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Abstract 


A projection scheme based on the pressure correction 
method is discussed to solve the Navier-Stokes equations 
for incompressible flow. The algorithm is applied to the 
continuous equations, imposing a proper boundary condi- 
tion on the pressure correction step. The resulting velocity 
and pressure satisfy the original equations, except for the 
tangential boundary condition for the velocity, which is 
satisfied with second-order accuracy in time. For the spa- 
tial discretization the spectral element method is chosen. 
The high-order accuracy allows the use of a diagonal mass 
matrix resulting in a very efficient algorithm. The scheme 
is applied for simulating shear-layer flow. Proper outflow 
conditions are formulated in terms of the unknowns of the 


decoupled system. These conditions seem to be suitable 
for non-parallel outflows, not causing any severe stability 
problems. 
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1 Introduction 


Calculating the solution of the Navier-Stokes equations 
for unsteady incompressible fluid flow is still a major chal- 
lenge in the field of computational fluid dynamics. The 
Navier-Stokes equations form a set of coupled equations 
for both velocity and pressure (or, better, the gradient of 
the pressure). One of the main problems related to the 
numerical solution of these equations is the imposition of 
the incompressibility constraint and, consequently, the cal- 
culation of the pressure. The pressure is not a thermody- 
namic variable as there is no equation of state for an in- 
compressible fluid. It is an implicit variable which instan- 
taneously 'adjusts itself' in such a way that the velocity 
remains divergence-free. The gradient of the pressure, on 
the other hand, is a relevant physical quantity: a force per 
unit volume. The mathematical importance of the pres- 
sure in an incompressible flow lies in the theory of saddle- 
point problems (of which the steady Stokes equations are 
an example), where it acts as a Lagrangian multiplier that 
constrains the velocity to remain divergence-free [3]. 


For the solution of unsteady Navier-Stokes flow, per- 
haps one of the most successful approaches to-date is pro- 
vided by the class of projection methods [2], [5]. Projection 
methods have been developed as a useful way to obtain 
an efficient solution algorithm for unsteady incompress- 
ible flow. In this paper, projection methods are considered 
that are applied to the set of continuous equations, yielding 
methods for implementing algorithms. By decoupling the 
treatment of velocity and pressure terms, a set of easier- 
to-solve equations arises: a convection-diffusion problem 
for the velocity, yielding an intermediate velocity which is 
not divergence-free; and a Poisson equation for the pres- 
sure (or a related quantity). There are, essentially, two 
approaches for continuous projection methods: fractional 
step methods and pressure correction methods. 


The fractional step method [11], [12], is based on a full 
splitting of the treatment of the pressure/incompressibility 
constraint and the diffusion in different sub-steps. The in- 
termediate step leads to a Poisson equation for the pressure 
at the new time-level. While the pressure is well-defined 
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up to an arbitrary constant by the original equations, it is 
less so when directly expressed in terms of a Poisson equa- 
tion. This is because, in the latter case, the necessity arises 
to formulate a non-trivial boundary condition for the pres- 
sure. The choice of the pressure boundary condition is an 
aspect that is much discussed in literature [4], [11], [18]. 
The obvious theoretical choice for the pressure boundary 
condition is a .Neumann condition derived from the normal 


component of the momentum equation. The form in which 
this boundary condition is implemented is important not 
only because of the overall accuracy, but also because of 
the efficiency of the numerical scheme. This aspect still 
has much room for improvement. 


Pressure correction methods [8], [10], consist of a ba- 
sic predictor-corrector procedure between the velocity and 
the pressure fields. Using an initial approximation of the 
pressure, the momentum equation can be solved to obtain 
an intermediate velocity field. This velocity, in general, 
does not satisfy the divergence-free constraint and must, 
therefore; be corrected. By taking the divergence of the 
momentum equation and enforcing the incompressibility 
constraint, a Poisson equation for the pressure correction 
(the difference between the new and the old pressure) is 
obtained. Using the pressure correction, the new velocity 
field can then be computed. An advantage of the pressure 
correction technique is that, contrary to the full splitting 
approach, the final velocity is guaranteed to satisfy the 
incompressibility constraint; of course, this is only true 
for the velocity in the continuous (semi-discrete) formu- 
lation. A drawback of this approach is that, in order to 
ensure divergence-freedom, a homogeneous Neumann con- 
dition for the Poisson equation for the pressure correction 
must be used; which clearly is not valid for the pressure 
itself [20]. 


In this paper a projection method, related to the pres- 
sure correction approach, is given in order to circumvent 
the above problem concerning the pressure computation 
I221. Also, it has been shown that the resulting velocity 
and pressure satisfy the original Navier-Stokes equations, 
except for the tangential boundary condition for the ve- 
locity, which under certain conditions of smoothness, is 
satisfied with second-order accuracy in time [22]. For the 
spatial discretization, a high-order Galerkin spectral ele- 
ment method [15], [20], that exhibits excellent properties 
(small numerical diffusion and dispersion) for convection- 
dominated flows is chosen. 


The outline of the paper is as follows. Section 2 presents 
the numerical scheme to solve the Navier-Stokes equa- 
tions. The equations are first split according to an op- 
erator splitting procedure that decouples the treatment 
of convection and diffusion [16], [21], including the pres- 


sure term temporarily in the viscous part of the equations. 
Next, the velocity treatment is alecoupled from the pressure 
treatment by applying the projection algorithm. In section 
3 special attention is given to outflow boundary conditions 
with respect to the projection scheme. In section 4 the 
scheme is used to simulate the development of instabilities 
in a shear-layer flow. Finally, in section 5 conclusions are 
drawn. 


2 Numerical method 


2.1 Projection methods 


In this section the projection scheme for the Navier-Stokes 
equations is given. The solution algorithm can be applied 
either to the continuous or the discrete system of equa- 
tions. In the latter case, the boundary conditions are al- 
ready built in directly in the weak or variational formu- 
lation, thereby eliminating the need to formulate a spe- 
cific boundary condition for the discrete pressure Poisson 
equation. In this case the choice of the element for the 
velocity and the pressure is important with respect to the 
well-posedness of the system. As is well-known from the 
theory of saddle-point of problems, a discrete form of the 
Brezzi-Babu•ka condition [1] must then be satisfied for 
obtaining a unique velocity and pressure. For a high-order 
spectral element approximation this means that the de- 
gree of approximation for the pressure must be taken two 
degrees lower than that of the velocity [14]. 


On the other hand, applying the decoupling procedure to 
the continuous equations leads to a more straightforward 
scheme, since in that case the original problem is reformu- 
lated into several new (and simpler) problems. The theory 
of saddle-point problems is, then, no longer applicable; as 
a consequence the degree of approximation for velocity and 
pressure can be taken to be the same, yielding a simpler- 
to-implement numerical scheme. In that case however, the 
resulting Poisson equation requires a boundary condition. 
It has been shown in [22] that in the continuous projection 
scheme presented below, the use of a homogeneous Neu- 
mann boundary condition for the Poisson equation is valid 
and, even, essential in obtaining a divergence-free velocity 
field. 


2.2 The projection scheme 


Consider the Naylet-Stokes equations in primitive vari- 
ables for incompressible flow in an open and bounded do- 
main f• with boundary I • and with, for now, only essential 
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boundary conditions 


+ (u. V)u- (v. V)u + vp = f 


(1) 
•7.u=O 


in 


in 


u = g on r, 


u(x, O) = Uo in f•. 


The first step in the solution method is to apply an oper- 
ator splitting technique for unsteady convection-diffusion 
problems, including the pressure term temporarily in the 
viscous part of the equation. Thereto the momentum equa- 
tion is written in the following form 


-- =7)u+Cu-Vp+f, 
au 


(2) at 


with D = (V-t/V) as the diffusion operator and C = -(u. 
V) as the non-linear convection operator. Equation (2) is 
written in terms of an integrating factor in C [16], [21] 


0 


(3) 07 (Q(ct*'Ou) = Q?*'t)(T)u- •7p-{- f), 
With •Q(t',t) = _Q(t',t) C and Q(t*,t*) = Z. The 'Stokes' 
equation (3) is integrated using an implicit backward dif- 
ferences scheme with time-step At [7]. This yields the 
following semi-discrete system 


30 un+l k (t,• 4- x ,t,• +l - i ) -- Zi----1 /•i•c un+l--i 
At 


(4) = T)u•+• _ •7pn+l + fn+l. 


' ' un+l-i(i = 1,2,...) To evaluate the terms Q(c t•+• t•-x-i) 
the following associated initial value problem is solved 


{ aa(s) _ ca(s), as 


a(O) = u "+:-i, 


0 < s < iAt, 


from which it follows that 


/tn+l 
Q• ' •u '•+•-i = fi(iAt). (6) 


Problem (5), according to the non-linear convection, is 
solved using a three-step explicit Taylor-Galerkin scheme 
also used in [9]. This scheme is, for linear systems, third- 
order accurate in time. The initial condition is fi0 = 


u•+•-i; a time-step As such that At = jAs with j an 
integer is used. The semi-discrete convection step then 


becomes 


--T(u .v)a 
(7) fi•+« = tim AS,~m+•_ , -•;u •.v)a•+• 


fi•+• = tim _ As(fi•+•. V)fi•+•. 
After introduction of the simpler notation fi•+•-i = 
Q(t'*+•-•'t•)u•+i-i equation (6) leads to 
(8) fi•+•-• = fi•(•+•). 


For a second-order backward differences scheme, equa- 
tion (4) reads as follows 


• u•+• - AtDu•+• = 2fi• - 2 
-AtVp •+• + Atf •+• in •, 


(9) V. u •+• = 0 in •, 
un+l : gn+l on r. 


The projection scheme proceeds • follows (see [22])' 


ß Calculate an intermediate velocity field u* by choosing 
the pressure at the previous time-level 


•u*-•t•u* = 2a •-ka •-• 
2 2 


(10) - AtVp • + Atf •+•. 


The intermediate velocity field u* is, in general, not 
divergence-free. The quantities fi• and fi•-• are cal- 
culated according to the convection problem (7), (8). 


ß The velocity at time-level n + 1 can be obtained by 
subtracting (10) from the original momentum equa- 
tion (9). This yields 


3 U n+l -- U* 
= + •(u•+•-u *) 


- v 
A quantity, q, is computed by solving the Poisson 
equation resulting by taking the divergence of equa- 
tion (11) 


3V-u* 


(•2) V2q=2 At 
with: 


(13) q = p• -p•+• + vV. u* 


ß According to equation (12) a new velocity satisfying 
V. u •+• = 0 can be computed from 


(14) u •+• =u* 2 -•AtVq. 
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ß Finally, the pressure at the time-level n + 1 is com- 
puted from (13) as: 


(15) pn+l = p• + q _ v,V ß u*. 


Some comments on boundary conditions are in order. A 
general and consistent choice is to adopt for the inter- 
mediate velocity u* the original boundary conditions at 
the time-level r• + 1; that is to choose u* = gn+l on I'. 
Due to the continuous formulation an 'artificial' boundary 
condition must be formulated for equation (12). In the 
above scheme a homogeneous Neumann boundary condi- 
tion arises in a natural way. The solvability constraint for 
the Poisson equation (12) reads 


V2q dF• = 2At 


(16) 3 / u* - n. dE = 0, 
2At 


due to the global mass constraint and the assumption that 
u* = g•+l on F. On the other hand 


(17) V"•q dF• = •nn dr. 


Therefore, the easiest way to satisfy global divergence- 
freedom is to impose a homogeneous Neumann condition 
for the Poisson equation (12). 


Note that in the projection scheme both the velocity 
and the pressure are predicted in the first step, and then 
corrected in the remaining three steps. It can easily be 
shown that the solution (u n+l, pn+l) of the scheme is con- 
sistent with that of the original system (9). Equation (14) 
also ensures that the normal component of the boundary 
conditions for u '•+1 is satisfied on the boundary; the tan- 
gential component of the boundary condition can not be 
satisfied exactly. However, it can be shown that if the ac- 
celeration au -SF on I' and the source term are continuous in 
time (sudden starts and sudden sources are not allowed), 
the tangential boundary condition for the velocity is satis- 
fied with accuracy O(At "•) [22], yielding a second-order in 
time consistent projection scheme. 


2.3 Spectral element discretization 


Application of a Galerkin spectral element discretization 
to the semi-discrete projection equations is performed in 
the standard way. As already stated in section 2.1, there is 
no need to satisfy any form of the discrete Brezzi-Babu•ka 


condition as the decoupling procedure is applied to the con- 
tinuous equations, leading to uncoupled problems for both 
velocity and pressure. Therefore, the degree of approxima- 
tion of the pressure can be taken as equal to that of the 
velocity, resulting in a numerical algorithm that is simple 
to implement. The fully discrete form of the projection 
scheme thus becomes: 


ß Calculate u* by solving 


(•M+AtD) u* = 2Mfin-•Mfi n-1 
(18) - AtQp '• + AtMf '•+1, 


with M the (diagonal) mass matrix, D the diffu- 
sion matrix and Q the gradient matrix. The col- 
umn pn contains the pressure components at t = t n. 
The column f also contains the contribution of non- 


homogeneous boundary conditions. The columns fin 
and fi'•- • are calculated through the solution of 


fi,•+« = fi,• As _lC,•fi,•, --•-M 


(19) - •-M 
1 _ 1 


•1 m+l = •1 TM _ AsM-1Cm+•um+.•, 


where C"•+« and C"•+« denote the convection matrix 
i 1 


at time levels ra + 5 and m + ,-2, respectively. 


Calculate q by solving 


3 Lu* 


(20) Kq-- 2 At' 
with K as the Laplacian matrix and L as the diver- 
gence matrix. 


Calculate u n+• via 


(21) u n+l = u* 2 - õAtM-1Qq. 


ß Calculate pn+l via 


(22) pn+l = p• + q _ •M-1Lu.. 


From the above system it can be seen that it is essential 
that the mass matrix M is diagonal, since, then; the equa- 
tions (19), (21) and (22) do not involve the solution of a 
system, but only the calculation of matrix-vector products 
which can be performed on elemental level. For high-order 
methods the use of a diagonal mass-matrix is a valid ap- 
proach with respect to accuracy, as is shown numerically 
in [19]. 
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Note that after spatial discretization divergence-freedom 
of the final computed velocity is only satisfied in the weak 
sense. Also, the use of the diagonal mass matrix can fur- 
ther decrease the accuracy with which the incompressibil- 
ity constraint is satisfied. However, the numerical results 
presented in [22] suggest that for a high-order method this 
loss of accuracy is not severe. 


3 Outflow boundary conditions 


In this section special attention is given to the formulation 
and implementation of boundary conditions if there is an 
outflow boundary, as is often the case in numerical flow 
simulations. The problem of shear-layer flow discussed in 
the next section also has an outflow boundary. In the 
case of projection methods the implementation of outflow 
boundary conditions is not trivial. 


Assume, for simplicity, that the outward (normal to the 
outflow) boundary Fer is parallel to the x-axis (in two di- 
mensions). The most commonly used outflow boundary 
conditions in the context of Galerkin methods read 


(23) p-u-- - 0 onFer, 
Ov 


(24) cqx ---- 0 on Fer, 
where u - (u v) T. Equations (23), (24) specify zero stress (33) 
or 'traction free' boundary conditions, which are natural 
for the weak formulation of the Navier-Stokes equations. 


In a formulation where a Poisson equation for the pres- 
sure (or a related quantity) has to be solved, as is the case 
with projection methods, equations (23), (24) are often 


imposed as (34) 
(25) p = 0 on 


(26) c9x = 0 on 
Ov 


(27) 0--• = 0 on r•. 
It can easily be seen, however, that if a strong incompress- 
ibility is supposed, condition (27) imposes that the second 
component of the velocity be zero at the outlet, which is 
too strong [13]. Therefore, this possibility is not considered 
here. 


The projection method used in this paper involves equa- 
tions in terms of an intermediate velocity u* and a quantity 
q related to the pressure. Therefore, equations (23), (24) 
must be reformulated in order to obtain conditions on these 


variables. Equation (23) implies on the time-level n + 1 
OUn-4-1 


(28) P'•+• - • Ox = 0 on F•r. (35) 


Using equations (12), (14) of the projection scheme, the 
second term in this equation can be written as 


OU n+l l•U* __ 2 cq2q• 


Ou*• (02q3•'.u *) (29) = - Oy 2 ' 


on the outflow boundary Combining equation (29) 
with equation (15) yields 


Ou* 2_, 02q 
(30) pn + q _ • Ox •/•r•-•y• = O. 
Next, if the natural boundary condition for the Helmholtz 
equation (10) for u*, which reads 


(31) p--xx =0 onrer 
is imposed, it follo•vs that 


2 O•q 
(32) q - •Aty = 0 on Fer. 
This admits the solution 


q = 0 on 


So, it is valid to use equations (31) and (33), which in a 
strong sense ensure that equation (23)is satisfied. 


Finally, using equation (14) the condition (24) can be 
reformulated as 


Or* 2AtO (Oq) Ox õ =0 onrer. 
If it is assumed that q = q•(t)q2(x, y) (which is the case 
with the spatial discretization used), it can be shown [22] 
that q = O(At) and, therefore; that the the second term 
in (34) is O(At2). Thus, without loss of the second-order 
accuracy • = 0 implies that ø•+• - 0 which ensures cqx -- 


that equation (24) is also satisfied. 


4 Shear-layer flow 


Consider a mixing-layer in the (x, y)-plane in the domain 
0 •_ x •_ 8,-0.5 _• y _• 0.5. At t - 0 the velocity and 
pressure fields are set to zero. The boundary conditions at 
the inlet, top and bottom boundaries, read 


( u(y,t)=•(t) l+0.5tanhj , 







300 ICOSAHOM 95 


with 5 = 0.005. In order to ensure a smooth start-up the 
velocity 6(t) is smoothly increased for 0 < t < 1 as 


(36) 6(t) = 0.5 (1 - cos(2vt)), 


and from t = 1 on set to 1. At the outlet, stress-free 
outflow conditions are described. The formulation of these 


conditions is discussed in the previous section. 
In Figure 1 the streamlines are shown of the computed 


velocity field at time-levels t = 2, 6,10,14,18 on a mesh 
of 12 x 8 spectral elements of order 8. The viscosity y is 
take such that the Reynolds number based on the distance 
between the upper and lower walls equals Re = 1000. The 
results seem to be fair: during the initial transience (t < 1) 
the flow spontaneously sheds a travelling wave which is am- 
plified and convected through the whole domain. In order 
to get a clearer (and more honest) picture of the flow it is 
visualized by convecting a scalar field c (for example the 
color) with the flow using the three-step explicit scheme for 
the non-linear convection step of the projection method, 
see equation (7). Initially, c is set to y, and the boundary 
condition c = y at x = 0 is imposed. This representation 
of the flow can be seen in Figure 2 where plots of the scalar 
field c are given, again at time-levels t = 2, 6, 10, 14, 18. 


It is clear from Figure 2 that especially around the inter- 
elemental boundaries some wiggles are created. These re- 
suits seem to indicate that further numerical experiments 
with a stabilized scheme for the convection may be use- 
ful for these kind of stability studies. Also, for this scalar 
convection the mesh consists of only 12 x 8 elements of de- 
gree 8. Although sufficient for the total flow problem (see 
below) this may not be enough for the pure convection 
problem. Nevertheless, the whole picture of the instability 
development is adequately represented. 


In order to examine the influence of the mesh on the 


total flow problem computations are also performed using 
8 x 8 and 16 x 8 elements of degree 8. All meshes are 
sufficiently refined around the line y = 0 and at the inlet. 


Figure 3 shows the time-series of the second component 
of the velocity at the point (x, y) = (4.1, 0). The results of 
the computations using 12 x 8 and 16 x 8 elements are ab- 
solutely comparable. The result of the computation using 
8 x 8 elements, however, is qualitatively different. In the 
case of the fine meshes the initial spontaneous shedding is 
damped, and for t > 50 the flow is practically steady. This 
region is, therefore, not shown nor computed. In the case of 
the coarser mesh the time-series represents a quasi-steady 
periodic flow. The power spectrum of the signal, given in 
Figure 1, shows a single frequency of about 0.7. These re- 
suits seem to confirm [6], [17], that if the mesh of spectral 
elements used is not sufficiently fine, spurious oscillations 
can be created which resemble a periodic regime. 


Figure 1: Streamlines of computed velocity field at time- 
levels: t = 2, 6, 10, 14.18 (top to bottom). 


Figure 2: Representation of the computed flow field by 
passive scalar convection at time-levels: t = 2, 6, 10, 14, 18 
(top to bottom). 
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0.4 


-õ 
• -0.2 
-0.4! 
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5 10 15 
time 
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2O 


>, 0.2 


> -0.2 


> -0.2 I 
-0.4•) 


5 10 15 
time 
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2O 
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time 


x 10 -3 12 by 8 elements 
-2 


0 
time 
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-2 ' 


- 


4O 5 10 15 2O 5O 
time time 


Figure 3: Time-series of the second component of the computed velocity at location (x, y) - (4.1, 0) for three different 
meshes. The left column contains the time history up till t - 20 the right column contains the time history from t - 20 
on. 


5 Conclusions 


A spectral element projection scheme for the Navier-Stokes 
equations is discussed. The main advantage of this method 
is that it allows the reformulation of the system into an- 
other one consisting of two Helmholtz (three in the 3-D 
case) equations and one Poisson equation. The last set 
can be soh, ed relatively effectively without the necessity of 
introducing an additional iteration loop (as it is the case 
with the Uzawa-like algorithms) by means of a direct or 
iterative method. A second advantage is that this scheme 
suggests an easy and consistent choice of no-slip boundary 
conditions for the intermediate velocity (u* in our nota- 
tion) and the intermediate pressure correction (q in our 
notation) boundary condition. Moreover, it can be shown 
[22] that under some smoothness conditions for the acceler- 
ation Ou/Ot on F the resulting velocity and pressure satisfy 
the original coupled system up to an O(At 2) error in the 
tangential boundary condition for the velocity. 


x 10 -3 power spectrum 
8 


o15 .5 
frequency 


Figure 4: Power spectrum of the time-series of the second 
component of the computed velocity at location (x, y) = 
(4.1, 0) for 8 x 8 elements. 
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A set of free-outlet boundary conditions in terms of the 
new variables (u* and q) is derived, too. The computations 
show that these outflow conditions are not too restrictive 


and allow the convection of vortices out of the computa- 
tional domain. 


