the H-image of st fills up the space S (¢f. Theorem 7, and remarks accompanying
the initial description of the function H).

THEOREM 13. Suppose each of o and B is in S+, Mg is the set to which T’
belongs only if case T is a function from R X R such that (i) if tis in R then each of
I'(e,t) and T(t,*) is a finitely additive function from R to L(Y) and (ii) there is a
nonnegative number b such that if M is a member of F and each of x and y is a
function from M to Y then

12 (v} in M X ME@T@DYOPR B2 i meIXWIZE, i yBmIymI2,
and Taﬁ is the set to which B belongs only in case B is a continuous linear
transformation from {Hﬁ,Qﬁ} to {Hy,Qut. Then the equations

P(B)(u,v)¢ = B(Pvﬁ-Z)(u), for Bin Tozﬁ and {uy}inR XRand tinY,
define a reversible linear transformation ® from Taﬁ onto mgg, such that if the
ordered pair {B,I'} belongs to ® then

(1) in order that the nonnegative number b should satisfy the condition (ii) it is
necessary and sufficient that, for each member f of Hﬁ, N(Bf) <b Nﬁ(f)’

(2) for each member f of Hﬁ' and each t in R and nin Y, the function T'(t,*)*n
belongs to Hﬁ and (Bf(t),n) = Qﬁ(f,l‘(t,-)*n), and

(3) for each f in Hﬁ, Bf is an integral over L relatively to ¥ in the following
sense. the function h from R to a set of functions from R to Y, such that if t isin R
then h(t) is the constant Q or the function T'(+ t)f(1)/8(t) accordingly as P(t) is the

number 0 or not, maps R into H, and Bf = fL h with respect to N,

/F
PROOF. Suppose B is a member of Taﬁ’ and let k be the least nonnegative
number b such that if g is in Hﬁ then Na(Bg) <b NB(g). It is clear that there is a

function I"' from R X R to L(Y) such that
D(u,v)§ = B(P,B-£)(u) for each {u,v}inR X Rand £in Y,

and that if t is in R then each of I'(*,t) and I['(t,-) is finitely additive. If M is in F, each

of x and y is a function fromMto Y,
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=2, in MPue x(u), and g = 2 ;1 mPyB-¥(V),

then {f,g} is in U, X Uﬁ (¢f Theorem 4) and it follows from Theorem 7 that
Qu{f:B8) = Z (y v} in M X MW, uvy(v)),
Ny(D? = 2, iy Mo Ix(w)[2, and

Ng®? = 2, i MBWIYWI2:
hence, the condition (ii) is satisfied with b the number k, and I" belongs to Mg Now,
(a) it follows from the pattern of argument indicated in the Proof of Theorem 4 that if
{fglisin Uy X UB then there is a member M of F, a function x from M to Y, and a
function y from M to Y such that {fg} is determined by the foregoing formulas, and
(b) by Theorem 7, U, is dense in {H,,Q,} and UB is dense in {Hﬂ,Qﬁ}: hence, k is
the least nonnegative number b such that the condition (ii) holds. Let A denote the
{QwQﬁ }-adjoint of B, so that A is a continuous linear transformation from {H,,,Q,}
to {HB’Qﬁ} and

Q(f,Bg) = Qﬁ(Af,g) for each {f,g} in Hy, X HB'
Iftisin R and nisin Y then by Theorem 7, foreachuin Rand £in 'Y,

(T(t,0)E,m = QuB(P,B-E) Prar-n) = Qp(P B+ £,A(Pcem) = (£ A(Prerrn)(u),

so that I'(t,u)*n= A(Pix*n)(u); therefore, if t is in R and 7 is in Y, the function
I'(t,*)*n belongs to Hﬁ and, for each g in Hﬁ»

(Be(t),n) = Qu(Bg,Prarn) = Qp(g,l'(t,")*n) = fL F (C(t,")e.n)/B.

/

Suppose, now, that I" belongs to mgg and that k is the least nonnegative number
b such that the condition (ii) holds. In consequence of Theorems 2, 4, and 7, the
equations

Bo(Zy in MPVB x(M) = Zy i MTC.VIX(V),

for members M of F and functions x from M to Y, define a linear transformation B
from Uﬁ into H, such that N,(Bgg) <k Nﬁ(g) for each g in UB. Inasmuch as Uﬁ is
dense in {HB’Qﬁ} (by Theorem 7), it follows that there is only one member B of Taﬁ
of which By is a subset, and that if f is in Hﬁ then N (Bf) <k Nﬁ(f).

The foregoing arguments suffice to establish all but assertion (3) of this Theorem;
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(3) is a consequence of Theorem 8, since Z; ;, ph(t) = B(Hﬁ(M)f) for f in Hﬁ and h
the indicated function from R (to H,) and M in the family F.

THEOREM 14. Suppose each of aand B is in S+, maﬁ(P) is the set to which G
belongs only in case (i) G is a finitely additive function from R to L(Y) and (ii) there

is a nonnegative number b such that
I(‘;“,G(t)n)l2 < l32(Jt(t)6(t)[]‘5[]2[]17[]2 foreachtin Rand {§q} in Y XY,

and Taﬁ(P) is the set to which B belongs only in case B is a continuous linear
transformation from the space {Hﬁ’Qﬁ} to the space {Ha’Qoz} such that, for each t in
Rand fin Hﬁ’ B(Ptf) = Pt(Bf). Then the equations

Y (B)(t)E = B(B-£)(1), for B in Taﬁ(P) andtin Rand ¢in Y,
define a reversible linear transformation ¥ from Ta,B(P) onto maﬁ(P) such that, if the
ordered pair {B,G} belongs to ¥ then

(1) in order that the nonnegative number b should satisfy the condition (ii) it is
necessary and sufficient that, for each member fofﬂﬁ, N (Bf) <b Nﬁ(ﬂ,

(2) for each member f of Hﬁ, and each t in R and n in Y, the function G*n
belongs to HB and {Bf(t),n) = Qﬁ(Ptf,G*n), and

(3) in case o is B, in order that the nonnegative number b should satisfy the
condition (ii) it is necessary and sufficient that, if fis in Hﬂ’ IIBf]] < b |If]l.

PROOF. Suppose B is a member of Taﬁ(P)’ and let k be the least nonnegative
number b such that if fis in Hﬁ then N, (Bf) <b Nﬁ(f). It follows from Theorem 3
that if £ is in Y then §£ is in Hgand Ng(8-£) = ngnsz
additive function G from R to L(Y) such that

/Fﬁ: hence, there is a finitely

G(1)t = B(B-§)(t) foreachtinRand §in Y,

and that if £ is in Y then the function G-£ belongs to H,. With ¢ the function as
described in Theorem 13, let ' = ®(B): if {u,v}isin R X Rand (isinY,

[(u,v)E = B(P,B+£)u) = Py(B(B-§)(w) = P(G-E)(u);
hence, if M is in F and each of x and y is a function from M to Y,
Z{u,v} in M X MXW,Luvy(v) = Z,; i5 M&x(w),Gw)y(u),

so that, by Theorem 13, the condition (ii) of the present Theorem is satisfied with b
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the number k. Therefore G belongs to maﬁ(P)~ From the implicit symmetry of the
aforementioned condition (ii), if t isin R and 7 is in Y then the function G*7 belongs
to Hﬁ and I'(t,*)*n = Pi(G*n): the assertion (2) follows from the assertion (4) of
Theorem 6 and the assertion (2) of Theorem 13.

Suppose, now, that G belongs to maﬁ(P) and that k is the least nonnegative

number b such that the condition (ii) holds. If n is in Y then, for each t in R,

1G(Hn 1% < k2Bl and 1G(H)*nl1% < k2a(t)B(1) D2,
so that the function G+n belongs to H,, and the function G*n belongs to Hﬁ: hence,
there is a function I"' from R X R to L(Y) such that

['(u,v)€ = P (G-£)(w) for each {u,v} inR XRand ¢£in Y.

It is clear that if t is in R then eqch of I'(-,t) and I'(t,-) is finitely additive and, for
each n in Y, I'(t,)*n = Pi(G*n). Moreover, if M is in F and each of x and y is a
function from M to Y, then

IZ (uv) in M X M&@W), I )y(v)I2
=1Z4in 1\/[(><(1.1),G(u)y(u)>|2

<K2Zy in MEWIXWIZE, 1 MBOIYWIZ,
so that the condition (ii) of Theorem 13 is satisfied with b the number k; hence, the
function ' belongs to the set Mgg. With & the function as described in Theorem 13,
let B= <I>'1(l"). If fisin Hﬁ then, by Theorems 6 and 13,
Ny (Bf) <k Nﬁ(f) and (Bf(t),p = Qﬁ(Ptf,G*n) fortinRandninY:
it follows that, if f is in Hﬁ and u is in R, B(P ;D) = P \(Bf) so that B belongs to Taﬁ(P)~
If Misin F and x is a function from M to Y then
B(Zy, in MPuB (W) = T i MPL(G x(w):

thus, the reversibility of ¥ follows from the density of Uﬁ in the space {Hﬁ,QB 1.

Suppose, finally, that « is 8 and the ordered pair {B,G} belongs to ¥. If b is a

nonnegative number such that the condition (ii) holds then, for each f in Hﬁ and tin R

and nin Y, [G(t)*n] < b B(t)[nll so that, by Theorem 11,

KBE(t). I = 1Qg(PL£.G*n)| < bIIP Il fnl],
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whence [Bf(t)[ << bl[Pf]l: therefore |[Bf||<bllfll. Suppose, then, that b is a
nonnegative number such that if f is in HB then |IBf|| <Db||f]. If tisin Rand nisin Y
then

IG(n0 = IBB-n) (D) < IP(B(B-m) = IIB(PB-n)ll < bllPB-nll = b B(t)In,
so that the number b satisfies the condition (ii). This completes the proof.

THEOREM 15. Suppose 8 is in S+, and the sets mBB(P), Tﬁﬁ(P)' and WV are as
described in Theorem 14 (with o = ). The following statements are true:

(1) if {B,G} belongs to ¥ and A is the adjoint of B with respect to Qﬁ» so that
Qa(f,Ag) = Qg(Bf.g) for each {f.g}in Hg X Hg, then {A,G*} belongs to ¥,

(2) if «is a member of ST such that H,, is a subset of HB and Gis in m{iﬁ(P) and
K is a function from R to 1(Y) such that K+*n = w(a,8)(G*n) for each ninY, then K
belongs to the set m,(P) and K*& = n(a,8)(G*¥) for each § in Y, and

(3) if each of {By,G'} and {B,,G"} belongs to ¥ and G = ¥(BB,) then, for
eachtin Randnin Y, G(t)n = ft/FG'G"n/B with respect to the norm [|-[.

PROOF. Suppose {B,G} belongs to ¥ and A is the adjoint of B with respect to
Qﬁ: iftisin R and {f,g}isin Hﬁ X Hﬁ then, as justified by Theorem 6,

Qp(A(P,D).8) = Qu(P,fBg) = Qu(f,P(Bg))
= Qp(f,B(Py)) = QpAL,Pre) = Qg(Py(AD 8).
Therefore A belongs to Tﬁﬁ(P)' If tisin R and {¢&,n} is in Y X Y then, with
computations justified by Theorems 6 and 7,
(G*E)(0),m = GO*E,n = &G = EBB-n)(t)
= Qp(PyB-£.B(Bm)) = Qa(A(P(B-£).6:n)

= Qg(P(AB-£)).8+1) = Qg(A(B-£) PBen) = A(B-EXD). 1.
Hence, for each £in Y, G*£ = A(B+£) so that {A,G*} belongs to W.
Suppose « is a member of ST such that H,, is a subset of Hﬁ, G isin mﬁﬁ(P)’ and
K is a function from R to L(Y) such that K+n = n(«,)(G*n) foreach nin Y. Let b be
a nonnegative number such that (¢f. Theorem 14)
Gt < b B(t)In( foreachtin Rand nin Y.

Iftisin Rand {¢n}isin Y X Y then by Theorems 6 and 9
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& KO = € m(a.B)(Gn)(t) = Qg(Pra-£,G-n),
so that, by Theorem 11,
KE,K(O)m| < IPya-£lIblnl = b a(t)[ED .
Therefore, the function K (clearly finitely additive) belongs to m,,(P). Now, if t is in

Rand {¢,n}isin Y X Y then, from the formulas in Theorem 9,

(K*E)(t),n) = & K(tm) = ft F(a'E,G'nVﬁ =1 F(G*E,a'n)/ﬁ,

/ /

whence K*§ = m(a,8)(G*§£).

Finally, the assertion (3) is justified by Theorems 13 and 14, with the help of the
fact that if t is in R and f is in Hg then [f(t)] < (t)}/2Ng(h).

THEOREM 16. Suppose that B is a linear transformation from S into Sq which
is continuous with respect to the norm ||*||, and that if tisin Rand fis in S then
B(Ptf) = Pt(Bf). Then (i) if acis in St then B maps Ha into H, so that B maps S into
S, and (ii) if b is a nonnegative number then the following two conditions are
equivalent:

(1) iffisin S then |Bfl| < blifll, and

(2) ifaisin St and fis in Ha then Na(Bt) <b N(D.

PROOF. Suppose that b is a nonnegative number such that if f is in S then
|IBf|]] < b|Ifl|. It may be noted that, if t isin Rand fisin S,

IIPBA| = IBP,fll < b [IPfll.

Suppose, now, that « is in S* and f is a member of H,: by repeated application of
Theorems 2, 3, and 5, it follows that if t is in R then
IBE()12 < [IPBE(I2 = IBPflIZ < b2|[PflI? < b2a(t) Ny(P; )2,

and, from this, that Bf belongs to H, and Na(Bf) < b N (D). Therefore, if « is in st
then B maps H,, into H, and condition (1) implies condition (2). That (1) is implied
by (2), is a consequence of the terminal assertion in Theorem 14, and the fact that if f
is in S then, for some « in S+, f belongs to the set H,,.

THEOREM 17. The equations ({(u)H)(t) = u(Ptf), for win E and fin S and tin
R, define a linear isomorphism ¢ from the space E onto the collection of all

continuous linear transformations Bin {S,||*||} with the property that if tisin Rand f
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is in S then B(Pf) = P(BM). If the ordered pair {p,B} belongs to ¢ and b is a
nonnegative number, then (i) the following three conditions are equivalent:

(1) iffisin S then Ju(f)] < blIfll,

(2) iffisin S then ||Bf]| < bl|f]l, and

3) ifuisin St and fis in H,, then N(Bf) < b N,
and (i) for each fin S, u(f) = IL/

PROOF. Suppose w is in E and b is a nonnegative number such that condition

FBf with respect to the norm [|-].

(1) holds. Clearly there is a linear transformation B from S such that if f is in S then Bf
is a finitely additive function from R to Y and
Bf(t) = u(Ptf) for each t in R,
If fis in S then, for each member M of the family F,
Ztin MIBIMOI <b Zy 5, MIPL]
so that Bf is in SO and ||Bf|| < bjf||:if fisin S and each of tand visin R,
P(BN(Y) = u(PP, 0 = u(P,Pf) = BP, (V)
so that B(Ptf) = Pt(Bf). By Theorem 16, B maps S into S, if « is in ST then B maps Hoz
into H,, and conditions (2) and (3) hold.

Suppose, now, that B is a continuous linear transformation in {S,||-{|} with the
property that if t is in R and f is in S then B(Ptf) = Pt(Bf). By Theorem 106, if « is in
St then B maps H,, into H, and, for each nonnegative number b. the conditions (2)
and (3) are equivalent. Let b be a nonnegative number such that condition (2) holds.
Clearly there is a linear transformation i, from S to Y, such that if f is in S then

u(f) = fL FBf with respect to the norm [J*[.

/

If fis in S then, for each member M of the family F,
1Z i MBI < Zy 5, MIBI(OI < IIBfI < blIfl],
so that [u(f)] < bl|If]l. Hence, u is in E and, for each {t,f}in R X S,

wP )= fL FB(Ptf) =/, PyBN= ft FBf= Bf(t).

/ /

The foregoing arguments suffice to establish Theorem 17.

THEOREM 18. The equations w(u)(a)(t)§ = p(Pa-§), for p in E and ocin St and

L/F
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t in R and ¢ in Y, define a linear isomorphism w from E onto the subspace of
INV-LIM- {H,Q,n} to which the point G of INV-LIM-{H,Q,n} belongs only in case
there is a nonnegative number b such that, for each o in St and t in R and EinyY,
[G(a)(t)E] < b a(t)E]l, in which case the norm of the member w'l(G) of E is the least
such number b. If the ordered pair {u,G} belongs to w and f is in S then u(f) is an
integral over L relatively to F in the following sense: for each o in St such that £
belongs to H,, u(f) = fL/FG(oz)f/oz with respect to [|*].

Theorem 18 may be proved as a consequence of Theorems 14, 15, 16, and 17,

with the help of Theorem 8: regarding the nature of the integral representation, one

Glo)f
o

lets (t) denote 0 or G(a)(t)f(t)/a(t) accordingly as «(t) is O or not.

In the next two Theorems, it is supposed that {X,|*|} is a linear normed
complete space of functions from a set R(y into Y such that, if s is in RO, there is a
positive number p such that, for every member g of X, [lg(s)[l < plg|. The linear space
C(S,X), of all continuous linear transformations from {S,||*||} to the space {X,|*|}, is
normed in the usual manner: the norm of the member B of C(S,X) is the least
nonnegative number b such that if fis in S then |Bf| < blif]l.

THEOREM 19. Suppose a is in S+, my(X) is the set to which T" belongs only in
case I' is a function from RO X R to L(Y) such that (i) if {tn} is in R XY then
P(,n is in X, (i) if v is in Ry then I'(u,*) is finitely additive, and (iii) there is a
nonnegative number b such that if M is a member of the family F and X is a function

fromMto Y then

1Z¢ in MTCOXOISb Z¢ 1 peOIxO,
and T,(X) is the set to which B belongs only in case B is a linear transformation from
H, to X and there is a nonnegative number b such that, for each member f of Hg,,

|Bf| < bllfll. Then the equations
Z(B)(u,t)yn = B(Pya=n)(w), for Bin T(X) and {u,t} in Rg X Randnin Y,

define a reversible linear transformation Z, from T (X) onto my(X), such that if the
ordered pair {B,I'} belongs to Z, then

(1) in order that the nonnegative number b should satisfy the condition (iii) it is
necessary and sufficient that, for each member f of H,, IBf| < blIf]],

(2) for each member f of H,, and each uwin Ryand k£ in Y, the function Lu,=)*E
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belongs to Hy, and (Bf(u),8) = Qy(f,I(u,*)*§), and

(3) for each f in H,, Bf is an integral over L relatively to F in the following
sense: if h is the function from R to X such that, for each member t of R, h(t) is the
constant 0 or T(-,0Of(t)/a(t) accordingly as o(t) is the number 0 or not, then
Bf = fL/Fh with respect to the norm |*|.

PROOF. Suppose B is a member of Ta(X), and let k be the least nonnegative
humber b such that if f is in H, then |Bf] < b|If|]. It is clear that there is a function I"
from Rg X R to L(Y) such that

I'(uv)n = B(P;a*n)(u) for each {u,t} in Ry X Rand ninY,
and that, for each such {u,t} and n, ['(u,*) is finitely additive and I'(+,t)n is in X. If M
is in F and x is a function from M to Y and f = % ;,, mPo-x(t) then f is in H, and
IIf]] = Et in Ma(t)ﬂx(t)[]: hence the condition (iii) is satisfied with b the number k, and
I" belongs to ma(X). Moreover, if u is in RO then there is a positive number p such
that, foreverytin Randnin Y,

IT(u,tHnl < pIl(-,0)nl < p k «t)nl, so that

[ (u,t)*¢0 < p k a(t) €] for every £in Y:
hence, if {u,t} isin Ry X Rand {¢n}isin Y X Y, I'(u,*)*£ is in H, and
B(Parn),® = (I'(u,)n.8 = n,I(u,0)*8) = Q(Pro=n,I'(u,)*§).
Assertion (2) follows since, by assertions (3) of Theorem 3 and (2) of Theorem 7, the
family U(x is dense in Ha with respect to the norm ||*]|.

Suppose, now, that I' belongs to m,(X) and that k is the least nonnegative

number b such that the condition (iii) holds. It follows that the equations
Bo(zt in MPtOK'X(t)) = Zt in MF(',t)X(t),

for members M of F and functions x from M to Y, define a linear transformation Bg
from U(x into X such that IBOfI < KIIfll for each f in U,. By the density of Ua in ch
with respect to [|+1|, as noted in the preceding paragraph, there is only one member B
of T, (X) of which B is a subset and, if fisin Hp, IBf] < KkIifl}.

As in the Proof of Theorem 13, the foregoing arguments suffice to establish all

but assertion (3) of this Theorem; (3) is again a consequence of Theorem 8.
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THEOREM 20.The equations SUB(x)(u,t)n =B(Piasn)(w), for B in C(8,X)
and o in ST and {ut} in Rg X R and n in Y, define a linear isomorphism 2 from
C(S,X) onto the set to which T" belongs only in case T is a function from St t0 a set of
functions from Rg X R to L(Y) such that (i) if acis in St and t is in R and nisinY
then T(o)(-,tyn belongs to X, (ii) if u is in Ry then there is a member G of
INV-LIM-{H,Q,n} such that, for each o in st, G(a) = INa)(u,*), and (iii) there is a
nonnegative number b such that, for each member M of F and each function x from M
toY,

124 in MT@C,0X(D] < BT 1 e IXO,
in which case the norm of the member Q'I(I‘) of C(8,X) is the least such number b. If
the ordered pair {B,I'} belongs to S and f is in S then Bf is an integral over L
relatively to F in the following sense. for each member o of ST such that f belongs to
H,, if h is the function from R to X such that if tisin R then h(t) is the constant 0 in

X or T(a)(-,O)f(t)/odt) accordingly as olt) is the number 0 or not, Bf = fL Fh with

respect to the norm |+|. /

Theorem 20 may be proved as a consequence of Theorem 19 - with the help of
assertion (2) of Theorem 15, the type of argument given in the first paragraph of the
Proof of Theorem 19, and the fact that the H-image of st fills up S.

THEOREM 21. If the ordered pair {B,I'} belongs to the isomorphism 2, defined
in Theorem 20, then the following two statements are equivalent:

(1) iffisin S then |Bf| = [Ifll, and

(2) ifaisin S* and M is in F and x is a function from M to Y then
Z¢ in M@ DX = ¢ i MAOIXO)L.
PROOF. If (1) is true then, for each such o and M and x as indicated,
IB(Z i MP X)) = 124 1y MPr X(OI = By iy peOIx(H)]
whence (2) is true. Suppose that (2) is true. For each a in St and each g in the family
Uov IBgl = [lgll: hence (1) is true, since the H-image of s* fills up S and, for each a in
S*, the family Uy, is dense in H,, with respect to [|-[l.

THEOREM 22. Suppose that (1) if p is in E then n(u) denotes the norm of u,

(2) {X,\*|} is the normed linear space of all continuous linear transformations from
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{E;n} to {Y,0°0}, and (3) o is the member of C(8,X) given by o(H)u = u(f), forfin S
and u in E. Then o is an isometry: if f is in S then |o(f)| = |If]].

PROOF. It should be noted that {X,|*|} is an example of the type of space
indicated in the Central Problem (and in Theorems 19 and 20): for each nonzero
member p of E, n(u) is a positive number p such that [@u)[ < pl@| for every member
@ of X. Therefore the notation C(S,X) is appropriate in this context.

Moreover, it is clear that the indicated transformation ¢ belongs to C(5,X) and
that if f is in S then |o(f)| < |Ifl], since Ju(f)] < [If[In(u) for u in E.

Suppose, now, that f is a nonzero member of S. To know that |a(f)| = JIfll, it will
suffice to have a member u of E such that n(u) =1 and [u(f)[ = lIfll. In accordance
with the Hahn-Banach extension theorem (or the Bohnenblust-Sobczyk version
thereof in the case of complex scalars [3, page 86]), there is a member A of D such
that N(f) = |Ifll and |A(g)] < |igl|l for every g in S. Let £ be a member of Y such that
00 = 1: the equations u(g) = A(g)¢, for g in S, define a member u of E with the
indicated property. This completes the Proof.

REMARK 1. By Theorem 12, a second description of the norm of a member A
of the space D is: the least nonnegative number b such that if «isin Standtisin R
then JAA)(«)(t)] < ba(t). In accordance with Theorems 17 and 18, there are four
descriptions of the norm n for the space E: if u is in E then n(u) is the least
nonnegative number b such that

(1) if fisin S then [u(f)[ < blifl}.

(2) if fisin S then [IE(p)fll < blIf]l.

(3) ifaisin ST and fis in H,, then N, ({(u)f) < bN(f).

(4) ifaisin ST and tisin R and £isin Y then Jow(u)(@)(t)E] < b a(t)£].
Variants of these descriptions are available from the observation (¢f Theorem 8) that

if fis in S then, for each M in F and a in ST such that f belongs to H,
I MDAll = =4 51y MOFCOL.

REMARK 2. If fis in S and M is in F then IZ; iy MPefll = 24 in MIPII -

whereas, for each a in St such that f is in H, ,(cf. Theorem 6)

22 2
Na(zt in MPtf) - 2:t in MNOI(Ptf) .
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This seeming anomaly may be resolved by showing that if f is in S then Vfis a member
8 of St such that, for each t in R, [P f]| = Ns(Ptf)zz a proof may be based on such a
system of inequalities as is indicated in the Proof of Theorem 1.

Modification of the Initial Supposition. Henceforth, instead of supposing that R
is a pre-ring of subsets of the set L filling up L, it is supposed only that the following
Axiom holds.