The scheme discussed above is validated, simulating the 
development of instability in a shear layer. It is shown 
that the insufficient resolution of the spectral element mesh 
can cause spurious oscillations in the flow which can be er- 
roneously interpreted as oscillations of a physical origin. 
The flow pattern is visualized by a convection of an ini- 
tially given passive scalar field. Using the same space 
and time discretization as for the convective part of the 
Navier-Stokes equations, it yields acceptable results on 
a relatively coarse mesh without the introduction of an 
artificial dissipation. The presence of low-amplitude but 
spurious oscillations in this scalar field, however, indicates 
that even the finest spectral element mesh used in this 
study may not be fine enough to resolve all the details of 
the flow field. 
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Triangular Spectral Element Methods 
for Geophysical Fluid Dynamics Applications 


B.A. Wingate* J.P. Boyd t 


Abstract 


This work discusses spectral element methods in R 2 on 
triangular subdomains for application to problems in geo- 
physical fluid dynamics. Methods using triangles as their 
subdomains are of interest because it is easier to break 


irregularly shaped domains into triangles than the more 
commonly used rectangular subdomains. Dubiner has de- 
rived a basis which is optimal for man•v engineering ap- 
plications where diffusion plays an important role. His 
'modified' basis gives sparse matrices for both the weight 
matrix and the Laplacian operator, making it ideal for 
semi-implicit schemes which treat diffusion implicitly and 
advection explicitly. Large scale geophysical fluid dynamic 
simulations have different requirements than for engineer- 
ing applications; methods optimal for one class of problems 
are not necessarily optimal for the other. This work uses a 
different basis set. an 'interior-orthogonal' basis, which re- 
tains the most important properties of his 'modified' basis, 
but gives a weight matrix which is simpler. 


Key words: triangles. spectral element, geophysical fluid 
dynamics. 


AMS subject classifications: 42C05, 65P05, 86A05. 


I Introduction 


There are two main reasons why spectral element tech- 
niques have been used recently for geophysical fluid dy- 
namics (GFD) applications. First, spectral elements have 
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Figure 1: Mode numbers on the reference triangle. 


stronger geometric flexibility than spectral methods that 
use a single expansion for the entire globe. Second, spectral 
elements are much easier to implement on today's gener- 
ation of supercomputers, massively parallel architectures, 
than their globally spectral counterparts. 


Geometric flexibility is especially important in GFD. 
Even in the most complex engineering application, such 
as a jet engine with moving parts, the length scale of the 
geometry usually remains fixed and is relatively smooth 
since it has been manufactured by humans. In contrast, 
an ocean basin has a fractal boundary. The coast twists 
and turns on multiple length scales from the width of a 
continent to the lee of a breakwater. Indeed, each grid 
refinement in an ocean basin leads to a longer perime- 
ter and can give significantly different boundary-element 
orientations. While there are no horizontal boundaries in 


the atmosphere, the bottom topography is as irregular and 
multi-scaled as a sea bottom. This type of geometry is dif- 
ficult to represent with rectangular subdomains and can 
lead to skewed rectangles with non-uniform spatial reso- 
lution. This is a strong motivation for exploring spectral 
elements whose subdomains are triangles. 


In addition to the convenience and ease with which do- 


mains can be triangulated using unstructured gridding 
techniques, it is well known in the finite element commu- 
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Figure 2: Spatial mappings 


nity that the stability of numerical schemes on quadrilater- 
als degenerates as the vertex angles become more acute. It 
has been shown that triangles, however, do not have this 
problem. Triangles whose angles approach zero can still 
give a convergent algorithm (see, for example, Babu•ka 
and Aziz [1]). 


Previous work with spectral element methods in GFD 
and other branches of fluid dynamics typically used quadri- 
lateral subdomains. This allows the use of a tensor product 
basis so that grid-to-spectral transforms can be calculated 
by partial summation [2] at a cost of only O(N a) opera- 
tions. This technique is crucial to having an efficient nu- 
merical algorithm in multi-dimensional problems. A non- 
tensor product basis, as usually employed with triangular 
finite elements, has a cost proportional to O(N 4) which is 
an order of magnitude higher. Also, at higher order the fi- 
nite element non-tensor product basis becomes dependent 
and ill-conditioned. 


One approach for using higher-order polynomials on tri- 
angles is to map each triangle of the physical domain into 
a square in the computational domain. There are two 
difficulties with this method. The first problem is that 
mappings from a triangle (with three corners) to a square 
(with four corners) map one corner into two. This im- 
plies these mappings will introduce non-physical singular- 
ities into the problem which interfere with achieving the 
exponential convergence rates of the high order polynomi- 


als. The second problem is that by mapping one corner 
into two there will be dense grid packing in one corner of 
the physical domain, see Figure 2. This excessively small 
grid size severely limits the maximum time step via the 
CFL condition. 


Drawing on ideas from Orszag's [3] important work in 
spherical harmonics, Dubiner [4] has overcome these diffi- 
culties. Dubiner's basis is well suited for solving the Navier 
Stokes equations for moderate Reynolds numbers where 
the time step is limited by diffusion. His method gives a 
sparse element matrix for both the weight matrix and the 
Laplacian operator. This is optimal for the implementa- 
tion of a semi-implicit scheme (where the advective terms 
are treated explicitly and the diffusion terms are treated 
implicitly). 


The physics of fluid dynamics on planetary scales can 
be very different from mechanical and aeronautical ap- 
plications which are often dominated by acoustic waves 
and/or diffusion processes. The Reynolds number for most 
GFD application is very large (• 108), so the solution is 
principally driven by advection. Dissipation in large scale 
GFD models is usually employed to control computational 
noise rather than to represent physical dissipation which 
is much smaller. Filtering or a damping proportional to 
the biharmonic operator is often used in place of the usual 
viscosity proportional to the Laplacian operator. Also, as 
the grid size is reduced, dissipation is reduced making the 
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CFL limit for diffusion as large or larger than the limit 
for advection so there is little advantage to treating the 
diffusion terms implicitly. Most oceanographic spectral el- 
ement models (e.g. Ma [5], Iskandarani [6]) are explicit in 
contrast to the semi-implicit methods usually employed by 
engineers. 


For these reasons, Dubiner's 'modified basis', which was 
designed to calculate the Laplacian operator implicitly at 
every time step, is not optimal for many large scale fluid 
problems. A better method for geophysical calculations is 
to exploit the orthogonality of the basis as much as possi- 
ble. making the structure of the weight matrix more sparse, 
and thus making the calculation cheaper. To that end, this 
paper discusses alternatives. 


In section (2) we will discuss Dubiner's 'modified' basis 
and how to manipulate it and give a sample formulation for 
the heat equation. Section (3) presents several versions of 
an 'interior-orthogonal' basis and discusses its advantages 
and disadvantages. Finally, section (4), contains some re- 
marks.b 


2 Dubiner's basis 


In this section, we discuss Dubiner's 'modified' basis, ex- 
plain why it is successful for approximating solutions to 
time-dependent partial-differential equations, and give a 
brief example of its implementation. In Dubiner's paper, 
he discusses the implementation of this basis, but a more 
thorough discussion along with applications to the incom- 
pressible Navier-Stokes equations is given by Sherwin and 
Karniadakis [7]. The basis is broken up into interior 
modes, edge modes, and vertex modes as shown in Figure 
1. This boundary-conscious basis allows for a reasonable 
means of coupling the elements together while still enforc- 
ing C o continuity along the boundaries. 


We first note that there are two mappings involved in 
using this basis. The first mapping is from any arbitrarily 
oriented triangle to a reference triangle. The second is from 
the reference triangle to a reference square. The second 
mapping is shown in Figure 2 and is: 


(1-w)(l+z) 
(1) 


2 


and 


(2) y=w. 


The spectral series is given as 


(3) u(w,z) = 
1-2 


y• aran g ran, 
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(7) 
1-2 


I + z (l__•__•)•).•Ll(Z) 
1-w.(ra+l) l+w. 
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Vertex 1: 


(0) 


Vertex 2: 


(10) 


1-:2 1 - z)(l_•) s 00=( W- , 


1-2 (l+z 1-w g N0 = ,•)(---•), 
Vertex 3 (corresponds to the degenerate edge)' 


(11) •-2 ,l+w, g o• = {,•-•). 


Here, the ½•'•(x) is a Jacobi polynomial defined •vith 
the inner product 


/' (12) (1 - x)'•(1 + x)O½,•'O(x)½•'O(x)dx. 
1 


Next we briefly discuss a few of the important properties 
of this basis. 
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2.1 Forward/backward transform 
We define the backward transform as the transform 


through which the value of the function at each grid point 
(quadrature point) is obtained when the spectral coeffi- 
cients are known. We give the transforms in the mapped 
(square) domain. 


1--2 


(13) u(wi, zj): • amn g mn(Wi, Zj), 
].--2 


1--2 1-2 


where i,j • K, and the space K is 
1--2 


(14) K = {(i,j)l ¸ < i < K, 0 _• j • K}. 


This sum can be computed in O(N •) operations using 
the partial summation technique since the basis is a tensor 
product. The function along each edge can be computed 
independent of the interior basis since the interior basis is 
zero along each boundary. 


• define the forward transform as the transform which 


gives the spectral coefficients when the solution at each 
quadrature point is known. The grid points are chosen to 
be the Gaussian quadrature points (see the next section). 
The forward transformation is obtained by taking the inner 
product with respect to each side of Equation (13). 


• 1-2 .1--W 
/f (1•) • 1 1 amn g m/n/ g mn(• 


The factor of •-w (•) is a result of the mapping kom the 
triangle to the square. The integrals are e•luated using 
Gaussian quadrature as discussed in the following section. 


2.2 Warped product and Gaussian inte- 
gration 


The integrals in Equation (15) can be broken into the prod- 
uct of two line integrals. Dubiner refers to this property 
as a 'warped product'. This reduces the cost of comput- 
ing the area integrals from O(Ni •) to O(2Ni) where Ni is 
the order of the quadrature. For an accurate calculation 
of the integrals, the order of the integration needs to be 
greater than the maximum degree of the polynomial in 
1--2 


g ,•(w, z), denoted by N. 


1 /1 1-2 1_•_ z)( )dw = 
-1 -1 


(16) 1 1 1 Zarnn[ gm(z)gm,(z)dz] 
--1 


' [/• l•rn• (W)½rn'n' (W) ( 1'-• ) •w ] 
with 


1 1 1 N• 1 1 ( Zl )grn, ( gl )•210'0 
-1 I=0 


1 2 2 N• 2 2 1.0 = 
--1 I•0 


The weight factor is included in the quadrature: •:3 ø.•ø are 
the weights for the standard Legendre polynomials using a 
Lobatto grid and •:•,0 are the weights for the a = 1, • -- 0 
Jacobi integration on a Lobatto grid. 


We point out that there are roughly twice as many 
quadrature points as basis functions. This can be thought 
of as using a triangular truncation for the series while em- 
ploying a square mesh to perform the integration. 


2.3 Non-linearity and differentiation 


For non-linear terms it is standard practice to transform 
to physical space to compute the derivatives. From the 
discussion in the previous section this would appear to be 
a computationally intensive operation. However, Dubiner 
points out that in physical space, you are in the same space 
that is spanned by the Lagrange polynomials (typically 
used for spectral element methods on rectangular domains) 
of the same order which can be computed very rapidly, 
O(N) per differentiation per point. The Jacobi-Lagrange 
polynomials, also called Cardinal functions. on a Lobatto 
grid are defined as 


(1- (17) C?• (x) = 
[(1- xj - 


where the t indicates differentiation. Taken at the Lo- 


batto roots the derivatives have the following analytic form 
where • = a + •: 
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2 2•+4 
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Figure 3: Basis function for m-6,n-2 


where 


and 


G(i.j) 


= • - o• - 7x(t)•?)'(x) + (n(n + 7 + 


N-1 


%) - ) %) - 
Then. for example. the derivative can be computed by 


(18) 
o G' 


( TM ) = ) 


2.4 Spatial resolution 


As mentioned previously, this basis uses a triangular trun- 
cation in the modes but requires a square grid of points 
to perform the quadrature. This means there is dense grid 
packing in the 'singular' corner. One might think the error 
would be nonuniform across each triangle, with a higher 
spatial resolution in this corner, but this is not the case. 
Therefore, our time step is not hmited by the excessive 
grid spacing in the densely packed corner. 


The reason this basis does not over-resolve the singular 
2 


corner is the (1 - w) '• factor in S,•,•(w). This factor is a 
function of two parameters: the vertical coordinate, w and 
the mode number of the horizontal direction. This means 


as the wave number, m, increases, the factor (1 -w) '• 
decreases and thus acts like a scaling variable to reduce 
the amplitude of the w basis. Figure 3 shows the (6,2) 
basis function. The amplitude and variability of the basis 
is not large along the degenerate edge (near w = 1). 


2.5 Boundary coupling 


Each side is represented by a Jacobi polynomial, x'x ;On , 
which has been carefully devised so that it is zero at all 
vertices and on the two other sides. The interior modes 


are also zero on the boundary of the reference triangle. 
This makes for a relatively straight forward coupling be- 
tween the elements. We use the word 'relatively' because 
depending on which sides are abutting, some of the modes 
of one side may actually be opposite in sign to the modes 
of its adjacent side. 


2.6 Example 


As an example of how to formulate problems using this 
basis, consider the heat equation, 


Ou 02u 02u 


(19) Ot -- Ox 2 + • Oy2' 


with the initial condition, 


(20) u(x, y) = sin(•rx) 
for -l<x_< 1,-1_<y_<1. 


and time varying boundary conditions, 


u(x,y)= e -2tsin(rrx) on y=-I and y=l 
u(x,y)= 0 on x=-I and x=l 


We assume our domain is • with P subdomains. 


(21) u•P=i•. =•q 


with the requirement (to couple the boundaries) that 


(22) f• n •qj = O•id 


where f•i and f•j are connected and f•i,j is their common 
boundary. 


We take the inner product of both sides of Equation (19) 
and apply the divergence theorem (formally) to obtain the 
weak form, 


/•_• /nOuO•OuO• (23) • df• = - O-• O-• + • • df•, 
Here, the overbar indicates the function is a test function 


Note the boundary terms are zero along the outer 
boundary and the contribution along element faces can- 
cel because the outward unit normals of abutting triangles 
are equal and opposite. 


With 3rd-order Adams-Bashforth time integration we 
have, 
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Figure 4: A one dimentional slice of the solution at y = 0 
compared xvith the exact solution, e -t sin(rrx), at t = .9 
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On every subdomain fie we employ Dubiner's basis set. 
The formulation can be written as, 


p 
(28) Zc=I Zm'n' 3 


where IV • is the weight matrix, 


(29) 


and R•'(m ', n') is a combination of warped product inte- 
grals and metric coefficients from the mappings. 


Figure 4 shows a one-dimensional slice of the solution 
for y = 0 and x = -1 to 1 at t = .9 for two triangles. The 
solution is identical for any arrangement of the triangles. 


See Wingate [8] for the details of applying this method 
for geophysical fluid dynamics simulations. 


3 Dubiners interior- orthogonal 
basis. 


In this section we discuss a different basis set, an 'interior- 
orthogonal' basis. The interior modes are orthogonal to 
each other, unlike the 'modified' basis where they are semi- 
orthogonal. This 'interior-or.thogonal' basis can be classi- 
fied in a similar way to the 'modified' basis. 
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This basis has a weight matrix that looks like Figure 


(5). It is diagonal and has two boundary bands along the 
top and left side. The border exists because the bound- 
ary bases are not orthogonal to themselves or the interior 
modes. However, this system has a simpler structure than 
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Interior-Boundary Interior-Interior 


Figure 5: Weight matrix for the 'interior-orthogonal' basis using !27 edge functions. 


the 'modified' basis whose weight matrix is shown in Fig- 
ure (6). 


Additional sparseness is rendered by using the a = 1 and 
/_? = 1 Jacobi polynomials for the edge functions. However, 
there is still a banded structure of bandwidth O(3N- 1). 
See Figure (7). 


Even more sparseness can be obtained by using the a = 
3 and • = 2 Jacobi polynomial (see Figure (8)), but this 
is a bad choice, since the boundaries cannot be coupled as 
easily due to the non-symmetric nature of the •'• Jacobi 
polynomial. 


The benefit of using the 'interior-orthogonal' basis over 
the modified basis is twofold. 


Storage: you need only save half of the upper square 
matrix and one of the boundary bands (since it is 
a symmetric matrix) and you only need to store the 
diagonal elements in the lower right hand block. The 
storage is higher for the modified basis because the di- 
agonal bandwidth is wider (and depends on the max- 
imum degree of the polynomials). 


LU factorization: it is very simple to rewrite stan- 
dard LU decomposition routines to take advantage 
of the diagonal part of matrix. The cost of invert- 
ing the lo•ver square matrix is only O(N). Sherwin 


uses the static condensation technique which costs 
O(kN3). With the 'interior-orthogonal' basis, the cost 
is O(kN•). 


NOTE: For N _> 4 the 'interior-orthogonl' basis always 
gives part of the stiffness matrix to be diagonal. The 'mod- 
ified' basis will give a full matrix for low degrees of N. 


NOTE: The first item, above, also applies to the global 
stiffness matrix. If the stiffness matrix is assembled by 
cycling through the boundaries and vertices before the in- 
terior modes, the structure of the global matrix will be 
similar to the form in Figure 5. 


The disadvantages are 


ß For both the 'modified' and the 'interior-orthogonal' 
basis the weight matrix must be stored (less for the 
'interior-orthogonal' basis). This is a disadvantage 
when compared to the spectral element method on 
rectangles where the weight matrix does not need to 
be stored. 


ß The 'interior-orthogonal' method gives a full element 
matrix for the Laplacian operator. 
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Boundary-Boundary Boundary-Interior 


\ Interior-Boundary Interior-Interior 


Figure 6: Weight matrix for Dubiner's modified basis. 


Boundary-Boundary Boundary-Interior 


Interior-Boundary Interior-Interior 


Figure 7: Weight matrix for the 'interior-orthogonal' basis using •'• edge functions. 
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Interior-Boundary Interior-Interior 


Figure 8: x•Veight matrix for the 'interior-orthogonal' basis using 123• '2 edge functions. 


4 Conclusions 


We have given an 'interior-orthogonal' alternative to Du- 
biner's originally posed 'modified' basis. Our motivation 
for using the 'interior-orthogonal' basis is that we are able 
to exploit more of the orthogonality between the modes, 
leading to a system of equations which is cheaper to solve 
for explicit methods. For large scale GFD applications, ex- 
plicit methods are more efficient for the time discretization. 
There are three advantages to the 'interior-orthogonal' ba- 
sis as follows: 1) For the interior-interior part of the weight 
matrix you need only store the diagonal elements and 2) a 
fast LU factorization which takes advantage of the diago- 
nal part of the weight nmtrix is simple to implement. Du- 
biner's 'modified' basis is optimal for problems which have 
processes in which diffusion plays a role equally as impor- 
tant as advection. For this type of process, the 'interior- 
orthogonal' basis would give a full matrix for the Laplacian 
operator which would be a disadvantage. 


In summary, we are motivated to use triangular subdo- 
mains because of the geometric complexity of our bound- 
aries (in GFD and other branches of fluid dynamics). 
While it is very cheap to use explicit methods on rectangu- 
lar domains (one need not even store the weight matrix), 
near these complicated boundaries rectangular elements 


are highly skewed; triangular elements allow a more uni- 
form discretization which permits the use of a higher time 
step. Looked at that way, the cost per element per time 
step is actually cheaper. 
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for Efficient Solution of Problems with Interior or Boundary Layers 
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Abstract 


An efficient high-order solution for a boundary and inte- 
rior layer problem which is applicable to multi-dimensional 
problems is presented. The solution is a combination of 
a global penalty spectral element solution obtained on a 
coarse grid and a local one dimensional analytical approx- 
imation. The solution is further improved numerically on a 
coarse grid. Results for interior and boundary layer prob- 
lems are presented. 


Key words: spectral-element, asymptotic methods, 
penalty method, boundary layer, interior layer. 


AMS subject classifications: 65N30, 35J25. 


1 Introduction 


Singular perturbation problems arise in many problems, 
including solid mechanics, fluid flow, heat transfer and 
semiconductor devices ([1],[2],[3]), when the highest deriva- 
tive in the differential equation under consideration is mul- 
tiplied by a small parameter e. The solution to such prob- 
lem exhibits a boundary layer within the domain with a 
characteristic width which is a function of the small param- 
eter e. Solutions for this type of problem can be obtained 
by numerical methods, asymptotic techniques [4] or mixed 
methods [10] which are based on a combination of numeri- 
cal and asymptotic solutions. However, numerical solution 
of a singular perturbation problem is increasingly difficult 
as e becomes smaller. Indeed, a large number of grid points 
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are required to resolve the boundary layer if e << 1. In 
order to overcome this difficulty an adaptive mesh com- 
bined with non-conforming meshes can be used(J5], [6], 
[4]). High order numerical solutions can be obtained, e.g., 
by 'mortar spectral elements' ([7], [8]). Asymptotics is use- 
ful if it is possible to expand the solution in terms of the 
small parameter e. For singular perturbation problems the 
asymptotic solution is usually composed of an inner solu- 
tion, ui, which is valid in the neighborhood of the boundary 
layer and an outer solution, Uo, which is valid far from the 
boundary layer. The accuracy of the asymptotic approxi- 
mation is of O(eJ+•), where e is the small parameter and 
j is the order of the asymptotic expansion. Flaherty and 
O'Malley [9] developed an algorithm which solves numer- 
ically for the inner and outer asymptotic solutions using 
a standard numerical method. On the other hand, the 
'booster method' [10] combines an asymptotic solution of 
O(e j+•) [9] with known discretization methods. An im- 
provement of the numerical solution by factor of O(eJ• +•) 
can be obtained. An implementation of the method for 
finite elements (ASFE) was done in [11]. This approach is 
difficult to implement for multidimensional problems with 
complex geometries, because an asymptotic solution is not 
always available to replace the analytical solution. A more 
accurate procedure, albeit much more expensive one, is 
to replace the asymptotic inner solution by a multidimen- 
sional numerical inner solution [12]. 


Here we present an alternative way to obtain efficient 
solutions for boundary and interior layer problems which 
is applicable to d-dimensional problems with d _> 1. An 
approximate solution, UA, which is constructed by an inner 
and an outer solution, is calculated. The outer solution, 
Uo, which is valid far from the boundary layer, is a function 
of x • • C T• d. It is calculated numerically within the 
domain on a coarse mesh (Sec. 3). The inner solution, 
ui, which is valid in the neighborhood of the boundary 
layer, is assumed to be a function of x E • C T• • (Sec. 
4). The solution for UA is computationally low-cost both 
because its outer component is calculated numerically on a 
coarse grid and because its inner component is defined on a 
one-dimensional domain and calculated analytically. This 
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soluti6n is used as a first approximation and is improved 
by solving a modified equation numerically on the same 
coarse grid as for the outer solution (Sec. 5), yielding an 
accurate composite solution to the problem. 


Overview of the method of so- 


lution 


Let us consider a boundary value problem for the partial 
differential equation: 


(1) eV2u + V. Vu + au = f 


where u,f,V, are functions of x • • c T4 d d is the , 


number of space dimensions, e is a small positive parameter 
and a is assumed to be negative. We further assume that u 
is twice differentiable while f(x) may have a finite number 
of jump discontinuities. 


Let Fb be the part of the boundary, F -= 0i2, which 
supports a boundary layer, and let F a be the complement 
of r'b in F. 


We assume that Dirichlet boundary conditions are im- 
posed. 


u = Ub or, I'b 


(2) u = Ug rg 


and lead to a unique solution of the problem. 
The solution of (1)-(2) may have two types of layers: 


interior or boundary layers. Boundary layers are located 
at boundaries of the domain (i.e. I'b). Their thickness 
and location depend on the angle between the character- 
istic curves of the reduced equation (obtained by setting 
e to zero in (1)) and the boundary [1]. Interior layers ap- 
pear at the interior discontinuities of f(x) and preserve the 
smoothness of the solution at these locations. 


Problem (1) has often been considered as a test case 
for different numerical schemes. It is known that most 


of numerical methods fail when the cell Reynolds number 
•.•r becomes larger than O(1). Here Ax is a typical length 
between two grid points and v = maxn(x)(IVI). 


In brief, the steps of our new algorithm are: 


(i) The numerical solution of (1) on a fixed coarse grid is 
obtained with a special set of boundary conditions, to 
serve as an approximation for the outer solution, Uo 
(Sec. 3). 


(ii) A set of one-dimensional boundary layer equations 
arising from (1) are solved on rays starting at each 
point of I'b, advancing along the inner normal at that 
point(Sec. 4). 


(iii) The outer solution, Uo, and inner solution, ui, are 
matched to obtain an approximate composite solution, 
UA (Sec. 4). 


(iv) Correction terms are computed and added to the right 
hand side of the discrete approximation of (1). The 
corrected discrete approximation is solved to obtain 
an improved solution, u_• (Sec. 5). 


(v) Any discrepancy between the improved solution, w, 
and the approximate solution, UA, is reduced by re- 
peating steps (ii) to (v) (Sec. 6). 


In section 7 we present numerical results for problems 
exhibiting interior or boundary layers. 


3 Outer solution 


The aim of the present section is to describe the calculation 
of our approximation to the outer solution Uo. The solu- 
tion of (1), subjected to natural boundary conditions on F• 
and to the original Dirichlet boundary conditions on Fg, is 
obtained numerically using a spectral method with poly- 
nomial basis of degree N in each of the d-space dimensions. 
The calculated solution, Uo, is smooth and converges to the 
exact solution far from the boundary layer when N • oc 
for fixed e. 


A penalty spectral element formulation is used for the 
solution of Uo. The spectral element method [13] is chosen 
since the outer solution is expected to be smooth (with- 
out large gradient) and therefore this method can achieve 
an accurate solution with a minimal number of degrees of 
freedom. The Dirichlet boundary conditions on F• are im- 
posed as penalty terms. The reason for choosing a penalty 
method will be discussed below. 


Applying the weighted residuals method followed by 
Green's theorem to (1)-(2) results in the following weak 
formulation for u • (H[(i2))a: 


f• w f d i2 
w, 


In the above equation, ,k -- 0 yields natural boundary 
conditions on F• while large ,k forces essential (Dirichlet) 
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boundary conditions on Fb. The formulation (4) is applica- 
ble both to the outer solution, Uo, and to the improved so- 
lution, ur (see Sec. 5). After discretization by the penalty 
spectral element approach, an approximate solution ,u h, is 
sought such that: 


(4) 


n 


e:l 


/ fp. e wh(V•7uh)d•e + / /f2e aWhuhd•e + 


Vw h ß (•0•(n')) d 


where •h is the approximate solution obtained by Lagrange 
interpolation of order N at the Gauss-Lobatto-Legendre 
points and, is the total number of elements. The integra- 
tions in (5) are performed by employing Gauss-Lobatto- 
Legendre ,..i•adrature leading to a set of algebraic equa- 
tions. 


The penalty method as presented here is more efficient 
for the numerical treatment of interior layers than is a 
standard spectral element method. In the latter case, ad- 
ditional assembly is required, while in the present approach 
the same spectral element matrices are needed for both the 
outer and the improved solutions. These matrices only dif- 
fer by the terms which are multiplied by h. 


4 Inner solution 


The outer solution is valid only far from Fb and thus should 
be corrected by an inner solution, ui, which is valid near 
the boundary Fb. In order to investigate the solution in the 
neighborhood of Fb we first employ for the two-dimensional 
case a coordinates transformation x = (x, y) --* (•, •/). For 
a point x close to Fb let us define a coordinate system (•, •/) 
originating on the nearest point x0 on Fb to x. Let •/be the 
coordinate tangential to Fb and let • be the fast variable 
in the orthogonal direction of Fb normalized with respect 
to e. The transformation (x) -• (•, •/) for f• C 7• 2 is given 
locally near Fb by: 


(•) x(•, .) = Xo + • 


where n = [- 0-20•o]. The inner solution, ui, is obtained 
by substituting the asymptotic expansion: 


•-/i(•; f) = •-•(Ui)n •n 


into (1) and collecting the leading-order terms. Unless we 
encounter a corner region, we obtain a one-dimensional 
second-order differential equation with a local coordinate 


The inner solution, ui, satisfies the boundary conditions: 


u•(• = o, v) = v•(v - Uo(• = 0, v 
Ui( • '• C•, 7]) = 0 


(•) vvß r• 


where the values for Uo are taken from the outer solution 
process which was obtained in Sec. 3. 


These one-dimensional problems are defined for each V 
on the boundary. They are to be solved along rays orthogo- 
nal to the boundary Fb and originating at grid points lying 
on F•. 


The resulting inner solution gives the approximate solu- 
tion: 


(7) u•(x;•)=Uo(X)+•,•(•(x)..(x)) 


which is an O(e) approximation through ft. 
For the two-dimensional case, the values of the outer 


solution are updated twice: first, after computation of the 
x-boundary layer, and then after computation of the y- 
boundary layer. This second update mostly affects the 
solution in the corner where the x and y boundary layers 
meet. The extension to three-dimensional problems is then 
straightforward. A more accurate procedure, albeit more 
expensive, is to use a two-dimensional inner solution in 
corners. 


5 Improved solution 


The 'booster method', introduced by Israeli and Ungar- 
ish ([10]), exploits analytic asymptotic approximations (or 
possibly other approximation methods) to obtain an ac- 
curate global approximation to the solution of a partial 
differential equation on a coarse grid. The method is sum- 
marized as follows: 


For a linear partial differential equation: 


(s) Z(u) = i i• • 


subject to appropriate boundary conditions, a numerical 
solution u• is usually obtained directly from: 


(•) Z.(u•) = f. i• • 


where L• and f• are the discretized approximations for L 
and f. Instead, in the 'booster method', we use an approx- 
imate analytic solution, u• of (8) to obtain an improved 
solution ur from: 
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The error of the improved solution obtained by the booster 
method is bounded by: Ile•ll _< klle•,ll. lieAll (see [10]). 


Equation (10) can be used in order to improve both the 
approximate solution, uA, which was calculated in Sec. 4 
and a spectral element solution of (1)-(2). 


6 Summary of the algorithm 


6.1 


The 


1. 


The function u,•(x) satisfies (14) and thus, belongs to the 
space spanned by the spectral element basis. Therefore 
u,•(x) can be expressed as: 


(15) urn(x) = Ix(urn) 


where Ix is the spectral-element interpolation operator 
based on Legendre-Gauss-Lobatto points. The analytical 
approximation is composed of the numerical outer solu- 
tion, Uo, and the analytical inner solution, ui(•(x)r/(x), so 
that: 


Steps of the algorithm (16) 
algorithm proposed here is summarized as follows: 


The outer solution, u0, to (1) is obtained numerically 
on a coarse grid using (5) and letting/k tend to zero. 


2. The inner solution, ui, is obtained analytically accord- 
ing to Sec. 4. 


3. The two solutions, u0 and ui, are matched according 
to (16) to obtain an "analytic" approximation, u•, to 
the exact solution(16). 


4. Equation (10) is solved (on a coarse grid) using an (17) 
appropriate choice for X. 


5. The outer part of ui is substituted into uA and step 
2 is repeated until convergence is attained. The outer 


(lS) part of u• is calculated by subtraction of ui from uz. 


6.2 Interpolated solution 


The numerical solution, u•, is a discrete solution calculated 
at the nodal points of the elemental grid. Intermediate val- 
ues for the solution, u•(x), cannot be obtained by direct 
interpolation using the spectral element basis since the so- 
lution does not belong to the space spanned by this basis 
(Ill!). An alternative procedure to calculate the value of 
•i(x) is as follows: 


(11) Ku[ = f + (KuA - fA) 


or alternatively: 


K(u•r - u•4 + K-•f •4) - f 


u• = (ui - u• +K-•f •) 


(12) 


If we define: 


(13) 


then 


•(x) = •o(X)+•(•(x).,(x)) 
= •x(Uo) +•(•(x).,x)) 


The inner solution, ui, is analytical and continuous in •(x) 
but it is discrete in V(x). As a result we can write for each 
discrete point Vn an analytical solution ui (•, V•). The inner 
solution at V • V• can be calculated by a one-dimensional 
Lagrange interpolation formula of order N. That is because 
of the restriction that the variation of the inner solution in 


the V direction is determined by the outer solution which 
is spanned by the spectral element basis. 


If we introduce the booster term 


with 


•(x) = A•(u•) 


Then, the improved solution u• is expressed as: 


uz(x) = Ix(uo) + ui(((x)) + I.v(K-•f '4) 
(19) = Ix(uo + K-•f A) + ui(•(x)) 


7 Numerical results 


7.1 Two-dimensional 


boundary layer 
problem with 


Here we apply the method described above to the two- 
dimensional convection-diffusion problem: 


(20) 


e•72u + V. •7u = 0 


•(•, o) = o 
•(•, •) = v• 
•(0, y) = o 
u(1.y) = v• 


x • (0,1)0' 


(14) Ku,• - f where V -- (1, 1). 
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For this problem we seek an asymptotic solution com- 
posed of an outer solution. no. and an inner solution. ui, 
as follows: 


(21) = 


The solution for Uo is two-dimensional and is computed as 
described in Sec. 3. For the inner solution (setting n = 0 in 
(21)) the following one-dimensional differential equation 
must be soh-ed in the direction normal to Fb' 


d2 u• 
(22) --+-- = 0 Vr/•F6 


d( 2 d• 


The solution to (22). subject to the boundary conditions 
(6). is: 


= - = 0. 
(23) 


and the approximate solution. u.4. is: 


(24) 


<4(x) = Uo( = o, 
Vq • Fb 


In Fig. -l-a we plot a reference solution of (20) obtained 
by nmnerical solution of (20) on a very fine grid. In con- 
trast. the results for a coarse numerical solution. u,. using 
one spectral element of order _\:•. = _\-• = 13. are plot- 
ted in Fig. 1-b. The latter solution oscillates throughout 
the domain. Increasing the number of elements with fixed 
.\:•.. _Vv leads to smaller wiggles in the solution because of 
the reduced coupling between the elements as compared 
with a fifilv spectral solution. In Fig. 1-c we plot the 
improved solution ut obtained using the same coarse grid 
mesh (_V,. = .\':• = 13) as for the fully spectral solution 
u,,. The error distribution arising from the fully numerical 
solution. u,,. and from the different stages of the solution 
are presented in Fig. 2 a-d. The error of the numerical 
solution is ][e,•[]x = 0.13 (Fig. 2-a). The error of the 
present solution after the first analytical correction (ob- 
tained on the edge x = 0) is still large on the boundary 
(the edge//= 0) on which the correction has not yet been 
performed (Fig. 2-b). As expected. the error norm after 
the correction on all boundaries (Fig. 2-c) attains its max- 
inmm value near the corners (ll*ll, = 0.17). Using the 
mixed analytical numerical procedure (10) leads to a final 
solution with error norm IlelIx - 4 10-2(Fig. 2-d). 


In order to show the efficiency of the present solution, 
the value of k = Ile•ll,•/lle•[I,•' [leA[l ,,-as estimated for 
various polynomial degrees and several values of e. The 
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Figure 1: Solution for a two dimensional problem (e = 
8 10-3). (a) Reference (high resolution) solution (b) Nu- 
merical (spectral) solution u,•, N = 13 (c) Improved solu- 
tion u•. N = 13. 
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Figure 2: Error distribution (e = 8 10-a). (a) Numerical solution IIc•11• = 0.13 (b) First correctionllell•: 
Second correction IIc•411• -- 0.17 (d) Improved solution IIc•11• - 4 10 
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boundary conditions were chosen so that an analytical ref- 
erence solution can be found. The results for k are sum- 
marized in Table 1. 


For all the values of N and e considered here, k is found 
to be O(1). For sufficiently small values of e, the method 
shows an improvement over the fully numerical method. 
The approximate solution is weakly affected by the poly- 
nomial degree of the outer solution since the error eA is 
composed of the error of the numerical outer solution and 
the error of the inner analytical solution, which is domi- 
nant. 


N •) e =• 0.01 0.008 0.005 0.003 


Ile•tl• 3.50 10 -• 5.40 10 --1 1.14 100 2.19 100 


11 ]le.411• 3.31 10 -1 1.74 10 -1 8.29 10 -2 3.10 10 -2 


]!eIIl• 3.55 10 -2 2.49 10 -2 2.38 10 -2 1.69 10 -2 


k,c 0.306 0.265 0.251 0.248 


Ilenl]• 1.01 10 -1 1.61 10 -1 3.29 10 -1 5.04 10 -• 


14 I!eAll• 3.30 10 -1 1.72 10 -• 8.25 10 -2 3.11 10 -2 


l]eiIl• 1.10 10 -2 9.20 10 -3 1.21 10 -2 5.13 10 -3 


k• 0.33 0.33 0.44 0.32 


Iter•[l• 4.80 10 -2 8.80 10 -2 2.20 10 -1 4.00 10 -1 


16 IleAt]•c 3.1 10 -1 1.74 10 -1 8.22 10 -2 3.09 10 -2 


l[elit•; 1.80 10 -2 6.43 10 -3 6.15 10 -3 4.8 10 -3 


k• 1.21 0.42 0.34 0.38 


]lenl]• 2.03 10 -2 6.00 10 -2 1.46 10 -• 3.17 10 -1 


18 IIeAll•c 3.02 10 -1 1.69 10 -1 8.11 10 -2 2.99 10 -2 


I[et[l• 1.73 10 -2 5.03 10 -3 3.12 10 -3 2.52 10 -3 


k•c 2.85 0.49 0.26 0.27 


Table 1: Comparison between the various stages of the 2-d 
solution and a numerical solution. 


The efficiency of the improved solution compared to a 
fully numerical solution can be evaluated using the results 
plotted in Fig. 3. We assume that the number of opera- 
tions which are needed for a numerical solution is of order 


of p3 where p is the total number of degrees of freedom. 
For e = 3 10 -3 and N - 11 the error obtained from the 


improved solution is Iletll -- 1.69 10 -2. In order to get a 
numerical error similar to the error of the improved solu- 
tion, the polynomial degree of the spectral solution would 
have to be increased to N m 35 (see Fig. 3) (even with the 
highly efficient boundary layer resolution of such a poly- 
nomial spectral method). This result means that the ratio 
between the number of operations for the two solutions is: 


ß 352 3 
(25) ef fo.oo3 ,• (2-•i-7) • 130 


10 4 


10' I ß ½=0.003 A ½=0.005 


10 ø 


. _ _ ?•¾:3_8•_-_2 _• 


.... -::--:-_::::-:--- ...... ••-• 
i • i I • , i i I i i ,•, [ , i , , , , i i i ' , r , i 


15 20 25 30 35 40 


N 


Figure 3: Efficiency of the improved solution. 


and for e = 0.005 (see Fig. 3): 


(26) 
252 3 


f f0.00 ( 2--i-ff ) 20 
The algorithm was also been applied to problems with 


different values of e in the x and y directions of •2. If 
the value of e is high enough in one of the directions the 
correction could be done only for the second direction in 
which e is small (see Figs. 4-5). In this case the source of 
the wiggles is from the x direction so that there is no need 
to correct the solution in the vicinity of the y boundary. 


When a % 0 in (1) and the velocity of the advection 
term is parallel to the boundary (V= [•, o]) two types of 
boundary layers are present: one of order e and a second 
one of order x/'•. In such a case we often need to improve 
only the solution near the boundary layer of order e. In 
Fig. 6 we present the results for a test problem: the ref- 
erence numerical solution is shown in Fig. 6-a. A fully 
numerical spectral solution based on a low order polyno- 
mial approximation (N-13) produces a large oscillatory 
error because of the x-direction boundary layer [0(e)]. The 
calculated outer solution, u0, is presented in Fig. 6-c and is 
free of oscillations. The hybrid solution can be calculated 
by matching this solution with a one-dimensional solution, 
ui (Fig. 6-d). This solution is much more accurate than 
the fully numerical solution which is based on the same 
coarse grid (Figs. 6-e,6-f). 
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Figure 4: Solution for a two dimensional problem with dif- 
ferent values of e (% = i 10-2,% = S 10-2). (a) Reference 
solution (b) Numerical (spectral) solution un, N = 13 (c) 
hnproved solution ,•, N = 13. 
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Figure 5: Comparison between various solutions and the 
reference solution at a fixed x coordinate (x = 0.92). (a) 
Analytical correction {l•A{Ioc = 0.184 (b) Numerical so- 
lution II•nll•= = 0.131 (c) Improved solution ll•tll• = 
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7.2 One-dimensional problem with an in- 
terior layer 


The present algorithm can be applied to the solution of 
problems having interior layers. To illustrate this, let us 
consider the following one-dimensional problem: 


(27) •'%= - u = -c(x) x • (-0.5,0.5) 


The outer solution for this equation is calculated numer- 
ically as in Sec. 3 and the inner solution, ui(•), should 
satisfy the equation: 


d 2 •t i -- 
(28) dE: = Uo-C 
where z• is the location of the interior layer and ( = ½-•. 
For the inner problem it is convenient to use c(x) as an 
approximation for Uo since the difference between them is 
of O(e). The solution for (28) is: 


= 
(29) * (+) = 


The solutions to both equations should satisfy the condi- 
tions that u• = 0 for • -• oc so that ß 


= 
(30) = 


The coefficients A and E are evaluated after applying conti- 
nuity conditions to both the solution,uA, and its derivative 
so that: 


2A 


2E 


(31) 


dx 


dx 


As a first example we will consider the case where c(x) 
is discontinuous at x• = 0.5 ß 


(4x- 1) -o c(x) = -(4x- 1) 2 
if0<x<0.5 


-- 


if0.5<x<l 
-- 


In table 2 we present the maximal error at nodal points 
for different values of the polynomial degree,N, and e. For 
the particular differential equation under consideration the 
numerical solution does not produce wiggles for low values 
of e(Fig. 6) because it converges to a solution of linear 
algebraic equations for e -• 0. When the first derivative 


N• e2:• 2. 10 -5 1. 10 -5 5. 10 -6 2. 10 -6 


10 [[en][• 2.97 10 -: 2.31 10 -2 1.42 10 -2 5.93 10 -3 


l[eA][:x• 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.40 10 -5 


[]eI[]• 1.29 10 -5 9.15 10 -6 1.37 10 -6 2.39 10 -7 
k• 0.68 0.67 0.61 0.63 


11 [[enl[•x• 2.96 10 -• 2.73 10 -• 1.86 10 -• 8.39 10 -3 


][eA]l• 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.37 10 -5 


][ei]]• 1.76 10 -5 6.99 10 -6 2.20 10 -6 4.12 10 -? 


k• 0.92 0.81 0.74 1.00 


13 [[en][• 2.28 10 -2 2.96 10 -2 2.66 10 -2 1.49 10 -2 


]]eA[Ioo 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.40 10 -5 


][e•[]• 2.31 10 -• 1.29 10 -• 4.83 10 -6 9.97 10 -z 


k• 1.50 1.37 1.12 1.04 


15 [[en[]• 1.35 10 -2 2.48 10 -2 2.97 10 -2 2.22 10 -2 
,, 


]leAIl• 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.40 10 -• 


Ilef]!• 2.85 10 -s 1.77 10 -s 8.44 l0 -6 1.72 10 -6 


k• 3.2 2.26 1.76 1.40 


Table 2: Comparison between the various stages of the 
solution and a numerical solution for discontinuous c(x) . 


of u was present in the equation, the numerical solution 
was less accurate and much more oscillatory (like the two- 
dimensional boundary layer case). A plot of the different 
steps of the solution is presented in Fig. 7 for the case 
e = 2 10 -• and N -- 15. The inner solution is discontinu- 


ous and decays to zero far from the boundary layer. Our 
final example is the case where c(x) is chosen so that it 
is continuous within the domain but has a discontinuous 


derivative at some point within the domain. •Ve choose 
c(x) = I x -0.51 so that: 


(32) U(o-)(xt) = U(o+)(xt) 


dx dx :0(1) 


For this problem the solution UA is: 


(33) uA = Uo + O(e)e -I•l 


From Table 3 we can see that for this example the im- 
proved solution is much more accurate than both the nu- 
merical and analytical approximations. As shown from 
(27) the numerical and the analytical approximations are 
of the same order for low values of e. For such problems 
it may be worthwhile to improve the results by using a 
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Reference solution 
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-- Numerical (N=! 3) 
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-0.5 0 0.5 


Y 
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Figure 6: Solution of a two dimensional problem with different types of boundary layer (ex = ey - 5 10-3; a -- -4; v = 
[1,0]). (a) Reference solution. (b) Numerical (spectral) solution Un, N = 13. (c) Outer solution Uo, N -- 13. (d) 
Improved solution ux, N = 13. (e) Comparison between the different solutions. in the x direction on a fixed line 
y = -0.86. (f) Comparison between the different solutions in the y direction on a fixed line x = -0.34. 
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Figure 7: Solution distribution for 0 < x < 0.5 (• = 2 10-5,N = 15). (a) Different stages of the solution (b) Error 
distribution 


N ,lj, e 2 ===> 1. 10 -5 5. 10 -6 2 10 -6 1. 10 -½ 7. 10 -7 
11 II'enll 0.399 0.544 0.698 0.783 0.818 


[leAll• 0,400 0.345 0.254 0.192 0.165 
II•ll• 8.0 10 -2 5.9 10 -2 3.38 10 -2 2.26 10 -2 2.24 10 -2 
k,o 0.5 0.314 0.19 0.15 0.17 


12 II•nll• 0.317 0.470 0.643 0.742 0.787 
IleAll• 0.413 0.377 0.291 0.224 0.193 
I{•l{• 8.5 10 -z 7.23 10 -2 4.3 10 -2 3.25 10 -2 3.28 10 -2 
ks 0.65 0.407 0.230 0.196 0.22 


14 Ile•ll• 0.182 0.328 0.526 0.651 0.704 
I1•111• 0.393 0.412 0.354 0.285 0.250 


7.7 10 -2 8.5 10 -2 6.32 10 -2 6.08 10 -'2 6.36 10 -2 
k•: 1.07 0.629 0.339 0.32 0.36 


18' {}e•l{• 4.14 10 -2 0.127 0.301 0.454 0.528 
II•All• 0.24 0.356 0.414 0.383 0.353 
Ilezll 2.98 10 -?' 6.33 10 -2 8.4 10 -2 7.1 10 -2 2.56 10 -2 
k,c 2.95 1.45 0.67 0.4 0.17 


Table 3: Comparison between the various stages of the solution and a numerical solution for discontinuous ac(x) dx ' 
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'mixed' numerical solution. Instead of solving for the orig- 
inal differential equation [see (21)] two new variables (u 
and the derivative of u) can be defined. The correction 
can then be computed only for the derivative of u. 