SUBDIVISION AXIOM. The collection R of subsets of the set L fills up L and,
if G is a finite subcollection of R, there is a subcollection M of R such that

(i) if X is a finite subcollection of M then no member of R which is covered by
X lies in any member of M which does not belong to X, and

(i) each set in the collection G is filled up by a finite subcollection of M.

It has been shown earlier [15] that this Axiom is a necessary and sufficient
condition on the collection R (relatively to its additve extension) for there to exist a
function v from R onto a pre-ring of subsets of some set such that, if u is a member of
R and G is a finite subcollection of R, u is covered by G only in case y(u) is covered
by the y-image of G. The following definitions have been introduced [15]: (1) the
subcollection M of R is nonoverlapping relatively to R provided that condition (i) of
the Subdivision Axiom holds, and (2) the function f from R to an additive Abelian
semigroup is R-additive provided that if M is a finite subcollection of R which is
nonoverlapping relatively to R and M fills up the member u of R then
Ztin mf®) =f(u). If v is a function from R, of the type indicated earlier in this
paragraph then, inasmuch as [15; Theorem 0] the v-images of those nondegenerate
subcollections of R which are nonoverlapping relatively to R are the collections of
mutually exclusive members of the y-image of R, it is clear that v and 7'1 provide for
a translation of all the results from the preceding sections of this report to the present
context. A more direct transition is available here: let the letter F now stand for the
family of all finite subcollections M of R such that M is nonoverlapping relatively to
R, and let “R-additive” replace “finitely additive’ everywhere the latter has appeared.

Only one more change need be made, this in the definition of the function P, in
order to validate the resulting body of propositions: P is now a function from R such

that, for each t in R, Py is a function from Sy to S such that if f is in Sq then, for
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each u in R, Ptf(u) is 0 or Z, ;,, Mf(v) accordingly as (i) no member of R lies both in
uand in t or (ii) M is a member of F such that each set in M lies both in u and in t and
each set in R which lies both in u and in t is covered by M. This change is sufficient:
by [15, Theorem 10], if u and t are sets in R such that some set in R lies in both of
them and W is a member of F of which some subcollection fills up u and some
subcollection fills up t, there is a subcollection M of W such that each set in M lies in
both u and t and each set in R which lies in both u and t is covered by M. The change
is necessary: there may be sets u and t in R such that some set in R lies in both of
them but there is no subcollection of R which fills up the common part of u and t
{15, Example 4].

REMARK. The primitive instance of the Subdivision Axiom is the case that L is
the real line and R is the collection of all (closed and bounded) intervals of real
numbers. Another instance, one where the existence of a function y (of the type
indicated) from R onto a pre-ring of subsets of some set is perhaps somewhat less
obvious, is the case that L is the ordinary Euclidean plane and R is made up of all
subsets t of L such that t consists of a triangle plus its interior.

Continuous and Quasi-Continuous Functions. Suppose, for the purposes of
illustration in this section, that L belongs to the collection R and {X,|+|} is the usual
normed algebra of all continuous linear transformations in {Y (-,*)}: if the member k
of L(Y) belongs to X, (k| is the least nonnegative number b such that if £ is in Y then
[keD < bE]. If @ is a function from L to a bounded subset of {X,|*|} and t is in R
then @l denotes the least upper bound of |@d(p)| for p in t; there are the implicit
multiplication and involution, in the class of such functions @}, as determined by the
equations

(@19)(P)% = 0 (D)0, (p)§ and §'(p) = P(p)*, for pin Land £ in Y,
as well as the customary addition among functions from a set L to a linear space.

Let A(R,X) denote the set of all function ¢} from L to X such that if e > 0 then
there is a member M of F filling up L such that, if t is in M and both p and q belong to
t, [B(p)-P(q)| <e. Let B(R,X) denote the closure, with respect to ||, of the set of all
finite linear combinations (with coefficients from X) of characteristic functions of sets

in R. It is clear that A(R,X) is an involution-algebra, that B(R,X) is a linear space, and
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that each of A(R,X) and B(R,X) is complete with respect to the norm |~1L. It can be
shown that if R is a pre-ring of subsets of L then B(R,X) is A(R,X); it can happen,
however, that B(R,X) is an algebra of which A(R,X) is a proper subalgebra. Consider
the following Example.

EXAMPLE 1. Let L be the unit interval {0,1] and R be the collection of all
subintervals of [0,1]: A(R,X) is the set of all continuous functions from L to X, and
B(R,X) is the set of all quasi-continuous functions from L to X which are continuous
at 0 and at 1, ie., the set of all functions @ from {0,1] to X such that @ is continuous
at 0 and at 1 and such that if p is a number between 0 and 1 then each of the limits
O(p-) and O(p+) exists (with respect to j+|). It may be shown that if [a,b] is an interval
lying in (0,1) then the set QC([a,b],X) of all quasi-continuous functions from [a,b] to
X is the set of restrictions to [a,b] of members of B(R,X). If Ry is the collection
consisting of [0,1] together with all subsets t of [0,1] such that either t is degenerate
or there is a member [p,q] of R such that t is the open interval (p,q), then A(R{,X) is
the set QC([0,1],X). (From investigations by J. A. Reneke [19, pages 106-112], there
are other cases of this type of example - with L a rectangular interval in some
Euclidean space.)

As implicitly suggested by Reneke [19], if @ is a function from L to X and fis
R-additive from PR to Y then the Stieltjes integral fL(Df (of @ “with respect to ) may
be interpreted as a member T of Y such that, if ¢ is a choice function for R (i.e.,cis a
function from R such that if u is in R then c(u) is in u), then T = fL/F(D[c]f with
respect to -] O in the sense previously indicated in the Introduction, with h the
function given by h(u) = @(c(u))f(u), for u in R.Here, now, is an adaptation to the
present context of one of T. H. Hildebrandt’s results [6] (which might be termed the
Hildebrandt-Fichtenholz-Kantorovitch Theorem, see [3, argument pages 258-259 and
comment page 373]). The adaptation seems to include some instances of A(R,X) as a
linear subspace of QC({0,1],X); for such instances, with Y the complex plane and X
identified with Y, ¢f. G. F. Webb [27].

THEOREM 23, If R is a pre-ring, then the Stieltjes integral equations

Af)(9) = fLQf, for fin Syand @ in A(R,X),

define an isometric linear isomorphism A from {Sg,ll*ll} onto the space consisting of
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all continuous linear functions \ from {A(R,X),l-IL} to {Y,[I*1}, normed in the usual
manner, such that if k is in X and @ is in A(R,X) then Nk®) = k\(D).

INDICATION OF PROOF. For each t in R let 1; be the function from L to X
defined by 1:(p) =j2 or O, for p in L, accordingly as p is or is not in t. Since R is a
pre-ring of subsets of L, it follows that A(R,X) is B(R,X), as noted previously, and
that if A is such a function as indicated then the function f defined by f(t) = A(1}), for
t in R, is finitely additive and is clearly the candidate to be a member of Sy such that
A = A(f). The essence of the Theorem will therefore be established provided that
(given a nontrivial A, and an f which is so defined) if W is in F then there is a member
M of F filling up L, such that each set in W is filled up by a subcollection of M, and a
member @ of A(R,X) such that |@|; =1 and M@= Z; ;, mUf(DL. This may be
shown as follows.

Suppose A is a nontrivial linear function, as indicated, and that f is the function
defined by f(t) = )\(lt), for t in R. Since A(R,X) is B(R,X), there is a member u of R
such that f(u) # 0; let W be a member of F. There is a member M of F filling up L,
with a subcollection filling up u, such that each set in W is filled up by a subcollection
of M: there is at least one t in M such that f(t) is not 0 (in Y). Let £ be a member of Y
such that [¢] =1, let k be a function from M to X such thatiftisinMandnisinY

then
(n.f(t)
0f(

and let ¢ = Ztin Mk(t)lt, so that

k(t)yn=0or

£ accordingly as f(t) is O or not,

ND) = Z¢ i MOf(ODE and DM@ = 2, mIFDD.

Now, if p isin L, there is only one t in M which contains p: therefore, if nis in Y then
10(p)nll = Nk(t)nll < (nl, whence |@(p)I<1. Since there is some t in M such that
f(t) #0 and, for each p in t, [[¢p)f(t)]= [f(t)l, it follows that l(plL = 1. This
completes the suggested argument.

As an instance of this type of theorem, for a case where the collection R is not a
pre-ring and S is not all of SO, the following Example is basic.

EXAMPLE 2. To establish connection with the Riesz Theorem alluded to in the

Introduction, let (i) L be [0,1] and R be the collection of all subintervals of [0,1],
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(ii) Y be the complex plane, j be ordinary complex conjugation, and (-,) be the usual
complex inner product for Y given by ¢n)= £j(n), and (iii) S be the set of all
functions f in Sp such that, if e >0 and 0 <p <1, there is a number r in (p,1] such
that if q is a number in (p,r] then |f([p,q] )| <e. Inasmuch as Y is one-dimensional,
there is the usual identification of X with Y: the space D from the Central Problem of
this report is the same as E, the space INV-LIM- {H,Q,r} is identified with the inverse
limit space inv-lim{H,Q,m}, and there is a coalescence of Theorems 12 and 18. A

statement of the Riesz Theorem is this: the Stieltjes integral equations

AD(Q) = fLQ)f, for fin S and @ in A(R,X),

define an isometric linear isomorphism A from {S,||-||} onto the dual of the normed
linear space {A(R,X),I'IL} (¢f. Example 1). Hence, the space {E,n} (Theorem 22)is
identifiable as the second dual of {A(R,X),I*I1} with the natural embedding & of
A(R,X) in E taking the form &6(@)(f) = A(f)(®), for @ in A(R,X) and f in S. Composites

of the isomorphisms ¢ and w (Theorems 17 and 18) with § have the forms
@O = ft@f and w(8(M)(a)(t) = ftQOI,

for @ in A(R,X) and fin Sand t in R and « in S*. 1t follows from Theorems 15,17,
and 18 that the {-image of E is commutative and it may be seen, with the help of these
Theorems, that {[8] is an involution-preserving algebra-isomorphism.

It can be proved, independently of the special suppositions of this section, that
(in the context of Theorem 18) if the ordered pair {u,G} belongs to w and « is in st
then u(f) = fL/FG(a)f/a, with respect to [-[, for every f in the closure of H, with
respect to the norm ||*|| - one might invoke the obvious extension of each (M) (for
M in F) to include f by the formulas from Theorem 8, and then use the consequent

inequalities |1 (M) - I1,(M)g|l < [If-gll (in continuation of the observation at the end

of Remark 1 after Theorem 22), with which the identities

(DN = 2, i v 4), for M in F,

serve to establish the result. There is, however, a limitation to the procedure.
It can not be proved that if the ordered pair {u,G} belongs to w, and « is a

positive member of S+, then (cf. Theorem 18) u(f) = fL 1:G(ot)f/oz for every fin S such

/
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that the latter integral exists. This could not be proved even in the real version of
Example 2. Consider the following Example.

EXAMPLE 3. Let (i) L be [0,1] and R be the collection of all subintervals of
[0,1], (ii) Y be the real line, j be the identity function on Y, and {-,-) be real
multiplication so that (¢,m = £én for £ and nin Y, and (iii) S be the set of all functions
f in SO such that, if e >0 and 0 <p < 1, there is a number r in (p,1] such that if qis a
number in (p,r] then [f([p,q])l <e. Consider the member o of ST defined by
o([p,q]) = a-p, for [p,q] in R: let ¢ be a number between 0 and 1, @ be the function
defined by @(p) = |p-cl, for p in L, and f be the member of S defined by f([p,q]) =1
or 0, for [p,q] in R, accordingly as the number ¢ does or does not belong to (p,q]. Let
A be the function defined by the Stieltjes integral equations A(g) = fL(Z)g, for gin H:
it may be shown that |If|| = 1 and that, if g is in Hy, [If-gll = 1 + |lgll = 1 + [\(g)| so that

A®) - lif-gll <-1 <1 <\g)+ IIf-gll.
According to the Hahn-Banach extension process, E contains extensions ] and ty of
A\ such that /.l.l(f) =-1 and pz(f) =1 and n(p() = n(py) = 1: identifying L(Y) with Y
itself as in the complex case, one may see that if u is u| or puy and G = w(u) then
G(a)(t) = ft(boc, for each t in R, and fL/FG(oc)f/a =0 # u(h).

As recorded, e.g. , by Dunford and Schwartz {3, pages 373-381], there have been
extensions of the Riesz Theorem to contexts more general than that in which L is the
unit interval. Accordingly, it seems appropriate to record some consequences of
present results in a theorem in which the Riesz Theorem (in the form suggested in
Example 2) is taken to be part of the hypothesis. The space E is regarded as an
involution-algebra with multiplication induced by { and involution induced by w (as
indicated in the section Description of Solutions, justified by Theorems 15 through
18). With these conventions, the following is such a Theorem.

THEOREM 24. Suppose S is a linear subspace of Sq such that (i) S is closed
with respect to the norm ||+, (ii) if tis in R and fis in Sand £ is in Y then the

function P V- belongs to S, and (iii) the Stieltjes integral equations

A()(Q) = fL(Df, for fin Sand @ in A(R,X),

define an isometric linear isomorphism A from {S,||*||} onto the space consisting of all
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continuous linear functions \ from {A(R,X),I-IL} to {Y,[:1}, normed in the usual
manner, such that if k is in X and @ is in A(R,X) then NkQ) = kN@). Then (1) the
equations 8(Q)f) = AN, for @ in A(RX) and f in S, define an isometric
involution-preserving algebra-isomorphism & from {A(R,X),l-lL} into the normed
algebra {E,n} (raking the multiplicative identity in AR,X) to that in E),

(2) composites of ¢ and w with & are given by the Stieltjes integral equations
(EB@)HNH(L) = ft(lf and w(8(B)) ()¢ = ft0a'£,

for @ in A(R,X) and fin Sand tin Rand ain st and £inY,and 3) ifuisin Eand @
is in A(R,X) then, for each o in St and tin R and tinyY,

W LG0T (()E = J Beou)()E.

INDICATION OF PROOF. Since [A(H)(P)] < |(Z)IL||f|[ for ¢ in A(R,X) and fin S,
the indicated equations clearly define a linear transformation § from A(R,X) into E
such that if @ is in A(R,X) then n(8(@)) < l(Z)IL: suppose 00 is in A(R,X) and
n(3(9g)) <IPgl. There is a member p of L such that n(8(Py)) < [Py(p)| and,
" therefore, a member £ of Y such that J§|=1 and n(«S((Z)l)) < [](I)O(p)éﬂ. Let A be the
function defined by A(Q) = @(p)E, for @ in A(R,X): there exists a member f of S such
that [If|| < 1 and if @ is in A(R,X) then \(@) = fLQ)f. Now,

n(3(@p) < 10g(PEN = NP0 = 18(PID[ < n(3(PNIfll < n(8(g)).
This involves a contradiction, so that § is an isometry. The other assertions of the
Theorem may be established with the help of Theorems 15, 17, and 18.

There is another type of problem, involving cases where R is not a pre-ring, which
falls within the scope of the present report. In 1962, in connection with a survey {14]
of some investigations concerning the notion of an ordinary linear differential
equation, I presented a result (loc.cit., pages 321-322) from which it is easy to arrive
at the following Example.

EXAMPLE 4. Let L be the unit interval [0,1] and R be the collection of all
subintervals of [0,1]: cq, c{, and ¢y denote choice functions for R such that if t is the
member [p,q] of R then co(t) =p< cl(t) <q= cz(t). If X\ is such a linear function
from QC([0,1],X) to a set of R-additive functions from R to Y that, if k is in X and @
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is in QC([0,11,X), A(k®) = dA(@), then the following two conditions are equivalent:

(i) there is an R-additive function § from R to the nonnegative numbers such
that if @ is in QC([0,1],X) and t is in R then [A(@)(1)[ < 10;8(1), and

(ii) there is a member {fq,f1,f7} of Sy X Sy X Sy such that if @ belongs to
QC([0,1]1,X) and t is in R then

NOXO =, Dleglfo + J (Oler 1y + £, Plea)

/
Let A(fo,fl,fz) denote X\ in (ii), and note that Theorems 1-22 are applicable with the

interpretation that S is SO. For f in Sp and ¢ in QC({0,1],X), it may be seen that
A(f-f,0)(0) is W. H. Young’s version [28] of the Lebesgue-Stieltjes integral designed to
yield interval-additive functions, i.e., R-additive A({). A substitution theorem for the
Young integral [8, page 911], readily adaptable to the present context, can be used to
produce an algebra-isomorphism 6, from the space {QC([O,I],X),I'[L} into {E,n},
having the same character as that in Theorem 24 and justified by much the same type
of argument as indicated there. Thus, W. H. Young’s idea may be regarded as
producing a somewhat general notion of integral.

There is another interpretation of the result from [14] cited in Example 4,
making explicit use of the possible multi-dimensional character of the space Y in the
present report. J. A. Reneke [19] has discovered higher dimensional versions of the
result, with Y the complex plane and X identified with Y, exhibiting (for each positive
integer 1) a set ® of 3r+l choice functions for the collection R of all rectangular

subintervals of [0,1] 41 Guch that the integral equations
MDD = Z¢ iy g L9le) e,

for f in Sg) and @ in QC([0,1] ]r+1,X) and t in R, define a linear homomorphism A
from the set S%> of all functions from & into Sy onto the set consisting of all linear
functions A from QC({0,1 ]H'l ,X) into Sy such that, for some R-additive 8 from R to
the nonnegative numbers, [[A(Q)(t)[] < IQ)Itﬁ(t) for each function @ in QC([O,I]H'I,X)
and each set t in R. Reneke’s results are readily adaptable to the present situation by
adding the condition A(k) = kA(P) for k in X. More generally, however, Reneke has
investigated conditions on the ordered pair {L,R} which imply [15, Geometric

Perspectives] the Subdivision Axiom (but are not implied by it [15, Example 5]) and
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which, together with the assumption that the set B(R,X) is an algebra, are consistent
with the existence of a finite set ® of choice functions yielding A(f)(D) as above, for f
in S%) and @ in B(R,X). Now, supposing only such a finite set ®, consider the following

procedure: replace the space {Y,{+,*)} by the product space {Yq),(',-)q) }, where

(E,n)q, =Z.in <I><Ec’nc> for £ and n in Yq),
throughout appropriate earlier sections of this report, and regard Xq) as a subset of
L(Yd)) in the usual way - (k&g = Z. i, o'keéeone forkin X?®. Because of the finite
cardinality of ®, S(Y®) is easily identified with S,
Y in Y® can be made to yield linear embeddings of B(R,X) in the algebra E

and certain linear embeddings of

corresponding to SO(Yq)). To avoid notational complications here, details and
variations of all this are left to suggest themselves to the reader.

Finally, to see that certain types of linear subspaces of SO which sometimes occur
in measure theoretic investigations (with bounded nonnegative measures) are instances
of the tyep S of the present report, consider the following Example.

EXAMPLE 5. Independently of the special suppositions of this section, let § be
a nontrivial R-additive function from R to the nonnegative numbers such that fL/FB
exists, and let S be the closure with respect to the norm |[|+|| of the space Us as
described in Theorem 4. Note that Theorems 1-22 hold with S taken to be S and that
§ belongs to Sa and that, for each £ in Y, 6-£ belongs to Hg. Now, by Theorem 7, Ug
is dense in Hg with respect to Ng and therefore, by Theorem 3, with respect to ||-|i:
hence, S is the closure with respect to (||| of Hg. Ifgisin Ug and £ is in Y then it may
be seen that Vg+£ is in U5; by Theorem 5, if t is in R then P maps Hg into Hg; from
this it may be argued that if t is in R and f is in S then PtVf-E belongs to S: thus, S
satisfies the condition stipulated in stating the Central Problem of this report.
Moreover, since §-£ belongs to Hg for each £ in Y, the function & belongs to st.
Therefore, Theorems 1-22 hold as stated for this space S and, as has been noted in the
first paragraph following Example 2, if y is in E and G = w(u) then u(f) = fL/FG(S)f/zS
for every function fin S. A similar result holds of course for each « in ST such that U,
is dense in {S,[|-1I}.

REMARK 1. Suppose Y is the complex plane, X is identified with Y, and R is a

pre-ring. Let o be a nontrivial member of Sa, M be a member of F, x be a function
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from M to Y, and g be the member T mPpox(u) of the family U,: it may be

uin
shown in this case that if G is the member 2, ;, \x(w)1,, of B(R,X) then

g(t) = ftGot, for each set t in R, and |ig|t = ijGIa.

Thus, some of the present results have obvious measure theoretic interpretations.

REMARK 2. One effect of the introduction of the Subdivision Axiom has been
provision of a framework within which the Hildebrandt-Fichtenholz-Kantorovitch
Theorem (in the form of Theorem 23) is seen as the instance of the Riesz Theorem in
which R is a pre-ring and S is all of S. This suggests an inquiry, then, as to the general
existence of such a subspace S of S as postulated in Theorem 24.

REMARK 3. The questions of cardinality alluded to in the Introduction, in
connection with R. D. Mauldin’s investigations [16, 17], may be viewed (in the
general context of Theorems 1-22) as suggesting an inquiry as to conditions on the
ordered pair {R,S} which might insure that, if A is in D and g= A()\) as in the
statement of Theorem 12, there exists a member « of S* such that

A = fL F(g(oz),JD/a for each fin S.

/

The effect of Examples 3 and 5 is not represented as obviating any such inquiry.

THEOREM 25. In the algebra Ay of all continuous linear transformations in the
product space {X{H,Q},Q" ), the Z-image of E is closed in the weak operator
topology - the representation Z being given by

QN (Z(p)f,g) = ZQu(§(w)fy.8,) for win E, fand g in X {H,Q}.

REMARK. The indicated weak operator topology is that introduced by von
Neumann (cf. [9, page 53]), and the indicated product space is the direct sum over st
of the spaces {HwQa} which was denoted by {X,(-,*)} in the section entitled
Description of Solutions. As indicated in that section, and as now justified by
Theorems 14-18, the Z-image of E is the B*-algebra A3: A; denotes the algebra of all

members B of Ag iwith a representation ¥ such that
Q7(Bf,g) = Z,,Qp(¥(B),fy-8,) for fand gin X {H,Q}

where, for each « in S+, W¥(B),, is a continuous linear transformation in {Ha,Qa}, Ay

is the algebra of all members B of Aq such that ifaisin ST and tisin R and h is in H,
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then \Il(B)aPth = Pt\If(B)ah, and A3 is the algebra of all members B of A2 such that if
o and f are members of S such that H, is a subset of HB then W(B), is the restriction
to Hy, of \P(B)ﬁ‘ Hence, it is asserted here that the Z-image of E is what is called a
(W*)-algebra in the case of complex scalars (cf. [9, page 161]). It should become clear
that this assertion is independent of the special supposition of this section that L
belongs to the collection R.

PROOF. Suppose B is in the weak closure of the Z-image A3 of E. For each
Q ™orthogonal projection ® in the commutant (in Ag) of Az and each p in E,

QA(B®f - ®Bf,g) = Q" ((B-Z(n))Pf,g) + Q" ((Z(n)-B)f,®g)

for all f and g in X {H,Q}: since each weak neighborhood of B contains Z(u) for some
u in E, it follows that B$ = ®B. It is immediate that B belongs to Aq; by considering

<IJt = Z(f’l(Pt)) for each t in R, one may see that B belongs to As. If « and g are in st

and H, is a subset of Hﬁ then, foreachhin Hyand tin Rand nin Y and g in E,
((B)gh(t) - ¥(B)h(t),n) = Qp((¥(B)g- S@)hPBn) + Qu(§()-¥(B) )h,Pyan).

It follows, as above, that B belongs to A3. This completes the Proof.

Hierarchy of Dual Spaces in the Scalar Case. Suppose, throughout this section,
that the space Y is one-dimensional, and that the algebra {X,|*|} of the preceding
section is identified with the scalars in the usual manner, L(Y) being all of X. There
are three Observations which are useful in this special situation.

OBSERVATION 1. In every instance of a triple {L,R,S} as postulated in the
Introduction, it follows from assertion (3) of Theorem 15 that the multiplication
induced in E by the representation ¢ (¢f Theorem 17) is commutative. In the case of
real scalars, each member of the Z-image Az of E (¢f. Theorem 25) is seen to be
Hermitian with respect to the inner product Q; in the alternative case of complex
scalars, each member of Aj is normal with respect to Q”. Since Theorem 25 implies
that Aj is closed in the strong operator topology for AO, it follows that in either case
the spectral resolution of each member of Aj has all of its values in Aj (this may be
seen from the argument due to Riesz [22, pages 272-288] for Hilbert’s spectral
theorem). Therefore Az is the closure, with respect to the uniform operator norm for

Ag, of the set of all finite linear combinations (with coefficients from X) of nonzero
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Q7 -orthogonal projections belonging to Asz. Of course, if B is such a linear
combination Ep in Mk(p)p and pq =0 for each two members p and q of M then
n(Z 1)) = sup,, 11, mlk(p)!.

One may note in passing that is a consequence, due to Stone (c¢f. [9, pages
162-163]), of Theorem 25 that the set of all Q"-orthogonal projections belonging to
Az is a complete Boolean lattice relatively to the usual partial ordering that is induced
by the inner product Q.