8 Conclusions 


The aim of this work was to present a high-order method 
that is general and efficient for the solution of multi- 
dimensional problems with both boundary and interior lay- 
ers. Our approach exploits the fact that the boundary layer 
can be treated as a one-dimensional problem to first ap- 
proximation. In this way the solution is straightforward 
and does not depend on the dimension of the problem. 
The calculated solution away from the boundary layer is 
obtained by using the spectral element method. In this 
way. the number of degrees of freedom required to obtain 
the solution is minimal, because the outer solution does 
not have a boundary layer and thus the spectral conver- 
gence is retained. In order to deal with both boundary and 
interior layers, we used a penalty spectral element method 
for the numerical solution so that the the outer solution 


and the corrected solution are calculated on the same grid 
and there is no need to change the structure of the co- 
efficient matrices. We believe that the new method will 


be useful for a variety of problems involving interior and 
boundary layers, including e.g. semiconductor device sim- 
ulations ([14]). 
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:Figure on reverse: 
The stencil for AX •nd AY in the fourth order discrete 


divergence operator DIV. (From "High-Order Mimetic 
Finite Difference Methods on Nonuniform Grids • by J. 
E. C•stillo? J. M. Hym•n, M. J. Sh•shkov •nd S. Stein- 
berg, page 347) 








An Efficient Adaptive Grid ENO Scheme 


Robert Bruce Bauer* 


Abstract 


.Most numerical schemes are implemented on uniform grids. 
But often uniform grids, in an attempt to resolve fine- 
scale features, use a fine uniform mesh and over-resolve 
areas of the domain. Methods which use non-uniform grids 
usually maintain the same grid for all time steps. These 
algorithms require an a priori knowledge of the regions 
which need a smaller mesh size. There are two possible 
types of problems where these methods fail to provide an 
optimal grid. The first is when the area needing a smaller 
mesh is unknown before the computation. The second is 
when the area needing greater resolution moves throughout 
the domain. The method provided here will efficiently find 
the computational grid and adapt the grid so that the grid 
is always optimal. 


Key words: ENO schemes. adaptive grid, •vavelet analy- 
sis. 


AMS subject classifications: 63N30,65N13. 


i Introduction 


Essentially Non-Oscillatory (ENO) [1, 2] schemes are good 
high-order methods for problems with sharp gradients and 
shocks. However, these high order schemes obtain a so- 
lution at the cost more cpu time. These schemes require 
nmltiple cpu intensive if-then statements to be executed at 
each data point and each time step. To reduce the number 
of computations this method was designed to find an op- 
timal grid •vhich gives uniform accuracy using a minimal 
number of cells. Section 2 describes many of the concepts 
and terms associated with ENO schemes. 


The method purposed here is an Adaptive Grid Essen- 
tially Non-Oscillatory (AGENO) scheme. More specifi- 
cally, AGENO is the application of an adaptive grid to 


x Division of Applied Mathematics, Bro•vn University, Providence 
R.I. 02192. 
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a finite volume ENO scheme. The grid adaption compo- 
nent dynamically changes the grid in order to maintain a 
nearly uniform truncation error throughout the domain. 
The uniform error enables the scheme to use a minimal 


number of cells. 


Admissible grids are of the form xj+i - xj + 2-JA, 
where j = 0..J. (J and A are user parameters.) Based 
on these grids, refinement and coarsening processes are 
defined. Refinement is defined as dividing a cell in half; 
Coarsening is defined as the combination of two adject cells 
of equal size. 


To demonstrate how the decision whether to refine or 


coarsen the grid is reached, consider the first order central 
difference approximation to the first derivative of f(x). 


(1) f'(xg) f(xj+•)- f(xj) + (xj+• - xj) .( = f •) 
xj+• - xj 2 


where • • [xj,xg•_•]. Also let f9 be an approximation to 
I/"(•)l, Now for a given tolerance e, if (xg+•-xj) _< 2e/fj. 
then 


(2) f'(xj) - f(xj.•) - f(x•) <_e + O ((z'9+• - x9)2). 
Therefore the truncation error is less than e plus a quan- 
tity than decays like A 2. But if (xj+• - xj) _> 2e/fj, then 
the truncation error is too large and the grid needs to be 
refined. The requirements for whether to coarsen the grid 
are similar. While the above construction is for first order 


finite difference, Section 3 describes an analogous construc- 
tion for high order finite volume computations. 


The tests for refinement and coarsening also require 
if-then statements. Therefore when and where to apply 
these tests needs to be considered fully. These decisions 
are based on the characteristics of the PDE being solved. 
Advection, diffusion, and the non-linear effects associated 
with the PDE influence these decisions. Proper application 
of refinement and coarsening tests ensures that cpu time is 
still minimized. Section 4 describes the actual procedures 
which change the grid and their application. 


The results in one dimension demonstrate the consider- 


able cpu time that can be saved using AGENO. AGENO 
applied to Burgers' equation used one eighth the number 
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of ceils and took one tenth the amount of cpu time com- 
pared to ENO (section 5). Applying AGENO to Euler's 
gas equations with discontinuous initial conditions lead to 
cpu time of one third of the uniform fine grid computation. 


2 ENO schemes 


This paper describes describes an adaptive grid algorithm 
which is applied to essentially non-oscillatory uniformly 
accurate scheme for the solution of one dimensional hy- 
perbolic systems of conservative laws. 


(3) + = 0 0) = 0(x) 


Here u = (u•. u2,...,um) r is the state vector and F(u), 
the flux, is a vector valued function with m components. 
Let 


a F(•) (4) . 
Since this paper is only concerned with hyperbolic sys- 
tems. A(u)has m real eigenvalues, {h;.(u) xm and a com- Jk:l 


plete set of right and left eigenvectors, {r•(u)}• and 
{l•.(u)}• •_ Furthermore assume that r•l• = 5jk 1' ' 


Examples 2.1 


i. Iniscid Burger's equation F(x) = x 2, 


ut + (u2),,.=O 


ii. One dimenional Euler gas equations for conservation 
of density. momentum and energy 


wt + F(w)., = 0 


with 


where p is the density, m is the momentum, and E is 
the enrgy. Also 


F(w) = P 


Pu 


with u - m/p (velocity) and P = (3, - 1) (E - 1 t9U2 • 
(pressure) and */ is the polytropic gas constant. 


2.1 PDE attributes 


In order to design an adaptive grid algorithm for a numer- 
ical method, it is important to understand the PDE which 
it is solving. This section briefly describes the different 
characteristics of PDE, so that refinement and coarsening 
of the grid can be done intelligently. 


Advection-the wave-like propagation of features through- 
out the domain. Fine-scale features will propagate 
throughout the domain, requiring either refinement and 
coarsening of the grid. 


Non-linear effects-formation of fine structure from other- 


wise smooth data. The formation of shocks and con- 


tact discontinuities are both examples of non-linear effects. 
This will may require refinement of the grid anywhere in 
the domain. 


Dissipation-viscous forces smoothing out features in the 
domain. This will only require coarsening of the grid any- 
where in the domain. 


2.2 Cell averages 


Instead of solving the partial differential equation (3). the 
cell averaged formulation of the partial differential equa- 
tion is solved instead. The cell averaged formulation is 
obtained by integrating the PDE over any connected sub- 
set of the domain. ie. for the probleln on [0, 1]. integrate 
over [a,b], where 0 _< a < b _< 1. This yields the cell 
average form of the PDE 


(5) d-• u(x,t)dx = F(u(b,t))- F(u(a,t)). 
Now discretize using the points x;+l/2, where x_i/.2 = O, 


xx+t/2 = 1, and xj_i/2 < x;+t/2. Furthermore define 


(6) ag(t) = u(x,t)dz. 
•X3--1/2 


and 


X3-1-1/2 -o u(x, O)dx. (7) 
This produces the more familiar cell average form of the 
PDE 


(8) 


d 


Zg:(t) + F(u(xj+i/2,t)) - F(u(x;_t/2,t)) = 0 
-o 


Physically this can be thought of as the quantity •vithin 
cell j changes by the amount of the quantity entering from 
the left and exiting from the right. 
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2.3 Formalization of grid 


With the discretazition defined above, additional grid def- 
initions are necessary. Let Cj = [xj-1/2, Xj+l/2]. Restrict 
the cell sizes such that, 


(0) Icjl = 2 -w' •x •lc•l = 1. 


where wj • [0, S], A = •. R is the coarsest resolution 
and S is the number of levels of refinement. Also define 


xj = (x;-1/2 + xj+1/2)/2 and Aj = (x•-1/2 - Xj+l/2). 
The set of all grids •vhich meet these conditions is defined 
as •0. Equation (6) can be re-written as 


(10) a;(t) = • u(z, t)dx. 
Throughout A will be referred to for the analysis some 
interpolation errors. To obtain more exact error quantities, 
products of different A•'s should be used instead of the 
products of A. But it is the feeling of the author that it is 
sufficient to bound the errors using A. 


2.4 Reconstruction 


Equation (8) requires the evaluation or F(u(xj+l/2,t)). 
However only a knowledge of fij is available. Therefore a 
reconstruction of u(x) from fij is required. Define R(x; a) 
as the interpolating polynomial of degree p which recon- 
structs u(x) from a. Also let Rj(x: •) be the interpolation 
polynomial of degree p which reconstructs 'u(x) on the cell 
Cj. Then R(x; i•) = Rj(x; •) for x • Cj. 


Properties 2.1 Reconstruction via. ENO Interpolation 
R(x; •) satisfies: 


i. At all points x for which there is a neighborhood where 
u(x) is smooth 


(11) /I•(x; •) : •L(•) -•- O(h p) 


ii. R is conservative. 


(12) R(x•;•) -aj 


iii. R(x:a) is essentially non-oscillatory. 


(13) TV(R(x; •)) Z rv(7./)-•- O((A)P) 


Property iii ensures that the reconstruction R is essen- 
tially non-oscillatory. This guarantees that R(x) does not 
have Gibbs-like oscillations of (.9(1). However R(x) may 
have oscillation on the order of Ap. [2, 3, 4]. 


2.5 Conservative numerical schemes 


Equation (8) gives rise to a semi-discrete numerical 
scheme, 


(14) d 


where •j+1/2 is an estimate of F(u(xj+s/2)). Define 


(15) ]j+l/2: •'[Rj(•rj+l/2,t),Rj+l(•rj+l/2,t)] . 


9r[u, v] is called the numerical flux. There are two condi- 
tions on the numerical flux. 


i. Consistency 


•[•, •,]: F(•) 


ii. Lipschitz Continuous 


Ioqr'[ tt, •;1] -- oqr'[ t•, u2]l _< KlVl - v21 
I•[ul, v] - •[u.o. vii 5 tCtux - u2l. 


2.5.1 Specific fluxes 


Define the first order reconstruction Rj(x, a) - aj. Using 
this example of a reconstruction will make examples of 
specific fluxes easier. 


Examples 2.2 (Scalar flux functions) 


ß Lax Friedrich 


1 


oSr'[•j, fij+l] : • (F(•j+I) 
a = max 


ß Local Lax Friedrich 


1 


ß ?[•j,•j+l] = • (F(fij+l) + F(aj) q- o•)(•j+ 1 - •j)) 
% - max IF(u(x))l 


.r • C• 


ß Godunov 


min•, <,•< a,+• F(u) 
if • > •j+l 
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ß •oe 


The computation of the flux function for a system of 
equations is not much different than for scalar equations. 
The most common flux used for systems is the Roe flux. 
The Roe flux requires that the absolute value of the Ja- 
cobian Matrix A(u) to be computed. The first example 
is the extension of Roe's scalar flux function to systems. 
This flux function does violate entropy conditions of the 
PDE. Therefore Roe's scheme with an Entropy fix is also 
presented. For further information see [4, 3, 5]. 


Examples 2.3 (System flux functions) 


Roe (without Entropy fix) 


For Roe's scheme a value /t(u•, u2) is computed such 
that A(a(u•.u2)) satisfies the mean value relation 


(16) F(u2) - F(u•) = A(f•(u•,u2))(u2 - u•) 


Then the fiuz function can be define as 


I "• ..•[lI1. 122]-- • F(u•)+F(u:)- • • I•(•)lr•(• ) 
k=l 


k=l 


Roe (with Entropy fix) 


/3• is a non-negative quantity measuring the violation 
of the entropy condition in the k th characteristic 
3,5]. 


2.5.2 Time integration 


Equation (14) is a system of ordinary differential equations 
for the variables aj. To solve these systems any of the 
many ODE solvers can be used. The third order Total 
Variation Diminishing Runge-Kutta [6] was used for all 
computations performed for this paper. 


2.6 ENO interpolation 


The goal is to create an interpolation algorithm which sat- 
isfies properties 2.1. This has been accomplished by Harten 
el al. [3, 2, 4]. Since only the cell averages of the function 
u(x) are known, the reconstruction must be carried out 
using u(x)'s primitive function. Define 


(19) U(x) = u(y)dy. 


Using the values aj, U(x) is know at the distinct points 
Xj+•/2, 


(20) = ) + 


Interpolation is carried out on the points Uj+•/2 = 
U(xj+•/2). 


Now consider the interpolation which is carried out on 


cell j. For obvious reasons the points xj-•/2 and xj+•/2 
must be used. Using just these two points. the interpola- 
tion of U(x) is second order and the reconstruction of u(x) 
is first order. For a pth order reconstruction. a (p + 1) "t 
order interpolation of U(x) is required. Therefore for a 
order reconstruction, p + 1 points of Uj+•/2 are required. 
Adding the requirement that the p + 1 points are all next 
to each other, there are p possible stencils. 


The algorithm for determining the smoothest polyno- 
mial is defined recursively. Once the smoothest qtb order 
polynomial has been found, the (q + 1) "t order polynomial 
is easily determined. 


ii. 


Given a qt• order polynomial V•(x,q, lq(j)) defined 
on the cell C• which interpolates U(x) at the points 
{xj+z•(j)_•/2,... xj+z•j+•+•/2}, then 


(21a) U,, = Vj(x•,q, lq(j)) 
(2lb) s=j+lq(j)-l/2,...,j+lq(j)+q+ l/2 


lq(j) is a pointer to the left-most cell used for the qth 
order interpolating polynomial on cell j. 


Compute 


(22a) Uœ : U[Xj+lq(j)_3/2... Xj+lq(j)+q+l/2] 
(22b) U• -- U[x•+t•(j)_x/2... 3•j+lq(j)+q+3/2] , 
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where U[... ] are the standard un-even divided differ- 
ellces. 


(23a) U[xj...xj+k]= 
U[xj... - 


X j+ k -- Xj 


(23b) U[xj] = U(x;) 


Uœ is the smoothness of the (q+ 1) st derivative if the next 
point added to the stencil is Xj+lq(j)_3/2. Similarly Us is 
the smoothness of the (q+ 1) st derivative if the next point 
added to the stencil is Xj_klq(j)4_3/2. 


iii. If lULl < Iu, l then the algorithm will 
add the point Xj+lq(j)_3/2 to the stencil. 


If IU, l _> lULl then the algorithm will 
add the point Xj+lq(j)+q+3/2 to the stencil. 


Therefore 


lq(j) - i if lULl < IU•l (24) lq+•(j) = lq(j) if IUsl _> lULl 
Defining lq+ • (j) defines the polynomial 
1• (x, q + 1,1q+•(j)). 


Once the desired order has been reached, the function 


u(x) can easily be recovered. 
d 


(25) R•(x. a) = •xxV•(:c.p, lp(j)) 
Step 3 will choose a stencil which will avoid crossing a 


shock if possible. If U(x) is in ½*• then 


1 d • 


(26a) U[x•,... ,xj+•] = k! dx • U(•) 
(26b) • • [X.•,Xj+I] 


If u(q)(x) is discontinuous within the interval [xj,xj+t], 
then fork_•q 


(27) U[xj,... ,x•+k] -- O (Aq-•[uql) 
where •uq 1 is the jump in the qtn derivative. Now consider 
two intervals, the first [xj•, xA+• ] where the function U(x) 
is smooth and the second [x j2 , xj2+• ] where the function 
U (q) (x) has a discontinuity. Then for A sufficiently small 


Harten [3] shows that where u(x) is smooth 


(28) dq dq O(/Xp+l-q) dff:q Rj(x; a) -•- •q U(x) -•- 
for q = 0,... ,p. Harten also showed that the reconstruc- 
tion Rj (x; a) is essentially non-oscillatory. 


Note: Since all interpolation is of order p, reconstruction 
is of order p+ 1. The notation l(j) will denote the quantity 
lp+l(j). 


2.7 Reconstruction accuracy 


Let Rj(x;•) be a function of order p which esti•nates 
the function u(x) on the cell Cj given the cell aver- 
ages •j. Then for x • Cj and u(x) smooth for x 6 
[Xj-l(j)-x/2, Xj-l(j)+p+X/2], then 


(29) Rj(x;a) : u(x) + ]•tl(P)(•j) 
j-l(j)+p+l/2 


II (x- 
k----j-l(j)-l/2 


where •j • [Xj_l(j)_l/2, Xj_l(j)+p+l/2 ] , and ]C is a constant 
independent of u(x) and the cell sizes, l(j) • [0...p]. 


However if u © (x) is discontinuous for 
x • [Xj_l(j)_l/2, Zj_l(j)+p+l/2 ], then the error will not be 
bounded so nicely. In this situation, the error can be larger 
around the discontinuity, and therefore the grid should be 
refined. The algorithm developed will refine around dis- 
continuities. 


2.8 Reconstruction for systems 


The reconstruction described so far is for scalar recon- 


struction. It may appear that the reconstruction for a 
system could be simply applied on each component of 
tt = (Ul, tt2,... , Urn) T. However many people have noted 
that applying reconstruction to the characteristics provides 
a better approximation. Therefore define the reconstruc- 
tion Rj(x, •) as 


(30a) V j = y'].{a•}i li(aj) k 


i 


(30b) R;(x, a)= y•.{Rj(x,•J)},r•(a9) k 


i 


Harten [3, 4] shows the results of applying the ENO inter- 
polation on the components and characteristics. Both give 
good results, but the characteristic method provides much 
better results. 


3 Error control 


Most schemes are design to have a certain order of ac- 
curacy. The goal in designing this scheme is to create 
a method which has nearly uniform accuracy throughout 
the domain while using a minimal number of cells • The 
nearly uniform accuracy is obtained by refining the grid in 


•Schemes usually have a certain order of accuracy such that the 
error decays like h p at points where the solution is smooth. The 
goal of this scheme is to have the error distributed throughout the 
domain. 
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areas •f lower accuracy, and coarsening the grid in areas 
of higher accuracy. 


First consider the truncation error when u(x) is smooth. 
The error term in equation (29) is controlled by two fac- 
tors, u(P)(x) and the sizes of cells {Ck ij-l(j)+p This •k=j-t(j)' 
requires an estimate of u(P)(•). Define Qj(a) and 
crt.(j, Cj-p/2, . . . , Cj+p/2) such that 


j+p/2 


(31) QJ(•) = Z % 
k=j-p/2 


Q j (•-4) = 0, for q -- 0,...,p - 1, and Qj (•) = p!. Then 
Qj(•) •-• •(P)(xj), and Qj(a) • TI(P)(•j) for •j 


3.1 ch.(j) specifics 


O'k(j. C3-p/2 .... , Cj+p/2) is a whole class of filters. The co- 
efficients are a function of the p neighboring cells. Because 
of the dependence on these cells there are many coefficients 
to compute (roughly pP + 1.) Even so the computational 
costs are not great because all these coefficients can be 
pre-computed and stored. 


3.1.1 Relationship to wavelets 


Lee Jameson [7] developed an algorithm which has a sim- 
ilar goal to this algorithm. The goal was to find a method 
to which would determine an optimal computational grid 
on which to compute a finite difference scheme. Jame- 
son used wavelets to determine the computational grid. 
Wavelets (See [8, 9.10, 11]) are compactly supported bases 
functions which also have multi-resolution analysis prop- 
erties. One important characteristic of xvavelets is that 
the wavelet basis function is orthogonal to the polynomi- 
als 1. x. x 2 ..... x q, for some specified q. Jameson used 
wavelet transforms to determine the local regularity of a 
function v(x, t). With a knowledge of the local regularity 
of the function an optimal computational grid was com- 
puted. Because of the time evolution of the solution v(x, t) 
a re-computation of the optimal grid was required peri- 
odically. This re-computation involved interpolating the 
function from the optimal grid onto a uniform fine grid. 


Example 3.1 Let the computational grid be the points 
{0, 1/16, 1/8, 1/4, 1/2, 1}. For the re-computation of the 
grid, the discrete function v•, defined on the computation 
grid, needed to be interpolated onto the finest uniform grid, 
x = j/16 for j = 0, 16. Then a new computational non- 
u,iform grid was computed. 


Jameson's work showed that this computational grid 
would provide a solution equally accurate as the solution 


computed on the uniform fine grid. Jameson*s algorithm 
used far less computations. But the interpolation onto 
the uniform fine grid for the re-computation of the opti- 
mal grid required more computations marginally slows the 
algorithm down. 


The filters rrk(j) designed here are similar to those of 
wavelets. The discrete filters •k(j) are orthogonal to the 
cell averages of the polynmn{als 1, x, x 2, ... , x p-1 But 
because they are designed to be applied to all the possible 
non-uniform grids in •0, the need to interpolate onto the 
uniform fine grid has been eliminated. 


3.2 Accuracy of Q•(a) 


This section computes estimates on the accuracy of (•j (x) 
to estimate u ©(x) for x • Q•. It is easy to find such an 
estimate for when u(x) • ½P+•. The estimate is not as 
nice for u(x) ½ ½P+•, but this does not hurt the algorithm, 
rather it helps the algorithm. 


½q is the space of continuous functions which have q con- 
tinuous derivatives. 


½q[9,] is the space of continuous functions which have q 
continuous derivatives for x 


3.2.1 u(•v) • C p-q-! 


In order to find the accuracy of Q3 (•,). define 


34P/2 


(32) •2j= [_J C•.. 
k=j-p/2 


From the definition of •l,(j), it is obvious that 


(33b) • G • 


where •l is independent of u(z) and p. Also 


(343) •(P)(•j) • •(P)(•j) + •2 •(p+l)(•j) 
(34b) •j • C) 


(34) 


where •2 also is independent of u(x) and p. Therefore 


(3s) = + ) 
(3b) 
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3.2.2 Non-smooth u(x) 


In the previous section, it was shown that Qj(2) • '•(P)(xj) 
when u(x) is smooth. Now consider the case where u(q)(x) 
is discontinuous for x • Cj. Define the sequence of func- 
tions Hq(x) such that 


(36a) 


(36b) 


(36c) 


H(x) is Heavyside function 


no(x): n(x) 


Hq+l(.r ) = / Hq(y)dy 
Then rewrite u(x) as 


(37) u(x) = u•(x) + A Hq(•) 


where u,•(x) • C •. Then 


(38) Qj(8) = Qj(2s) + A Qj(•q) 


From [3, 4]. 
(39) Qj(•rq) = o(Aq--p) ' 


For su•ciently small A, equation (38) can be rewritten as 


(40) Q3(f)--O(AAq-P). 


Therefore Q•(•) is a good estimate of /t(P)(.r) if 
,(.r) • ½•+•I•91. and otherwise Qj(a) is large. It is easy 
to veri•,that Qi.(a) will also be large for k • [j- p/2, _< 
3 + p/2]. Also if there exists a discontinuity in u(P)(x) for 
x • •2j then Qj will be large. 


3.3 Error indicators 


The error term in equation (29) is a combination of u(P)((•) 
and a function of the cell sizes, therefore define 


(41) •j = 111ax { x6C• 


j+p/2 


II 
k= 3 -p/2 


6• is a function of the cell sizes which, when combined with 
an estimate of u(P)(x), gives an upper bound on the error. 
5• can either be pre-computed and stored. In practice this 
is not done. To save the small amount of memory needed 
a quick estimate is used. 


p/2 


(42a) e= Z wi/p 
k=-p/2 


Then define 


(43) Qj :Sj max {IQki} 
ke [j-p/2.j+p/2] 


Qj is an bound on the error resulting frmn a centered sten- 
cil to reconstruct u(x) on cell Cj. The magnitude of Qj 
will determine whether cell Cj is refined or coarsened. 


3.4 Centered stencil use 


All estimates of the error are computed using a centered 
stencil. But why use a centered stencil to compute Qj and 
-- 


Qj when the reconstruction in section 2.4 is done using 
ENO interpolation? 


Qj is an estimate for interpolation over cell j. The ENO 
-- 


reconstruction error will be bounded by Qj if the centered 
stencil is chosen from the p possible stencils. There are two 
possible ways that ENO could choose a centered stencil. 


The first is if there is a discontinuity in u © (x) for :c • 
C•., [0 < q < p]. The algorithm would like to divide any cell 
which has a discontinuity within it. Fortunately both Qj 


-- 


and Qj will be large, and cell Cj will be divided. Moreover, 
Q• will be large for j - p/2 _< k _< j + p/2. Therefore the 
cells {Cj_p/2,..., Cj+p/2} will also be divided. 


The cells which are refined around cell Cj above are a 
buffer zone of higher resolution. A buffer zone is a region 
of non-required higher resolution next to a region judged 
to need higher resolution. 


Examples 3.1 (Buffer zone) 


If for x • [.3, .4] the domain needs to be refined. it is 
better to refine an area larger than [.3..4]. The actual 
buffer zone is not described i, terms of a dista•ce. 
but is only defined vaguely as a zo, e of non-required 
higher resolution. 


ii. The need for a buffer zone can be see, by examining 
the following problem. 


Ux -- gt 


u(x,t =O) = {0 if x<.5 I ifx_>.5 


If there is no buffer zone present, this computational 
grid will only have a very few small cells right at the 
shock. But the advection of the shock will move the 
shock into the neighboring larger cells. However with 
a buffer zone, the shock will move into the small cells 
of the buffer zone. 
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Another way the ENO reconstruction could use a cen- 
tered stencil is if the function u(x) • C p+• [F•j]. If this is the 
case then Qj provides a good bound on the reconstruction 
error. 


However what if ENO chooses a non-centered stencil? 


Then the centered stencil reconstruction error bound, Q j, 
is a rough estimate of the ENO reconstruction error. Both 
the smooth and non-smooth cases are examined. 


First consider the case where there is a discontinuity in 
u © (x) [0 <_ q < p] in the cell Ck•j and C'k C F•j. Because 
of equation (40), Qj will be large. The stencil for cell 
C, 9 will be non-centered, because the ENO interpolation 
will avoid using cell C•. ENO will avoid cell C• because 
an interpolating polynomial using cell C'• would be oscil- 
latory and violate property 2.1.iii. Therefore Qj will be 
larger than the actual reconstruction error using ENO re- 
construction. Therefore the estimate Qj will be also larger, 
causing cell C',j to be refined. The refinement of Cj creates 
a buffer zone around cell C•:. This buffer zone is the same 
buffer zone described several paragraphs ago. 


Also consider the case where u(x) • CP+I[['•j]. Then 
there are many possible stencils for which the ENO inter- 
polation might use for reconstruction. Instead of trying 
to determine how close Qj might be to an actual error 
bound. consider that Qj acts as a warning light for when 
refinement might be necessary. Without kno•ving more in- 
formation about u(x) for x • f•j or which stencil the ENO 
interpolation would choose, no bound can be obtained for 


-- 


the ENO interpolation Instead the estimate Qj is used as 
a rough estimate. To determine whether this estimate is 


-- 


useful or not consider that Q• probably is a good estimate 
to the reconstruction error from the ENO interpolation. If 


-- 


anything Q• is larger than the actual error, because ENO 
interpolation seeks the smoothest polynomial. To get a 
better bound, significantly more computations will be re- 
quired to compute the ENO interpolation and then find the 
error bound. Therefore Q9 will be used as the indicator 
for refinement and coarsening of the grid. 


4 Grid adaption 


4.1 Actual computational grid 


Initially •0 may seem to be the best set to use, but •0 
admits •nany undesirable grids. Some of these undesirable 
grids are polarized grids which can be created created by 
refinement and coarsening of even grids. An example of a 
polarized un-even grid is where w2i - 0 and w2•+• = 2. 
This grid is less desirable than a uniform grid with wi - 
1. Beyond existence of polarized grids, initial numerical 
computations often created these grids. To eliminate these 


polarized grids from the set of admissible grids, define G• C 
•0. 


Definition: G• is a subset the set grids of G0 such that given 
a grid g E G• and Ci is a cell of g with wi < S, then the 
grid which is the result of dividing cell C• in half is also a 
member of G•. The grid with wi -- 0 for i = 1...R is in 


Figure 1 provides a detailed example of the set Gt. This 
should provide a good example of the grids contained in 
G•. Figure 2 shows some examples of grids which are in 
G0 but not in G•, plus some more examples of grids in 
G•. Both of these figures should help provide a clearer 
understanding of the set G•. and why it is necessary to 
use this subset of G0. G• does not eliminate all polarized 
grids nor does it eliminate all undesirable grids. but it does 
provide a better computational grid than G0. Enforcement 
of this requirement is difficult and requires additional if- 
then statements. Therefore application of the coarsening 
algorithm is restricted. 


4.2 Adaptive procedures 


4.2.1 Refinement 


Now with a measure of the error, the cell sizes can be 


adjusted to control the error of the scheme. Given a 
user-defined tolerance, TOL(• 10-'•), for refining a cell 
if >TO•,, then refine cell C'j. Refinement consists 
of creating two cells out of cell j. Refinement requires in- 
terpolating aj to find the cell averages of the two new cells. 
This should be done using an ENO interpolation. 


Denote the refinement process as a mapping 7'4: 
G. ie. 7-4 maps one grid into another, and xvhich new grid it 
maps to is dependent on the function u(x). By inspection, 
it is obvious that T4 ß G0•G0 and T4 ß G•-•G•. 


4.2.2 Coarsening 


While it is important to keep the error within bounds, min- 
imizing of the number of cells is just as important. There- 
fore combining cells, or coarsening of the grid, is necessary. 
If IQj(u)] <tol and IQj+• (u)l < tol, then combine the cells 
Cj and Cj+•. (tol is a user supplied cut-off for combining 
cells , 10 -•) This coarsening of the grid will be denoted, 
c. 


-- 


Other than checking IQj½)l, there are a few other things 
which need to be checked before combining two cells. For 
two adjacent cells to be combined, they must have the 
same size. Without this requirement, newly formed cells 
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grid # 1 


grid #5 [ 


grids 5.1 - 5.4 
][ 


[ 


E ][ 


grids 4.1 - 4.3 


[---] [---] [ ][ 


E 3[---][ ][ ][ 
[-•-] [ ][ 


grid #2 
][ ] 


] 


] 
] 


] grid #4 


grids 3.1 .a - 3. l.d grids 3.2.a- 3.2.f 


• HH HH[-•] 


HHHH[ ][-•t 


•]HH[ ] H [--] 
HH[ 1[ ]HH 


HH[ ]HH[ 


grids 3.3.a- 3.3.d 
•HHHHHH 
HH[ ]HHHH 


HHHH[ 


[--]•-•[.--][--]•-•[.--][ ,, ] 


grid 3.4 


Figure 1: Example of •'t for R = 1 and S = 3. The first element in G• is the grid with only one cell (grid •1). The 
second element results from splitting grid #1 into two equal sized cells (grid y•2). The next three grids in G• result 
from splitting both cells of grid #2 (grid •$), the left cell of grid #2 (grid •4), or the right cell of grid #2 (grid •5). 
Working on grid #3, there are many different combinations of cells to split. Grids 3.1.a - 3.1.d result from splitting 
only one of the cells in grid #3. Grids 3.2.a - 3.2.f result from splitting any two of the cells in grid #3. Grids 3.3.a - 
3.3.d result from splitting any three of the cells in grid #3. Grid 3.4 results from splitting all four of the cells in grid 
#3. Now consider the different ways to split the smaller two left cells of grid #4. The three different possibilities for 
this splitting of cells from grid #4 results in grids 4.1 - 4.3. (Note: Splitting the right cell of grid #4 would result in 
grid #3.) A similar splitting of the two smaller right most cells of grid #5 produces grids 5.1 - 5.3. IG•] = 26 for R = 1 
and S = 3. Also IG•I = 677 for R = i and S = 4. 
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Example #1 


r '1 grid 1.a 
r -It- ]r 'it' '1 grid I b 
r' 'lE '11' 3E ] grid 1 c 


Example #2 
I1 '1 œ '1 r '1 grid 
C lC •C ]C ]C ]C ] grid 2.b 
[---3[ ]Ml' '1 [--•-] C 3['•'3 grid 2 c 


Figure 2: Examples of grids in G0 which are excluded from Gr. Example 1 (R -- 1 and S - 3): Grid 1.a and grid 1.b 
are elements of G1, grid 1.c is not. Grid 1.c is undesirable because the rapid change from a very small grid cell to a 
larger grid cell back to a very small grid cell. Grid 1.c cannot be created by refining grid 1.a. Grid 1.b is the equivalent 
of Grid #3 in previous figure and is a more desirable grid. One reason that grid 1.b is prefered over grid 1.c is that 
there is less change of cell sizes, while giving equivalent approximation errors. Example 2 (R = 3 and S = 3): Grids 
2.a and 2.b are both elements of G1. Grid 2.c is not in G1 and is undesirable because to the rapid change from cells of 
size 1/24 to cells of size 1/3. Grid 2.b is a better choice of grids over grid 2.c because grid 2.b lacks any change in cell 
size over the entire domain, while grid 2.c rapidly changes. Grids such as 1.c and 2.c only occur if the user does not 
monitor the coarsening subroutine to exclude these undesirable grids. 


would not have widths consistent with equation (9). The 
next requirement on joining two cells is that the resulting 
grid be in •. 


4.3 Procedures applications 


4.3.1 Resolution boundaries 


There are three different procedures which are used to 
change the grid. Generic refinement and coarsening have 
just been discussed. These procedures are applied to the 
entire grid and are the basic methods for updating the 
grid. While using only these two procedures to change the 
grid will work. it is inefficient. The PDE's advective forces 
move structures throughout the domain and require many 
checks of the grid. Using a knowledge of the PDE, a more 
efficient algorithm can be designed. 


Consider the set of cells which are on the interface be- 
tween two different resolutions. Define the set 13 as 


(44) 13 = {Cilwi < wi+• or tvz < wi-•} 


Example 4.1 
Cor•,sider the PDE ut = us with initial conditions such 
that the right part of the domain needs one level of refine- 
ment to maintain accuracy. Then wi = 0 for i: 1... No 
andwi= l fori=(No+ l)...N. Then 13={CNo}. 


These cells will be called the boundary cells. If the the 
problem is purely advective, then the only cells which need 
to be refined are contained in 13. Checking only the cells 


in 13 eliminates a majority of the computations that would 
be needed to check the entire grid. 


Example 4.2 
Consider the PDE 


(45a) 


(45b) 


Outside the region [.5, .6] the cells will be large. and within 
the region [.5, .6] the cells will be very small. The boundary 
cells will on the boundary of the region [.5, .6]. As the 
merical method steps forward in time, the features in the 
region [.5, .6] are going to propagate to the left. In order 
to maintain proper resolution, the first large cell to the left 
of the fine-scale features will need to be refined 2. This cell 
will be in 13. As time progresses, the set 13 will move to the 
left, just in front of the propagating wave. 


4.3.2 Complete refinement 


This procedure of checking the boundary between resolu- 
tion will ensure proper resolution will maintained for the 
advective forces. But boundary refinement will not ensure 


2The actual application to this problem will also have a buffer 
zone. So in fact the propagation of the features will move into the 
smaller cells of the buffer zone. Therefore the boundaries cells are 


actually used to adjust the buffer zone, keeping it ahead of the fine 
scale features. 
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proper resolution of fine scale features which are the result 
of the non-linear effects of the PDE. Consider Burger's 
equation with u(x,t = 0) = sin(2•rx). The smooth initial 
conditions will lead to B be empty, but it is well known that 
a shock will form and refinement will be needed. There- 


fore, non-linear effects require complete refinement of the 
domain. The entire domain will be checked every TR time 
steps. TR • [5, 50]. 


4.3.3 Complete coarsening 


While it is important to keep the number of cells to a nfini- 
mum, performing the coarsening algorithm is a costly com- 
putation. The additional computations needed to perform 
C arise from the requirement that C: (71 --• (71. Therefore 
complete refinement 3 is done less often. The entire grid is 
coarsened every Tc time steps. Tc • [10, 50]. 


4.4 Number of computations 


Let .\• be the number of cells used for a uniform grid 
ENO scheme. and lYa be the average number of cells used 
by an AGENO scheme. Let T be the number of inter- 
roediary steps for the Runge-Kutta time stepping algo- 
rithm. h) is ratio of the time to perform 1 if-then to the 
time to perform 1 multiplication,. Io is estimated to be 
5. [See table 11 The number of computations per time 
step on an uniform grid will be N•T(2p + Io). [See ta- 
ble 2] The total number of computations for only the 
time stepping for the AGENO scheme will be 2pN•T. 
Let the average number of cell which are refined and 
coarsened as {Ro' N•,} and {Co' Na}, respectively. The 
number of computations for the total refinement will be 
No [2p + 2Io + Ro(2p + 5 + I0)] and will be only be per- 
formed every TR time steps. The number of computations 
for the coarsening will be .¾• [2p + Io(2 + Co(5p + 4))] and 
will be performed every Tc time steps. Define {Bo ß N•} 
and { B•. N• } as the average size of B and the average num- 
ber of boundary cells refined, respectively. The number of 
computations to check the boundary will be N•.Bo(2p+Io) 
and to refine the boundary will be Na ß B•(2p + 5 + Io). 
The boundary checking is performed every TB time steps. 
Therefore for an adaptive grid with N• cells the number 
of computations will be 


:•, {2pT q- [2p q- 2/0 q- R0(2p q- 5 q- 2/0)]/T• 
+ [2p+ I0(2 +Co(5p+4))]/Tc 


(46) + Bo ( 2p + Io ) /TB + Bi ( 2p + 5 + Io ) /TB } 


3Complete coarsening works on the entire grid the same as com- 
plete refinement 


Values used 


for Computations 
T 3 


p 4 
R0 .01 
Co .01 
Bo .1 
B1 .01 
T/• 10 
Tc 50 
Ts I 


Table 3: Values used for comparison of number of com- 
putations needed. T, p, are the actual values used form 
computations. R0, Co, B0 and B1 are conservative aver- 
ages of actual values recorded solving Burger's equation 
with initial value a square wave. 


Using the values from table 3, if N• < 1.12N•, then 
the number of computations to be reduced. This is a very 
reasonable requirement, and is easily satisfied. 


All these computations assume that the number of time 
steps for the adaptive grid and the uniform grid are the 
same. This is not necessarily going to be true. The adap- 
tire grid will allow the largest time step be taken each 
time. Consider Burger's equation with initial conditions 
u(x,t = 0) = sin(2•rx). Initially the adaptive grid pro- 
gram will use a coarse grid, which xvill allow a larger time 
step. As the shock develops, and the grid is refined, the 
time step will be reduced. The uniform grid computation 
will need to use the same smaller time step for all steps. 


5 Applications to the inviscid 
Burgers equation 


The AGENO scheme xvas applied to Burger's equation 
with periodic boundary conditions. 


(47a) ut(x,t) + (u2(x,t))x = 0 


I 2 sin(27rx) (47b) u(x,t = O)- õ + õ 
Three different sets of run-parameters were used to demon- 
strate possible settings. (See Table 4). The final results of 
number of cells used, number of cells added and joined, the 
size of B and the number of time steps needed are shown 
in table 5. 


The figures on page 341 are the results from run-2. Fig- 
ure 3 show the solutions at t = 1.5, t = 2.5, and t -- 5.0. 
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Table of constants 
Constant Definition Typical Values 


R the number of cells on the coarsest resolution 32-128 


$ the number of level of refinement 3-6 


T the number of steps to perform I full time step 1-4 
p the order 3-5 
I0 ratio of the time to perform 1 if-then • 5 


to the time to perform 1 multiplication 
1¾• the number of cells for a uniformly fine grid R 2 s 
,,¾• the average number of cells used per time step 


R0 ß ]• the average number of cells refined each full refinement time 0 - .1 
Co ß No, the average number of cells combined each coarsening time 0 - .1 
B0 ß N• the average size of B over all time steps 0 - .125 
B• ß Na the average number of boundary cells to be refined each time 0 - .02 


TR the number of time steps between full refinements • 5 - 30 
Tc the number of time steps between coarsening • 15 - 50 
T•3 the number of time steps boundary refinements 1-2 


Table 1: List of constants which are used in computations 


Figure 4 show the pointwise errors for the solutions in fig- 
ure 3. Figure 5 plots the cell sizes at the chosen times. 
Figure 5 shows that refinement not only took place around 
the shock, but that coarsening also took place behind the 
shock. At t = 2.5 and t = 5.0 the method uses all four 


levels of refinement to ensure accuracy around the shock. 
But at t = 1.5 (when the shock just formed and is small in 
magnitude.) figure 5 shows that only two levels of refine- 
ment are used there. 


Tables 6, 7. and 8 show the errors and cpu times for these 
runs compared to uniform grid computations. All times are 
from computations on a Sparc 10. Two different errors 
were computed. The first error is the L2 norm between 
the exact solution and the computed solution on 768 evenly 
spaced points throughout the domain. The second error, 
L._;. is the L2 norm between the exact solution and the 
computed solution on the set of evenly spaced points at a 
distance greater than .03 away from a shock. 


5.1 Euler gas dynamics 


The AGENO scheme was applied to the one dimensional 
Euler gas equations for conservation of density. momentum 
and energy 


w, + = 0 


with 


Burger's Equation - Time = 1.5 
Non-Adaptive (ENO) 


Cells L2 L.; Time Steps 
48 4.1 X 10 -2 1.0 X 10 -2 1 sec 38 
96 2.3 X 10 -2 3.0 x 10 -3 3 sec 77 
192 1.4 x 10 -2 8.9 x 10 -4 9 sec 153 
384 7.4 X 10 -3 2.8 X 10 -4 34 sec 306 
768 5.4 X 10 -3 8.8 X 10 -5 129 see 612 


Adaptive (AGENO) 
Cells L2 L2* Ti•ne Steps 
run-1 1.5 X 10 -2 1.1 X 10 -3 1 sec 50 
run-2 1.5 x 10 -2 1.1 x 10 -3 1 sec 50 
run-3 4.0 X 10 -3 1.4 x 10 -4 8 sec 215 


Table 6: Errors and cpu times for Adaptive and Non- 
Adaptive computations using high-pass filter based adap- 
tive grid ENO scheme applied to Burger's equation at 
t= 1.5 


where p is the density, m is the momentum, and E is the 
energy. Also 


F(w) = + (0) P 


Pu 


with u = m/p (velocity) and P = (7- 1)(E- • o 5pu-) 
(pressure) and '• = 1.4 is the polytropic gas constant. The 
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Figure 3: Solutions to Burger's equations at times 1.5, 2.5 and 5.0 with initial conditions u(x,t = 0) = 1/3 + 2/3 sin(z'). 


Error (t•l.5) 


. 


............... ah* 


Error (t-2.5) 


2 


Error (t•5.0) 


_ 


_ 


Figure 4: Computed errors 
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Number of computations 
Procedure Multiplies Additions if-then Points Regularity a 


ENO b p p p N T 
Computation of Qj(u) p p 0 N 1/T•? or 1/To 


-- 


IQ2_()I > roL 0 0 1 N 1/rR 
[Qg(u)[ < tol 0 0 1 N 1/Tc 
Refinement c p p + 5 0 or p Ro 1/TR 
Coarsening d 0 5 5p Co 1/To 


Find Boundary 0 0 1 N 1/Ta or 1/Tc 
Check Boundary p p 1 Bo 1/TB 
Refine Boundary p p + 5 0 or p B• 1/TB 


'ZNumber of times per time-step this subroutine needs to be called. 
bFor computation of F,: (u) 
CDepends on whether method is a fixed stencil or ENO 
'lExtra computations required to ensure that C: •l -' •l 


Table 2: Table listing number of computations required to perform each of the different processes used in this adaptive 
grid method. 


Burger's Equation Run-Parameters for Computations 
Run Coarsest Levels of Break Join Break Join 


Variables # of Cells Refinement Time Time Increment Increment 
run-1 48 4 10 50 10 -• 3 x 10 -6 
run-2 48 4 30 75 10 -* 3 x 10 -6 
run-3 96 3 10 50 10 -* 3 x 10 -• 


Table 4: User supplied constants for application of AGENO scheme to Burger's equation 


initial conditions are 


(48a) p(x,t:O)= {1'0 ifx < 1/2 0.1 if x> 1/2 
(4Sb) m(x,t = 0)=0.0 


(48c) E(x,t=O)={2.5 ifx < 1/2 .25 if x>1/2 


Both third order AGENO scheme and a uniform grid 
third order ENO scheme with equivalent resolutions were 
applied. The AGENO scheme used 37% the number of 
cells as the ENO scheme and 36% of the cpu time. Again 
all times are from computations on a Sparc 10. Figure 6 
plots the AGENO solution versus the ENO solution. The 
solutions are indistinguishable from each other and provide 
a good estimate of the exact solution. 