OBSERVATION 2. In amplification of the pattern of ideas from Observation 1,
let R’ be the Z'l-image of the set of all nonzero Q™ -orthogonal projections in Aj and
< denote the partial ordering determined for R’ by the Q -induced partial ordering of
the Z-image of R': if each of pgand uq is in R’ then the statement that pg <p means
that Q-A(f,Z([J.O)f) < Q"(f,Z(pt])f) for every f in X {H,Q}, clearly equivalent to saying
that if o is in ST then Qa(f,g'(uo)f) < Qa(f,g'(pl)f) for every f in H,, this latter in turn
being equivalent to saying that if « is in ST and t is in R then w(,uo)(a)(t)<
w(j.tl)(a)(t) (cf. Theorems 17 and 18). If u is in E and € > 0, there exists a function k
from a finite subset M of R’ into X such that Z(p)Z(q) = 0 for each two members p
and q of M, le in MZ(p) is the identity transformation on X{H,Q}, and
nu - Zp in MK(P)p) <e. It may be noted that, in order that the nonzero member y of
E should belong to R, it is necessary and sufficient that if a is in ST and t is in R then
w(E)()(t) be real and {(u)? =), ie., f ; Fw(u)(a)z/a = w(p)(a)(t) (cf. Theorem
15).

/

OBSERVATION 3. With {R’, <} the upper semi-lattice from Observation 2, let
R” be the collection of all subsets x of R’ such that x has, and is maximal with respect
to having, the property that if g is a finite subset of x then there is a member p of R’
such that p < q for each q in g. Let y be a function from R’ such that if p is in R’ then
7(p) is the subset of R" to which the member x of R" belongs only in case p belongs
to x. In consequence of the properties of the algebra A3 from Observation 1,
especially the commutativity of multiplication, it follows from [15] that the
collection 4~ (R’), the y-image of R', is a pre-ring of subsets of R to which R”
belongs and that, if p is an element of R’ and M is a finite subset of R', p <

sup {R',<}M only in case the set y(p) is covered by the collection 7_)(M). Moreover,
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from  Observation 2, there exists an isometric involution-preserving
algebra-isomorphism, here denoted simply by the suffix ~, from the {-image of E onto

the space B('y—)(R'),X), determined by the formulas

§(Zp in MKPIP)™ = 2 i MK Ly (p)

for functions k from finite subsets M of R’ to X, and taking the identity on the space
S to the constant 1 on the set R"'. Hence, the Hildebrandt Theorem (scalar version of
Theorem 23, Hildebrandt-Fichtenholz-Kantorovitch Theorem) may be seen to yield a
representation of the dual of B('y_)(R'),X) as the space So('y-’(R’)), of all finitely
additive functions of bounded variation from 'y_)(R') to the space Y.

The suggested hierarchy now emerges. Explicitly, one may imagine starting with
a triple {LI,RI,SI} such as postulated in the Introduction, or as amended in the
section Modification of the Initial Supposition, and such that if t is in Ry then f(t) #0
for some fin S;: use Theorems 17 and 18 to arrive at { and w for the dual space E| so
that Theorem 25 is applicable; use Observations 1, 2, and 3 to determine the set Ly,
the pre-ring Ry of subsets of L, to which L, belongs, and the space S, as SO(R2); the
way is now open to repeat this procedure starting with the triple {L2,R2,Sz}.
Integrals of the Hellinger and Stieltjes type arise, alternately, as this process is
continued indefinitely. Integral formulas, for the transition from {Lk,Rk,Sk,Ek} to
the next stage { Ly 11,Ry41:5k+1:Ex+1} > may be written as follows:

G =[  w)(@)f/aand Au)y) =S §)yra (M),

/F
where Fy is the family of all finite subcollections of Ry nonoverlapping relatively to
Rk, ¢ and w are the functions from Ek as determined by Theorems 17 and 18, the
notation ¢(u)” (for p in Ej) describes the representation of {(i) as a member of the
space B(Rk+1 ,X) as in Observation 3, and ¢ is the Hildebrandt mapping (inverse to the
A of Theorem 23) from the dual of B(Rk+1,X) onto Sk+1'

Implicit in the foregoing hierarchy, also, are the following functions:

(1) with P(Rk) the function from Rk into the {-image of Ek as amended from
the Introduction, there is the inclusion-preserving mapping, from Ry into Ry 4y, to
which the member {t,T} of Ry X Ry belongs only in case t is in Ry and T is the

subset of Lk+1 to which a point x of Ly 41 belongs only in case P(Rk)'t"(x) =1;
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(2) with the assurance of isometry provided, e.g, by Theorem 22, there is the
linear isomorphism from S into Sy 4 which consists of all ordered pairs of the form
{f,o(Ap)} such that f is in S and A¢ is the member of the dual of B(Ry41,X)
determined by the equations A{({(u)”) = u(f) for u in E; [with the mapping (1) from
Rk into Ry 41, in view of the integral formulas f(t) = kaHP(Rk)?o(?\f) for t in Rk,
one might regard o(A¢) as an extension to Ry | of an fin S ]; and

(3) there is the isometric linear isomorphism from Ek into Ek+1 which consists
of all ordered pairs of the form {u,8({(u)")} such that pis in E; and § is the linear
function from B(Rk+l ,X) into Ek+1 determined by the formulas

8(@)o(N) = ND) = L

@a(N) for @ in B(Ry;1,X) and X in its dual.
k+1
REMARK. Independently of the dimensionality of the space Y, it may be seen
from Theorem 15 that the center of the Z-image A3 of E (¢f. Observation 1) is the
Z-image of the set of all u in E such that if « is in ST and t is in R then the
transformation w(u)(o)(t) is in the center of the algebra X, i.e., is a scalar. Hence, the

1-image of the

heuristic evidence of the scalar case suggests that in general R’ be the Z~
set of all nonzero Q™-orthogonal projections in the center of A3, with < the partial
ordering indicated in Observation 2. There is the natural multiplication of members of
E by members of X, leading one to note that if k is a function from a finite subset M
of R’ into X such that Z(p)Z(q)=0 for each two members p and q of M then
n(Ep in Mk(p)p) = SUP, i Mik(p)l as in the scalar case. Therefore, the ¢-image of the
closure in {E,n} of the set of all such finite linear combinations (with coefficients
from X) of members of R’ has a representation as B(y_)(R'),X), just as in the scalar
case (Observation 3). Thus the question naturally arises as to whether or not that
closure is all of E.

Recapitulation and Extension of Results. The pattern of ideas in Theorems |
through 10, and the arguments given in support of those theorems, have been
presented in such a way as to allow for an extension, with minor modifications, to a
somewhat more general situation. This section includes a re-examination of that
pattern from such a viewpoint. The Subdivision Axiom, as previously enunciated,

continues to supplant the pre-ring hypothesis, and the propositions arising from the
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aforementioned Theorems by taking S to be all of SO are designated as Theorems 1-0
through 10-0. Let Sy be the set of all R-additive functions f from R to Y such that, for
some nonnegative R-additive function «, (f(t)[] < a(t) for each t in R; let the functions
Pt (for t in R) and V and J be extended to S2 in the natural way; let S; be the
V-image of Sy, i.e. , the set of all nonnegative R-additive functions. It may be noted

that if t is in R then P; maps S, into S and []Ptf[] = ft F||f|| for each f in Ss.

Attention is now directed to the intermediate se{t Sy to which f belongs only in
case f is an R-additive function from R to Y and, for some member h of Sa and some
member a of Sg, if t is in R then [If(t)l]2 < h(t)a(t): let H now denote a function from
S%’ such that, for each « in Sg, H,, is the set to which f belongs only in case fis in §;
and, for some h in Sa', the preceding inequalities hold for each t in R. By definition,
now, S is filled up by the H-image of S%’. It can happen that Sy is a proper subset of
Sy and Sy is a proper subset of 82: the case in which L is an uncountable set, and R is
the collection of all degenerate subsets of L, may easily be seen to present such a
siutation (with R a pre-ring).

There now arise Theorems 1-1 through 10-1, from Theorems 1-0 through 10-0,
upon (i) replacing Sa by Si’ throughout, (ii) changing assertions (1) and (3) in
Theorem 3-0 to read, respectively, that H, is a linear subspace of S; and that if t is in
R and f is in H, then |[PflI2< Ny(D%a(t), and (iii) deleting assertion (3) from
Theorem 7-0. A survey of the indicated arguments reveals the necessity of two explicit
modifications, called for since Sg may not be all of S-{:

(1) In the first paragraph of the Proof for Theorem 4-0, Pio*£ may be shown to
belong to H, by computation (from Theorem 2-0) yielding N(X(Ptoznf)2 = oc(t)[]}j[]2.

(2) The second display in the second paragraph of the Proof of Theorem 10-1 is

Pyy £ = m(eatP)(By8+E) = NBatB)(Pya-b),
asserted as holding for each u in R and £ in Y, and showing U,y to lie in HaHB' Only
minor modifications, consistent with (1) and (2), now serve to establish the suggested
sequence of theorems; and the H-image of SE is a distributive lattice.

What is intended, now, is to provide an extension wj of w[g"l] as described in
Theorems 17 and 18 to a collection of linear transformations in the space S;. The

function 7 having been defined (in Theorem 9-1) on the subset of S; X S; to which
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{a,p} belongs only in case H, is a subset of HB’ INV-LIM-{H,Q,7} is now taken to
denote the linear space to which G belongs only in case G is a function from S}' such
that if « is in S; and £ isin Y and t is in R then (i) G(w) is an R-additive function
from R to L(Y), G(a)+£ belongs to S2’ and PtG(a)-E belongs to H, and (ii) if fis a
member of S;_- such that H,, is a subset of HB then

PiG(e)-& = a(a,B)(PyG(B)-£).

On the foregoing basis, the following Theorem may be interpreted as arising from the
circle of ideas indicated in Theorems 16, 17, and 18 (with S taken to be Sp), and as
being a part thereof in case the collection R is such that §; is S

THEOREM 26. Suppose {X,|*|} is a normed linear space such that B is in X only
in case B is a linear transformation in Sy such that (i) iftisin Randfisin Sl then
B(Pf) = Pi(Bf), (i) if a is in S; then B maps H, into Hg,, and (iii) there is a
nonnegative number b such that N, (Bf) <b N,(f) for each o in S‘zr and each fin H,
in which case |B| is the least such number b. Then, the equations wj(BNa)(1)§=
fL/FB(Pta-E), for Bin X and o in S'2‘” and t in R and § in Y, define a linear
isomorphism wy from X onto the subspace of INV-LIM-{H,Q,n} to which the point G
of INV-LIM-{H,Q,n} belongs only in case there is a nonnegative number b such that if
o is in S}- and tisin Rand £ isin Y then [[G(a)(t)E[] < bot)[]], in which case iw'll (G)j
is the least such number b. If the ordered pair {B,G} belongs to wy and fisin Sy then
Bf is an integral over L relatively to F in the following sense: for each member o of S;
such that f is in Hov if his the function from R to Ha such that if t is in R then
h(t) =0 or Jlt_)PtG(a)'f(t) accordingly as o(t) is the number 0 or not, Bf = fL/Fh with
respect to the norm N, - in particular, for each member o of S; such that fis in H,
and each set uin R, Bf(u) = fu/FG(a)f/a with respect to the norm [J*|].

INDICATION OF PROOF. It may first be noted that Theorem 13, and its Proof,
hold as stated with SE replacing S*: let Theorem 13-1 denote the result when so
amended. Similarly, a result which may be designated as Theorem 14-1 arises from

Theorem 14 with this same replacement and the following amendments:

(1) the displayed description of the transformation ¥ should be made to read

“W(B)(t)E = IL I:B(Ptﬁ-g), for B in TozB(P) andtinRand £in Y,”

/
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(2) the assertion (2) should be made to read, in part, “PtG*n belongs to Hﬁ and
(Bf(t),m = Qﬁ(f,PtG*n),” with similar amendments in the Proof, and

(3) the assertion (3), and the last paragraph of the Proof, should be deleted.
Finally, a suitable Theorem 15-1 is available from Theorem 15, and its Proof, as
amended consistently with (2) of Theorem 14-1. Theorem 26 may now be established
directly on the basis of the emerging pattern of ideas.

REMARK 1. There is a context in which the present results may be given an
interpretation analogous to that suggested in Remark 1 following Example 5. One
may, e.g., start with a sequential-ring (or o-ring [8, page 147]) T of subsets of L filling
up L and a (nontrivial and finite-valued) nonnegative measure § on X, and let R be the
collection of all members of X having positive §-measure. It is not difficult to see that
the Subdivision Axiom is satisfied, and that members of Sy (suitably extended to Z)
are absolutely continuous with respect to the measure §.

REMARK 2. With the help of the Theorem 15-1, the algebra X in Theorem 26 is
equipped with a natural norm-preserving involution and is amendable to the type of
representation indicated, in Description of Solutions, for the {-image of E.

REMARK 3. The algebra X in Theorem 26 contains the identity transformation
on S as well as, for each t in R, the restriction of P; to S;. It also contains certain
transformations arising from Stieltjes integral equations of differential type [14].
Suppose, e.g., that W is a function from L to a bounded collection of continuous
linear transformations in the space {Y{+,*)} and that c is a choice function for R such

that ft FW[c]a'E exists with respect to [|*] for each t in R and « in Sg and £in Y: it

may be/ shown that the equations Blf(t) = ft/Fw[c] f, for f in Sl and t in R, define a
member By of X and that if {BZ’GZ} belongs to w; and G = w(B|B,) then
G(a)(t)s = ft/FW[c] G2(a)-£ for all « in S; and £in Y.

It can not be proved that if S is a proper subset of S, then Sy is a proper subset
of S5. Consider the following Example:

EXAMPLE 6. Let L be the real line and R be the collection of all intervals of
real numbers, and suppose f is a member of 52 which does not belong to Sy: let B be a

member of SE such that [f(t)] <p(t) for each t in R. There exists a continuous

function p, from L to the positive numbers, such that the Stieltjes integral equations
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h(t) = ft%ﬁ’ for tin R, define a member h of SS: let « be the member of S;deﬁned by
the Stieltjes integral equations a(t) = ftp B, for t in R. It may be seen that if tisin R
then [If(t)l]2 < h(t)a(t): the function f thus belongs to Hg, and so to S;. This invelves
a contradiction. Apropos of the foregoing Remark 3, there are special interpretations
in this instance of the algebra {X,[*|} from Theorem 26, which are available by
analogy with Theorem 16.

REMARK 4. There is a simple device for contemplating additive extensions of
members f of such spaces as Sq, S|, or 52’ which is somewhat in the spirit of the Riesz
and Daniell approaches [22] to measurable sets in the sense of postponement until
after identification of certain dual spaces. Typically, one might replace each f (from
the appropriate space S) by a function ? defined on the Boolean ring which is
generated by the restrictions to S of members of the P-image of R - by setting
/f\(PtPu) = Pyf(u) and ?(Pt +P - PP) = f(1) + f(u) - Pyf(u), for {t,u} in R X R. There
are then extrapolations of the functions ? to some of the idempotent elements of an
algebra of operators, closed with respect to one of the usual linear operator topologies,
which includes the aforementioned Boolean ring.

Apropos of lattice-theoretic questions, it can not be proved that if « and § are in
Sa and H, is a proper subset of HB then there is a nontrivial member vy of S-2|' such that
the intersection HozHy is Hpy. Consider the following final Example.

EXAMPLE 7. Let L be the set of all nonnegative integers, and R the pre-ring of
all degenerate subsets of L;let Y be the real line, with ¢-,*) ordinary real multiplication
(as in Example 3). There is a natural identification of Y-valued R-additive functions
with infinite real number sequences, ie., with functions on L to Y: with this
identification, let o and § be members of Sa such that if m is in L then o(m) = (m+1)4
and B(m) = (m+1)'2. It follows from Theorem 9-0 that H,, is a proper subset of HB’
and from Theorem 10-1 that if « is in S; and HozH7 = H then a(m)y(m) = 0 for each
m in L - so that v is the constant 0.

Prospectus.  Consider the family SZ, consisting of all functions « from R to
L(Y) such that « is R-additive and {a(t)£,m = {¢,a(t)n) and ¢,x(t)€) = 0, for each tin R
and {£n} in Y X Y. Special members « of SZ, such that if £ is in Y then fL/Fa-E =£

with respect to [|-[], are important in the general theory of Hilbert spaces; the entire
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family SZ is important in the theory of Stieltjes integral equations of differential type
(as indicated in [14, page 328]). In extrapolation of an idea introduced in [13], the
(R-additive) function f from R to Y is said to be of bounded variation with respect to
the inner product -,*) provided there is a member h of Sa and a member « of SZ such
that I(f(t),éj)I2 < h(t)(,0(t)E), for each t in R and £ in Y: let S3 denote the set of all
such functions f. In a third report it will be shown that the pattern of ideas from
Theorems 1-1 through 10-1 can be extended to the family S3, with loss only of the
distributivity which is indicated in Theorem 10-1, but with a corresponding extension
of Theorem 26. This proposed extension involves, in part, integrals of the
Hellinger-type which were indicated in [13, pages 76-77], and includes the ideas
introduced in [12] when there seemed to be a technical convenience in requiring that,
for each t in some such collection as R, the a(t)-image of Y be closed with respect to
the norm [-[. It may be noted that Hellinger’s ideas originally (4,5] involved a study
of the scalar functions g(t;§) = (f(t),£) derived from the aforementioned functions f, a
study incorporated in [24, Chapters V-VII] by use of Radon-Stieltjes integrals.
Suppose, however, that R is the collection of all right-closed intervals lying in (0,1]
and Sa is identified as a subset of SI in the natural way and, for each 8 in SZ, HB is the
subset of S3 clearly suggested above - it will be seen that if Y is infinite dimensional
then there is a projection-valued member 8 of SZ such that (1) B((0,1]) is the identity
j2 onY, (2) if a is in Sa' and H, is a subset of Hﬁ then a =0, and (3) there is no
member vy of Sg such that Hﬁ lies in H7: in this case, HB consists of all R-additive f
from R to Y such that if t is in R then f(t) is in the (t)-image of Y, and QB(f,g) =

fL/F(f,g) for fand g in H6.
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FINITELY ADDITIVE SET FUNCTIONS
III. THE LINEAR SPAN OF A FAMILY OF FUNCTIONAL HILBERT SPACES
J. S. Mac Nerney*

ABSTRACT. Let R be a pre-ring of subsets of the set L filling up
L, F be the family of all finite subcollections M of R such that
no element of L belongs to two sets in M, {Y,))be a
complete inner product space with [|-] the norm corresponding
to the inner product (,*), and IJ(Y)+ be the set of all
nonnegative Hermitian linear transformations in { Y,(-,")}.
Suppese H is a linear space of finitely additive functions from R
to Y, and for each {t,f }in R X H, P,f(s) is O (in the space Y) or
2, in MI(v) accordingly as s does not intersect t or M is a
member of F which fills up the common part of s and t.
THEOREM. In order that Q should be an inner product for H
such that (i) { H,Q} is complete, (ii) if s is in R then evaluation
at s is continuous from {H,Q} to {Y [+, }, and (iii) for each t
in R, Pt maps H into H and is Hermitian with respect to Q, it is
necessary and sufficient that there be a finitely additive function
a from R to L(Y)+ such that (1) H consists of all finitely
additive functions f from R to Y such that if uis in R then f(u) is
in oz(u)l/Q(Y) and, for some b>0, Z, ;. 1\4[]oz(v)‘1/2f(v)[l2 <b
for each M in F, and &2) for each {fg} in HX H, Q(f,g) is the
integral | (a‘lf % ,o[] 2g) over L relatively to  the
subdivision-refinement process F. The class of all such spaces Ha’
with an inner product Q as in the Theorem, is shown to be closed
with respect to intersection and vector addition: this fact leads
to integral representations for certain linear operations on the
linear span S of a family of such spaces H,.

Introduction. Throughout the body of this report, except where explicit
relaxation of the condition is indicated, it is assumed (as in [12]) that R is a pre-ring
of subsets of a set L filling up L, i.e., that the collection R of subsets of the set L fills
up L and has the property that, if G is a finite collection of members of R, there is a
collection M of mutually exclusive members of R such that each set belonging to G is

filled up by a finite subcollection of M. The letter F again stands for the family of all

*Presented to the American Mathematical Society on January 22, 1976.
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finite subcollections M of R such that no element of L belongs to two sets in M. If K is
a member of R or is L itself, and h is a function from R to a normed linear space, the
notion of the integral over K relatively to F of the function h is that introduced in
[12].

However, {Y*,*)} is now taken to be a complete complex inner product space,
i.e., either a complex Euclidean space or a Hilbert space or a hyper-Hilbert space (in
the terminology followed by J. von Neumann [25, especially 96-104] shortly after his
introduction [23] of the phrase ‘“a Hilbertspace’): most of what is used here,
concerning continuous (or bounded) linear transformations in and between spaces of
this type, is adequately described in von Neumann’s lectures [25] and in the book
[20] by M. H. Stone, with some augmentation from the book [14] by F. Riesz and B.
Szokefalvi-Nagy. The norm [ +[] for Y is that arising from the inner product ¢+,+}, so
that &[] = <£,E)1/2 for £in Y, L(Y) is the set of all linear transformations from Yto Y,
and L(Y)C is the set of all members of L(Y) which are continuous with respect to [ -[.
If B is in L(Y)® then B* denotes the adjoint of B with respect to the inner product
(+,*), and B! denotes the inverse of the restriction of B to the [ ‘I-closure of the
B*-image of Y; L(Y)+ denotes the set of all nonnegative and Hermitian members of
L(Y)C, i.e., all B in L(Y) such that if ¢ is in Y then (¢,B§) is a nonnegative real number;
if B is in L(Y)+ then Bl/ 2 denotes that square root of B which belongs to L(Y)+, and
Bl/2 denotes (Bl/ 2)'1 . Customary identification of complex scalars with members of
L(Y)° leads to this notational convention: if B is a complex number then B* denotes
the complex conjugate of B.

Now, for eachsettin R, Py isa transformation such that if k is a finitely additive
function from R to Y or to L(Y) then Pk is a function from R determined as follows:
is s is in R, Ptk(s) =0or Ev in Mk(v) accordingly as s does not intersect t or M is a
member of F which fills up the intersection st of s with t. In [12] it was established,
among other things, that if Sy is the linear space of all finitely additive functions from
R to Y which are of bounded variation with respect to [|-[ and S is coupled with the
total variation norm ||¢|| then members of the space E (of all continuous linear
functions from {Sg,|l I} to {Y ]*0}) may be described in terms of integrals over L

relatively to F: these representations were seen to arise from the existence of a family
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of complete inner product spaces (of finitely additive functions from R to Y)
{Ha,Qa}, indexed by the finitely additive functions « from R to the nonnegative real
numbers such that [ L /Foz exists, having certain special properties including the
following. (1) In each {Ha,Qa}, if t is in R, evaluation at t is continuous from
{Hg,Qql to {Y,{+,2 } had the restriction to H, of Pt is an orthogonal projection
relatively to the inner product Q; (2) as « ranges over the indicated class, the spaces
H,, constitute a lattice with respect to intersection and vector addition, and the linear
span of the H, is all of Sy.

The following Central Problem of the present report is thus seen to involve a
pattern of ideas which includes the development in the preceding report [12] as an
instance in which attention was focussed on bounded variation with respect to [ -[.

CENTRAL PROBLEM. Characterize those complete inner product spaces
{H,Q}, of finitely additive functions from R to Y, such that if t is in R then
evaluation at t is continuous from {H,Q} to {Y(,"} and the restriction to H of P;
maps H into H and is Hermitian with respect to Q; investigate intersections and vector
sums of pairs of such spaces H (each with such an inner product Q); seek integral
formulas for continuous linear transformations in and between such spaces {H,Q},
and for certain linear operations on the linear span S of a family of such spaces H; and
investigate the possible existence of a significant norm for such a linear span S.

After the (essentially self-contained) presentation in Theorems 1-7 of some
elementary arithmetic about complete inner product spaces { H,Q } of functions from
a (nonstructured) set R to Y such that evaluation at each element of the set R is a
continuous linear transformation from {H,Q} to {Y,{-,-}, all such spaces {H,Q} as
specified in the Central Problem are characterized. It is shown (cf. Abstract and
Theorems 8-13) that the only such spaces are those Hellinger integral spaces generated
by finitely additive functions from R to L(Y)+. Namely, in order that {H,Q} should
be such a complete inner product space as indicated in the Problem, it is necessary and
sufficient that there be a finitely additive function « from R to L(Y)+ such that (i) H
is the set H, consisting of all finitely additive f from R to Y such that if u is in R then
f(u) is in the a(u)1/2-image of Y and, for some nonnegative number b, if M is in F

then 2y i ple /26112 <b and (ii) Q is the function Q, from H X H such that
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if {f,g} is in Hy, X Hy, then Qu(f,g) is the integral f@1/2f,6"1/2g) over L relatively to
the family F,i.e.,

Qu{fig) =1 | h, with h(u) = (w1 25(u),a(u) 1 2g(u) for each uin R;

/

moreover, for each finitely additive function « from R to L(Y)+, the indicated set H,
is a linear family of functions and the foregoing formulas do define an inner product
Q, for H,, such that the space {H,,Q,} is complete.

As a special instance of the results described in the preceding paragraph, it may
be noted that, in case L is the real line and R is the pre-ring of all bounded right-closed
intervals of real numbers and « is a finitely additive function from R to the
(orthogonal) projections in L(Y)+, the space {Ha,Qa} is as follows: H,, is the space of
all finitely additive functions f from R to Y such that if u is in R then f(u) is in the
a(u)-image of Y and, for some nonnegative number b, if M is in F then
2, in MIEWI2 < b; and Qu(f.g) = fL/F(f,g) for each {f,g} in Hy, X Hy,.