Table 9 provides the parameters which where used for 
the AGENO computations and table 10 provides numeri- 
cal results of number of cells used, cpu time, and average 
number of cells added, number of cells joined, and size of 


boundary. Unfortunately AGENO fails to combine enough 
-- 


cells. In figure 7 the error indicator Q• is plotted at t: .4. 
While the solution looks constant between the shocks. the 


computed solution has small oscillations on the order of 
A a which cause the grid to remain over-resolved. To over- 
come this problem a modification of the error indicator will 
be required. Even so, AGENO produces a solution in one 
third the time of typical ENO scheme. 


6 Conclusion 


The AGENO scheme described here provides a quick al- 
gorithm for adapting the computational grid. By using a 
quick centered difference approximation to the error, the 
grid is easily changed to always be optimal. 


This adaptive grid algorithm has been applied to test its 
robustness on other type schemes. Flux limiter schemes. 
finite difference and finite element schemes all proved suc- 
cessful tests for the adaptive grid algorithm [12]. However, 
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Figure 6: Solution to Euler gas equations using both AGENO and ENO. 
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Figure 7: Qj for solution of Euler gas equations at t = .4. Notice that in the active part of the solution, Qj fails to 
decay enough to allow coarsening. 
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Burger's Equation Run Results 
Run Final 'Initial Final Average Tinhe Average Average Average • of Time 


Variables Time Cells Cells Cells (sec) • Added # Joined Boundary Steps 
1.5 48 70 53 1.0 4.0 n/a .64 50 


run-1 2.5 48 96 136 13.0 1.15 3.36 8.83 144 


5.0 48 81 114 34.0 0.49 2.40 6.16 1463 


1.5 48 70 53 1.0' 4.0 n/a .64 50 
run-2 2.5 48 91 71 1.0 6.1 12.0 3.82 224 


5.0 48 145 187 29.0 1.42 9.00 4.61 1243 


1.5 96 239 197 8.0 4.14 3.75 3.33 215 


run-3 2.5 96 145 187 22.0 1.55 10.67 4.79 622 


5.0 96 129 162 53.0 0.70 7.97 4.19 1641 


Table 5: Results of using AGENO scheme. The figures are various results of running AGENO on Burger's equation. 


Euler Gas Equations Parameters 
Coarsest Levels of Break Join Break Join 


# of Cells Refinement Time Time Increment Increment 
12 4 10 50 10 -5 3 x 10 -6 


Table 9: User supplied constants for application of AGENO scheme to Euler gas equations 


because of the nature of the non-uniform grid generated, 
it is not possible to apply this adaptive grid technique to 
pointwise ENO schemes. 


One possible improvement could be the rate at which 
points are added. Many times the grid is refined as many 
ti•nes in one area. This leads to areas areas of complete 
refinement and areas of no refinement. Because of this 


the method •night be improved if, instead of the cell being 
divided into only two cells, cells are divided into possibly 
four ceils. The only reason why dividing into two ceils was 
the close relationship between this and wavelets. Dividing 
into four ceils may decrease the number of computations 
used. 


Another area of possible improvement is the time step- 
ping procedure. This procedure applies a Runge-Kutta 
ODE solver on the system of ODE's for the time evolution 
of the cell averages. The At for the Runge-Kutta is con- 
trolled by the minimal size of all the cells Cj. Therefore 
if one small area of the domain is completely refined, then 
the smallest At is used for the evolution of all cells. In- 


stead of applying the Runge-Kutta the same to all cells, 
a more intelligent plan of applying the Runge-Kutta ODE 
solver differently for each size cell might be better. Con- 
sider just one level of refinement and a forward Euler ODE 
solver. Since the smaller cells require a time step of half 


that of the larger cells. apply the forxvard Euler twice on 
the smaller cells, and only once on the larger cells. This 
will require special treatment of the boundaries between 
resolutions to ensure proper application. 


The next project is applying this algorithm in higher 
dimensions. The first step was to develoop a non-uniform 
grid WENO scheme (weighted ENO Scheme.) Then using 
the grids and grid adaption techniques from this paper to 
produce a AGENO scheme for higher dilnensions. The first 
step is complete, and the application of the AGENO grids 
and grid adaption techniques is producing some interesting 
grids and encouraging results. 
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Euler Gas Equations Run Results 
Run Final Initial Final Average Time Average Average Average :• of Tinhe 
Type Time Cells Cells Cells (sec) • Added • Joined Boundary Steps 


AGENO .4 26 106 71 40.0 8.9 1.0 10.2 82 


ENO .4 192 192 192 118.0 n/a n/a n/a 82 


Table 10: Run results from the application of both ENO and AGENO to the Euler gas equations. Notice the cpu time 
is reduced by a third. 


Burger's Equation - Time = 2.5 
Non-Adaptive (ENO) 


Cells L2 L2* Ti•ne Steps 
48 8.4 x 10 -2 3.3 x 10 -3 1 sec 64 
96 5.3 x 10 -2 8.5 x 10 -4 3 sec 128 
192 4.6 x 10 -2 9.5 x 10 -5 14 sec 255 
384 2.2 x 10 -2 2.8 x 10 -5 57 sec 510 
768 1.6 x 10 -2 5.6 x 10 -6 215 sec 1020 


Adaptive (AGENO) 
Cells L2 L• Time Steps 
run-1 1.4 x 10 -2 1.2 X 10 -4 12 sec 444 
run-2 1.4 x 10 -2 1.4 X 10 -4 4 sec 224 
run-3 1.4 x 10 -2 1.4 x 10 -5 22 sec 622 


Burger's Equation - Time = 5.0 
Non-Adaptive (ENO) 


Cells L2 L• Time Steps 
48 5.8 x 10 -2 4.5 x 10 -3 2 sec 128 
96 4.7 x 10 -2 5.2 x 10 -4 7 sec 255 
192 2.6 x 10 -2 3.3 x 10 -5 28 sec 520 
384 1.9 x 10 -2 7.8 x 10 -6 110 sec 1020 
768 1.5 x 10--" 2.0 x 10 -6 442 sec 2040 


Adaptive (AGENO) 
Cells L2 L• Time Steps 
run-1 1.3 x 10 -2 1.3 x 10 -• 39 sec 1463 
run-2 1.3 x 10 -2 1.4 x 10 -5 29 sec 1243 
run-3 1.3 x 10 -2 1.7 x 10 -6 53 sec 1641 


Table 7: Errors and cpu times for Adaptive and Non- 
Adaptive computations using high-pass filter based adap- 
tire grid ENO scheme applied to Burger's equation at 
t=2.5 


Table 8: Errors and cpu times for Adaptive and Non- 
Adaptive computations using high-pass filter based adap- 
tive grid ENO scheme applied to Burger's equation at 
t= 5.0 
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High-Order Mimetic Finite Difference Methods 
on Nonuniform Grids 
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Abstract 


By combining the support-operators method with the 
mapping method, we have derived new mimetic fourth- 
order accurate discretizations of the divergence, gradient, 
and Laplacian on nonuniform grids. These finite differ- 
ence operators mimic the differential and integral identi- 
ties satisfied by the differential operators. For example, 
the discrete divergence is the negative of the adjoint of the 
discrete gradient and consequently the Laplacian is a sym- 
metric negative operator. •Ve analyze the loss of accuracy 
in the approximations when the grid is rough and include 
numerical examples demonstrating the effectiveness of the 
higher order methods on nonuniform grids in one and two 
dimensions. The analysis and examples are for fourth- 
order finite difference methods, but the approach can be 
extended to create approximations of arbitrarily high or- 
der. 


Key words: finite-difference, high-order, non-uniform 
grids, sensitivity, numerical analysis, partial differen- 
tial equations. 


AMS subject classifications: 65D25, 65G99, 65M06. 


1 Introduction 


The main goal of this research is to construct local high- 
order difference approximations of differential operators on 
nonuniform grids that mimic the symmetry properties of 
the continuum differential operators. Partial differential 
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equations (PDEs) solved with these mimetic difference ap- 
proximations often automatically satisfy discrete versions 
of conservation laws and analogies to Stoke's theorem that 
are true in the continuum and, therefore, are more likely 
to produce physically faithful results. These symmetries 
are easily preserved by local discrete high-order approx- 
imations on uniform grids, but are difficult to retain in 
high-order approximations on nonuniform grids. We also 
desire the approximations to be local and use only func- 
tion values at nearby points in the computational grid. 
These methods are especially efficient on computers with 
distributed memory. 


We desire the methods to be high-order. The use of 
higher-order approximations reduces the number of points 
needed in the discretization and consequently reduces the 
computational cost to achieve a desired accuracy [9, 4]. 
This savings is inversely proportional to the number of grid 
points raised to the order of the method. Also, because 
the number of grid points in a calculation increases with 
the power of the dimension, the higher-order methods are 
extremely effective in higher dimensions. If, however, the 
higher-order approximations are less accurate or less stable 
than low order methods on rough grids, then all of the 
advantages may be lost. 


A straight-forward method to construct high-order ac- 
curate approximations to the derivatives of a function de- 
fined on a nonuniform grid is to construct and differentiate 
a Lagrange interpolating polynomial [7]. On nonuniform 
grids, the difference approximations to the gradient opera- 
tor grad, and the divergence operator, div, generated by 
Lagrange interpolation are rarely mimetic. Furthermore, 
their composition to form the Laplacian operator is often 
not negative definite. 


If, however, the grid and function are first mapped to 
a uniform grid, the derivatives approximated there using 
Lagrange interpolation, and the results then mapped back 
to the original nonuniform grid, the resulting finite differ- 
ence approximations can be shown to be mimetic, provided 
that at each step of the process the symmetry relationships 
are preserved. In expressing these discrete approximations, 
special care must be taken to preserve the symmetry rela- 
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tionships between differential operators. It is these sym- 
metry relationships that maintain the physical properties 
such as the conservation laws satisfied by a PDE in di- 
vergence from. In this paper, we derive an approach that 
preserves these relationships and guarantees that the re- 
sulting high-order approximations are mimetic. 


The accuracy of the approximations depends as much 
upon the smoothness of the grid as the smoothness of the 
function being differentiated. Thus, a fourth-order approx- 
imation on smooth grids degenerates to lower order on 
rough grids. V•re analyze this loss of accuracy and ver- 
if•v that it occurs gracefully. We also verify that even on 
relatively rough grids, the fourth-order discretizations are 
computationally more efficient than the standard second- 
order discretization. 


•Ve first derive high-order mimetic approximations in 
one space dimension analogous to the divergence, defined 
at the nodes, and the gradient, defined in the cells. The 
discrete operators are required to be the negative adjoints 
of each other. The second derivative (Laplacian) is ap- 
proximated by the composition of the first-order operators 
and consequently is a symmetric operator. This approach, 
based on the support-operator method [18, 19], guarantees 
that the resulting difference scheme preserves the symme- 
try properties. For example, the conservative property [13] 
for PDEs in divergence form is automatically preserved on 
nonuniform grids. 


The construction and analysis of the higher-order 
schemes in 1D proceeds by first using Lagrange interpo- 
lation to construct higher-order approximations on a uni- 
form grid and then using the mapping method [10, 20] 
to extend the approximation to nonuniform grids. The 
resulting approximation in 1D is then shown to be an ex- 
ample of a support-operator [18, 19] method, and conse- 
quently the scheme is mimetic. In 2D we also use the 
mapping method to construct the discrete analog of the 
divergence and directly use the support-operators method 
to construct finite-difference approximations for the gra- 
dient, and consequently in 2D these approximations are 
mimetic. 


The accuracy of high-order approximations on nonuni- 
form grids is sensitive to the smoothness of the grid. The 
importance of errors introduced into second-order differ- 
ence schemes by nonuniform grids has been extensively 
studied [1, 3, 5, 6, 12, 14, 15, 16, 17, 21], but there has 
been little analysis or numerical comparisons for higher- 
order approximations on nonuniform grids [8, 9]. 


When generating a grid for a complex domain, it can be 
difficult to generate a smooth grid. Because of this, it is im- 
portant to understand the impact of roughness in the grid 
on the quality of the approximations. In 1D we prove ana- 


lytically, and confirm numerically, that the approximations 
we propose are fourth-order accurate on smooth grids and 
that the accuracy of the approximation decreases slowly as 
the smoothness of the grid decreases. The numerical veri- 
fication is first done using an analytic transformation, with 
a jump in one of its derivatives, to map the grid. Next, we 
numerically study the accuracy of the difference approxi- 
mations on a sequence of random perturbations of different 
order with respect to the uniform grid spacing. Numerical 
investigations of truncation errors and accuracy in 2D are 
in general similar to 1D, but truncation errors in 2D are 
much more sensitive to grid quality. 


After defining the notation and basic ideas, we construct 
the higher-order mimetic approximations and analyze their 
errors and compare their accuracy and efficiency in numer- 
ical experiments. 


2 Discretizations in 1D 


The domain for the functions to be discretized, without 
loss of generality, can be chosen as the unit interval. This 
interval is divided into cells with endpoints called nodes. 
We denote functions defined at the nodes as nodal func- 
tions. These functions are analogous to vector functions, 
while cell functions are analogous to scalar functions de- 
fined at some point within the cells. 


Consider the domain [0, 1] and the irregular grid with 
nodes {xi, i = 1,...,M}, with xi < xi+• . The size of the 
grid is measured by Ax = max•<i<.•t_• Ixi+• --xil. In one 
dimension, discrete vector functions have one component, 
1•; = (WX, 0, 0), with values defined at the nodes WX = 
{WX•, WX2,..., WXM}. 


Within a cell with end points xi and xi+•, •ve introduce 
the point &i+l/2' On uniform grids, the point & is the 
midpoint •i+1/2 : •i+1/2 • (Xi+i -Jr- xi)/2 of the cell, and 
it is near the midpoint on nonuniform grids. The point 
•i+1/2 is the location where the discrete scalar function 
values U = (U3/2, '", U•w-•/2), are defined. (An exact 
definition of •:•+x/2 will be given later.) 


2.1 The mapping method. 


The mapping method [10, 20, 8] assumes that the grid is 
given by a mapping X, 


where the •i give a uniform grid, with mesh spacing h = 
1/(M- 1) in the interval [0, 1] which is called logical space 
(the grid is called the logical grid). The first derivative is 
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defined by 


df df(dx) -1 (2) 
This approach transforms the problem of approximating 
a derivative on a nonuniform grid to approximating two 


d dx uniform grid. derivatives, • and • on a 
The same technique can be used to construct an approx- 


imation of the second derivative by using the chain rule 


(3) dx 2 - dE 2 dE dE dE 2 • ' 
where all derivatives are approximated on a uniform grid, 
or it can be constructed as a composition of the discrete di- 
vergence DIV and gradient GRAD operators. The chain 
rule direct approach does not preserve many of the sym- 
•netry properties of the Laplacian, such as the divergence 
form. and is considerably more complicated in higher di- 
mensions. Therefore we will only consider constructing 
the higher derivatives as a composition of the elementary 
operators DIV and GRAD. 


The accuracy of the difference approximations con- 
structed by the mapping method depends on both the 
continuity of the function defined on the grid and on the 
smoothness of the gird. In solving PDEs; often it is natu- 
ral to require that the function being differentiated, f(x), 
is smooth. but the grid may be prescribed by a process 
where we cannot assume that X(E) is smooth. Conse- 
quently f(•) = f(X(•)) may not be smooth, even when f 
is well-behaved as a function of x. Therefore, estimates of 
the truncation error for high-order approximations must 
include an analysis based on both the smoothness of the 
function and the transformation. 


If D E approximates d/dE on a uniform grid to o(hq), 
where h = •i+• - •i, then the approximation of D• on a 
nonuniform grid 


DE/(E) + O(h) De/(E) O(h) (4) D.f(x) = Dg = D E X(E) + 
f(E) = 


is also O(hq). 
If second-order central-differences are used to approx- 


itnate the derivatives on the logical grid in (2) then the 
truncation error is, in general, first-order with respect to 
Ax, but if the transformation is smooth, then the trunca- 
tion error is O(h2). 


2.2 The support operators method 


•Ve introduce two discretizations for the first derivative 


based on the projections of the gradient and divergence 


operators. In higher dimensions, the gradient grad op- 
erates on a scalar function to produce a vector function, 
while the divergence div operates on a vector function to 
produce a scalar function. In one dimension, a vector func- 
tion w - (wx, 0, 0) has only one component and div is the 
derivative of this component. The grad is the usual deriva- 
tive of a scalar function. We require the approximations 
to satisfy symmetry properties that come from an anal- 
ogy to the higher-dimensional divergence, gradient, and 
Laplacian. In the continuum, the divergence and gradi- 
ent are negative adjoints of each other, div* -- -grad, 
and the Laplacian is given by A -- div grad. The ad- 
jointhess requirement on the divergence and gradient im- 
plies that the Laplacian is a negative symmetric operator. 
One goal here is to construct high-order discrete analogs, 
DIV and GRAD, of the divergence and gradient so that 
DIV* - -GRAD and then use LAP = DIV GRAD as 


an approximation of the second derivative. The approxi- 
mations constructed are fourth-order, but the construction 
can be extended to create approximations of arbitrarily 
high order. 


One of the most costly parts of many simulations is the 
inversion of the discrete Laplacian. Some of the most effi- 
cient methods for solving these equations require the dis- 
crete Laplacian to be a negative definite, symmetric op- 
erator. Mimetic discretizations of the Laplacian or, more 
generally, symmetric elliptic operators, automatically pro- 
duce discrete operators that are symmetric and negative 
definite [18, 19]. 


The integral identity 
In the support-operator method, the approximations of 


the divergence and gradient must satisfy a difference ana- 
log of integral identity 


(5) /v udiv v• dV + /v(•,gradu) dV - 
u (•,•) •S. 


This identity can also be written in terms of inner prod- 
ucts, 


(6) (f,g)H=/wfgdV, (& g>x =/w(& g) dV. 
For functions which are equal to zero on the boundary, the 
integral identity (5) is 


(7) (u, div •:)s + (gradu, t•)• = 0, 


that is, differential operators div and grad are negative 
adjoints of each other: 


(8) grad = -div*. 
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A discrete analog of the adjoint relationship (8) can be 
found by introducing the following inner products in spaces 
of discrete functions: 


(9) (F, G)H• = •. Fi+x/• Gi+•/• VCi+x/• 
i 


and 


(10) (X, = , 
i 


where the volumes of the cell VCi+•/2 and the volumes 
of the nodes VNi depend upon the mapping and must be 
defined consistently for each of the numerical methods. 


If the discrete functions are zero near the boundary, then 
we will define the operator GRAD from the following dis- 
crete identity 


• U•+1/2 (DIV [•)i+1/2 VCi+I/2 


i 


or 


(11) (U, DIViP)Ha + (GRAD U, •)•a =0, 
and, consequently, the discrete operators are also negative 
adjoints of each other: 


(•a) gaa• = -•XV*. 


(13) 


and 


2.3 Difference approximations 


The error estimate for the Lagrange interpolant of order n 
(using n + 1 points) for a smooth function f is 


If(.r)- œ•(x)l _< max•(f•+•(•)) (. + 1)! 


(14) df 7; + O , 
where 5 is a point in the interpolation interval, and R is 
some constant which depends on the interpolation points 
and scales as h •. Thus La gives a third-order approxi- 
mation for the first derivative on nonuniform grids. On 
uniform grids fortunate error cancelation makes this ap- 
proximation fourth-order at the midpoint of the center cell, 
and formula for approximation of first derivative becomes 


--fi+2 + 27 fi+• - 27 fi + fi-• 
(15) (D• f)i+•/2 = 24Ax 


The analogous sixth-order formula is 


(16) (Dxf)i+•/2 = 
{-9 
+2250 f•+x - 125 f•+2 + 9 f•+a}/(1920 Ax). 


To maintain the analogy that vector functions are de- 
fined on the nodes and scalar functions are defined on cells, 
the discrete divergence DIV maps nodal functions to cell 
functions and the discrete gradient, GRAD operator maps 
cell functions to nodal functions. The two simplest natural 
approximations of these operators are 


(17) (DIV I/P)i+•/2 = 


and 


(18) (GRAD U)i = _Ui+•/2 - Ui-•/2 
•i+1/2 -- •1i-1/2 


The first formula is second order approximation on any 
grid, and second formula is first order on non-smooth grid 
and second order on smooth grids. 


High order discrete divergence operator DIV 
On a uniform grid (15) gives 


(DIV I/P)i+•/2= 


(19) -WXi+2 + 27 WXi+x - 27 WXi + WXi_x 
24 VCi+i/2 ' 


with the cell volume, VCi+i/2 -- h, a fourth-order approx- 
imation for the divergence at •i+•/2 = (•i + •i+•)/2. 


On a nonuniform grid, using this formula in (2) 
for smooth functions and transformations, the mapping 
method approximation for the divergence with the cell vol- 
ume 


(20) 
VCi+i/2 = 


(-xi+2 + 27xi+• - 27xi + xi-x)/24, 


is O(h 4) accurate at the image of •i+•/2, Jq+•/2 = 
X(•+1/2). Usually •:i+•/2 • xi+i/2 -= (xi + xi+l)/2. Be- 
cause the difference between :•i+1/2 and Xi+l/2 iS O(/kX2), 
this distinction only plays a role for high-order methods. In 
our truncation error analysis we are careful to ensure that 
the mid-point projection is the image under the transfor- 
mation of the mid-point in logical space and not the center 
point of the central interval. If the function X(•) is not 
known explicitly, then this point can be approximated by 
Lagrange interpolation to fourth-order by 


(21) •i+•/2 • (-xi+2 + 9xi+x + 9xi - xi_•)/16. 


On rough grids, the denominator VCi+i/2, given by (20) 
can vanish. That is, even though X is a one-to-one map- 
ping, the numerical approximation of the map may not be, 
causing the difference approximation to fail. Luckily, this 
only occurs on very rough grids. 
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The volume VC (and VN) must be positive to ensure 
that the expressions (2.2) (10) satisfy the axioms of an 
inner product. To illustrate how this failure can occur, 
consider the function ui = I for i = io and ui = 0 for all 
other i, then 
(22) u)h = VCo+/2 , 
which must be positive. When a volume VC is zero or 
negative the length of a nonzero vector is zero or negative, 
and the expression given in (2.2) does not satisfy the ax- 
ioms of an inner product. Similar results hold for the inner 
product of discrete vectors. This can produce some non- 
physical consequences. For example, some quantity which 
is always positive in the physical model, such as energy, 
can be zero or negative. Thus, to use the mapping method 
for sonhe given grid, one must check that VC and VN are 
always positive. 


High order discrete gradient operator GRAD 
The formula (15), translated by 1/2, 


(GRAD U)i 
-Ui+3/2 + 27 Ui+•/•. - 27 Ui_•/2 + Ui-3/2 


24 VNi 


with the nodal volume. Vi•} = h, is a fourth-order approx- 
imation for the gradient on a uniform grid. 