In Theorems 14-20, there are developed integral representations for all the
continuous linear transformations in and between (the pairs of) Hellinger integral
spaces {Ha,Qa} generated by the members a of an unrestricte family £ of finitely
additive functions from R to L(Y)+. Peculiar to the context of finitely additive set
functions are the representations (Theorems 17 and 20) for the transformations
which, for each set t in R, commute with the restrictions of P, to the appropriate
Hellinger integral spaces. In particular, for o and § in £ such that H, liesin (i.e., isa
subset of) HB’ the special transformation w(o,8) which is determined by

Q(f.m(a,B)e) = Qﬁ(f,g) for {f,g} in H, X Hg is also given (Theorem 18) by

m(a,B)gs) =/ /F[ﬁ'l/za] *ﬁ'l/zg with respect to || +[I, for each s in R.
S

In this same Theorem 18, it is shown that if @ and § are in  then Ha+B is the vector

sum H,, £ Hﬁ of H, and Hﬁ and that the formulas, for {t;n} in R X Y,

(ccB)(thn = f, F[(a+ﬁ)'1/2a1 *[(atB) 1 /281n with respect to [ -1,

/

define a finitely additive function a:f (the parallel sum of o and B) from R to L)t
such that Hoz:B is the intersection of H,, with HB and Qa:ﬁ =Qy t Qﬁ- For any 8in £,
the space of all continuous linear functions from {Hﬁ’Qﬁ} to 1Y (+,} is characterized

(Theorem 15) in terms of the Hellinger operator integrals studied by Yu. L. Shmulyan
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[17] (see Remark 2 following Theorem 15; the papers by Shmulyan [18] and by
Habib Salehi [16] are concerned with the case of finite dimensional Y) and this new
connection between those integrals and the space {HB’Qﬁ} is shown to arise as one
case of the somewhat more general Theorem 5 reinforced by Theorem 14.

After Theorem 20 it is assumed that if o and § are such members of the set 2, of
finitely additive functions from R to L(Y)+, that neither of H, and HB lies in the
other then both of a+f and a:8 belong to £2. The linear span of the spaces H,, for « in
£, is denoted by S(£2): there are integral representations for certain normed spaces of
linear functions from S(£2) to Y, and for certain normed algebras of linear
transformations from S(£2) to S(§2). These algebras have (Theorem 25) isontetric
algebra-isomorphisms onto weakly closed algebras of continuous linear
transformations in the direct sum {EQ{H,Q},Q;I} of the spaces {H,,Q,} (for a in
). It is the space S(£2) to which reference is made in the title of this report, as a
linear span of a family of functional Hilbert spaces, although it may happen that some
of the spaces {Ha,Qa} are finite dimensional and some fail to be separable.

Finally, in Theorem 26, it is further assumed that if « is in £ and ¢ is in Y then
ok belongs to H, (i.e., the integral fL/Fa.E exists with respect to [[+): a norm || *|| for
S(§2) is then described by such a procedure that, in the case [12] of each member of
§2 being (real) scalar valued, ||¢|| is the total variation norm. The miscellany of
examples illustrates some effects of this and of other procedures.

Elementary Arithmetic of Kernel Systems. A kernel system (relatively to the
space {Y,(-,"}) is a sequence {K,R,H,Q} such that {H,Q} is a complete inner product
space of functions from the set R to the linear space Y and K is a function from
R X R to L(Y) such that if {t,n} isin R X Y then K(*,t)n is in H and, for each fin H,
Q(f,K(-,t)n) = (f(t),n. The Examples 5 and 6, at the end of the present report, may be
viewed as models of the general notion of a kernel system, described here but taken
from {8, page 259].

In this section, no special structure need be assumed for the set R. All the results
accumulated here in Theorems 1, 2, and 3, together with the special cases of Theorems
18P 25P and 35P, have been customary classroom exercises in my usual introductory

Hilbert Spaces course since the paper [8] was written in 1955 (see Abstracts
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728t-733t, Bull. Amer. Math. Soc., 61(1955), 537-539). Proofs may be based on the
Hellinger-Toeplitz Theorem, as extended by von Neumann [24] (Stone’s footnote
[20, page iv], and Rudin’s contemporary version [15, page 110], may be noted) and
incorporated in the following Theorem which is stated here for easy reference.

THEOREM 0. If the inner product space {Hl,Ql} is complete, D is a dense set
in the inner product space {H2,Q2}, A is a function from Hy to Hy, and B is a
function from D to Hy such that Qy(x,By)= Qy(Ax,y) for each {x,y}in H| XD,
then (i) A is linear and continuous from {H},Q} to {H5,Q5}, (ii) there is only one
linear extension C of B mapping Hy t0 Hy such that Q(x,Cy) = Q2(Ax,y) for each
{x,y} in Hy X H2,‘and (iii) the norm of A is the norm of C, in the sense that if b >0
then, in order that QZ(AX,Ax) < szl(x,x) for each x in Hy, it is necessary and
sufficient that Q[ (Cy,Cy) < b2Q2(y,y) for each 'y in Hy.

INDICATION OF ELEMENTARY ARGUMENT FOR CONTINUITY. Let N,
be the norm for H, corresponding to the inner product Q,. Suppose k is a
nonnegative number and x is a point in H; such that k <N,(Ax). Letu= Ax/Nz(Ax),
so that Ny(u) = 1 and N7(Ax) = Qy(Ax,u): there is a number € such that 0 <2e <1
and such that if v is a point in Hy and Ny(v-u) <2e then k < |Qp(Ax,v)|. Let y be a
point in D such that N (y-(1-e)u) <e:

Ny(y) < N2(y—(1-e)u) +(1-€) <1 and No(yu) < N2(y-(1-e)u) + e < 2e,

so that k < |Q2(Ax,y)| = IQI (x,By)|. There is a positive number r such that if N; is the
norm for Hy corresponding to Qq and zisin H; and Nl(z-x) < r then
k <Qq(z,By)| = 1Qy(Az,y)| < N5 (AzZ)N5(y) <N5(Az).

Now, this lower semi-continuity with respect to Nl of the composite of N2 with A,
coupled with the completeness of Hy with respect to Nj, leads directly to the
Ny-boundedness of the A-image of some Nj-open set in Hy; continuity then follows
from the easily established linearity of the transformation A.

THEOREM 1. If {H,Q} is a complete inner product space of functions from the
set R to the space Y then the following are equivalent:

(1) there is a dense linear subspace D of {Y (+,"} and a function g from R X D
to Hsuch that, for each {f,t,;n} in H X R X D, Q(f,g(t,n)) = (1),



FINITELY ADDITIVE SET FUNCTIONS 75

(2) for each tin R, evaluation at t is a continuous linear transformation from the
space {H,Q} to the space {Y(*,*)}, and

(3) there is a function K from R X R to L(Y) such that if {t;n}isin R X Y then
K(+,t)n is in Hand, for each fin H, Q(f,K(+,t)n) = {f(t),n).

THEOREM 15P. If Q is an inner product for the linear subspace Hof Y such that
{H,Q1} is complete then the following are equivalent :

(1) there is a dense linear subspace D of {Y(-,*)} and a function g from D to H
such that, for each {x,n}tin H X D, Q(x,g(n)) = x,n,

Q) the identity function is continuous from {H,Q} into {Y(-,"}, and

(3) there is a member A of 1(Y) such that if nis in Y then An is in Hand, for
each x in H, Q(x,An) = {x,n.

Theorem 1 is a direct consequence of Theorem O as applied, for each t in R, to
the pair {H,Q} and {Y,{-,*)} of spaces, with A the function consisting of all ordered
pairs {f,f(t)} for f in H. Theorem 1°P arises from Theorem 1 in the case that the set R
is degenerate, with the identification of functions from R to Y as points in Y, and of
functions from R X R to L(Y) as elements of L(Y).

TERMINOLOGY. In a kernel system {K,R,H,Q}, the function K is the
evaluation kernel (or reproducing kernel, or kernel function, or kernel) in the space
{H,Q}, and functions of the form Ztin MK( -, 0)x(t) (for functions x from finite
subsets M of R to Y) are called K-polygons. The latter terminology seems appropriate
from the observation that, for K(s,t) = 1 +inf{s;t} on {0,1] X [0,1], each function f
on [0,1] which is polygonal in the usual sense may be representec in this form: one
has f= Er(;K(',up)xp for some increasing number sequence {up}g with up =0 and
u, =1, flug) = E?)xp, and f(u) - f(uj_1) = (u; - uj_l)E?xp G=1,..n).

OBSERVATIONS. If {K,R,H,Q} is a kernel system then (cf. [8, page 256 ff.])

(1) foreach {s;t} inR XRand {§n} inY XY,

(K(t,9)E,m = QK(+,8)¢,K(,t)n) = € K(s,t)m),
so that, by Theorem 0, K(s,t) is in L(Y)® and K(s,t)* = K(t,s); it may be shown by this
type of computation that {H,Q} uniquely determines the function K.
(2) for each finite subset M of R and each function x fromM to Y,

b)) {S,t} inM X M(X(S),K(S,t)x(t)) =0
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since this sum is Q(Z MEC9)x(8),2¢ iy MK Hx(t)); the fact that each such

sin
double sum is real implies Observation 1, since complex scalars are assumed.

(3) The set of all K-polygons is a dense linear subspace of {H,Q}: if this were
not dense then, since {H,Q} is complete, there would be a nontrivial member f of H in
the Q-orthogonal complement of that set - an immediate contradiction. Thus one sees
that if f is in H then Q(f,f) is the least nonnegative number b with the property that if
g is a K-polygon then |Q(f,g)12 <b Q(g.g).

That the foregoing Observations serve to identify the space {H,Q} in terms of the
function K on R X R, is the essence of Theorem 2 (cf. [8, pages 257-258]).

THEOREM 2. If R is a set and K is a function from R X R to L(Y) then, in
order that there should exist a complete inner product space {H,Q} of functions from
R to Y such that if {tm} is in R XY then K(-t)n is in H and, for each f in H,
Q(f,K(-,t)n) = (f(t),m, it is necessary and sufficient that, for each function x from a
finite subset Mof Rto Y,

E{S,t Yin M X M(x(s),K(s,t)x(t)) =0,
in case this latter condition is satisfied, there is only one such complete space {H,Q}:
a function f from R to Y belongs to H only in case there is a nonnegative number b
such that, for each function x from a finite subset Mof Rto Y,
124 in MADXON BT (g1 in M x MEEKEDXD,
in which case Q(f,f) is the least such number b.

THEOREM 25P. [f A is a member of 1(Y) then, in order that there should be a
complete inner product space {H,Q} such that H is a linear subspace of Y which
includes A(Y) and such that if {x,n} is in H X Y then Q(x,An) = {x,n), it is necessary
and sufficient that A belong to L(Y)+; in case A does belong to L(Y)+, then there is
only one such complete space {H,Q}: for each member B of L(Y)° such that BB* = A,
H = B(Y) and Q(x,y) = (B’ xBly) for each {x,y}in HXH - a point zof Y is in H
only in case there is a nonnegative number 3 such that, if nisin Y, Kz,p| < gIB*nll, in
which case || B L2 is the least such number 8.

A proof of those assertions in Theorem 2 not covered by the preceding set of

Observations is given in [8, Theorem 2.5 and 2.7] and is based on identification of the

sequential completion of the space of K-polygons with a space of functions; as with
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Theorem 15P, Theorem 25P arises from Theorem 2 in the case that the set R is
degenerate, with the identification of functions from R to Y as points in Y, and of
functions from R X R to L(Y) as elements of L(Y). Alternatively, there is an argument
[7, Theorem 1, page 665] for Theorem 25P which is readily accessible independently
of the present somewhat more general considerations, and from which (as many
students have seen in classroom exercises) the remaining assertions from Theorem 2
emerge in consequence. Some detail is included here because the pattern of argument
seems essential to Theorems 10, 11, and 12 of the present report. It is, therefore,
supposed that K is a function from R X R to L(Y) satisfying the nonnegativeness
condition indicated in the statement of Theorem 2, that H is the set of all functions
from R to Y as there indicated, and that if f is in H then N(f) is the square root of the
least nonnegative number b such that the indicated inequalities hold for each function
x from a finite subset Mof Rto Y.

INDICATION OF LINEARITY AND NORMABILITY. As indicated in
Observation 2, the K-image of R X R lies in L(Y)® and K(s,t)* = K(t,s) for each {s,t}
in R X R. Since it is true that if f is in H then [(f(t),)]% < N(f)24,K(t,t)n) for each
{t,;n} in R XY, it follows that if N(f) = O then f is the constant O from R to the space
Y. It follows directly from the definition of H and N that, if {f,g}isin H X Hand c is
a scalar, then (i) f+g is in H and N(f+g)2 < [N(t)+N(g)]2 and (ii) cf is in H and
N(cf)2 < |c|2N(f)2: hence, H is linear and N is a norm on H.

INDICATION OF COMPLETENESS. Suppose that f is an infinite H-sequence
which is (Cauchy) convergent with respect to the norm N. Letting € be a positive

number and j a positive integer such that N(fj+m -

fj+n) <€ for myn=1,2,3,..., the
first inequality in the preceding paragraph (with the completeness of {Y (-, }) yields
a function g from R to Y which is the pointwise limit of the sequence f on R with
respect to the norm [I*[l. Now, for € and j as above, it follows from the defining
inequalities for N that (forn=1,2,..) g-fj+n belongs to the space H and N(g-fj+n) <e.
Hence, with the help of the linearity of the space H, one sees that g itself belongs to H
and is the N-limit of the infinite sequence f.

INDICATION OF THE INNER PRODUCT Q. Attention is now drawn to the

collection Rfl of all finite subsets of R and also, for each set M in Rﬁ, to the complete



78 J.S.MAC NERNEY

inner product space {YM,(',')M} of all functions from M to Y with the customary
Y = 2t in MED. (@) for {x,y} in YM x YM,

For each M in Rfi and f in the space H, let N(f;M) be the square root of the least
nonnegative number b such that if x is in YM then

IZ¢ in MEDOXOE DT g1} in M x MEKEKE DX,
If f is in H and My and M, are members of Rfl such that M, is a subset of M, then,
since each function x from M; to Y has an extension z to M, such that z(t) =0inY
for each t in M5 - My, it is clear that N(f;M{) < N(f;M,): hence, for each f in H and
€ >0, there is a member Mg of RI such that

N(f) - e <N(f;M) < N(f) for every M in Rﬁ which includes MO'

Now, with a view to applying Theorem 25P in each of the spaces {YM,(-,-)M} , it may
be noted that if M is in R then the restriction to M X M of K determines, by

Apx(s) = Ziin MK(s,t)x(t) for each x in YM and sin M,
a member Am of L(YM)+: with the obvious notational conventions, if f is in H and M
is in Rfl it follows from the suggested application of Theorem 25P that f Iy (the
restriction to M of f) belqngs to AMQ'(YM) and that I]Aidl/z(fIM)l]M = N(fM). For f
and gin Hand M in Rﬁ, one has Qy(f,g) = (A'h}[/z(flM),Ai}[/z(glMDM and

N(f+g;M)? - N(Eg;M)2 = 4 Re Qy(£,8);

hence, one has an inner product Q for H such that Q(f,f) = N(f)2 for each f in H and
such that, if {f,g} isin H X H and € >0, there is an Mg in Rfl such that

1Q(f,g) - QM(f,g)I < e for every M in rfl which includes M.

INDICATION OF ACTION OF K IN {H,Q}. Suppose fisin H,tisin R, and n is
in Y. Let M be any member of RfT which contains t, and x be a member of YM such
that if s is in M then x(s) = n of 0 accordingly as s is or is not t. It may be seen that, in
the notation of the preceding paragraph, AMx = K(',t)nIM so that it follows from
Theorem 25P (still as applied in {YM(-, “\p}) that

Qu(EKC- D) = A 26y, AL 2 Ay = iy 00 = €0,

It follows from the definition of the function Q that Q(f,K(-,t)n) = {f(t),n.
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INDICATION OF UNIQUENESS OF {H,Q}. Supposing that {H1,Qq} isalsoa
complete inner product space of functions from R to Y in which K is the evaluation
kernel, it follows (see Observation 3 preceding Theorem 2) that the set Hg consisting
of all K-polygons is dense both in {H,Q} and in {H; ,Q1} ; moreover Q agrees with Q
on Hy X Hy. It follows that if f is an infinite Hg-sequence with limit g in {H,Q} then f
is (Cauchy) convergent in {Hl Q1}, and so has a limit h in {Hy ,Ql}: since

QK (= t)m) = (1),m = Q(f,,K(*,t)n) for {t;n} inR X Y (n=0,1,...),
it follows that h=g. By symmetry, H; is a subset of H, and so is H. Now, by
Observation 3 again, Qq(£,0) = Q(f,f) for each f in H. From the familiar

4 Re Q(f.g) = Q(f+g,f+g) - Q(f-q,f-q) = 4 Re Q(f,g)
for {f,g} in H X H, it follows that Qq is Q. This completes the argument.

THEOREM 3. If {KI,R,HI,QI} and {KZ,R,Hz,Qz} are kernel systems then

€)) Hy is a subset of H2 only in case there is a nonnegative number b such that,
for each function x from a finite subset Mof R to Y,

z {s,t} in M X MX(8),K (s,0)x(t)) < bz{s,t} in M X MX(8),Ko(s,t)x(t)),
and in this case the least such b is the least nonnegative number c such that
Qyff) <c Qq(f,0) for each fin Hy,

(2) there is a kernel system {K3,R,H3,Q3} such that K3 = K;+K5, Hs is the
vector sum Hl-i-Hz of Hy and Hy, and if his in Hj then Q3(h,h) is the minimum value
of Ql(f,f)+Q2(g,g) forall fin Hjand gin H2 such that f+g = h and

(3) there is a kernel system {K4,R,H4,Q4} such that Hy is the common part
HyH; of Hy and Hy, Q4 = Q1 +Qq, and Ky is given by the formulas (with Qzasin(2))

€.K4(s,0m) = Q3(K (+,9)E,K5(+,t)n)
= {46, (K  +K (s, 0)m)
- Q3((K 1 Kp)(* 9)&,(K1 K (-,0m)}
foreach {¢m}tin Y X Yand {s,t} in R X R.
THEOREM 3%P. If A and B are members of L(Y)" then

)] A1/2(Y) is a subset of B1/2(Y) only in case there is a nonnegative number b
such that, for each in Y, <E,AE) < b(¢,BE), and in this case the least such b is the least
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¢ = 0 such that [lB'l/zx[]2 < c[]A'1 /2x[]2for each x in A1/2(Y),

(2) A+B is a member C of L(Y)" such that C1/2(Y) is the vector sum of A1/2(Y)
and Bl/z(Y), and if z is in C1/2(Y) then I]C'llzz[l2 is the minimum value of
l]A'l /2x[]2+[|B'1/2y[l2 for all {x,y} in A1/2(Y) X Bl/z(Y) such that x+y =z, and

(3) there is a member D of L(Y)T such that D1/2(Y) is the common part of
ALY20y) ana BY/2(y), (D 112x, D712y = (A1 24 AT112y) + B1/2% B1/29) for each x
and y in DVI2(Y), and D is given by the formulas (with C = A+B)

D= [C12A1+[c12B) = uic - [ 2@aB)1*(C 2 (AB))

As with Theorems 13P and 25P, Theorem 3°P arises from Theorem 3 in the case
that the set R is degenerate, with the identification of fucntions from R to Y as points
in Y, and of functions from R X R to L(Y) as elements of L(Y).

INDICATION OF PROOF OF 3(1). The sufficiency is a consequence of
Theorem 2. If H; is a subset of H2 then Ql(f,Kl(',t)n) =L{f(t)p = Q2(f,K2( ,t)n) for
all f in H; and {t,;n} in R X Y; density in {H2,Q2} of the set of all Ky-polygons then
makes Theorem 0 directly applicable (A being the identity function from Hy to Hy).

INDICATION OF PROOF OF 3(2). By Theorem 0, 2, and 3(1), there exists a
linear transformation A from Hs to Hj such that Ql(f,Ah) = Q3(f,h) for all f in H;
and h in Hj3: in particular, for each {t,n} in R XY, K{(+,t)n = A(K3(*,t)n) so that
(1I-A)(K3(-,t)n) = K5(+,t)n. Therefore, 1-A maps H3 into Hy and, for each {g,h} in
H2 X Hgz, Qz(g,(l-A)h) = Q3(g,h). Now, for each h in Hj,

Qj(Ah,Ah) + Q5 ((1-A)h,(1-A)h) = Q3(Ah+(1-A)h,h) = Q3(h.h).
If {f,g}isin H; X Hy and x is a function from a finite subset M of R to Y then (with
Ty denoting 2 ¢} i M x M)
1Z¢ in ME®+e(®) x (D
<1Qp (ENHZ () K | (5,0x(EN] 12+ [Qy(g.8) ZNx(5),K(s,0)x(t0] 1/2
<[Qq(F.N + Q@] 2L E{x(E)K | + Ky)s,Hx(tN) /2,
so that (by Theorem 2) f+g is in Hj3and Q3(f+g,f+g) <Qp(fH)+ Qy(g.8).
INDICATION OF PROOF OF 3(3). Note that the linear transformation A from

the preceding argument is Hermitian with respect to Q3; moreover, the first formula



FINITELY ADDITIVE SET FUNCTIONS 81

defines K4(*,t)n = (A-Az)(K3(-,t)n), belonging to Hy and to Hy for each {t,n} in
R XY and is equivalent to the second since A-A2 = lA;{l-(2A-1)2}. Since it is clear
that Q1+Q2 is an inner product Q4 for the common part H4 of Hl and Hz, such that
the space {H4,Q4} is complete, there remains only the computation

Qa(f.K4(+,0m) = Q) (LAKH(+mN+Qy(£,(1-A) (K (+,t)) = Q3(£K5(-,t)m),
which is (f(t),n), for f in Hy and {t,n} in R X Y, to establish the result.

REMARK 1. An argument for Theorem 3 has been recorded by P. H. Jessner
(his 1962 Dissertation [6, Chapter II], Theorems 2.1 and 2.2, and Corollaries), whose
primary interest was the ‘“‘approximate inclusion” relation between kernel systems:
{H{,Qq} is said to be approximately included in {H,,Q,} provided that Hy contains
a subset of H2 which is dense in {HI,QI}. Among other things [6, Theorem 3.1],
Jessner showed that this provision is equivalent to each of the following:

(1) there is a function I" from R X R to L(Y)® such that if {s,t} isin R X R then
[(s,t)* = I'(t,s) and, for each {{,n}inY X Y, ['(~,t)n is in Hy and

&K (s,)m = Qy(T(- HET(+,)m),

(2) Hj is dense in the space {H3,Q3} of the present Theorem 3(2), and

(3) if A is the transformation given in the Indication of Proof for Theorem 3(2)
and C is the square root of A-A2 which is Hermitian and nonnegative with respect to
the inner product Q3 and M is the function from R X R to L(Y)® given by the
equations M(s,t)n = C((K{+K5)(+,t)n)(s) for {s,t} in R X Rand n in Y, then

&K} (5,0m = QpM(~S)EMCt)n).

As I have shown elsewhere [10], if the space Y is not finite dimensional then this
approximate inclusion relation is not transitive. Neither Jessner’s results nor my
example constitutes an integral part of the present development, but there is a
Comment following Theorem 18 with an illustrative application of his main results.

TERMINOLOGY. If each of {KI,R,HI,QI} and {K,,R,H»,Q,} is a kernel
system, the parallel sum of K| and K5, denoted by KI:KZ, is the function K4
described in Theorem 3(3), so that {K4,R,H4,Q4} = {Kl :K5,R,H{H5,Q;+Q5}. From
the Observation 1 preceding Theorem 2, to the effect that if {K,R,H,Q} is a kernel
system then the function K is uniquely determined by {H,Q}, it is clear that parallel
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summation is both commutative and associative: viz., if each of {Kj ,R,Hj,Qj}
(G =1,2,3) is given then K{:K4 =K,:K; since H{Hy =H,H; and Q1Qy = Q1Qq,
and also Kj :(K2:K3) = (Kl :K2):K3 since Hl(H2H3) = (H1H2)H3 and Q1+(Q2+Q3) =
(Q+tQ)+Q3.

REMARK 2. The foregoing terminology and notation are consistent with those
used by W. N. Anderson and R. J. Duffin [1], who have investigated this idea in
considerable depth for the matrix algebra case (R a finite set and Y the complex plane;
or, alternatively, R a degenerate set and Y finite dimensional) using the generalized
inverses of nonnegative definite Hermitian matrices. Attention should be drawn, in
passing, to the penetrating study by M. R. Hestenes [5] of the idea of the generalized
inverse (generalized reciprocal, pseudo inverse). An extension of the parallel sum idea
to the intermediate case of Theorem 35P (Y unrestricted) has been recorded in 1971
by P. A. Fillmore and J. P. Williams [4, page 276 ff.]: there A:B was taken to mean
Al21(A+By1/2A1/2) % [(A+B)1/2B1/21B1/2 and this is easily seen to be the D
indicated in the former of the last two formulas in 35P(3) (another notation, A:B =
A(A+B)'1 B, has already been justified [7, Theorem 4 and the Defintition, pages
666-667]; see, also , discussion on page 277 of [4]). It seems, from the comments and
query bridging pages 279-280 of the latter paper [4], that the affirmative answer to
the general question about the associativity of the parallel summation was not noticed
in that intermediate context at that time.

REMARK 3. One of the remarkable discoveries by Anderson and Duffin [1]
was that, in the notation of Theorem 35P with Y finite dimensional, if each of A, B, C,
and D belongs to L(Y)+ then so does (A+C):(B+D) - (A:B + C:D). A digression seems
in order here for the purpose of exhibiting in retrospect a general case of that
Anderson-Duffin result in the form of a Corollary to the present Theorem 3.

COROLLARY TO THEOREM 3. (Anderson-Duffin). If each of Ky, K5, K3,
and K, is the evaluation kernel in a complete inner product space of functions from
the set R to {Y X+, } then so is the function (K{+K3):(Ky+Ky) - (K :Ky + K3:Ky).