On a nonuniform grid, using 


V.V,. = -J:i+3/2 + 27•i+½/2 - 27•_•/2 + •i-3/2 
24 


provides a fourth-order approximation at the image X(•i), 
that is at 


3 Truncation error analysis 
We define the truncation error as the difference between 


the projection to a grid point of the derivative of a smooth 
function and the discrete difference approximation of the 
derivative using values of the smooth function projected to 
the grid points. The cell projection operator, p•, maps a 
smooth scalar function to discrete cell-valued functions: 


(1) (p• u)i+•/• = ui+•/• = u(•i+•/•). 
The nodal projection operator, P•, maps a smooth vector 
function to its values at the nodes 


(2) (Ph 71•)i = 7•i • •(•i). 


If • is a smooth vector function, then the truncation 
error of the discrete divergence •mv is the nodal function 


d• 


(3) ½mv• = Ph(•) - DIV (P• •). 


If u is a smooth scalar function, the truncation error of 
the discrete gradient •crt•D is 


(4) •GRAD TM = GRAD(p• u)- P•(d•). 
The approximations (17) and (18) are second order on uni- 
form grids, but the approximation to the gradient is only 
first order on nonuniform grids. One goal of this paper is 
to derive higher-order analogs of these discrete operators. 


The accuracy of the discrete divergence, gradient and 
Laplacian operators depend upon the smoothness of the 
grid transformation. In this section, we present results of 
the truncation errors analysis for DIV, GRAD and LAP 
(details can be found in [2]) on grids generated by an an- 
alytic transformation with different levels of differentiabil- 
ity, and on randomly generated grids. We describe the 
analytic grid transformation as C • when the first k deriva- 
tives of the map are continuous. (In our examples, the 
k + I derivative has a jump discontinuity). For our ran- 
dom grid examples, the identity map is perturbed by a 
random multiple of h •. 


If f is a C •-• function and the k-th derivative is 
bounded, then 


•-• f(J)(x) hJ F• h • 
(5) f(x 


j=0 


where F• is some average value of f(•). For a C ø mapping 
with bounded derivative, by Taylor series expansion about 
the point xi, we can express 


(6) 


where Ci• are bounded by the first derivative of X. 
For a C • mapping with bounded second derivative, we 


have 


= 
where Ci• are bounded by the second derivative of X. 


DIV and GRAD error analysis 
The truncation error for the fourth order operator DIV, 


operating on a smooth function •(x), is obtained by Tay- 
lor series about •i+1/2' The image of the midpoint in log- 
ical space plays a critical role in our analysis. Because, in 
general, the mapping is not known explicitly, it is impor- 
tant to accurately approximate this image in analyzing the 
truncation error of the fourth-order methods. We use the 


definition (21) for •i+1/2. 
For a C ø mapping •mv are order h. The same result 


is obtained for •a•D. For a C x mapping (7), •DIV is 
order h 3, but truncation error for GRAD is only order h 2. 
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Mapping GRAD DIV LAP 
C O 1 1 0 


C • 2 3 1 


C 2 3 4 2 


C 3 4 4 3 


C 4 4 4 4 


Table 1: Theoretical estimates for the order of approxi- 
mation of the fourth-order discrete operators, analyzed in 
section 3, as a function of the smoothness of the map. 


These results can be extended to non-smooth grids. We 
define the O(h k) random grid by 


(8) xi = • 4- h k Ri , 


where the Ri's are random numbers uniformly distributed 
in [-1/4, 1/4]. 


On order h random grids both •DIV, •GRAD are order 
h. For order h: random grid •DIV is third-order, but 
similar to case of C • mapping •GRAD is only second-order. 


The cases for higher-order smoothness of the analytical 
grid and high order random perturbation of the uniform 
grid. are handled similarly. and results are summarized in 
Table 1. 


LAP error analysis 
Because DIV = -GRAD*, the Laplacian, LAP = 


DIV GRAD, is symmetric and negative (but may not be 
negative definite). }Ve now estimate its truncation error 
in terms of the truncation errors for the divergence and 
gradient. 


For a uniform grid, the superposition of DIV and 
GRAD is 


(LAP U)•+•/2 = 
1 


576 h 2 (Ui+7/2 - 54 Ui+5/2 4- 783 Ui+3/2 
-1460 Ui+•/2 + 783 Ui_l/2 - 54 Ui-3/2 + Ui-5/2) ß 


On a nonuniform grid, the explicit formula for the high 
order LAP operator is extremely complex. In practice, 
e.g. when programming the operator on the computer, we 
define the Laplacian on nonuniform grids as a composition 
of the discrete DIV and GRAD operators. 


Combining (3) and (4), 


(9) QDIV GRAD tt = 
I)DIV (grad a) - DIV 


The truncation error of the first term on the right side 
of this equation is the same as for DIV, but the trunca- 
tion error for the second term is one order less than for the 


GRAD. Because this truncation error was estimated by 
using the estimates for the individual operators indepen- 
dently, there may be some undetected cancellation and the 
truncation error may be less_ than these estimates. How- 
ever, the numerical results for random grids confirm that 
the estimates are, in fact, optimal. Similar results can be 
obtained for the operator grad div and its approximation 
GRAD DIV. 


Although the truncation error for the Laplacian may 
reduce to O(1) on rough grids, the convergence rate for the 
solutions of elliptic boundary value problems and parabolic 
diffusion equations remains at least second order in all the 
numerical experiments we performed with the methods. 
This has been proved for similar methods in [11]. 


In summary, on the rough grids the truncation error 
for LAP is one order less than that of GRAD, and, for 
smooth enough grids (C •, C2), the truncation error for 
DIV is one order higher than the truncation error for 
GRAD, for very smooth grid (C 3 and higher) for both 
operator truncation error is fourth order. 


4 Discretizations in 2D 


4.1 The mapping method 


In 2D we also need to approximate the operators div 
and grad. The derivation of a discrete approximation of 
derivatives using the mapping method approach beans by 
assuming that there is a transformation 


(1) 
x = = ¾(6, 


between the physical region and a unit square in logical 
space. Given such a transformation and two positive inte- 
gers, M and N, set A• = 1/M and At/= 1/N. The points 
(xi,j, yi,j) given by 


:Ci,j : x(i A•, j At/), Yi,j = y(i A(, j 
0<i<M, O<j<N, 


form a grid on the physical region. 
The first and second derivatives of a function can be 


expressed directly as a function of the derivatives on a 
regular reference grid and the mesh metrics of the map 
from the physical (x, y) grid to the reference (•, r/) grid. 
Using this straight-forward definition we have 
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ix •lx 0 0 0 


•y T]y 0 0 0 


•xy Vxu •x•u •x% + • •% 
2 •YY •UY • 2• • 


where 
0 0 


If the derivatives of the map are not known explicitly, 
then they too must be expressed in terms of derivatives on 
the uniform reference grid. 


Using the Jacobian, J, of the map and its derivatives, 


and 


J = x•y v-xvy • , 


J• -- xs•y v + x•y•v - x•vy • - xvy• , 


J,• = x•vy v + x•yvv - xvvy • -- xvy•v , 


the mesh metrics can be expressed as derivatives on the 
(•, n) reference grid. 


(2) 


and 


-- yv/J, •y---xv/J, rlx--y•/J, 


= (-JcY• + JYv•. + J.Y•Y. - JY•Yv/J3 , 


- (J•x.y. - Jx•.y. - J.x.y• + Jx..y•)/J 3 , 


= (-Jcx• + Jx.x•. + J•x•x. - Jx•xn)/J 3 , 


- (J.x•y• - Jx•.y• - J•x•y. + Jx•yn/J 3 , 


= (-J.x• + Jx•x•. + Jcx•x. - Jx•x•xn/J • . 


The derivative approximations generated by this ap- 
proach can be combined to give accurate approximations 
for the GRAD, DIV and LAP on a smooth grid, but the 
resulting approximations, in addition to being extremely 


complicated, will not be mimetic. Instead, we again use 
a combination of the mapping method and the method of 
support-operators to generate high order mimetic finite dif- 
ference approximations for the GRAD and DIV. These 
can then be composed to approximate the Laplacian. 


The formulas for the operators DIV and GRAD still 
contain derivatives of transformation and JacobJan at dif- 


ferent points. If we know mapping analytically we can eval- 
uate derivatives explicitly. The grids may be generated nu- 
merically (see, for example, [10]), or obtained from another 
calculations, such as occurs in Lagrangian fluid dynamics. 
For these cases we know only the coordinates of nodes: 
xi,j ,Yi,j. That is values of the functions X(•,r/),Y(•,r/) 
at the nodes •i, •j. The derivatives of the transformation 
can be defined using finite-difference approximations of (2). 
These approximations should be at least the same order 
accuracy as the GRAD and DIV operators. 


4.2 The support-operators method 


For a discrete description of the vector field we will use 
Cartesian coordinates, •- (AX, AY). Therefore, differ- 
ential operator divergence is 


(3) aiv _• = OAX OAY + 
Because the operator div is in divergence form, its approx- 
imation is constructed on the basis of the conservative or 


symmetric form of the transformed derivatives (see, for 
example, [10] ), 


Ou 


and 


Therefore, for derivatives which form a divergence, we 
get 


OAX 


(4) Ox - {(AX Yv)• -(AX Y•)v} /J 
and 


OAY 


(5) •yy ={(AYx½)v-(AYxn)•}/J. 
Therefore, the problem of approximation of the operator 


div is reduced to approximation of the first derivatives of 
AX, AY and x, y with respect to logical variables •, V on 
a square grid. 


Because we want to find an approximation for the op- 
erator grad, which preserves adjointness to the operator 
div in the discrete case, we consider how the main inte- 
gral identity (5) works in the differential case. For the 
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first integral we have the following expression in terms of 
coordinates •, 


(6) /v u div •dV = 


To understand the expression for components GX = 
Ou/Ox and G1/ = •u/c9y of the vector gradu , obtained 
by using the integral identity, we write the following ex- 
pression for the second integral 


(v) ,(•., grad u) dV = 
f, (AX . Gx + A1/ . J av. 


Integrating by parts in (6) and comparing terms near AX 
and .4I / in the transformed (6) and (7) we can conclude 
that 


Ou 
__ ---- __ 


and 
Ou 


4.3 Difference approximations 


In the discrete case, to construct discrete analogs of div 
and grad xve use a combination of the mapping and the 
support-operators method. Using the mapping method we 
approximate the operator div based on the formulas (4), 
(5). \Ve then use the support-operators method and the 
integral identity to obtain the expression for the discrete 
grad. analogous to the formulas (8), (9). The approxi- 
mations of the derivatives for div and grad can not be 
chosen independently; the approximation for grad follows 
from the approximation for div and the integral identity. 
This procedure allows us to keep adjointness of discrete 
operators similar to the differential case. 


Therefore, the problem of constructing finite-difference 
operators DIV and GRAD in 2D is reduced to construc- 
tion of some set of one dimensional operators, which will be 
analogs of the derivative in • and r/directions, and projec- 
tion operators to project values of functions in one location 
to another (for example projections from the centers of the 
edges to center of the cell and so on). 


We also require that the finite-difference approximations 
on rectangular grids coincide with the one dimensional ap- 
proximations considered in the first part of this paper. 


AXial+l/2 


id+l 


ij 


A Yi+ I/2j+ I 


Ui+l/2d+l/2 


AY i+I/2j 


i+ld+l 


•L• i+ ld+ l/2 


i+ld 


Figure 1' The stencil for the discretizations. 


Spaces of discrete functions 
To describe vector 2{ = (AX, AY). we introduce the 


discrete spaces: space Hi,which we use for description of 
component AX of the vector •, is described by values on 
the middle of the edge (i, j)-(i, j + 1) in logical coordinates, 
that is, in point 


(•i, 0.5(•i.3 -{- V,j+l)) ß 


And space Hr•, which we use for description of component 
AY, is described by values in the middle of the edge (i, j) - 
(i + 1,j) in logical coordinates; That is, in point 


(•i, 0.5(7]i.j '•- /•iU+I) ) ß 


Therefore, discretization of the vector field is 


•= (AX, AY); AX • H•, AY • H•. 


For description of scalar functions we use space HC, 
xvhich is described by values of the scalar in the middle of 
the cell in logical coordinates. that is, in point 


(0,5 (•i + •i+1), 0'5("i,j + 


Therefore discretization of scalars is U • HC. Discretiza- 


tions for vector and scalar functions are shown on figure 
1. 


Such discretization will be consistent with one dimen- 


sional considerations, because space H• corresponds to a 
nodal discretization for the 1D (dependent only on x) c•e, 
and space HC corresponds to cell-centered discretization. 


Operators D• and D• 
To obtain fourth order approximations for div and grad 


on smooth grids we use one dimensional analogs of deriva- 
tives and projection operators. Again we need two analogs 
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of the first derivative O/Of: 


D• : H f --> HC, 


The expressions for these operators follow from one dimen- 
sional considerations: 


(Di A()i+l/2,j+l/2 -- 
{ -A•i+2.j+l/2 + 27 A(i+l,j+l/2 
-27A•i,i+•/2 + A•i-x.j+x/2} /(24h). 


(D•U)i.i+l/2 -- 
{-Ui+3/2.i+1/2 '-[- 27 Ui+l/2,j+l/2 
-27 U•_•/•4+•/2 + Ui_3/2,j+l/2 } / (24 /*/). 


Similarly, we introduce differentiation operators D• and 
D• 


D v'Hr•-•HC; D,•'HC•H•. 
XX• also define projection operators, 


with the same stencils as D• and D•. Formulas for the 
projection operators are similar to 1D formulas such (21). 


(• A•)i+l/2j+l/2 = 
{ -A•i+2,j+l/2 + 9 A•i+l,j+l/2 
+9 A•i.j+•/2 - A•i-•,j+•/2 }/16, 


The definitions for operators Pv and P• are similar. 
If we use sixth or higher order approximations of the one 


dimensional operators, then we obtain approximations of 
correspondent order for div and grad on smooth grids. It 
is important to note that the form of DIV and GRAD 
operators are the same. For example, the s•th order for- 
mula for the operator D5 can be obtained from Lagrange 
interpolation and has the following form: 


1 


(D• A•)i+l/2.3+l/2 : 1920 h' 
{ -9 A•,-2,j+l/2 + 125 A(i-l,j+l/2 - 2250 A(i,j+l/2+ 


If we know the transformation and its derivatives, then 
the operator div can be approximated by 


OAX[ • (Di AX)i+i/2,j+i/2 -- Ox Xi+l/2,j+l/2 
•i+1/2,j+1/2 


(10) 


(11) 


where 


and 


1 {[D• (AXyv)]i+l/2.j+•/2 - Ji+l/•,i+•/• 


[D v ((P•(P• AX)) Y•)]i+l/2,j+l/2} ' 


OAY] • (Dy AY)i+i/2.j+i/2 = Oy :•i+1/2,j+1/2 
tOi+ l /2,j + l /2 


1 


J/+•/2o+•/2 {[D, (AYx•)]i+•/2.j+•/2 
((Vi(V. AV) ) 


•7i+1/2.j+1/2 -- X (•i+1/2.j+1/2, r]i+l/2,j+l/2) 


•i+1/2,j+1/2: Y (•i+1/2.j+1/2' •i+1/2.j•-1/2) ß 


Stencil for AX and AY for fourth order DIV operator is 
shown in figure 2. 


Discrete operator GRAD 
To obtain the GRAD operator we use a discrete analog 


of the integral identity. The first integral can be approxi- 
mated as follows 


(12) /v udiv.,•dV • 
•Ui+l/2,j+l/2 {{[D• (nxjJ•l)]i+l/2,j+l/2- 
i,j 


[D, (P;(P• AX) y•)]i+l/2,i+•/2 } + 


[D• (P;(PvAY) x,)]i+•/2,j+,/2}} h 2 
Because we are trying to approffimate the Cartesian com- 
ponents of the operator grad, the approximation for the 


-2250 A•i+l,j+l/2 - 125 A(i+2,j+l/2 '+' 9A•i+3,j+l/2} ß second integral can be written as 


This is convenient for programming, because if one decides 
to change from a scheme of one order to another, one only 
need change the formulas for one-dimensional operators. 


Discrete operator DIV 


(13) v (.•, grad u) dV • 
E 0.5 (AXi,j+•/2 GXi,j+•/2+ 
i,j 
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- AX /J o - Ar 
Figure 2: The stencil for AX and AY in the fourth order 
DIV. 


AXi+l.j+l/2 GXi+l,j+l/2 q- 
AXi+I/2.j GXi+l/2.j q- 


AXi+i/2.j+i GXi+l/2.j+l) VCi+l/2.j+l/2 , 
where VC•+l/2.j4-1/2 is the volume of the cell. 


A more general formula follows from the fact that 


/•(X, grad u)dV =/v (AX GX + AY GY) dV 
and the chosen type of discretization where AX relates to 
sides (i.j) - (i,j + 1); and AY relates to sides (i,j)- (i + 
•.j). 


The general formula is 


(14) fv(•7, gradu)dV • 
Y•AX,,3+I/2 GXi,j+l/2 VXid+I/2 + 


E AYi+i/2.j CXi+l/2,j VYi+i/2,j 


where 


Z VXi,j+l/2 -- V, y• VYi+i/2,j -- V. 
i,j i,j 


Formula (13) follows from the general formula if we choose 


VCi+i/2,j+i/2 q- VCi-1/2,j+i/2 
VXi'j+l/2 -" 2 


ß ,<>, ß 


Figure 3: The stencil for the GX component of the fourth 
order GRAD. 


and 


VXi+l/2. j •--- 
VCi+i/2.j+I/2 q- VCi+1/2.3-1/2 


If we know the transformation X((, r/), Y((, r/) explicitly. 
we can use the following formulas' 


VXi,j+l/2 : Ji,j+l/2 h2 
VYi+l/2,j = Ji+l/2.j h2. 


For the last choice of VX, VY we get 


(•5) 


GXi,j+l/2 = 


1 { [D•U] i,j+l/2 Yv Ji,j+l/2 


GY/+•/2,j = 


Ji+l/2,j i+l/2,j 


The stencil for GX is shown in figure 3. The stencil for 
G¾ is similar, we just need to turn the previous stencil 90 
degrees. 
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5 Numerical experiments 


We first verify the order of the truncation error estimates 
bv numerical experiments on the grids described in the 
previous section. We then solve the time-dependent heat 
equation to determine the convergence rate of the fourth- 
order spatial discretization, combined with a high-order 
time discretization. 


We show that the convergence rate for the maximum and 
mean-square norms are the same. We also confirm that the 
second-order method has a second-order convergence rate 
for all grids and that the fourth-order method has at least 
a second-order convergence for all grids. However, as the 
smoothness of the grid increases, so does the order of con- 
vergence for the fourth-order method. We finally demon- 
strate that on smooth nonuniform grids the fourth-order 
method is computationally more efficient that the second- 
order method for a prescribed accuracy. Furthermore the 
fourth-order method gives more accurate results when both 
use the same computational effort, even on rough grids. 


5.1 Numerical investigation of truncation 
errors 


The first examples are based on the analytic map 


(1) 


where 


0_<•_<r, -- 


d' 


•+• j! 
j=l 


, rg•51, 


k 


a = + - j• 
j=l 


is introduced for normalizing the mapping. The number 
of terms in the sum, k, is a parameter. This function 
produces a family of mappings with varying smoothness 
at the • = r. The C O grid is defined by setting bi = 1 for 
1 < i < k. The C 'x mapping is defined by settingbx =0 
and bi = 1 for i > 1. Smoother mappings are defined 
similarly. 


Next we construct rough grids using random perturba- 
tions of a uniform grid. We define the O(h •) grid by 


xi = •i + h k 


where the R,'s are random numbers uniformly distributed 
in [-1/4, 1/4]. 


The asymptotic truncation error Ea on a grid of M 
nodes, h = 1/(M - 1), is estimated by 


+ 


where q is the order of the error, and the constant c, the 
convergence-rate constant, is independent of .•¾I. 


In the numerical examples the truncation errors were 
evaluated on a sequence of grids h = 2 -• and the conver- 
gence rates estimated from the ratio between the norms of 
the errors (2) and 


hq 


(3) En/• = c • + O(hq+X) . 
The order of convergence q can be estimated as follows 


Ea 


(4) q • 1øg2 Eh/2 
The convergence rates were estimated using both the 


maximum norm 


M 


i=1 • 


and the mean-square norm 


- , 
$ i=1 


where Ui+x/• is the solution of the finite-difference scheme 
and u(x) is the exact solution. 


The truncation errors were computed by applying the 
discrete operators to a number of test functions includ- 
ing the sine, cosine, exponential, and polynomials for 
6 • r • 9. All of the convergence estimates agree with 
our theoretical analysis for grids generated using transfor- 
mations and for random grids. 


2D truncation error analysis. 
The truncation error was numerically investigated for 


the test function 


sin(2 •r x) sin(2 = •) 


with periodic boundary conditions on the unit square and 
the smooth periodic grid 


X(•, r/) = • + s sin(2 •' •) sin(2 •' q) 


¾(•, V) = V + s sin(2 • •) sin(2 • 


The grid for parameter s = 0.1 is shown in figure 4. 
The numerical investigations of the truncation error for 


these smooth grids confirm the theoretical expectation of 
a fourth order truncation error. 


We also investigated the truncation error on a non- 
smooth the random grid 


agi,j = •i,j q- l•,j )• ( h•) k 
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Figure 4: Smooth grid in unit square. 
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Figure 5: Random grid in unit square. 


y•,j -- rli,j + R7 , ,• (Arl) k 


where A• = 1/(3//- 1), At/= 1/(N - 1) are the steps in 
the logical grid, R -• ., R?. E (-0.5, 0.5) are random num- z.$ t, 3 


bets, k is the analog of smoothness of the grid, and A the 
parameter which determined the relative size of the per- 
turbations of the uniform grid. In figure 5 we present such 
a grid for k = 1 and A = 0.8. 


The numerical truncation errors for these rough random 
grids were different from ti•e one dimensional results in ta- 
ble 1 We found no direct dependence between the order of 
perturbation and the order of the truncation error as we 
found for the one dimensional case. This implies that in 
2D the order of the random perturbation is insu•cient to 
estimate the quality of the grid. But when the perturba- 


tion is O(h 3) or O(h4), the results coincide with the one 
dimensional case. 


5.2 Convergence rates for the heat equa- 
tion 


The time-dependent one-dimensional heat equation, 


Ou 02u 


(5) 0--•=divgradu= Ox2 , O < x < 2 •r , 
with periodic boundary conditions and the exact solution 


(6) u(x, t) ---- e-' sin(x), 


was solved to determine how the accuracy depends upon 
the smoothness of the grid. Five grids, each with M points 
were used; a uniform grid; a smooth periodic grid, 


(7) xi = 2•-(i- 1)h +0.2 sin(2 •' (i- 1)h). 


i = 1,.. 


and three random perturbations of the uniform grid, 


xl = 0, 


xi-27r(i-1)h+Ri2•rh s, i=2,...,M-1, 
XM = 2•r 


where the Ri; i - 2,..., 3//- 1 are random numbers, Ri G 
(--1/4, 1/4), and s = 3,2,1. 


The spatial derivatives were approximated by the 
second-order and fourth-order approximations constructed 
in this paper. The equations were integrated in time 
by a variable-order, variable-time step Adams-Bashforth- 
Moulton method to time accuracy of 10 -9, so that the 
errors related to time-integration are negligible. 