PROOF. Suppose that (for j=1,2,3,4) {Kj,R,Hj,Qj} is a kernel system, and that
{KO,R,H1H24H3H4,QO} and {KS,R,(H14H3)(H2-'FH4),Q5} are the kernel systems
with KO = K] :K2 + K3:K4 and K5 = (K1+K3):(K2+K4) provided by Theorem 3, and
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with  + denoting vector sum. By Theorem 3, one has the systems
{K1:K9,R,H{Hp,Q{1Qy} and {K3:K4,R,H3Hy,Q3+Qyt; also, the assertion to be
established is equivalent to the assertion that H1H25rH3H4 is a subset of
(H14-H3)(H2-*.-H4) and that Q5(h,h) < Qo(h,h) for each h in H1H2+'H3H4. Inasmuch
as the indicated inclusion is clear, let h be a member of H1H24'-H3H4. By Theorem
3(2), there exists a member fg of HiH, and a member g, of H3Hy such that
fotgg=hand
Qp(h,h) = (Q)+Qy)(f.fp) + (Q3+Qy) (g :20)-
Also by Theorem 3(2), there exists a member {f;,5;} of H; X H3 and a member
{f5,89} of Hy X Hy such that f|+g; =h = fy+g, and
Qs(h,h) = {Q (f1,f1)+Q3(g1 .81} + 1Qy(f7,f2)+Qs(e9.29) }

and such that both the following statements are true:

() Q(fy,f+Q3(gy.81) < Q(f.NH+Q3(g.e) for {f,g}in Hy X H3, f+g=h.

(i) Qp(f,fx)+Q4(gy.89) < Qy(f,))+Qqy(gg) for {f,g} in Hy X Hy, f+g=h.
As a particular consequence, there is the inequality:

Qs(h,h) < {Q(fy.fx)+Q3(gp.eg) } + {Qy(fy.fn)+Q4(8g.80)} = Qp(h,h).

Thus the equivalent assertion is established, and the Proof is complete.

REMARK 4. As a prelude to the next Theorem, one might consider the
following special situation: let R be the set of all nonnegative integers and Cp:Cpse-- be
an infinite sequence of Hermitian members of L(Y)®. The condition that, for each
finite subset M of R, there should exist an interval [aM,bM] of real numbers such that

if x is a function from M to Y then (with Zy; denoting Z{s,t} in M X M)
aMEﬁ(S(X),CSHX(t)) < ZM(X(S),CS+t+1x(t)) < bMZI\I/i(x(S)’CﬁtX(t))

is equivalent [9] to the condition that C be a special type moment sequence. Only for
the case that some interval {o,8] includes all the [apg.bp] does such a moment
sequence fall within the scope of Sz.-Nagy’s Principal Theorem [22] concerning the
representation of a *-semi-group by a family of continuous linear transformations in
an extension space of {Y,(-,*}. In any case, however, with K(s,t) = Cg4t for {s,t} in
R X R, the kernel system {K,R,H,Q} plays a central role, and {H,Q} provided a

realization of the extension space, with Cp =1 as added hypothesis. It may be noted
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that if {K,R,H,Q} is any kernel system such that K(e,e) =1 for some element € of R
then the equations A(n)(s) = K(s,e)n, for {s,n} in R XY, define a linear isometry A\
from {Y({-,”} into {H,Q}, the Q-orthogonal projection m from H onto A(Y) being
given simply by #f = K( *,e)f(e) for f in H.

THEOREM 4. If {K,R,H,Q} is a kernel system and € is an element of the set R
and Z is the [| *[-closure of K(e,e)1/2(Y), then

(1) the equations Nn)(s) = [K(e,e)'l/zK(e,S)]*n, for {ns}in Z XR, define a
linear isometry X from the space {Z+,*) }into { H,Q},

(2) the equations 7f(s) = [K(e,e) /2 K(e.5)] *K(e,e) 1/ 2f(e), for {fs} in H X R,
define the Q-orthogonal projection w from Honto NZ), and

(3) if {fn} is in H X Z then Q(f \(n)) = (K(e,e)'l/zf(e),n), from which it follows
that the Q-orthogonal complement of MZ) in H is the subset of H to which the
member f of H belongs only in case f(e) = 0.

The result enunciated here as Theorem 4, is the first step established in the
inductive proof of Lemma 11 in [9, page 58] : there, € was the zero in the set R of all
nonnegative integers, but the argument was independent of the character of R. That
argument, it may be recalled, commences with two applications of the present
Theorem 25P [9, Lemma 1] to show that if f is in H then f(¢) is in K(e,e)l/z(Y) and
I]K(e,e)'l/zf(e)l]2< Q(f,f) so that, in particular, if s is in R and 7 is in Y then
IK(e,e) 1/ 2K(e,siml < [K(s,9)! /200, whence K(e,e)l/2K(es) is in L(Y)S; the

argument is essentially completed with identification of the function I',
D(s,t) = K(s,t) - [K(e,€)1/2K(e.5)] *[K(e.e) 2K (e 0],

as a matrix representation of a Q-orthogonal projection in the sense of Theorem 6 to
be enunciated presently (an alternate argument may be based on the Theorems 1 and
2). The following interim result serves to characterize, for a kernel system {K,R,H,Q},
those functions G from R to L(Y)° such that G -*{ is in H for ¢ in Y; it will be the
basis for Theorem 15, even as Theorem 4 will be for Theorem 14, and a proof is given
for Theorem 5 which established a pattern adaptable to Theorem 6.

THEOREM 5. If {K,R,H,Q} is a kernel system then the equations,

o(u)(t)n = w(K( +t)n) for {tm} in R X Y,

define a reversible linear transformation a from the collection of all continuous linear
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functions y from {HQ} to {YX+,2}onto the collection of all functions G from R to
L(Y)C such that G+*¢ is in H for each £ in Y, and if {u,G} is in o then
(1) foreachfin Hand £ in Y, (u(),£) = Q(f,G -*§), and
(2) oisanisometry in the sense, that, if b > 0, these are equivalent:
() Ju(D12 <b2QUEf) for each fin H, and
(i) Q(G-*£,G-*£) <b20£02 for each £in Y.
PROOF. Suppose u is a continuous linear function from {H,Q} to {Y (,*)} and
b = 0 such that [l;t(f)[l2 < b2Q(f,0 for each f in H: let G be a function from R to L(Y)
such that G(t)n = u(K(-,t)n) for {t,n} in R X Y. Inasmuch as, for each such {t,n},
HG(t)'qII2 < bz(n,K(t,t)n), G maps R into L(Y)C. If x is a function from a finite subset
Mof R to Y then, for each £in Y,

24 in MG EXAN 1 = [Eu(Z; i, K DX
SOEI2622 (5 ¢ 1 MxM*E) KGOX(D),

so that, by Theorem 2, G-*{ isin H and Q(G+*§,G-*§) < bzl]&’[lz; moreover,

W(Z¢ i MKCDx0),8 = Zy i MKD,GO*E) = QT4 1 MK DX(1),G*E),
so that assertion (1) follows from the density in {H,Q} of the set of K-polygons.

Suppose, now, that G is such a function from R to L(Y)® that G-*¢ is in H for
each £ in Y: for functions x from finite subsets M of R to Y, the formulas

Q24 jn MKCOX(),G-*8) = Zy 1 M (O,GO*E) = N(Z¢ i MKCLOX(D),D),
define a linear function A from a dense subset of {H,Q} to {Y(:,)} so that, by
Theorem 0, there is only one linear extension u of N\ mapping H into Y such that
Q(f,G**£) = (u(f),8) for each {f,£} in H X Y, u is continuous from {H,Q} to the space
{Y{+,*)}, and if b > O then conditions (i) and (ii) are equivalent.

REMARK 1. From Theorem 5 there is available some sharpening of Theorem 1,
in the following sense. Suppose that, for some t in R, u(f) = f(r) for f in H and let
G=o0(u): for each t in R, G(t)=K(rt). If ¢ is in Y, G-*t= K(-r)¢ and
Q(G-*£,G-*§) = (¢, K(r,1)); hence, if b > 0, the following are equivalent:

(1) [If(r)l]2 < b2Q(f,f) for each fin H, and

(i) ¢€.K(r,r)& < b2[E)2 for each £ in Y.

REMARK 2. If, in the context of Theorem 5, L(H,Y) denotes the collection of
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all continuous linear functions from {H,Q} to {Y {-,-)} then the o-image of L(H,Y) is
complete with respect to the norm indicated implicitly in Theorem 5(2); one may

introduce an L(Y)%valued inner product for the o-image of L(H,Y) by the equations
QG "*£,Gy*n) = (£,(G1,Gym for {En}in Y X Y,

whereupon (+,*) is readily seen to have the following properties:

() (G+G,,G3) = (G,G3) + (G5,G3) and (kG,Gy) = k(G},Gy) for k in L(Y)C,

(ii) (Gl ,G2)* = (G2,G1), (G,G) isin L(Y)+ and is 0 only in case G is 0,

(i) (G,K(t,*)) =G(t) for each t in R, and

(iv) KE(Gy ,G2)n>|2 <<£,(G1,G1)E ,(G1,Go)m for each {gnlinY XY,
and if p is in L(H,Y) and G = o(u), the aforementioned norm of G is the least
nonnegative number b such that l](G,G)l/ZE[] < b(¢[ foreach £in Y. In case Y is finite
dimensional, this norm may be shown to be equivalent to that corresponding to the
complex-valued inner product q: q(G,G5) = trace of (G{,G7).

REMARK 3. With K(s,t) =1 or O accordingly as s is or is not t, {H,Q} is seen to
be the familiar ‘“‘direct sum of R copies of the space {Y,{,*}} described as follows: H
is the set of all functions f from R to Y such that there is a nonnegative number b such
that Et in M[]f(‘[)l]2 < b for each finite subset M of R, and Q(f,g) = Ztin R(f(t),g(t))
for {f,g}in H X H - in the sense that if € is a positive number and {f,g} is in H X H
then there is a finite subset MO of R such that |Q(f,g) - Ztin M(f(t),g(t))l < € for each
finite subset M of R which includes M. The final set (or range) of the transformation
o from Theorem 5 is the set of all functions G from R to L(Y)® such that if £isin Y
then there is a nonnegative number § such that Z ;, M(E,G(t)G(t)*E) <@ for each
finite subset M of R: assertion 5(1) may be read as (u(f),£) = Z; ;, R{G(DE(1),E). It will
follow from Theorem 15(1) that u(f) = Et in RG(t)f(t) with respect to [[-[], but this
may also be proved directly from Theorem 5 because of membership in L(Y)C of the
weak (hence, strong) limit Z; ;,, RG(t)G(t)*. Finally, in connection with the preceding
Remark 2, the formulas (G ,G2) =Ztin RGl(t)Gz(t)* may be noted.

THEOREM 6. If each of {K,,R,H,,Qp} and {KB,R,HB,QB} is a kernel system,
Mgg is the set to which T" belongs only in case (i) T is a function from R X R to the
set L(Y) and (ii) there is a nonnegative number b such that, if each of x and y is a

function from a finite subset Mof Rto Y,
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ZX().T (DY < b2 () Ky (SOXDZRyy () K g5, y(1)

(with ZM denoting E{S t}in M X M), and Taﬁ is the space of all continuous linear

transformations from {Hﬁ’Qﬁ} to {H,,Q}, then the equations
S(C)(s,t)n = C(KB(',t)n)(s),for Cin Taﬁ’ {st}inRXR,andniny,

define a reversible linear transformation ® from Taﬁ onto Myg such that, if the
ordered pair {C,I' } belongs to ® and A is the (adjoint) transformation from Hy to Hﬁ
determined by Qa(f,Cg) = QB(Af,g) for{fg}in Hoz X Hﬁ’ then

(1) in order that the nonnegative number b should satisfy condition (ii), it is

necessary and sufficinet that, for each gin Hﬁ, Qu(Ce.Ce) < szﬁ(g,g),

(2) P(s,t)*& = A(K (- ,8)EX1) for each {st}inRXRand tinY,

(3) (Af(t),m = Q(f,I'(+,t)n) for each fin Hyand {t;n}in R XY,

(4) ¢,Ce(sy = QB(F(S,-)*E,g) for each gin Hﬁ and {s,t} in R XY, and

(5) in case ais Band each of {C{,I'1} and {C2,F2} belongs to ® and C = C{,Cy,

&N(s,t)m) = Qg(I'y(s,°)*£,T5(* ,t)m) for {st}inRXR, {gntinY X Y;

if, moreover, H, is a subset of Hﬁ and m is the member of Tocﬁ determined by the
condition that Q(f,ng) = Qﬁ(f,g) forall {f,g}in Hy X Hg, then ®(m) = Ky

Theorem 6 arises as in instance of Theorem 3.1 of [8, pages 259-260], with the
three Corollaries there indicated, but a proof may be constructed with the help of the
present Theorems 0, 1, and 2 along the lines of the Proof which has been given for
Theorem 5. The somewhat more general Theorem 3.1 of [8] allows a possibility of
different underlying sets R, and Rﬁ for the two kernel systems: the present Theorem
5 is seen to arise therefrom by taking the first set R, to be degenerate.

COROLLARY 6.1. In the context of Theorem 6, if T" is a function from R X R
to L(Y)C then, in order that T should be such a member of myg that ¢'] (") is a linear
isometry from {Hﬁ’Qﬁ} onto {H,,Q,}, it is necessary and sufficient that, for each
{s;t}in R X Rand {¢n} in Y X Y, I(+5)& be in H, T'(t,*)*n be in Hﬂ,

Qu(I(+ $)&,I'(+ ,t)m) = (€K g(s,t)m),
and
Qg(I'(s,)*&,I'(t,*)*n) = (£, Ky (s,)m.
INDICATION OF PROOF. As to the necessity, with A the adjoint (as in
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Theorem 6) of C= ‘Ifl(l"), the conditions are consequent to: CA=1 on H,, and
AC=1 on Hﬁ' Regarding the sufficiency, supposing I' as indicated, it must be shown
that " belongs to meg: if each of x and y is a function from the finite subset M of R
to Y then (by Schwarz’s inequality for Q,, with Ef\;[ as before)

IZ45x 5,060V 2 = 1Qa(Zg in MKl SXE),Z i MTC DY)

< (). K (s,0)8(t) Zppy(s) Kpgls,y (),
whence T is in myg- Now, with C and A as before, if {s,t }isin R X Rand {£n} isin
Y XY then
ECAK(+,m)(s) = Qp(I'(s, ) *E,AK,(+,0m) = Qp(T'(s, ) *E.I(t,*)* ),

and

(€, AC(Kg(*,m)(s) = Qa(I'(+,)E,CKp(+,t)m) = QeI+ SET(-,tm),
so that CA =1 on the K -polygons and AC=1 on the Kﬁ-polygons. Continuity and
density, on and in the respective spaces, insure the asserted conclusion.

COROLLARY 6.2. If, in the context of Theorem 6 with o=, I' is a function
from R X R to L(Y) then, in order that T should be such a member of mgg that
<I>'1(1") isa Qﬁ-orthogonal projection, it is necessary and sufficient that, for each {s,t }
in RXRand {¢n} in Y XY, ()¢ be in Hﬁand

Qp(I'(+,9)E,'(+,t)n) = €.L(s,t)m).

INDICATION OF PROOF. As to the necessity, with C = d)'l(f‘), the condition is
a consequence of: C= C? and is Hermitian with respect to Qﬁ‘ Regarding the
sufficiency, supposing I as indicated, if each of x and y is a function from the finite
subset M of R to Y then (with 21(,'1 as before), seriatim,

SMYETEDY) = Qp(Eg iy MUC9VE).E¢ in MTCDY(1) >0
(so that T maps R X R into L(Y)® and I'(s,t)* = I'(t,s) for {s,t} in R X R),
Y ELD,DYEN = 1Qp(Eg i MKV, E¢ jn MTC OV

< Zv(s) Kg(s.t)y(0)) Zpy(s).0(s,0)y(0),

Spv(s), (.00 < Zply(s),Kgls,Hy (e,
and

IZpfKE. N0y (D12 = 1Qp(E i MKg( 9X(E),Z jn MTCDVENIE
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< Zppx() K gls,)x(8) Zpply(s).T(s,0)y(t)

< Zﬁ(x(s),Kﬁ(s,t)x(t)) Zﬁ(y(s),Kﬁ(s,t)y(t)),
whence I' is in mgg. Now, with C= ¢! (IM), C is Hermitian with respect to Qﬁ as a
consequence of the fact noted above that I'(s,t)* = I'(t,s) for {s,t} in R X R. The
assumed condition on I' now implies that C = C? on the Kﬁ-polygons and, as in the
indicated argument for Corollary 6.1, this insures that C = C2 on all of Hﬁ~

THEOREM 6°P. Suppose each of A and B is in L(Y)C, m is the set to which G
belongs only in case (i) G is in L(Y) and (ii) there is a nonnegative number b such
that, if {&n} is in Y XY, KE,G| < bIA*E[IB*n(, 11y is the orthogonal projection
from Y onto the ||*[-closure of A*(Y), I15 is the orthogonal projection from Y onto
the [I*0-closure of B*(Y), and T is the set of all members D of L(Y)C such that
Iy DIly = D. Then there is a reversible linear transformation ¥ from T onto m such
that W(D) = ADB* for each D in T, if, moreover, {D,G} isin ¥,

(1) in order that the nonnegative number b should satisfy condition (ii), it is
necessary and sufficient that, for each z in Y, [[Dz[ < bllz[], and

(2) each of A'1G and B1G* isin L(Y)€and D = A'1B1G*)* = (B LA 1Gy)*.

The foregoing proposition has been established as Lemma 3 in [9, page 49]; it
may be seen to arise from Theorem 6 as follows. Direct translation of Theorem 6
yields #(C) = CBB* for C in Tog: where (cf. Theorem 25P) A is a linear isometry from
{I1;(Y){-,9} onto {A(Y),Q,} and B is a linear isometry from {H2(Y),(',-)} onto
{B(Y),QB }, and ® maps Taﬁ onto, the set m (corresponding to Mg in Theorem 6) in
the manner indicated. Now the function ¢, {(C) = A'ICB for C in Taﬂ’ is a linear
isometry from Ttxﬂ onto the set T: ¥ is the composite ¢I>[§"1] from T onto m. It may
be noted that 1'[1 = A'IA and II2 = B'IB (cf. Lemma 2 in [9, page 48]).

REMARK. For the case that G = G* in L(Y)® and A belongs to L(Y)+ and there
is a b= 0 such that KG§,8)| < b(Azz,E) for each £ in Y, the transformation D in T such
that D = D* and G = ADA (B = A in Theorem 6°P) was discovered as a consequence of
other considerations in 1952 by B. Sz.-Nagy [21, pages 290-291] in an investigation
of Hermitian moment sequences on a (bounded) number interval: a 1955 footnote by
Sz.-Nagy [22, page 11] calls attention to those other considerations. A general

application of the idea, with B = A not necessarily in L(Y)+, appears in [9, Lemma 6,
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page 53] ;see [9, page 79 f.] for acknowledgement of relevant priorities.

THEOREM 7. Suppose {H{,Q} and {H,,Q,} are complete inner product
spaces, Hy is a linear subspace of H,, and m is a function from H, to Hy such that, for
each {fg} in H) X Hy, Ql(f,-rrg) = Qz(f,g). With the notational conventions (i) Ny
and N2 are the respective norms corresponding to the inner products Qq and Qj,
(ii) forj=1or 2, Tj is the algebra of continuous linear transformations in the space
{Hj,Qj}, (iii) if {A,B} isin T| X T, then A’ is the adjoint of A with respect to Q
and B'" is the adjoint of B with respect to Q,, (iv) 71'1/2 is the square root of w which
is Hermitian and nonnegative with respect to Q2, and (V) 7l is the inverse of the
restriction of w, and 7r'1/ 2 the inverse of the restriction of 1r1/ 2, to the N2—closure of
Hl' the following statements are true:

(1) H, is 11/2(H,) and Q (£.8) = Qu(a™ 26,071 2g) for ail 1,8} in Hy X H, and
if {A,B} isin T| X T, then A is a subset of B only in case A'r=7B";

(2) if Bisin TZ and B(Hl) lies in Hl then the restriction to Hl of Bisin Tl and
has norm, with respect to Ny, the norm of 1r'1/2B711/2

() if Adsin T then 1 2A71 2 jsin T,, (r 1 /2Ax1 2y = a1 277112, ana A

with respect to Ny,

is the restriction to Hj of a member of Ty only in case A'ﬂ(Hz) lies in 1r(H2), in which
case mLA'm belongs to T, and A is a subset of (1r'1A'7r)";

(4) ifBisin Ty then Bm = 7B only in case there is a member A ole such that A
is a subset of Band A' is a subset of B

(5) if Ais in Ty then A1r1rl/2 = 1rA1rl/2 only in case there is a member B of T,
such that A is a subset of Band A’ is a subset of B"'.

A PROOF FOR 7(1). The formulas for H; and Q are a consequence of
Theorem 25P applied in the space {Hz,Qz} instead of {Y,(-,}. If {AB} is in
T X Ty,

Q|(f.A'mg - 7B"g) = Q)(Afmg) - Qy(fB"8) = Q)(Af - Bf,g)
for all {f,g} in Hy X Hy, so that A =B on H; only in case A'r = 7B".

A PROOF FOR 7(2). In the presence of Theorem 35P(1), this is an application
of Theorems 3 and 5 of [7, pages 666-667]. It may be argued directly, however, as
follows. Assuming that B is in T and B(H{) lies in Hy, Theorem 3P(1) applied in the

space {Hz,Qz} assures the existence of a nonnegative number § such that
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if £ is in Hy then Q,(f,[Br /21 [Br1/21"f) < g2Q, (f,nD);
by the definition of the norm Nz, this is equivalent to

if £ is in Hy then No([Br1/2]"'f) <g Ny(x!/2p);

172y

by Schwarz’s inequality and the definition of [Bx , this is equivalent to

if {f,g} is in Hy X Hy then [Q,(£,Br!/2g)| < g Ny(x!/26)N(g);
by Theorem 25P applied in the space {H,,Q,}, this is equivalent to
if g is in H, then N, (r"1/2Br1/2g) <gN,(g);
since B1r1/ 250 on the Qy-orthogonal complement of Hy, this is equivalent to
if g is in H, then N (r1/2Bx1/2g) <g Ny (n71/271/2g);

finally, this says that if f is in H; then N (Bf) < [ Nl(f), and all is proved.

A PROOF FOR 7(3). Assuming that A isin Ty, if {f,glisin Hy X H, then

Ql(ﬂl/zf,Aﬂl/zg) = Q2(1r'1/21r1/2f,1r'1/2A1r1/2g) - Q2(f,1r']/2A1r1/2g),
so that 71'1/2A1r1/2 is in T2 and (77'1/2A1rl/2)”= 1r'1/2A'1rl/2. According to the
Statement 7(1), if A is a subset of the member B of T2 then A'm =B so that
A'1r(H2) lies in 1r(H2). Suppose, now, that A'1r(H2) lies in 7r(H2): by (7(2), the
restriction to HO = 1r(H2) of A’ is in the algebra TO determined by the inner product
Qp(fig) = Qz(v'lf,w'lg) for {f,g} in Hg X Hy. By applying the first part of this
argument to the pair {To,Tz} , one sees that 7r'1A'7r belongs to T2 and one may
consider the member B = (r"LA'm)" of Ty:
Brl/2 = [111/2(1r'1A'1r)]" = [1r'1/2A'7r] "_ 7r1/2(1r'1/2A'7r1/2)” - n1/21r'1/2A1r1/2,

so that Brl/2 = A1rl/2, and this is what remained to be proved.

A PROOF FOR 7(4). Suppose that B is in To. By 7(1), if there is a member A of
T, such that A is a subset of B and A’ is a subset of B", then 7B"" = B"'7 so that
Br = #B. Suppose, now, that Br = 7B: it follows that 7B’ = B"'w, and it is a property
of nonnegative Hermitian square roots that 712 commutes with B and with B"". By
7(2), the restriction to Hl of B is in Ty, as is the restriction to Hl of B". Finally, if

each of f and gis in the Nz-closure of Hy then

Q1(1r1/2f,B7r1/2g) = Ql(ﬂl/zf,n1/2Bg) = Q,(f,Bg)
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= Q,(B"f,g) = Q(x!/2B",x1/2g)
=Q,®"r1 2t/ 2g).

A PROOF FOR 7(5). Suppose A is in T|. If there is a member B of T such that
A is a subset of B and A’ is a subset of B" then, by 7(4), Bm = 7B so that Am = 7A on
Hl, ie., A1r7r1/2 = 1rA1r1/2. Suppose, now, that AT = 7A on Hy; it is easily checked
that the restriction to H; of 1r1/ 2
Therefore An'/2= 71/2A and A'zl/2=71/2A" on Hy: hence 7 12a71/2 = A and

71212 = A" on Hj. By 7(2), 7 2p7112 belongs to T, and (W']/2A1r1/2)” =

is Hermitian and nonnegative with respect to Q.

1r'1/2A'771/2, so that the proof is complete.

COROLLARY TO THEOREM 7. If, with the suppositions of Theorem 7,
{H{,Q} and {Hz,Qz} are complete inner product spaces of functions from a set R to
the space Y with evaluation kernels K| and Ko, respectively, and {A,B} isin T{ X T,
then

(1) in order that A should be a subset of B, it is necessary and sufficient that if
{tm} isin R XY then A'(K|(+,t)n) = 7B"(K5(*,t)n), and

(2) if A is a subset of B then, in order that A' should be a subset of B”, it is
necessary and sufficient that, for {t,;n} in R X Y, B(K{(-,t)n) = 7B(K(+,t)n).

INDICATION OF PROOF. It is clear that Ki(,t)n= 1r(K2(',t)n) foreach tin R
and 7n in Y since, for each fin Hl’

Q) (£,K (,0m) = (f()m = QLK (-, m);
from the density (for j =1 or 2) of the Kj-polygons in {Hj,Qj} , assertions (1) and (2)
are consequences, respectively, of (1) and (4) of Theorem 7.

REMARK 1. The supposition in Theorem 7 that {Hl ,Ql} is continuously
included (or continuously situated) in {H2,Q2} is, according to Theorem 3(1),
automatically satisfied with H; a subset of H, for the spaces of primary concern in
the present context, spaces of Y-valued functions having evaluation kernels relatively
to the inner product ¢-,*). It may be noted, as I have shown elsewhere [11], that if the
complete inner product space { H2,Qz} is continuously included in a complete inner
product space {H,Q} such that H2 is a proper dense linear subspace of {H,Q} then
there exist two complete inner product spaces {Hl ,Ql} and {H3,Q3} such that
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() {Hy,Qq} is continuously included in {H,,Q,} , {H,,Q,} is continuously included
in {H3,Q3}, and {H3,Q3} is continuously included in {H,Q}, (i) Hy is dense in
{H,Q} and Hjz is not all of H, and (iii) H; is not dense in {H2,Q2} and H, is not
dense in {H3,Q3}. Hence, the formulation of Theorem 7 may not be tautologically
amiss.

REMARK 2. The construction recalled in the preceding Remark was carried out
[11] with the help of those portions of the 1959 results [7, Theorems 1-5] (and the
1962 results [9, Lemmas 1-3]) which are included in the present Theorems 25P,
35P(1), and 65P. Meanwhile, those earlier results have been noted separately by others
(e.g., by R. G. Douglas [2] and by Yu. L. Shmulyan [19]) and have been used
effectively by Fillmore and Williams [4, Theorem 2.1 ef seq.] in exposition about the
lattice of operator ranges (or Julia varieties, or semiclosed-subspaces) in Y. As has been
observed by Shmulyan [19, page 400], such resuits can be effective in an investigation
of linear fractional transformations with L(Y)%-coefficients [7].

Characterization of Hellinger Integral Spaces. From here onward, as indicated in
the Introduction, it is assumed that R is a pre-ring of subsets of the set L fillingup L,
F is the family consisting of all finite subcollections M of R such that no element of L
belongs to two sets in M, and (for each tin R) Pt is a transformation such thatif kis a
finitely additive function from R to Y or to L(Y) then P¢k is a function from R (to Y
or to L(Y), respectively) determined as follows: if sisin R, Ptk(s) =0or Z, i, k()
accordingly as s does not intersect t or M is a member of F which fills up st.

THEOREM 8. If {K,R,H,Q} is a kernel system such that each member of H is a
finitely additive function from R to Y and such that, for each tin R, Py maps H into H
and the restriction of P to H is Hermitian with respect to Q, then the function
o(t) = K(t,t) for each tin R, is finitely additive from R to L(Y)Jr and, for each {s,t} in
R X R, K(s,t) = (Pya)(s).

PROOF. With « defined as indicated, if f is in H and {s,t} isin R X R and 7 is in
Y then a(t) = K(t,t), a member of L(Y)+ by Theorem 2, and

Q(f,PK(+,t)n) = (P f(0),m = (Pf(s),m = Q(f,P{K(~,8)n)
so that P.K(-,t)n = P{K(-,s)n and, for each member M of F filling up t,

o) = 2, i MPyKC DM = 2y i MPEKC I = 2y i MKOW;
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hence « is finitely additive from R to L(Y)+. Now, if s and t are members of R, one of
these cases arises: either s does not intersect t in which case

(i) Piods) =0 =PK(-s)s) = PK(-,t)(s) = K(s,t),
or s is a subset of t in which case

(i) Pia(s) = K(s,5) = P{K(~,5)(s) = PK(+,0)(s) = K(s,t),
or s intersects t but is not a subset of t in which case there is a member M of F filling
up s, with a subcollection W filling up the intersection st, so that

(i) Pyo(s) =2y i, wKOvW) = Zy i wPiKC»m

=Zy in WEVKCD0) = Zy 5 wKv,t) = Z4 i) MK, = K(s,t).

THEOREM 9. Suppose o is a finitely additive function from R to L(Y)+, and f is
a finitely additive function from R to Y such that if v is in R then f(v) is in
a(v)l/ 2(Y). Then, if M and W are members of F such that each set in M is filled up by

a subcollection of W,
Zg in Ml 26002 < 245, w2802,
Theorem 9 is a consequence of Theorem 35P(2), on the basis of which one sees
that if U is a subcollection of W filling up the member s of M then
la(s) 1 26(s)12 < 2, 4, yle) 250025
for scalar valued « this has been seen [12, Theorem 1] from Schwarz’s inequality. The
inequality from Theorem 35P(2) invoked here is: if each of A and B is in L(Y)+ and x
isin A/2(Y) and y is in B1/2(Y), then x+y is in (A+B)/2(Y) and
ICA+BY 1 2(ey)12 <A1 2x2 + 1B 1/ 2y 2.

The original form of this proposition was: if each of A and B is in L(Y)Jr and x is a
member of A(Y) and y is a member of B(Y), such that x+y is in (A+B)(Y), then
ety (A+BY 1oty < x, A1 + ¢y,B 1y
[8, Lemma 1.1 on page 254] (Abstract 728t, Bull. Amer. Math. Soc., 61(1955), 537).
THEOREM 10. If o is a finitely additive function from R to L(Y)+ and fis a
finitely additive function from R to Y and b = Q, the following are equivalent:
(1) there is a real nonnegative finitely additive function h defined on R such that

if {tm}isin R XY then [f(t),n |2 < h(t)m,a(t)n) and fL/Fh <b,
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(2) if M is a member of F then, for each function x fromMto Y,
24 in M(f(t),x(t))l2 <b Ty i MX®),0(D)x(t)), and
(3) ifvisin R then f(v) is in oz(v)l/2(Y) and, for each member M of F,
%4 i Ml 12102 <b.

PROOF. As in the Proof given for [12, Theorem 2], if condition (3) holds then

it is a consequence of Theorem 9 that the equations h(t) = ft F'I]oz'l/zﬂ]z, fortin R,

/

define a real nonnegative finitely additive function h on R and, by Theorems 25P and

9,if {t;p}isin R X Y then
Kict)mI2 < Dacty 1726612, t)m) < h(tym,a(t)m.

The implication from (1) to (2) is a consequence of Schwarz’s inequality coupled with
the finitely additive character of h; if (2) holds then (3) is a consequence of Theorem
25P applied in the product space YM for each member M of the family F.

THEOREM 11. If «a is a finitely additive function from R to L(Y)+ then the
collection H,, of all finitely additive functions f from R to Y such that (for some
nonnegative number b) one of the three conditions in Theorem 10 holds, is a linear
space of functions from R to Y, there is a norm N, for Hy, such that if fis in H, then
No®? =/

Theorem 11 may be proved as a consequence of Theorems 9 and 10 with the

l]a'l/zfl]z, and H, is complete with respect to N,

help of the observation that if f is in H,, then N () is the square root of the least
nonnegative number b such that one of the three conditions in Theorem 10 holds. The
result may be viewed as a translation of relevant portions of [12, Theorem 3] from
the context in which « was scalar valued and existence of f L /Fa was given.
THEOREM 12. If o is a finitely additive function from. R to L(Y)+ then there is

an inner product Q,, for the space H, (described in Theorem 11) such that
Qulfe) =/, /F(a'l/ 2t,0°1/2g) for each {t,g} in Hy X Hy,
and if tis in R then Py maps H, into H,, and, for each {f,g} in H, X H,,
QuPihe) =/, /F«x—l I2£,0712) = Qu(,Pye);

with K, (s,t) = (Pyo)(s) for {s,t}in R X R, {Kq,R,Hg,Qq } is a kernel system.
PROOF. This argument is patterned after that given for {12, Theorem 6], and as
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in that argument the existence of the indicated function Q,, follows from
. -1/2 -
2y in U@ 2 1R@yte)1 02 - 2, ) plew) 2 [u)-g(u) 102

= 4 Re 2 i ple) 26w oy gy

as a set of identities, {f,g} in Hy, X H, and M in F. It is clear from this that if f is in
H,, then Qu(f,f) = Na(f)z, so that Q,, is an inner product for Hoz with corresponding
norm Ng: the space {H,,Q,} is complete. If {f,g} is in Hy X Hy, the indicated
integral formulas for Qa(Ptf,g) and Qa(f,Ptg) (for t in R) may be verified by
considering members of F having subcollections filling up t. There remains only the
verification that the indicated function K, is the evaluation kernel in the space
{Hy,Qql}s if fis in Hy and {t,;n}is in R X Y then, for each member W of F having a

subcollection M filling up t,

Zy in w128 ,a@) 2K unom = £, 1 e 26w),am 2

=Zy in MMM = (D)0,

so that Q(f,K,(+,t)n) = (f(t),m.

THEOREM 13. If H is a linear space of finitely additive functions from Rto Y
then, in order that Q should be an inner product for H such that

(1) the space {H,Q} is complete,

(i) if sisin R, evaluation at s is continuous from {H,Q} to {Y (+,}, and

(iii) for each tin R, the restriction to H of P, is a Qorthogonal projection,
it is necessary and sufficient that there exist a finitely additive function o from R to
L(Y)+ such that {H,Q} is the space {HwQa} described in Theorems 11-12.

Theorem 13 is a consequence of Theorem 1 and Theorems 8 through 12.

TERMINOLOGY. If « is a finitely additive function from R to L(Y)+ then the
Hellinger integral space generated by o is the space {HwQa} from Theorems 11-12.

REMARK. Suppose that f is a finitely additive function from R to Y, W is a
finite subcollection of R, and x is a function from W to Y. Let M be a member of F
such that each set in W is filled up by a subcollection of M and each set in M is a
subset of some set in W; if t is in W then M(t) denotes the set to which v belongs only
in case v is a member of M lying in t, and if u is in M then W(u) is the set to which s

belongs only in case s is a member of W which includes u. Let z be the function from
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M to Y such that z(u) = Ex in W(u)x(s) for each u in M:

Z¢ in WX = Z¢ i Wy i M FOx(D)
=2y in MZs in W(u)(f(u),X(S))

= Z in M), z(u).
If, moreover, o is a finitely additive function from R to L(Y)+ and K is defined on

R X R by K(s,t) = Pya(s) for {s,t} in R X R, then
Z{s,t} in WXWX(E),K(s,t)x(t) == {u,t} in MxWwZW),K(u,H)x(t)

=3 {uv} in MXM(z(u),K(u,v)z(v)),

and this latter sum is Z4in M(Z(u),a(u)z(u)). This type of computation may be seen to
establish a connection between the arguments given in support of Theorems 10
through 12 and the indication given for a Proof of Theorem 2: indeed, Theorem 2
may be regarded, in this way, as implicitly including Theorems 10, 11, and 12. It will
be seen in Theorem 14, however, that the approximation process indicated for the
inner product Q in connection with Theorem 2 has a special significance in the
Hellinger integral spaces relatively to the subdivision refinement process F, one which
allows a sharpening of assorted results recorded in Theorems 3, 5, and 6.

Special Continuous Linear Transformations. Let £ now denote a collection of
finitely additive functions from R to L(Y)+. For each finitely additive function « from
R to L(Y)+, {Ha,Qa} is the Hellinger integral space generated by a, Ky is the
evaluation kernel in the space {Hg,Qqu} so that Kqa(s,t) = Pia(s) for {s,t} in R X R,
and N, is the norm corresponding to the inner product Qg so that Ny(H =
QD12 =s 120212 for £in Hy,

THEOREM 14. Suppose B is in Q and, for each member M of F, Hﬁ(M) is the
function from Hﬁ to YR such that if fis in Hﬁ and sisin R then

TEMYE(s) = Z¢ 5, mIBAY /2P Bs)1 *B(t) 1 25ty.
For each member M of the family F,
1) l'Iﬁ(M) is the Qﬁ-orthogonal projection from Hﬁ onto the subspace of Hﬁ to
which g belongs only in case there is a function x from M to Y such that, if tisin M,

x(t) is in the || *[-closure of the B(t)image of Y and
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8() = Z¢ 1 MUBO /2R B()1 *x(t) for each s in R,
(2) the Q‘;orthogonal complement of the Ilg(M)-image of Hﬁ is the subset of Hﬁ
to which the member f of Hﬁ belongs only in case f(t) = 0 for each tin M, and
(3) if {f,g} belongs to Hg X Hg then
Qpf - Mg - TlgM)g) = Q(te) - B¢ iy B0 20).B) 1 20,
PROOF. Suppose § is in £ and M is in F. With reference to Theorem 4, for each
tin M, let Zt be the [-[-closure of the f(t)-image of Y, A; be the linear isometry from
{Z; £, } into {HB,Qﬁ } given by
N()(s) = (B /2P B(s)] *n for {n,s} inZ X R,
and ¢ be the Qﬁ—orthogonal projection from Hﬁ onto ?\t(Zt) given by
m,f(s) = (Bt 1/2PyB(s)1 *6(ty 1 /2(t) for (£,s)in Hg X R.
If t is in M then it is known from Theorem 4(3) that
(@) QuEAm) = @&y /26w for (£} in Hg X Z, and
(ii) the Qﬁ-orthogonal complement of A(Z,) is the subspace of Hﬁ to which the
member f of HB belongs only in case f(t) = 0.
Hence, if t and u are in M then m m; is the zero projection in the space {HB’Qﬁ}'
Inasmuch as Hﬁ(M) =Z¢inM™ all the assertions of the present Theorem may be seen

as consequences of the foregoing facts - with the help of the formulas
Qpt - TIg(M)F.g - TTgM)2) = Q) - E¢ iy MQ(EAB(A !/ 2E())
for {f,g} in Hg X Hg.
REMARK 1. The following approximation process is implicit in Theorem 14. If

Bisin §2 and fisin Hﬁ then the equations,
h(t)(s) = [B(6) /2P 8()1 *B(t) 1/2£(t) for {s,t},in R X R,

define a function h from R to H/3 such that f=f__h with respect to the norm Nﬁ'

Moreover, in case B is scalar valued (as in [12, Th];éfem 8]) and M is in F and fis in
Hﬁ, Hﬁ(M)f= Ztin MPtB'E(t) where, for each t in M, £(t) is O or f(t)/B(t) accordingly
as B(t) is the scalar zero or not.

REMARK 2. With reference to the displayed formula in Theorem 14(1), for Bin

§ and M in F, it may be shown that Qﬁ(g,g) =Ziin M[Ix(t)I]Z; if, in particular, £ is a
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function from M to Y such that x(t) = ﬁ(t)llzi(t) for t in M then it may be seen from
the following type of computation,
(B L /2PB(s)] *6(H) 1280, = 61 280),60t)1 /2P sy

= &),801 26ty 2P Bisym

= (E(0),PiB(s)m),
that g = Z; i, MP¢B-&(t) and that QB(g,g) =Ztin M(E(t),B(t)S(t)). Now, it is known (cf.
[7, Theorem 2], [8, Lemma 3.1], or [4, page 259]) that if A belongs to L(Y)+ then,
in order that the A-image of Y should be the Al/ 2-image of Y, it is necessary and
sufficient that the A-image of Y should be [:[l-closed: hence, unless Y is finite
dimensional, it can not be proved that each such function g is of the latter form for
some function & from M to Y.

REMARK 3. An R-simple function (determined by the member M of F) from L
to Y is a function § from L to Y such that § is constant on each set in M and, if p is in
L but not in any set in M, &(p) = 0: it may be noted that if ¢ is determined by the
member M of F then £ is also determined by each member M of F such that each set
in My is filled up by a subcollection of M. Suppose Bisin £ and c is a choice function
from R, ie, if t is in R then c, is an element of t: there is a function ag such that if
each of £; and £, is an R-simple function determined by the member M of F then
Qg(f 1,52) = Zt in M(EI(ct),ﬁ(t)Ez(ct)). With the usual identification of a space hB of
equivalence classes of R-simple functions, one has an inner product space which may
be denoted by {hﬁ,qﬁ}: the computations from the preceding Remark serve to
identify a linear isometry & from {hﬁ’qﬁ} onto a dense linear subspace of {Hﬁ,Qﬁ},
8(8) = Z4 iy MPB-8(cp) with the usual slurring of identification of functions with
equivalence classes, so that {Hﬁ’QB} is seen as a completion of { 113,q5}- Indeed it may
be seen that each continuous linear function A from {hﬁ’qﬁ} to the scalars has the
form N(§) = Z¢ i, M{&(cp),f(t) for some f in Hﬁ’ with § (representing an element of hﬁ)
determined by the member M of F. An interpretation of the facts indicated in the
latter part of Remark 2 is that, for fixed M in F, the set of equivalence classes having
representatives determined by M need not be closed in the completion of {hﬁ,qﬁ} if Y

is infinite dimensional.
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THEOREM 15. If Bis in § then the equations o(u)(t)yn = u(PB+n), for t in R and
nin Y, define a reversible linear transformation o from the collection of all continuous
linear functions u from {Hﬂ,Qﬁ} to {YX-,9} onto the collection of all finitely
additive functions G from R to L(Y)C such that if £ is in Y then G-*§ belongs to Hﬁ,
and if {u,G} isin o then

(1) for f in Hgand M in F, (gD = =¢ 3 (B0 21280 260) s
that, for each fin Hﬁ’ u(h) = fL/F[B‘l/zG'*]*ﬁ'l/Zf with respect to [, and

(2) o isan isometry in the sense that, if b = 0, these are equivalent:

@ (udl<b Nﬁ(f) for each fin Hﬁ, and
(i) qu/F[;rl/2G-*] (812G *1¢) < b20¢0 for each £in Y.

One may view Theorem 15 as an application of Theorem 5 (in the context of the

present section), as reinforced by Theorem 14 together with the computations:

(g D),0) = QIIgMDLG-*£) = Xy 1 B 1260 8071 2G(0*o
for appropriate M, f, and . The integral indicated in 15(2)(ii) is identified as the
member B of L(Y)+ such that u(G-*§) = B¢ for each £ in Y, as in 15(1); hence this
integral exists as a strong limit in L(Y)®. Further proof seems unnecessary.

REMARK 1. Suppose, as in Remark 1 following Theorem 5, that r is in R and
u(f) = f(r) for f in HB’ and let G= o(u): for each tin R, G(t) =Pif(r). If £isin Y
then QB(G'*E,G'*S) = (£8(r)8); if b > 0, these are equivalent:

) fOI<b Nﬁ(f) for each f in Hﬁ> and

(i) 08(r)1/2£0 < il for each Ein Y;
this provides some sharpening of Theorem 13, even as Theorem 5 does of Theorem 1.

REMARK 2. The L(Y)%valued inner product as suggested in Remark 2
following Theorem 5, adapted to the context of Theorem 15, takes the form

(G1.Gy) =fL F[6-1/2G1.*] *[6'1/2G2'*],

/
the latter integrals existing as strong limits in L(Y)®. It may be shown, with the help of
[7, Theorem 5, page 667], that this is the Hellinger operator integral investigated by
Yu. L. Shmulyan [17] - but not heretofore connected with the space {HﬁaQﬁ}~ Ifk is
a function from a member M of F to L(Y)° then there is a member {x,G} of the

transformation ¢ in Theorem 15 which arises from the formulas
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p() = 2, i, MKOI() and G = Z 5, Mk@OPB,
and it may be shown that (G,G) = X, in Mk(r)ﬁ(r)k(r)*. An analysis, analogous to that
indicated in Remarks 2 and 3 following Theorem 14, would be available for R-simple
functions from L to L(Y)®, but details seem inappropriate at this point. Such an
analysis does provide an alternative description of the integrals (GI’G2) as has been
given, for the case of finite dimensional Y, by Shmulyan [18] and by Habib Salehi
[16]: with finite dimensional Y, there is also available the complex inner product
q(Gl,Gz) = trace of (G ,G2) (cf. Remark 2 following Theorem 5).
THEOREM 16. If each of avand B is in 2, Mag is the set to which T" belongs only
in case I' is a function from R X R to L(Y) such that (i) if tis in R then each of T'(+,t)
and T'(t,*) is finitely additive and (ii) there is a nonnegative number b such that, if

each of x and y is a function from a member Mof Fto Y,
IZXE).EDY O <BZEg ) mla®)2x12Z, 1 18O 2y (012

(with EIUI denoting 2 {s,t} in MXM)' and Taﬁ' is the space of all continuous linear

transformations from {HB,QB} to {Hy,Qq}. then the equations
D(O)(s,0n = C(PB+n)(s), for Cin Tozﬁ> {s,t}inRXR,andniny,

define a reversible linear transformation ® from Taﬁ onto myg such that, if the
ordered pair {C,'} belongs to ® and A is the (adjoint) transformation from H, to
Hg determined by Q,(f,Cg) = Qﬁ(Af,g) for {f,g}in Hy, X Hg, then

(1) in order that the nonnegative number b should satisfy condition (ii), it is
necessary and sufficient that, for each gin Hﬁ’ N(Cg) <b Nﬁ(g),

(2) D(s,t)*¢= A(Psoc-g)(t) foreach {st}in RXRand ¢inY,

(3) if £ is in Hy then the equations h(t)(s) = [a(t) V2D (t,9)] *a(t) V/24(1), for

{s,t} in R X R, define a function h from R to Hﬁ such that Af = fL Fh with respect to

/
Nﬁ so that, for each sin R,

Af(s) = fL/F[a'l/zF(~,s)] *oz'l/zf with respect to [},

(4) if g is in Hg then the equations h(t)(s) = [6(t)1/2D(s,t)*1*6(t) 1/ 2g(t), for

{s,t} in R X R define a function h from R to Hy such that Cg = fL/Fh with respect

to N, so that, for each s in R,
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Cg(s) =fL F[[1"1/21"(5,-)*] *g1/2g with respect to 1, and

/
(S) in case a is B and each of {C{ '} and {C,p,I's} belongs to ® and
C=C\Cy if {st}isin RXRand nisinY then

I(s,tn = fL F[ﬁ'l/2l"1(s,')*] *[3'1/21"2(',’[)]17 with respect to [I*]].

/

INDICATION OF PROOF. To see this Theorem as in interpretation of Theorem
6 in the context of the present section, one may first note that if M is a finite subset
of R then there is a member W of F such that each set in M is filled up by a
subcollection of W: hence, the set Myg described here is the Myg from Theorem 6.

Therefore, the computations (with s in R)

ATL(M)f(s),m = QuT,MET(-,9)m) = Z 1 p@(© /280, 120 )m),

(&, CTlg(M)g(s)) = Qp(I(s, ) *£TgM)g) = By iy ;B 120 (s,0%8,8(0) (e,
for appropriate M, f, g, & and 7, serve to make Theorem 14 applicable and so all
assertions through 16(5) are seen to be consequences of corresponding ones from 6.
COROLLARY 16.1. If, in the context of Theorem 16, T' is a function from
R X R to L(Y)C then, in order that T" should be such a member of mMyg that (I)'l(l") isa
linear isometry from {Hﬁ’Qﬁ} onto {H,,Q,}, it is necessary and sufficient that, for

each {s,t}in R X Rand {¢n} in Y XY, (¢ 8)¢ be in Hy, T'(t,)*n be in Hﬁ,

-1/2py. -1/2p. =
fL/F<oz D(-,8)E,07 2D(-,t)m) = (P B(s)ym),

and

-1/21e -1/2 . =

Corollary 16.1 is an interpretation of Corollary 6.1 in the context of the present
section, and may be argued from Theorem 16 even as Corollary 6.1 was shown to
follow from Theorem 6.

REMARK. It was shown by F. Riesz in 1910 (¢f. Lemma on page 75 of [14])
that the Lebesgue spaces of (equivalence classes of) square-summable measurable
scalar functions may always be realized as Hellinger integral spaces. Thus, the present
Corollary 16.1 may be seen to include S. Bochner’s 1934 Theorem [14, page 291 f.]

on representing the unitary transformations in such spaces: Bochner’s cited Theorem
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corresponds to the case wherein (i) Y is the complex plane, (ii) R is the pre-ring of all
bounded right-closed intervals on the real line L, and (iii) each of « and g is the
restriction to R of Lebesgue measure, i.e., is ordinary length.

COROLLARY 16.2. If, in the context of Theorem 16 with o= 3, " is a function
from R X R to L(Y) then, in order that T" should be such a member of mgg that
qJ'l(F) is a Qﬁ-orthogonal projection, it is necessary and sufficient that, for each {s,t}

inRXRand {§n}inY XY, I'(~,8)§ be in HBand

1/2 . '1/2 . =
fL/F<B' (=988 <T(- ,t)m = &,I(s,t)m.

Corollary 16.2 is an interpretation of Corollary 6.2 in the context of the present
section, and may be argued from Theorem 16 with the help of the following: if I’
satisfies the indicated conditions then, for each function x from a finite subset M of R
to Y, (with Ei\',l denoting E‘{s,t} inM XM

ZMX(E),0(s,0%(0) = Qp(Zg y MI(+9)x(8),Z¢ i MTC-,DX(1)) >0,
whence I’ maps R X R into L(Y)C, I'(s,t)* = I'(t,s) for {s,t} in R X R, and if sisin R
then I'(s,*) is finitely additive.

REMARK. As an illustration of Corollary 16.2, with reference to Theorem 14, it
may be noted that if 8 isin £ and M is in F then, for each {s,t} in R X R,

M) = Ty iy MIBW /2P 65)1 * 18wy /2P (1))

THEOREM 17. If each of o and B is in §2, maﬁ(P) is the set to which G belongs
only in case (i) G is a finitely additive function from R to 1L(Y) and (ii) there is a
nonnegative number b such that

KGO < b2E,a(t)8 Bty for each tin Rand {m} in Y XY,
and TaB(P) is the space of all continuous linear transformations C from {HouQﬁ} to
{Hg,Qq } such that C(Pig) = Py(Cg) for each {t,g} in R X Hﬁ’ then the equations
W(C)(tym = C(PB-n)(t), for Cin Taﬁ(P)’ tinR,andninyY,
define a reversible linear transformation ¥ from Taﬁ(P) onto m(xﬁ(P) such that, if the
ordered pair {C,G} belongs to W and A is the (adjoint) transformation from H,, to Hﬁ

determined by Q,(f,Cg) = Qﬁ(Af,g) for {f,g}in Hy X Hﬁ’ then (with ® as in Theorem
16) P G(s) = ®(O)(s,t) for {s,t}in R X R and the following hold:
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(1) in order that the nonnegative number b should satisfy condition (ii), it is
necessary and sufficient that, for each gin Hﬁ, No(Cg)<b Nﬁ(g),

(2) Aisin Tﬁa(P) and G(t)*§ = A(Pta'z)(t) foreachtinRand £in Y,

(3) if f is in H, then the equations h(t)(s) = [a(ty1/2P,G(s)1 *aty1/26(t), for

{s,t} in R X R, define a function h from R to Hﬁ such that Af = fL Fh with respect to

/

Nﬁ so that, for each sin R,

Af(s)=[ /F[a'1/2G] *oz'l/zf with respect to (-],
s,

4) if gisin Hﬁ then the equations h(t)(s) = [ﬁ(t)'l/thG(s)*] *B(t)'llzg(t), for

{s,t} in R X R, define a function h from R to Hy such that Cg= fL Fh with respect to

/

N S0 that, for each sin R,

Cg(s) = fs F[6'1/2G'*] *B'l/zg with respect to -], and

/
(5) in case ais fand each of {C},G{} and {C5,Go} belongs to W and C=C,C,,
iftisin RandnisinY then

Gom =1, (812G -*1*(61/2G m with respect to 1],

/
INDICATION OF PROOF. Suppose, first, that C is in the class Taﬁ from

Theorem 16 with adjoint transformation A as there indicated, that I" = ®(C), and that
G is the function from R to L(Y)® given by G(t) = I'(t,t) for t in R. If C belongs to
Taﬁ(P) then, seriatim,
(i) foreach {f,g}in Hy X Hﬁ and tin R, A(P,f) = P,(Al) since
Qu(Pyf,Ce) = Qu(f,CPyg) = Qp(AL.Pye) = Qg(PyAfg),
(i) for each {f;n} in Hy X Y, and s and t in R, P,L(+,t) = P;{['(-,s) since
Qu(EPT(-,5)m) = (AP f(5),m = (APF(1),) = Qu(F.PI(+,)m),
(iii) for each member M of F filling up the member t of R,
G(t) = Z,, iy MPVTCL00) = 24 5 MPtDCIM = 24 5 MGV,
so that G is finitely additive, and
(iv) P{G(s) = I'(s;t) for {s,t} in R X R, as in the Proof of Theorem 8.
If, on the other hand, G is finitely additive and P;G(s) = Is,t) for each {s,t} in
R X R then, for each {f,;n}in H, X Y and {s,t}in R X R,
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(i) if s does not intersect t then PSPtf =0 in H, so that
(AP f(s),m = Qu(P¢f,P G ) = Qu (f,PP G ) = 0 = (P Af(s),m), but
(ii) if M is a member of F filling up the common part of s and t then
(APtf(s),n> =Zyin MQuEP,Gn) = Z, iy M(Af(v),n) = (P, Af(s),m),
so that A(Ptf) = Pt(Af), whence C is in Taﬁ(P) as in the preceding argument (i).
Suppose, now, that G is a finitely additive function from R to L(Y) and that T is
defined on R X R by F(s,t) = PG(s). It is clear that if b = 0 and the condition (ii) for
membership of I' in Mg (Theorem 16) holds then condition (ii) for membership of G
in maB(P) holds - consider degenerate members of F. Suppose that G is in ma,G(P) and
that b is a nonnegative number so that the condition (ii) of the present Theorem
holds. Let each of x and y be a function from a member M of F to Y: with Zl(/'[

denoting X {s,t} in MXM 28 before,

IZ3XE),TE,OYED 2 = 12y i MXW).GWy 2
< {2y i Mol 2x )l 18w 2y 2

<b2E 1 ple® 2122, i, I8 2y,

The foregoing considerations may be arranged, along with those from the preceding
paragraph, to produce an argument for Theorem 17 based on Theorem 16.

REMARK. Theorem 17 is an extended version (as reinforced by Theorem 14) of
a theorem which I propounded in 1962 to P. H. Jessner, and for which he gave a proof
in his Dissertation [6, Theorem 4.1]. One of Jessner’s remarkable discoveries in this
connection [6, Theorem 4.2] takes the following form in the present context. If o and
B are finitely additive functions from R to L(Y)Jr then, in order that the space
{H,,Q,} should be approximately included in {HB’Qﬁ} (¢f. Remark 1 following
Theorem 3 of the present report), it is necessary and sufficient that there should be a
finitely additive Hermitian valued function G from R to L(Y)C such that if s is in R
and {£n}isin Y X Y then P{G-£ belongs to Hﬁ and

Eatm = /Fw‘” 2G-£12Gp);

if, moreover, each of the spaces {H,,Q,} and {Hﬁ’Qﬁ} is approximately included in
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the other, then there exists a finitely additive function G from R to L(Y)+ such that
the preceding hold as stated and also hold with a and g interchanged. Hence, Corollary
17.1 provides a refinement of the latter result by identifying such a G from R to
L(Y)" with a special kind of linear isometry from {H,,Qq} onto {HB’QB} .
COROLLARY 17.1. If Gis a finitely additive function from R to L(Y)C then (in
the context of Theorem 17), in order that G should be such a member of maﬁ(P) that
V' XG)is a linear isometry from {HB,QB} onto {H,,Qp}, it is necessary and sufficient

that, for each sin Rand {{n}inY XY, P.G-£ belong to H, PG *n belong to HB’

I /F(""l/ 2G50 2G = & sy,

and

I F<ﬁ'1/20-*s,ﬁ'1/zc-*n> = Eals)m.

/
Corollary 17.1 may be argued from Coroliary 16.1 and Theorem 17 with the help

of the following: if G satisfies the indicated conditions and M is a member of F filling

up the common part of the sets s and t in R then, for{{,n} in Y X Y,
EPPBEM = Zy iy MEBOIM = Zy i, MQu(PyG £.P,G )
=2y in MQu(PsG"£P G n) = Qy(PG £, P PG n)

= QPG £.P,G 1)
and, similarly, (E,Pta(s)m = Qﬁ(PSG'*E,PtG°*n).

COROLLARY 17.2. If G is a finitely additive function from R to L(Y) then (in
the context of Theorem 17 with o= ), in order that G should be such a member of
mﬁﬁ(P) that \I/'I(G) isa Qﬁ-orthogonal projection, it is necessary and sufficient that,
foreachsin Rand {§n} inY XY, PG-§ belong to Hﬁ and

I F«i'” 2G-£812G-m = ¢,G(s)m.

/
Corollary 17.2 may be argued from Corollary 16.2 and Theorem 17 with the help

of computations, similar to those indicated for Corollary 17.1, to show that if G is
as indicated then <¢,P,G(s)n) = Qﬁ(PSG°£,PtG-n) for appropriate s,t.£n .

REMARK. As an illustration of Corollary 17.2, it may be noted that if r is an
element of R and C is the restriction to HB of P, then Y (O)(t) = Prﬁ(t).
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THEOREM 18. If aand  are member of S then
(1) Hy is a subset of Hﬁ only in case there is a nonnegative number b such that if
{t,n} is in R XY then {na(t)n) < bin,B(t)n), in which case the least such b is the least

nonnegative number c such that

1/2 2 < -1/2¢6n2 ,
fL/F]]ﬁ' fll <ch/F[|o< < for each fin H,

and, with n(e.B) the transformation defined by Qu(fm(a,B)g) = Qﬁ(f,g) for {f.g in
H, X Hﬁ, w(a,B) belongs to maﬁ(P) (as in Theorem 17)and if gis in HB then

w(a,B)g(s) = fS/F[B'l/za] *ﬁ'l/zg with respect to |+l for each sin R,

2) HOH'B is the vector sum Ha-'i'Hﬂ of Hy and Hﬁ and, if his in Haﬂi’ then

-1/2002 = i -1/2¢n2 -1/2_n2
fL/F[l(a+ﬁ) h(l mmlmum{fL/FI]a £l +fL/F[]ﬁ gl-}

forall fin H and g in Hﬁ such that f+g=h, and
(3) the equations, for {tm} in RXY,

(Bt =%l (ectB)(D)n - f, /F[(wﬁ)'l/ 2(a-8)1 *[(ctB) 12 (a-B) 1 m}

- ft/F[(a*‘B)'l/ 2a) * [ (actB) 1281 with respect to 1],

define a finitely additive function o:f from R to L(Y)+ such that Ha:ﬁ is the common

part HaHB of Hy, and HB, and if each of fand gis in Ha:ﬁ then

126 (8120 = -1/2¢ ,1/2 -1/2¢5°1/2
fL/F((a.ﬁ) f,(c:f) " 4g fL/F(a fa g)+fL/F(B .84 9.

Theorem 18 may be seen as a direct consequence of Theorem 3, as reinforced in
the context of the present section by Theorems 14 and 17. No proof is offered.

REMARK. It may be argued, just as in the Remarks following Theorem 3, that
the parallel summation of finitely additive functions from R to L(Y)+ (indicated in
Theorem 18(3) by a:f for a and § in 2) is both commutative and associative.

COMMENT. In continuation of the Remark immediately preceding Corollary
17.1, P. H. Jessner’s discoveries [6, Theorems 3.1 and 3.2], adapted to this context,
yield a symmetric function J from £ X £ such that, for each {a,8}in £ X £, Jaﬁ isa
finitely additive function from R to L(Y)+ with these properties: (i) if sisin R and &
is in Y then PsJaB"E belongs to HaHﬁ and (ii) {Hg,Q, } is approximately included in
{Hﬁ’Qﬁ }only in case, foreach tin Rand {§m} inY X Y,
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Catm =1 G 20op 81205,

/
With reference to Remark 1 following Theorem 3, and with a slight extension of the
m-notation from Theorem 18, the function J may be described as follows: if each of «
and B is in  then w(a:B,048) = w(a,atf)m(f,04B) and, with n(a:ﬁ,a+ﬁ)1/2 the square
root of m(a:B,a+f) which is Hermitian and nonnegative with respect to Qoz+6’
PtJaﬁ'"= n(a:ﬁ,a+ﬁ)1/2(Pt(a+6)-n) for each {t,n} in R X Y, and the function M,
mentioned in Remark 1(3) after Theorem 3, satisfies M(s,t) = PtJaﬁ(S) on R XR. It
may be noted, on the basis of Theorem 7(1), that the space Ha:ﬁ is the image of Hoz+ﬁ

under the transformation n(a:ﬁ,a+6)1/ 2

as described here. The failure (with Y infinite
dimensional) of approximate inclusion to be transitive persists even in this context
[10]- if the pre-ring R consists of the right closed intervals (0,1], (1,2], and (0,21,
but Y is not finite dimensional, then there exist three finitely additive functions «, 8,
and vy from R to L(Y)* with the following properties:

(1) the function B is scalar valued and a(L) = (L) = y(L) =1,

(2) there exist finitely additive functions G and Gy from R to L(Y)+ such that,

for each set t in R,

at) =ft/F[ﬁ'”2G1]*[ﬁ'1/2G1] and B(t) =, [v1/2G,] *(v1/2G;1, and

/

(3) there does not exist a finitely additive Hermitian valued function G from R
to L(Y)C such that if t is in R then a(t) = ft/FwWG] [y 12g].

THEOREM 19. Suppose o and B are members of §1 such that H, is a subset of
Hﬁ, Aisin Ty, and Bis in Tﬁﬁ (in the notation of Theorem 16), and I'(a) and T'(B) are
functions from R X R to L(Y)® defined by

F(e)(s,tn = A(Pra-n)(s) and T(B)(s,t)n = B(PB-1)(s)

for {s,t} in R X Rand nin Y. With m(a,B) as described in Theorem 18(1),

(1) in order that A should be a subset of B, it is necessary and sufficient that if
{s,E}isin R X Y then ['(a)(s,*)*E = m(o,B)T(B)(s,*)*§), and

(2) if A is a subset of B then, in order that the adjoint of A with respect to Qq
should be a subset of the adjoint of B with respect to Qﬁ» it is necessary and sufficient
that if {t;n}isin R XY then T'(@)(-,t)n = w(o,NT(B)(-,tn).

THEOREM 20. Suppose a and  are members of S such that H, is a subset of
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HB, Aisin Tozoz(P) and B is in Tﬁﬁ(P) {in the notation of Theorem 17), and G(&) and
G(P) are functions from R to L(Y)° defined by

G(e)(tn = AP n)(t) and G(B)(t)n = B(PB+n)(©)
fortin Rand nin Y. With n(c,B) as described in Theorem 18(1),

(1) in order that A should be a subset of B, it is necessary and sufficient that if
{s,£} isin R X Y then P.G(o)-*£ = m(a,B)(P{G(B) - *£), and

(2) if A is a subset of B then, in order that the adjoint of A with respect to Q,,
should be a subset of the adjoint of B with respect to Qﬁ’ it is necessary and sufficient
that if {t;}isin R XY then P, G(o)*n = m(a,B)(P;G(B) ).

Proofs for Theorems 19 and 20 are readily available on the basis of Theorems 16,
and 17, respectively, with the help of the Corollary to Theorem 7.

Operations on the Linear Span of a Family of Spaces. It is now supposed
concerning the collection  of finitely additive functions from R to L(Y)+ that if «
and f are such members of £ that neither of H, and Hﬁ is a subset of the other then
both the arithmetical sum oatf and the parallel sum o:f as described in Theorem
18(2,3) belong to 2; S(2) denotes the linear span of the spaces H, for ain &, and 7
denotes a function from the subset of £ X £ to which {o,8} belongs only in case H,
is a subset of HB’ in which case w(,8) denotes the linear transformation from Hﬁ to
H,, as described in Theorem 18(1). It may be seen here, just as in [12], that the
ordered triple {H,Q,7} determines an inverse limit system in the sense that if each of
o, 3, and v is in & then (i) if Ha is a subset of Hﬁ then 7(«,B) is a continuous linear
transformation from {Hﬁ,Qﬁ} to {Ha,Qa}, (ii) if Hy, is a subset of Hﬁ and Hﬁ is a
subset of H’Y then m(a,y) is the composite transformation w(e,8)w(8,v), and (iii) if H,,
is Hﬁ then m(B,c) is the inverse of the transformation m(«,B8). The operational inverse
limit space determined by the triple {H,Q,n} is the linear space to which V belongs
only in case V is a function from £ such that, for each « in @, V(&) is a finitely
additive function from R to L(Y)® and, if £ is in Y, V() *£ belongs to H, and if 8 is
such a member of £ that H, is a subset of Hﬁ then V(o) *E = w(a,B)(V(B)-*£) - this
operational inverse limit space is denoted by OPER-INV-LIM-{H,Q,7}.

OBSERVATION 1. Each collection SZO of finitely additive functions from R to
L(Y)+ determines a collection §2 of the type supposed here: by Theorem 18, one may
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(perhaps generously) take £ to be the common part of all collections 21 such that
(i) §2; is a collection of finitely additive functions from R to L(Y)+ of which QO isa
subcollection and (ii) for each a and §in £}, both a+ and o:B belong to §2.
OBSERVATION 2. If, in the preceding Observation, each member a of SZO has
the property that if £ is in Y then a-£ belongs to Hy, Theorem 18 may further be used
to show that each member of £ may also be assumed to have this property.
OBSERVATION 3. It would be possible, with minor changes in notation, to
have a theory analogous to that presently contemplated but with the following type of
convexity condition imposed on : if & and f are such members of £ that neither of
H, and Hﬁ is a subset of the other then both the arithmetic mean %(a+8) and the
harmonic mean 2(o:f) belong to §2 (the latter terminology is consistent with the
notion of the harmonic mean of two positive numbers, commonly the reciprocal of
the arithmetic mean of their reciprocals). This will not be done, although such
formulas as Hz(a: B = HozHB and Q2(a:{3) =%(Qq + Qﬁ) may be noted: these would
have a special significance in the case that each of « and f is projection valued,
inasmuch as 2(a:B) is then also (orthogonal) projection valued. This latter fact is a
simple consequence of the fact (noticed by Fillmore or Williams [4, page 279], as an
extension of an Anderson-Duffin result [1] for finite dimensional Y) that if A and B
are projections in L(Y)+ then their harmonic mean E = 2(A:B) is that projection in
L(Y)+ which maps Y onto the common part A(Y)B(Y) of A(Y) and B(Y); a way of
seeing this is to notice (with reference to Theorem 35P) that E = E2, in consequence of

the fact that if x belongs to E1/2(Y) = A(Y)B(Y) then
DB/ 2x02 = 150 1A 1 /2x0 241871 /2x02) = {NAXDZ+IBxD%} = {0x02+0x1%} = [x]2
so that, in particular, if £ is in Y and x = E§ then
&Ep = 1EV/2¢12 = 1E"1/2x02 = 0x0? = [E£02 = (B 2p).
THEOREM 21. If Dy is the space of all linear functions u from S(2) to Y such
that, for each o in §, the restriction to Hy of u is continuous from {Ha,QQ} to
{Y ()} then the equations o(p)(a)(t)n = w(Piom), for pin Dy and ain Q and tin R

and m in Y, define a reversible linear transformation o from Dg onto all of

OPER-INV-LIM-{H,Q,7} such that if the ordered pair {u,V} belongs to o and fis in
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S(2) then u(f)is an integral in the following sense: for each o in S such that f belongs
to Hy, u(f) = fL/F[o[l/ZV(oz)-*] *a'l/zf with respect to the norm [|*[l.

INDICATION OF PROOF. That ¢ is a reversible linear transformation from D
to a subspace of OPER-INV-LIM- {H,Q,n} follows directly from Theorem 15, as does
the indicated integral representation. It remains to be shown that the o-image of D is
all of that operational inverse limit space. Suppose, now, that V is a point in
OPER-INV-LIM-{H,Q,n}. If f is in S(§2) and « and B are such members of £ that f
belongs to Hy, and to Hﬁ then one of the following conditions is satisfied:

(i) oneof H, and Hﬁ is a subset of the other, in which case if £ isin Y then

Quf, V(@) - *£) = Qp(f,V(B)-*§), or
(ii) neither of H, and Hﬁ is a subset of the other, in which case a:8 is in , f

belongs to Ha:B (which is the common part HaHB), and if £isin Y then
Quf; V(@) *§) = Qpy. plf, Vi:8) - *£) = Qp(f,V(B) - *E).

Therefore, by Theorem 15, the indicated integral formulas define a function u from
S(§2) to Y such that if « is in §2 then the restriction to H,, of u is a continuous linear
function from {H,,Q,} to {Y(,*)}. If f and g are functions belonging to S(2) and «
and 8 are members of €2 such that f is in H, and g is in Hﬁ but not in H,, then one of
the following conditions is satisfied:

(i) H, is a subset of Hﬁ, in which case if £isin Y then

Qu(£,V(0)*£)+Qp(g,V(B) - *E) = Qa(f,V(B)- *E)+Qa(f,V(B)-*£), or
B B
(ii) H, is not a subset of Hﬁ, in which case a+tf is in £2, f+g belongs to Ha+ﬁ

(which is the vector sum of H,, and Hﬁ)’ and if £ isin Y then

Qu(f, V()= *£)+Qplg, V(B) - *£) = Quyp(f,V(eetf) = *£)+Qpp p(g, Vatth) - *£).

It follows, by symmetry, that p is linear on S(§2) and so belongs to the space Dy,.

NOTATION. E; is the algebra of all linear transformations C from S(§2) into
S(£2) such that, for some nonnegative number b, if a is in £ then C maps H, into H,
and N, (Cf) <b N, (f) for each f in H,, the least such b being the norm (C| of C; E, is
the set of all C in E| such that if t is in R then C(P{f) = P(Cf) for all fin S(2); E3 is
the set of all Cin E; such that if & and 8 are members of £ such that H, is a subset of
Hﬁ then C(w(e,B)g) = m(a,B)(Cg) for each g in Hﬁ; E4 is the common part of E2 and
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Ej.

REMARK. There is a natural norm-preserving involution in the algebra E5: it is a
consequence of Theorem 7 that if Cis in El then, in order that C should be in E3, it is
necessary and sufficient that there be a member A of E| such that if e is in £ then the
restriction to H, of A is the adjoint with respect to Q,, of the restriction to H,, of C -
this member A of E3 is the Q2-adjoint C? of C.

THEOREM 22. There is a linear isomorphism ® from E| onto the collection of
all functions T from S such that (i) if ois in § then () is a function from R X R to
L(Y)® and, for each t in R, each of T(a)(-,t) and T(a)(t,*) is finitely additive,
(ii) there is a nonnegative number b such that, for each a in  and M in F, if each of x

and y is a function from M to Y then (ZM is X (5.6} in M X M)
S ()T sDY M <22 plla) Zx(©)I2Z, )yl 2y )02,

and (iii) if o and B are such members of S that H, is a subset of Hﬁ then, for each
{s,£}in R XY, T()(s,*)*¢ = w(o,B)(T(B)(s,*)*§). if {C,T} isin ® then

(1) for each {am}in Q X Y and {s,t}in R X R, N(e)(s,t)n = C(Py*n)(s),

(2) the norm |Clof C is the least nonnegative number b such that (ii) holds,

(3) a necessary and sufficient condition for C to belong to Ejis that if aand 8
are such members of S that H, is a subset of Hﬁ then, for each {t;m} in RXY,
I'(a)(+,t)n = m(e,B)I(B)(*,t)n), and if C does belong to E3 then, for each a in 2 and
{s,t}in R X R, ®(CY(a)(s,t) = T(@)(t,5)*,

(4) if fisin S(82) then Cfis an integral in the following sense: if o is in Q and f is
in Hy then the equations h(t)(s) = [a(t) /2D ()(s,)*1*a(t) 1/28(t), for {5t} in
R X R, define a function h from R to H, such that Cf = fL/Fh with respect to N, so

that, for each s in R,

Cils) =/, /F[a'l/ 21(a)(s,-)*1*o7 V2 with respect to 111l, and

(5) in case each of {CI,FI} and {C2>F2} belongs to ® and C=C|Cy, if ais in
Qand {s,t}isin R X Randnisin Y then

Dee)(sm =7 Ler/20 @6, )¥1 4120 0 m with resepet 0 111,

/
Theorem 22 may be proved, with the help of Theorems 16 and 19, with the type

of argument indicated in support of Theorem 21.
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THEOREM 23. There is a linear isomorphism ¥ from Eq onto the collection of
all functions G from $2 such that (i) if a is in Q then G(a) is a finitely additive
function from R to L(Y)C, (ii) there is a nonnegative number b such that, for each o

inQand tin R, if §n}isinY XY then
KEG(e) (DM < b2Ea(t)Dm.a(m),

and (iii) if o and B are such members of Q) that H, is a subset of HB then, for each
{s,£} in R XY, P,G(a)-*£ = m(o,)(PSG(B)-*£). if {C,G} isin ¥ then

(1) for each {an} in & X Yand tin R, G(a)(t)n = C(Ptcx-n)(t),

(2) the norm |C|of Cis the least nonnegative number b such that (ii) holds,

(3) a necessary and sufficient condition for C to belong to Ey is that if aand 8
are such members of QU that H,, is a subset of Hﬁ then, for each {t;m} in RXY,
P,G(a) n = m(e,$)(PG(B) ), and if C does belong to Ey then, for each ain § and tin
R, ¥(C¥)(e)(t) = G(a)(1)*,

(4) if fisin S(2) then Cfis an integral in the following sense: if ois in S2 and fis
in Hy, then the equations h(t)(s)= [a(t)'l/thG(a)(s)*] *a(t)'l/zf(t), for {st} in
R X R, define a function h from R to Hg, such that Cf = fL

that, for each sin R,

Fh with respect to N, so

/
Cf(s)=J /F[a'l/zG(a)-*] *a'1/2f with respect to [|*l], and
s
(5) in case each of {C{,Gy} and {C2,G2} belongs to ¥ and C = CC,, if ais in

Qandtisin Rand nisin Y then

G(o)(t)n = ft/F[a'l/zGl(oz)-*] *[a'l/sz(a)]n with respect to ||l

Theorem 23 may be proved, with the help of Theorems 17 and 20, with the type
of argument indicated in support of Theorem 21.
REMARK. The condition (iii) on the member G of the ¥-image of E, is readily

seen to be equivalent to the condition that, for each {v,§} in R X Y,
Glo)(v)*E= fv/F[ﬁ'l/za] +g1/2G(B)-*¢ with respect to [I[]
(inthe light of such formulas as P.G(e)(t) = Z ;,, MG(e)(v) for M in F filling up {st});

the latter display may be rewritten, for each {v,y} in R X Y, as
Gleown =1, /F[EI/ZG(B)'*] #6120 with respect to [,
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inasmuch as the latter integralis, by Theorem 23(4), \II'I(G)(PVot'n)(v). Now, the
condition (3) for \If'l(G) to belong to E, is: for each {vp} inR XY,

Gle)m =/, /Fur‘/%z] *g1/2G(8)-n with respect to [[.

Hence, it may be noted that if each member of & is scalar valued then E2 is E4, an
observation consistent with Theorem 15 of [12]. Similar computations may be used
to show that, if each member of £ is scalar valued, OPER-INV-LIM-{H,Q,7} is indeed
a subset of the space previously denoted by INV-LIM-{H,Q,7} and consisting of all
functions U from £ such that, if aisin 2, U(c) is a finitely additive function from R
to L(Y) and, for each ¢ in Y, U(a)+£ belongs to H,, and if § is such a member of Q that
H,, is a subset of Hﬁ then U(a)- ¢ = m(e,B)UB)-£) [12].

THEOREM 24. Let § be a function from Dg (of Theorem 21) such that if u is in
Dq then {(u) is the linear transformation from S(2) to a set of functions on Rto' Y
given by ¢(Wi(t) = u(Ptf) for fin S(Q) and t in R, and D be the subset of Dq to
which the member yof DO belongs only in case {(u) belongs to E:

(1) if wis in Dy and fisin S(2) then u(f) = fL/Fg’(u)f with respect to [,

(2) if pisin Dy then, for each s in R and fin S(2), {(uNP D) = P.(§ (1), so that
the §-image of D is a subset of E,,

(3) if wisin Dy then ¥(§(p)) = o(n) (with ¥ as in Theorem 23) and

(4) in order that the {-image of D, should be all of E,, it is necessary and
sufficient that ifaisin Qand §isin Y then a-§isin Hg, ie., fL/Fa'E exists.

Theorem 24 is a consequence of Theorems 21 and 23.

NOTATION. The direct sum of the spaces {HwQa} (for « in ), with the usual
inner product, is here denoted by {Z{H,Q} ,QS;} ,and A denotes the algebra of all
continuous linear transformations in this space. A denotes the set of all Bin A with

a representation A such that

Qg’i(Bf,g) =24 in ©Qu(AB) I8y for all fand gin ¢ {H,Q}
where, for each a in 2, A(B),, is a continuous linear transformation in {Hona} and if
B is such a member of £ that H, is a subset of Hﬁ then A(B),, is the restriction to Hg,

of A(B)ﬁ; A,y s the set of all B in Ay such that if « is in & and h is in H, then
A(B)a(Pth) = Pt(A(B)ah) foreach tin R; Ag is the set of all Bin A, such that if « and
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B are members of 2 and H, is a subset of Hﬁ then, for each h in Hﬁ’ A(B),(m(a,)h) =
w(a,B)(A(B)ﬁh); A, is the common part of Ay and Aj.

THEOREM 25. Each of Ay, Ay, Az, and Ay is a weakly closed subalgebra of
Ap the member B of Ay belongs to A3 only in case Ay contains the adjoint with
respect to Qﬁ of B, there is an isometric algebra-isomorphism Z from El onto A
given by

Qé(Z(C)f,g) =2y in ©Qx(Clys8e) for Cin E, fand gin EQ{H,Q},
the transformation Z maps Ej onto Aj for j=2,3,4, and the restriction to Ej of Zis
involution-preserving in the sense that if C is in Eg then Z(C?) is the adjoint with
respect to Qﬁ of Z(C).

A proof for Theorem 25 may be constructed, along the lines of that given for
[12, Theorem 251, by considering special weak neighborhoods of members of Ag»
then of A}, and by applying appropriate consequences of Theorems 22 and 23.

REMARK 1. Theorem 25 may be used to describe the idea of a member C of E;
or of E4 as being, e.g., Hermitian, normal, or unitary, in terms of the corresponding
property of Z(C) in A3 or in Ay: suitable reinforcements of Theorems 22 and 23 by
Corollaries 16.1 and 16.2, and by Corollaries 17.1 and 17.2, respectively, may be used
to give integral formulas involving “‘spectral resolutions” of such C.

REMARK 2. There is a sense in which the inner product QS/:Z may be viewed as
an integral. Consider the direct sum {Yﬂ,(-,'>9} of & copies of {Y(+,*)}: Y& is the
set of all functions x from £ to Y such that there is a nonnegative number b such that
Zyin W“xaﬂ2 < b for each finite subset W of £2, and if each of x and y is in YQ then
XY= Zy in Q%Yo (¢f. Remark 3 following Theorem 5). Now, as an extension of
the notation indicated in Theorem 14, if M is a member of F then there is an

orthogonal projection II(M) in the algebra Ag determined by
QQMMIE) = 2y, in 0Qu(TM)fy.g,)
= Zoin 05t in M@V 210,000 2g (1),

for f and g in ZQ{H,Q} , and this draws attention to functions x and y from R to y$2

determined by the equations,

x(t)g = (t) /28, (t) and y(1), = o)1/ 2g (1) for {ta}in R X ,
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such that if M is in F then Qﬁ(H(M)f,g) =Ztin M(x(t),y(t))n. The following may be
proved: if each of f and g is in £ {H,Q} and € >0, there is a finite subset W of Q
and a member Mg of F with the property that, for each finite subset W of £ which
includes W(y and each member M of F such that each set in My is filled up by a
subcollection of M,

IQG(E8) - Zg in WEt in M@ /20,0ty g (101 <e.

REMARK 3. The approximation process indicated in the preceding Remark
might be further formalized as follows. With R’ the pre-ring consisting of all subsets of
§ X L of the form {a} Xt for @ in § and t in R ({«} denotes the degenerate subset
of © of which a is the only member), let F' denote the family of all finite
subcollections M’ of R’ such that no element of £ X L belongs to two sets in M'. Now,
the formulas w({a} X t)=a(t) (for {a,t} in & X R) determine a finitely additive
function w from R’ to L(Y)+; also, the transformation & consisting of all {f,f' }such
that f is in £ {H,Q}, and f' is the function from R’ to Y determined by f'({a} X t) =
f,(t) for {a,t} in £ X R, maps EQ{H,Q} onto a set of finitely additive functions
from R’ to Y. If each of {ff'} and {g.g'} belongs to § and {a,t} is in £ X R and
u= {a} Xt then

@ty 125 (0),0(t) 1 2g4(1)) = (w(uy 12 (), w(uy 1/ 2g uy.
Inasmuch as, for each finite subset W of § and each member M of F, F’ contains the
collection M’ consisting of all {a} X t for «in W and t in M, it may be shown that § is
a linear isometry from {ZQ {H,Q},Q&} onto that Hellinger integral space generated

by w (relatively, of course, to the pre-ring R'):

. -1/2 172, vy = -1/2 -1/2

for all f and g in EQ{ H,Q}, on the basis of Remark 2, with the help of Theorem 10.
This construction is not peculiar to the special assumptions on §2 in this section.
Miscellaneous Examples. Let ||, denote the usual norm for L(Y)C, so that if A is
in L(Y)€ then |A|C is the least nonnegative number b such that [An <b [Inl| for each
n in Y. With reference to Theorems 23 and 24, the following Theorem may be proved.
THEOREM 26. Suppose, of the collection 2, that if aisin Q and £isin'Y then

a-§ belongs to Hy, Then there is a norm ||+l for S(§2) with these properties:
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(1) if fis in S(2) then |f|| is the least nonnegative number b such that, if u is in
Dy, luMlI <b [§(p)l, and
(2) if fisin S(§2) and s is in R then, for each ain § such that fis in H,,

D) < I < NyOUf /chyz.

INDICATION OF PROOF. It may be recalled, from Theorem 24(4), that D is a
complete space with respect to the norm |{(*)|; moreover, a linear function § from
S(2) to the set of all linear transformations from D, to Y is determined by the
equations 8(f)u = u(f), for f in S(£2) and p in Dj. To show that 26(1) does define a
norm |[|+]| for S(2), it is sufficient to show that § is reversible and if f is in S(£2) then
8(f) is continuous with respect to the ordered pair {{(+),0*[I} of norms on D and Y,
respectively. If f is a nonzero member of S(£2) then there is a set s in R such that
f(s) # 0; there is a member G of OPER-INV-LIM-{H,Q,7} such that if « is in § then
G(o) =Py and, foreach tin Rand {§7}inY XY,

KE.Glo)(t)m) 12 < (&, Pa(t)EXn Py} < ()X 0 )Y,
hence, G is in the ¥-image of E, and {\II'I(G)I <landifu= o'l(G) then it is true that
6(Hu = wu(f) = f(s) # 0: thus, the function & is reversible. Suppose, now, that f is in

S($2): if p is in Dy and G = o(u) then, for each « in  such that f belongs to H, and
eachniny,

No(G(@)*m? = 1| FUa'1/2G<a)-*nn2 <K@Rr F[Iozl/z'n[lz = |§(M)I2<n,fL s

/
so that N(G(a)**n) < |f

/

L/Fallc/zl]n[[ |¢(p)], from which it follows that

Ku(£),m = 1Qu{f,G(e) - *n)| < Ny (DN (G(a) - *n) < Ny (DS allc/zlf(u)l Inl,

L/F
whence [u(H] < Na(OIfL/FaIIC/zlf(p)I. This establishes the aforementioned
continuity of §(f), yielding thus the norm ||*|| for S(£2), and also serves to give the
second indicated inequality in 26(2); as to the first inequality indicated in 26(2), that
follows from the existence (as indicated earlier in this paragraph), for each s in R, of a
#in Dy with [f(p)] <1 and p(f) = {(s) for f in S(£2).

TERMINOLOGY. Suppose the collection £ in Theorem 26 consists of all
finitely additive functions « from R to L(Y)+ such that if £isin Y then a-§isin H,: a
finitely additive function G from R to L(Y) is said [9, page 76] to be of bounded



118 J.S.MAC NERNEY

variation with respect to (-,+) provided there is a member { a,8} of & X £ such that if
{&n} isin Y XY and t is in R then I(E,G(t)'rpl2 < ¢,a(t)EXn B(t)m), and in this case
{o,B} is called a dominant pair for G (c¢f. Theorem 17). Thus, in case £ is the
aforementioned collection, it is consistent to refer to S(§2) as the space of all functions

E3]

(from R to Y) “of bounded variation with respect to {-,-),” and to call ||*]| (from
Theorem 26) the total variation norm corresponding to {+,*): it may be recalled from
Theorem 10 that a finitely additive function f from R to Y belongs to S(£2) only in
case there is a member {a,h} of & X § such that h is real (scalar) valued and if {t;n}
isin R X Y then [(f(t),m]? < h(t)n,c(t)n).

Now, with the Supposition of Theorem 26, if « is in £ then one might define a

norm ||-|l, for H, as follows: if f is in H,, [Ifll, is the least nonnegative number b such

that if G is a finitely additive function from R to L(Y) and
I(.‘g,G(t)n)l2 < (E,a(t)EXn,a(t)yp) foreachtin Rand {¢n}inY XY

then I]fL/F[oz'l/zG-*] *a'l/zf[] <b. As has been shown previously [12], if each
member of £ is (real) scalar valued and « is in £2 and f is in H,, then |Ifll,, = lIfll and is
the total variation of f with respect to the norm [*{|: in particular, in this case, if o and
B are members of  and f belongs to the common part HaHﬁ then |Ifll, = ”ﬂlﬁ' That
this latter can not be proved in general may be seen from the following Example, in
which appeal is made to Theorem 6P, with Y two dimensional.

EXAMPLE 1. Let R be the pre-ring consisting of two mutually exclusive sets s
and t, Y be (complex) two dimensional, B be a member of L(Y)+ having eigenvalues 2

and 1/2, and Q consist of the functions « and 8 defined on R to L(Y) as follows:
o(s) = B(s) = 0, a(t) = 1, and B(t) = B.
It may be seen that H, = Hﬁ and consists of all functions f from R to Y such that
f(s) = 0; let x be a member of Y such that Bx = 1/2x and [x] = 1, and f be the member
of S(£2) such that f(s) =0 and f(t) =x. If D is in L(Y) and DI, <1 and G(s) = 0 and
G(t)= D then fL/F[a‘1/2G~*] *a’1/2f = Dx: it may be seen from this that [Ifll,, = 1. If
G is a function from R to L(Y) such that G(s) = 0 then by Theorem 6°P, in order that
KE,G(OMIZ < (&,8(t)6Xn,B(t)m) for each {£n} in Y X Y,

it is necessary and sufficient that G(t) = BI/ZDB]/2 for some D in L(Y) such that
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(D], <1, in which case

fL/

since there is a unitary member D of L(Y) such that BDx = 2 Dx, it may be seen from

this that IIfIIﬁ =2 #|fll,-

le/zc.*] +51/2¢ = [B1/2G(ty* ) *B-1/2x = [D*B1/2] *B"1/2x = B1/2pB-1/2;

In case Y is finite dimensional it may be shown that, if § is a finitely additive
function from R to L(Y)+ such that §+§ belongs to Hﬁ for every £ in Y, then f is of
bounded variation with respect to the norm |-|.: hence, with the help of Theorem
18(1), there is a finitely additive scalar valued function « from R to L(Y)Jr such that
fL/F7 exists and Hﬁ is a subset of H’Y' In the foregoing situation, with particular
reference to the representation in Theorem 15 and the Remarks 1 and 2 immediately
thereafter, it might be of interest to show that there exists a finitely additive scalar
valued function « from R to L(Y)+ such that H, = HB. This can not be proved.
Indeed, for the foregoing situation with Y of finite dimension greater than 1, it can
not be proved that there is a nontrivial finitely additive scalar valued function « from
R to L(Y)Jr such that H, is a subset of Hﬁ~ Consider the following Example.

EXAMPLE 2. Suppose Y is of finite dimension n+l > 1, R is the pre-ring of all

degenerate subsets of the set L of integers O through n, and {gp}g is a simple ordering

of an orthonormal set in {Y,{-,*)}. Let 8 be defined from R to L(Y)‘IL by

B({p})m= (n,gp)gp foreachpinLandninY,

and suppose « is a scalar valued function from R to L(Y)+ such that H is a subset of
Hﬁ' By Theorem 18, there is a nonnegative number b such that if p isin L and 7 is in
Y then a({p})[lnl]2 < b(n,B({p} ). Now the function o has only the value 0 since, for

each p in L, there is a q in L different from p so that
0 <a({p}) =a({p})lgql? < blgg B{p}ey) = bleg.,Xep.eq) = O-

In the case that Y is infinite dimensional, it can not be proved that if § is a

finitely additive function from R to L(Y)+ such that f L Fﬁ-g’ = ¢ foreach ¢£in Y then

/
either (i) there is a nontrivial finitely additive scalar valued function « from R to
L(Y)+ such that H, is a subset of Hﬁ or (ii) there is a finitely additive scalar valued
function y from R to L(Y)+ such that Hﬁ is a subset of HT Consider the following

Example.
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EXAMPLE 3. Supposing that Y is infinite dimensional, there is a member B of
L(Y)+ with spectrum the number interval [0,1]: let R be the pre-ring consisting of all
such subsets t of L =[0,1] that either t is L or, for some numbers p and q with
0<p<qg <1, tis the interval [0,p] or t is the right-closed interval (p,q], and let 3 be
the restriction to R of the spectral resolution of B. If « is a finitely additive scalar
valued function from R to L‘(Y)+ such that H, lies in HB then, by Theorem 18, there
is a nonnegative number b such that if t is in R and 7 is in Y then 01('[)[]77ﬂ2 <
bin,B(t)n): as in Example 2, for each s in R different from L, there are a member t of
R which does not intersect s and a member n of Y such that In =1 and B(t)n =7 so
that 8(s)n = 0 and

0 < a(s) = as)[nl2 < bln,B(s)n) = bn,0) = 0,

whence « has only the value 0. If there were a finitely additive scalar valued function v
from R to L(Y)+ such that Hﬁ is a subset of H’Y then, by Theorem 18, there would be
a nonnegative number b such that if tisin R and n is in Y then {n,8(t)m <b 7(t)|]n|]2:
this would imply that I8(t)i, <b y(t) for each t in R but, since i3(t)|, =1 for each t in
R, this would involve a contradiction. It may be shown that the equations A(§)(t) =
B(t)g, for {£,t} in Y X R, define a linear isometry A from the space {Y{*,*) } onto the
space {HﬁsQﬁ }; ¢f. Theorem 4.

In one of the cases previously considered [12], that §2is the collection of all

finitely additive scalar valued functions « from R to L(Y)+ such that fL Foz exists,

S(£2) is the space Sq of all finitely additive functions from R to Y wh/ich are of
bounded variation with respect to [-[[, and ||+|| is the total variation norm on S(2).
Moreover, in that case, {Dy,I{(*)|} is the space E (normed in the usual manner) of all
linear functions from S(£2) to Y which are continuous with respect to the ordered pair
{It*1,0-1} of norms on S(£2) and Y, respectively: by considering the following
Example, one may see that this can not be proved in general.

EXAMPLE 4. Suppose that Y is infinite dimensional and separable with respect
to [*{, and let {gp}So be a simple ordering of a maximal orthonormal set in the space

{Y{-,2}; let R be the pre-ring of all degenerate subsets of the set L of all nonnegative
integers; as in Example 2, let § be defined from R to L(Y)+ by

B({pim= (n,gp)gp foreachpin Landnin Y.
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Let the collection £ consist of 8 together with the zero function from R to L(Y)+, SO
that S(£2) is simply Hﬁ and ||| = || -IIB as described in the paragraph preceding Example
1. It may be shown here, as suggested in Example 3, that the equations A(§)(t) = B(t),
for {£,t}in Y X R, define a linear isometry A from {Y{-,*)} onto the space {Hﬁ’Qﬁ}'
Suppose  is in Dy: if p is in L then a(u)(B)({ p}) maps the B({ p})-image of Y into
itself and so may be realized as a complex scalar Cps whence [{(u)] = SUPp in Lleyland

if f is in S(§2) then

wh=f 120608 *1 1 2 = lim 2 e, (0.8,

/
and [u(H)]2 = lim > qley 2N (5),g,)1%. It follows from this that the norm || is
[])\'1(-)[], which is Nﬁ- Therefore the space E is DO, which consists of all composites
BA'! for Bin L(Y)®, and so includes D as a proper subset.

Pursuant to Remark 3 following Theorem 14, concerning the interpretation of a
Hellinger integral space as a completion of a linear space of equivalence classes of
R-simple functions from L to Y, there arises a kind of differential equivalence notion.
With 8 a finitely additive function from R to L(Y)+, and the set L itself assumed to
belong to the pre-ring R, suppose k is a function from R to Y (such as, eg., a
composite £[c] for some R-simple £ from L to Y and some choice function ¢ from R
to L) and the finitely additive function f from R to Y is given by integral formulas
f(t) = ft/Fﬁ'k for t in R. Attention is directed to conditions on k so that f should
belong to Hﬁ and fL/F[Iﬁ'l/zf- ﬁ”zkl]2 =0. The following Theorem provides an
Example of such conditions on the function k (a preliminary version of this was
announced in Abstract 623-25, Notices Amer. Math. Soc., 12(1965), 357).

THEOREM 27. Suppose that the pre-ring R contains the set L, B is a finitely
additive function from R to L(Y)+, and K is a function from R to Y such that if tis in
R then £(t)= [, fk exists weakly in (X)), If for each set tin R, f, /Fﬂﬁl/zkl]z =
S oD then T belongs to Hgand | Fufrl/2f-51/2ku2 = 0 and, for each tin R and g
in the space Hg, ft/F(k,g) = ft/F(ﬁ'l f,ﬁ'l/zg).

INDICATION OF PROOF. Assuming R, §, k, and f as indicated, suppose that if
tisin R thenhy(t)=f (kD and hy(t) = ft/FuﬁWkuZ. If the member M of F fills up

/
the member t of R then (by the inequalities established in Theorem 9)

06122, 1 BOIKWDZ <Ey 4 080 Y 2k
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whence, foreachnin Y,
KZy in MBOVKWL2 < 2y 1 I8 2k 2 8t)m),

so that I(f(t),'q)l2 < h2(t)(n,ﬁ(t)n). Therefore, by Theorem 10, f belongs to Hﬁ and
Nﬁ(t)2 < h2(L). Again, if M is a member of F filling up the member t of R,

12y in MK < 2, 1 0B ZK0T2E, 1 00801 2600)]2
whence |h) ()12 < hy(t)f, _1871/2f12 < hy(1)2: thus, the assumption that hy is hy
implies that hy(t) = f‘[/l__‘l],ﬁ’l/zf]]2 for each t in R. Suppose, now, that hj is hy: if the
member M of F fills up the member t of R then

2, in MIB 1280 - B M 22

=2, in MIBO V260002 - 2 Re 2, 1y k00D + 2 1y mIB0 L 2k

so that f, /Fu51/2f- B/2k1% = Ng(P()? - 2 h (8) + hy(t) = 0. The argument may be
completed by noting that, for appropriate g and M and t,

12y in M@ V26,80 1 2g(v)) - 2, 1 (k) 2V

<y i MIBD 260 - B 22 E, 1 M08 Ze2.

In the light of Theorem 14, there is another interpretation of the condition,
relating f and k, to which attention has now been drawn. Consider the following:

THEOREM 28. If is a finitely additive function from R to L(Y)+ and fis in the
space Hﬁ and k is a function from R to Y and his a function from R to HB such that
h(t)(s) = P B(s)k(t) for each {s,t} in R X R, then the assertion that IL FI]ﬁ'l/zf-
(31/2k|]2 =0 is the assertion that f = fL/Fh with respect to Nﬁ.

On the basis of Theorem 14 it may be seen that, with g the function from R to
Hg given by g(t)(s) = [t /2Py8(s)1 *Bty 2 £(t) - BOK(D)} for each (st} in R X R,
it Misin F then X, ; pe(t) = HB(M)f - Z ip m(t) and

/

Z¢ in MIBO /260 - B0 2Kk(D12 = NgTGOM)E - T 3 yh(t)?;

therefore, Theorem 28 may be proved as a direct consequence of Theorem 14.
As has been noted elsewhere [8], the evaluation kernels arising with the space Y
one dimensional (i.e., the complex plane) are the “‘positive matrices” of E. H. Moore’s

General Analysis [13]. In the context of Theorems 1-6, omitting the special pre-ring
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hypothesis on R, suppose that {h,q} is a complete inner product space of complex
functions on the set R and k is a complex function on R X R such that if t is in R then
k(*,t) is in h and q(f,k(*,t)) = f(t) for each f in h: it may be shown that the function K
from R X R to L(Y)S, K(s,t)n = k(s,t)n fornin Y and {s,t} in R X R, satisfies the first
system of inequalities indicated in Theorem 2. Hence, the space {H,Q} (in which K is
the evaluation kernel) may be viewed as a ‘‘vectorization” (relatively, of course, to the
space {Y£+,)}) of the original space { h,q}. As one simple instance of this, if {h,q} is
the usual Hardy space of complex analytic functions on the (open) unit disc of the
complex plane with k(s,t) = (l-st*)‘1 for {s,t} in R X R, it is easily seen that {H,Q} is
the space of analytic functions f from R to Y with convergent En>0(l]t(n)(0)|]/n!)2,
and Q the inner product given by Q(£,) = lim =, ({™(0),¢M(0)/(n!)? for {f.g} in
H X H. Here is an Example to illustrate how certain familiar spaces may be considered
as arising from the aforementioned vectorization procedure.

EXAMPLE 5. Let R be the space Y itself, and K be the function from Y X Y to
L(Y)® given by K(s,t)n = {s,t)n for {s,t} in Y X Y and g in Y. Now, if x is a function
from a finite subset M of Y to Y then, for each maximal orthonormal set G in the
space {Y(+,2},

2 (5,6} in MXMOIOKGOXO = 20y 1} in GXGIE¢ in MUKV XN,
let {H,Q} be the complete inner product space of functions from Y to Y such that
{K,Y,H,Q} is a kernel system. A function f from Y to Y belongs to H only in case

there is a nonnegative number b such that, for each finite subset M of Y and each

function x fromMto Y,

IZ¢ in MEDXON? <b (g 1 in MxMEEXOXLS,
in which case Q(f,f) is the least such number b. Let G be a maximal orthonormal set in
the space {Y,{+,*) } it may be proved that H consists of all members f of L(Y)® such

that X Gl]fu[l2 exists, and that Q(f,g)= 2
that if fisin H and {t,n} isin Y X Y then

u in G{fu.gw for each {f,g}in H X H, so
QUEK(-,t)n) = Z; i gfulu,timd = Z,) i, GltuXfum = (t,f*n) = (ft,np).

This space {H,Q} is the space of “Hilbert-Schmidt operators” [3], earlier known as

linear transformations of finite norm [20, page 66], in the space {Y (+,)}.
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Here is a final Example which may serve to illustrate the determination of a
kernel system, conceptually simple relatively to the space {Y,{-,*)}, which seems not
to arise by the vectorization procedure to which attention has now been drawn.

EXAMPLE 6. Suppose R is a subset of L(Y)® containing at least one nonzero
transformation, and K is the function from R X R to L(Y)® given by K(s,t) = st* for
{s,t} in R X R. If x is a function from a finite subset M of R to Y then

26t} in MXMEXOKEDX(D) = 12 i yt*x(D? > 0;
let {H,Q} be the complete inner product space of functions from R to Y such that
{K,R,H,Q} is a kernel system. A function f from R to Y belongs to H only in case

there is a nonnegative number b such that, for each finite subset M of R and each

function x fromM to Y,
1Zt in M(f(t),x(t))12 <blZ4 4y Mt*x(t)l]z,

in which case Q(f,f) is the least such number b. Let Z be the [}-[l-closure of the linear
span of the t*(Y) for t in R: it may be proved that a function f from R to Y belongs
to H only in case there is a member ¢ of Z such that f(s) = s¢ for each s in R, and that
if {¢§n}isin Z X Z and {f,g} is the member of H X H such that f(s) = s§ and g(s) = sn
for each s in R then Q(f,g) =<¢,m), whence if {t,z} is a member of R XY then
Q(f K(+,1)z) = ¢, t*2) = {f(1),2).

TERMINAL COMMENT. As an alternative to the present setting, but a chapter
in what could properly be called General Analysis in Hilbert Spaces,one might have a
set R and a collection §2 of evaluation kernels in spaces of functions on R to Y - so
that if {K;,R,H{,Q;} and {K,,R,H,,Q,} are kernel systems, with K; and K, in £,
and neither of Hy and H2 is a subset of the other then both K, Ky and K1+K2 belong

to §2 - with analogous results for the linear span S(£2) of the family of spaces H.
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