The accuracy of the solutions at t - I are displayed in 
Tables 2 and 3. The type of the grid is in the first column; 
the number of grid points, M, is in the second column; 
the next two columns give the maximum and mean-square 
error norms; and the estimated orders of convergence are in 
the next two columns. Note that the order of convergence 
for the maximum and mean-square norms are the same. 


The second-order method has a second-order conver- 


gence rate for all grids and the fourth-order method has at 
least a second-order convergence for all grids. However, as 
the smoothness of the grid increases, so does the order of 
convergence for the fourth-order method. 


We also conducted numerical experiments for the 2D 
heat equation on the presented grids with exact solution 


u(x, t) = e -s•r2 t sin(2 •-x) sin(2 •'y). 
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Type M max L2-norm qmax q2 
of grid norm 


Uniform 17 4.17E-03 7.43E-03 1.90 1.91 


grid 33 1.11E-03 1.96E-03 1.95 1.96 
65 2.86E-04 5.06E-04 - - 


Smooth 17 4.78E-03 8.06E-03 1.90 1.92 


grid 33 1.28E-03 2.12E-03 1.95 1.94 
65 3.29E-04 5.51E-04 - 


Random 17 4.61E-03 7.45E-03 2.02 1.91 


grid 33 1.13E-03 1.96E-03 1.97 1.96 
O(h 3) 65 2.87E-04 5.06E-04 - 


Random 17 5.73E-03 7.83E-03 2.14 1.97 


grid 33 1.30E-03 1.99E-03 2.10 1.97 
O(h 2) 65 3.03E-04 5.08E-04 - 


Random 17 9.36E-03 1.02E-02 1.96 1.91 


grid O(h) 33 2.40E-03 2.71E-03 2.38 2.23 
65 4.61E-04 5.75E-04 - 


Table 2: Convergence Analysis for Second-Order Scheme. 
The convergence rates using the maximum, q,•ax, and L2 
norm. q2 are computed on the series of grids with M -- 
17.33, and 65 points. 


Type I M max L2-norm qmax q2 
of grid norm 


Uniform 17 6.31E-05 1.12E-04 3.80 3.80 


gird 33 4.52E-06 8.02E-06 3.90 3.91 
65 3.01E-07 5.32E-07 - - 


Smooth 17 1.53E-04 2.24E-04 3.75 3.79 


grid 33 1.13E-05 1.62E-05 3.88 3.91 
65 7.66E-07 1.07E-06 - - 


Random 17 5.26E-04 5.04E-04 3.91 3.81 


grid 33 3.49E-05 3.59E-05 4.32 4.31 
O(h 3) 65 1.74E-06 1.80E-06 - - 


Random 17 1.41E-03 1.14E-03 3.04 2.64 


grid 33 1.71E-04 1.83E-04 3.40 3.36 
0(52 ) 65 1.61E-05 1.77E-05 - - 


Random 17 4.46E-03 4.02E-03 2.04 1.87 


grid 33 1.08E-03 1.09E-03 2.73 2.47 
O(h) 65 1.62E-04 1.96E-04 - - 


Table 3: Convergence Analysis for Fourth-Order Scheme. 
The convergence rates using the maximum, qmax, and L2 
norm, q2 are computed on the series of grids with M -- 
17,33, and 65 points. 


The numerical results show dependence of the error in 
2D on the quality of the grid similar to 1D case. That is 
for smooth grids we have a fourth order convergence rate, 
and for random grids the convergence rate decreases from 
4 to 2 when we decrease the "smoothness" of the random 


grid o s, from four to one. It is important to note, that the 
worst convergence rate we encountered was O(h2), even 
then truncation error is O(1). This fact is closely related 
to the nature of the heat equation and can be explained 
from a theoretical point of view similar to that in [11]. 


5.3 Efficiency of the second- and fourth- 
order methods 


When using these approximations to solve systems of par- 
tial differential equations, often the cost of applying the 
discrete operator is small compared with the cost of eval- 
uating the function that is to be operated on. For exam- 
ple, in a fluid dynamics calculation where the equation- 
of-state is evaluated by a table lookup, it may cost up to 
thirty arithmetic operations to evaluate the pressure at 
a mesh point. The five extra arithmetic operators for the 
fourth-order method compared to the second-order method 
is small compared to the large gain in accuracy. The real 
gain comes from requiring fewer mesh points in a calcula- 
tion that has the same accuracy. 


Also, when solving time dependent equations with ex- 
plicit method, the stability restriction for the time step is 
a function of the mesh spacing. For the heat equation, the 
stability bound depends approximately upon 1/min(Ax) 2 
Thus, if the time step is limited by the stability• rather than 
accuracy, the fewer mesh points required by the fourth- 
order method allows much larger time steps for the same 
accuracy. 


The fourth-order approximation of the Laplacian re- 
quires 2.6 times as many arithmetic operations as the 
second-order approximation (13 arithmetic operations for 
fourth-order versus 5 for the second-order method). We 
compared the two methods in solving the previous exam- 
ple by using M - 16 cells for the fourth-order method and 
2.6 M - 42 cells for the second-order method. The results 


in Table 4 for the max and L2 norm errors demonstrate 
that the fourth-order method is significantly more accu- 
rate than the second-order method on smooth grids. On 
rough grids, the fourth-order method is only slightly worse, 
even with far fewer mesh points. These results agree with 
similar comparisons of finite difference and finite volume 
methods on nonuniform grids [9]. 


From this example, we conclude that for grids with vary- 
ing degrees of smoothness, the fourth-order method is gen- 
erally more efficient than the second-order method. 
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Type of grid M Order max-norm L2-norm 
Uniform 42 2 6.54E-4 1.15E-3 


16 4 6.31E-5 1.12E-4 


Smooth 42 2 7.54E-4 1.05E-3 
16 4 1.53E-4 2.24E-4 


Random grid 42 2 6.54E-4 1.15E-3 
O(h 4) 16 4 2.28E-4 2.12E-4 


Random grid 42 2 6.57E-4 1.15E-3 
O(h 3) 16 4 5.26E-4 5.04E-4 


Random grid 42 2 7.41E-4 1.16E-3 
O(h •) 16 4 1.41'E-3 1.14E-3 


Random grid 42 2 1.43E-3 1.53E-3 
O(h) 16 4 4.46E-3 4.02E-3 


Table 4: Comparison of accuracy of second- and fourth 
-order methods for the 1D heat equation. 


6 Conclusions 


We combined the support-operators method with map- 
ping, to derive new mimetic fourth-order accurate dis- 
cretizations of the divergence, gradient, and Laplacian on 
nonuniform grids. The discrete divergence is the negative 
of the adjoint of the discrete gradient and consequently the 
Laplacian is symmetric and negative. We verified our ana- 
lytical estimates of the truncation errors by computational 
experiments on both smooth and rough grids. The meth- 
ods displayed fourth-order truncation errors on smooth 
grids. and this accuracy degraded gradually as the smooth- 
ness of the grid degenerated. 


A numerical investigation of the order of convergence for 
the heat equation verified that the fourth-order method 
converges to at least second-order in even the roughest 
grids, and the order of convergence increases from 2 to 4 as 
the smoothness of the grid increases. Moreover, the fourth- 
order method was significantly more accurate than the 
second-order method when both methods used the same 


computational effort. 
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Implementation of a High-Accuracy Finite-Difference Scheme 
for Linear Wave Phenomena 


H.M. Jurgens* D.W. Zingg t 


Abstract 


A high-accuracy finite-difference scheme is used to solve 
the two-dimensional time-domain Maxwell equations gov- 
erning the propagation and scattering of electromagnetic 
waves. The scheme uses a seven-point spatial opera- 
tor with an explicit six-stage time-marching method of 
Runge-Kutta type. Boundary formulations are given for 
perfect conductors and interfaces between dielectric me- 
dia with differing permittivities. Numerical experiments 
are performed for pulsed plane waves incident on a di- 
electric square and a perfectly-conducting cylinder using 
Cartesian and curvilinear grids, respectively. The results 
demonstrate the general usefulness of the high-accuracy 
scheme and its superior efficiency relative to a second-order 
scheme. 


Key words: finite-difference schemes,wave propagation, 
Maxwell's equations. 


AMS subject classifications: 65M05, 76-08, 78-08. 


Introduction 


One of the more promising areas of application of high- 
order finite-difference methods is in the numerical simu- 


lation of wave phenomena, which has recently become an 
area of considerable interest. Future prospects in computa- 
tional electromagnetics and aeroacoustics are discussed in 
Refs. [9] and [7], respectively. Numerous researchers have 
demonstrated the inadequacy of low-order finite-difference 
methods for accurate simulation of long-range wave prop- 
agation with reasonable grid densities. Consequently, sev- 
eral high-accuracy finite-difference schemes have recently 
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been developed specifically for simulating wave phenomena 
[2, 3, 6, 8, 10, 13, 14]. In general, these new schemes are 
analysed in a one-dimensional context or in two dimensions 
on square grids. However, in most practical problems of 
interest involving waves, scattering phenomena are impor- 
tant. The geometry of the scattering object can be com- 
plex. Consequently, the numerical formulation of bound- 
ary and interface conditions for complex geometries is an 
important aspect of high-accuracy schemes for simulating 
wave phenomena. 


There are three basic approaches for applying a finite- 
difference or similar method to complex geometries: Carte- 
sian (or rectilinear) grids, curvilinear grids, and unstruc- 
tured grids. Cartesian grids have several advantages. 
Finite-difference schemes are typically most accurate on a 
regular grid. Furthermore, generation of Cartesian grids is 
relatively straightforward. In contrast, generation of curvi- 
linear grids can require considerable effort. For complex 
geometries, multiple curvilinear grids are usually required, 
either patched together or overlapping. The major ad- 
vantage of curvilinear grids is in the treatment of bound- 
aries and interfaces, which normally lie along grid lines. 
Cartesian grids require complicated boundary treatments, 
especially if high-order accuracy is to be maintained. Un- 
structured grids, which are normally associated with finite- 
element methods, are often less expensive to generate than 
curvilinear grids. However, higher-order accuracy can be 
difficult to obtain. The finite-difference methods presented 
in Refs. [2, 3, 6, 8, 10, 13, 14] cannot be used with unstruc- 
tured grids. 


Based on Fourier error analysis, the finite-difference 
scheme presented in Refs. [13] and [14] is among the most 
promising for simulating linear wave phenomena [15]. It 
is intended for simulations in which high accuracy is re- 
quired for waves being propagated over relatively large 
distances. The scheme produces dissipative and dispersive 
errors which are of roughly equal magnitude. Accurate 
results can be obtained for waves propagating over five 
hundred wavelengths with less than seventeen grid points 
per wavelength. This result, obtained using Fourier error 
analysis, applies to wave propagation on uniform Cartesian 
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grids without reflection or other scattering phenomena. 
There has been little research on the impact of nonuniform 
and curvilinear grids on the accuracy of such methods. 


In this paper, the high-accuracy finite-difference scheme 
presented in Refs. [13] and [14] is applied to two problems 
involving the propagation and scattering of electromag- 
netic waves. The first involves a pulsed plane wave inci- 
dent on a dielectric square, the second involves a pulsed 
plane wave incident on a perfectly conducting cylinder. 
The dielectric square permits the straightforward applica- 
tion of a Cartesian grid while a curvilinear grid is used 
for the cylinder. The objectives of the present work are 
1) to demonstrate the usefulness of the present bound- 
ary formulations for perfect conductors and interfaces be- 
tween dielectric media with different permittivities, and 
2) to compare the efficiency of the high-accuracy finite- 
difference scheme with that of lower-order schemes for 


problems involving scattering and curvilinear grids. Al- 
though the emphasis here is on electromagnetic waves, the 
finite-difference scheme, the boundary formulations, and 
the conclusions are equally applicable to acoustic and elas- 
tic waves. The paper is organized in the following man- 
ner. First. the Maxwell equations are given. Next, the 
finite-difference scheme is presented, including the spatial 
operator and the time-marching method. The interface 
formulations are then described. Finally, numerical results 
for the two test problems are presented and some conclu- 
sions are drawn. 


2 Governing equations 


The Maxwell equations governing electromagnetic waves 
are: 


(1) %7. D = p 


(2) V.B : 0 
0B 


(3) VxE = 
ot 


OD 


(4) 
where E and H are the electric and magnetic field intensi- 
ties, D and B are the electric and magnetic flux densities, 
J is the current density and p is the charge density. The 
constitutive relations are: 


(5) D = eE 
(6) B = /•H 


where e is the electric permittivity and/• is the magnetic 
permeability. We restrict our attention to linear isotropic 


homogeneous non-conducting media with no charge den- 
sity (p = 0). Under these conditions, e and/• are positive 
real scalar constants and J = 0. We consider a nondimen- 


sional form of the equations such that e = /• = i in free 
space. Furthermore, we assume that the initial conditions 
and any incoming waves satisfy the divergence relations. 
Hence these relations need not be enforced numerically. 


In two dimensions, the Maxwell equations can be de- 
coupled into two sets of equations, the transverse mag- 
netic (TM) set involving the z component of the electric 
field and the x and y components of the magnetic field, 
and the transverse electric (TE) set involving the x and 
y components of the electric field and the z component of 
the magnetic field. Without any loss of physics, we will 
consider only the TM formulation. which can be written 
as 


oq - oq (7) 0'•- + A + 1•10y 
where 


Dz 


= 0 


o o 
o o o 


-1/e o o 


o o 
g -- o o , 


0 0 0 


and Dz, B•, and By are Cartesian components of D and 
B, respectively. The above equation assumes constant ma- 
terial properties. If the material properties are spatially 
varying, then source terms are introduced. 


In order to apply a finite-difference method, the domain 
must be discretized using a grid. With a rectilinear grid, 
the above equations can be discretized directly. With a 
curvilinear grid, the equations are transformed into a recti- 
linear computational space. The Cartesian coordinates are 
mapped to curvilinear coordinates •(x, y), r/(x, y) such that 
the resulting grid is uniform and square with A• = At/= 1. 
In general, the mapping is defined by assigning integer 
curvilinear coordinate values to each grid node, although 
an analytical mapping can be used for some geometries. 
The transformed equation is 


aq ~ofoq avaq 


- o½ aQ on OQ 
oy on 
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The metrics of the transformation can be found numeri- with 


cally if no analytical mapping is available. For details see, 
for example, aef. [1]. Equation 8 can be rewritten in the (15) 
following form: 


oq • •_• oq (9) O•- + A + I• Or/ 
where 


(lO) 


and 


(11) = 


= o 


• Oy i• Ox 
k• o o 
•' •a '• 'v 0 0 e Ox 


3 Numerical method 


Our objective is to solve for the total electric and magnetic 
field intensities within dielectric media for arbitrary waves 
entering the computational domain. The high-accuracy 
finite-difference scheme of Refs. [13] and [14] consists of a 
seven-point spatial operator together with an explicit six- 
stage time-marching method of Runge-Kutta type. The 
spatial operator is divided into an antisymmetric compo- 
nent. i.e., a centered difference operator, and a symmetric 
component. which provides a small amount of dissipation. 
The symmetric component is added to provide stability 
and to damp spurious high wavenumber components of 
the solution. A detailed analysis of the method, including 
stability and error analysis is given in Refs. [13] and [14]. 


On a uniform grid with xj = jAx, the antisymmetric 
component of the spatial operator is 


1 


(12) •-(Zl (•j+l -- •j--1)] 


where at = 3/4, a2 = -3/20, aa = 1/60, and u• = u(x•). 
The symmetric component is 


1 


= [d0 + + + 
(la) +dt (%+• + u•._•) + dour] 


where do = 1/10, d• = -3do/4, d2 = 3do/10, and 
d3 = -d0/20. The complete operator, which is fifth-order 
accurate, is applied as follows: 


I•I:XIAI x-• 


where X is the matrix of right eigenvectors and A the 
matrix of eigenvalues of .•.. The y-derivative operator uses 
the matrix [l•l[, which is formed in an analogous manner. 
When curvilinear coordinates are used, the matrices [,&[ 
and II•l[ are used. 


When applied to an ordinary differential equation 
(ODE) of the form 


du 


dt = f(u,t) 
the time-marching method is given by the following: 


(16) 


u (•) 


u (2) nq._oz 2 = U n -+- ha2f (•) n+al 


t•(3) . 


(4) . ;(a) 


u(S) 


(s) 
u.+• = u. + h f•+•, 


where h = At is the time step, t• = nh, u• = u(t•), and 


f(k) , (k) ah) n+• = f t• + 


With a• = 1/6, a2 = 1/5, aa = 1/4, a4 = 1/3, and 
as = 1/2, the method is sixth-order accurate for linear 
homogeneous ODE's and second-order otherwise. When 
applied to wave propagation problems together with the 
spatial operator given above, this method is generally 
somewhat more accurate than the classical fourth-order 


Runge-Kutta method for a given computational effort, de- 
spite its lower formal order. Furthermore, this method 
requires only two memory locations per dependent vari- 
able while the fourth-order Runge-Kutta method requires 
three. Thus this six-stage method combines excellent accu- 
racy with low memory requirements. Its stability contour 
(shown in Ref. [14]) is adequate for the nonstiff problems 
of interest here. 


4 Interface and boundary treat- 
ment 


Our approach is to treat dielectric media with differ- 
ent constitutive properties as distinct subdomains coupled 
through appropriate interface conditions. Therefore, we 
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consider three distinct boundary types, an interface be- 
tween different dielectrics, a boundary at the surface of 
a perfect conductor, and an artificial outer boundary re- 
sulting from the need for a finite domain. In each case, a 
locally one-dimensional characteristic formulation is used 


[41 . The system of equations is decomposed into character- 
istic variables representing incoming and outgoing waves 
along a direction normal to the interface or boundary. For 
example, for a constant-x boundary at the right side of a 
subdomain, the incoming waves are associated with k- 
and the outgoing waves are associated with •+, where the 
matrices .•+ are given by 


A + - 
2 


Similar expressions are obtained at constant-y boundaries 
and in curvilinear coordinates. In the latter case, the ma- 
trices ,i+ and l•l + are formed. Upwind difference oper- 
ators are then applied. The terms representing outgoing 
waves are differenced using conventional sixth-order one- 
sided and biased operators. For the incoming waves, the 
following fifth-order operators are used: 


1 


60Ax [-3u0 - 119ul + 255u2 - 240u3 
q-155u4 -- 57u5 q- 9u6] 


(19) 


1 


60Ax [9u0 - 66u• + 70u2 - 60u3 
q-75u4 -- 34u5 + 6u6] 


Note that these numerical boundary schemes are different 
from those given in Refs. [13] and [14], which proved to be 
unstable on some curvilinear grids. 


4.1 Dielectric interfaces 


At the interface between two isotropic dielectric media, the 
following conditions must be satisfied: 


(20) Etl = Et2 


(22) Dn• = Dn2 


(23) B• = B• 


where the subscripts 1 and 2 distinguish the two media 
(note that the field intensities and flux densities can be 
double-valued on the boundary), and the subscripts t and 
n designate the components tangential and normal to the 
interface, respectively. In the TM case, E and D point 


out of the plane and thus the third condition is satisfied 
automatically and the first condition simplifies to 


(24) 


The procedure used to enforce these interface conditions 
will be described for an interface lying on a line of constant 
• with the positive • direction pointing from medium 1 to 
medium 2. Generalization to other cases and to Cartesian 


grids is straightforward. The curvilinear grids are con- 
structed such that the interfaces always lie along grid lines. 
Furthermore, the grid lines are orthogonal at boundaries 
and interfaces. The characteristic variables associated with 


outgoing waves are extrapolated from the interior of each 
subdomain on either side of the interface. These are cou- 


pled with the interface conditions to determine the field 
values on either side of the interface which are used as 


boundary conditions in the respective subdomains. This 
procedure permits the grid in each subdomain to be gen- 
erated independently. This is an important consideration 
since the grid resolution requirements are dependent on 
the material properties. 


In order to apply the interface conditions, we require 
Dzl, Dz2, Btl, Bt2, Bnl and B•2, where 


a: - 
Ox 


and 


(26) B.= 
oø--• Bx + •Bu y 


Fø_X + a-i • 
Oy Ox 


The normal component of the magnetic flux density at the 
interface, which is single-valued according to equation 23, 
is determined using sixth-order interpolation. Thus we re- 
quire four equations in order to determine D,•, D,2, Btl, 
and Bt2. Two equations are provided by sixth-order ex- 
trapolation of the characteristic variables associated with 
waves leaving each medium. Hence we extrapolate the fol- 
lowing quantity from medium 1 to the interface: 


(27) w• + = 


where r•z = v/-•. The following quantity is extrapolated 
from medium 2: 


(28) wf: rli2Dz2 -- Bt2 


Note that the quantities extrapolated depend on the orien- 
tation of the local (•, r/) coordinate system at the interface. 
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The remaining two equations are provided by the interface 
conditions. which for this case are written as follows: 


(29) e2Dz• - etDz2 = 0 


(30) lt2Btl - lzlBt2 -- 0 


These four equations can be solved for D:•, Dz2, Btl. and 
Bt2. The Cartesian components of the magnetic flux den- 
sitv ('an then be calculated from the normal and tangential 
colnponelltS. 


4.2 Perfect conductors 


At the surface of a perfect conductor, the component of the 
electric field tangential to the boundary and the compo- 
nent of the magnetic flux density normal to the boundary 
must be zero. For the TM case. this gives 


(31) 


We also require St at the boundary. This is determined by 
sixth-order extrapolation of the appropriate characteristic 
variable frown the dielectric medium to the boundary. For 
example. if the perfectly-conducting surface lies along a 
grid line of constant •. with ( increasing as the boundary 
is approached. then w •- is extrapolated and, since D- = 0. 


, 


(32) Bt = 


on the bonndarv. where St and w + are defined in equations 
25 and 27. respectively. The Cartesian components of the 
magnetic flux densits- are then determined using the fact 
that B,, = O. 


4.3 Artificial boundaries 


The outer boundaries are handled using locally one- 
dimensional characteristic boundary conditions. As it is 
well known that this approach leads to significant spurious 
reflection. other methods are being examined. However, 
for the results shown below, the spurious reflections do not 
affect the solutions. The incident field is specified outside 
the computational donmin. Therefore, the terms repre- 
senting incoming waves are known outside the domain and 
the numerical boundary schemes given in equations 18 and 
19 are not required at such boundaries. 


5 Results and discussion 


5.1 Dielectric square 


We first consider the problem of electronmgnetic scattering 
from a dielectric square. As shown in Figure 1, the domain 


I I 
0.4 0.6 1.0 


Figure 1' Sketch of dielectric square. 


extends over 0 _< x _< 1, 0 _</1 _< 1 with the square locateel 
at 0.4 _< x _< 0.6, 0.4 _< // _< 0.6. The pernfittivity of the 
square is four times that of free space. With this geom- 
etry. the interface conditions are applied along grid lines 
even with a Cartesian grid. The corner singularities are 
treated by an averaging operator. Results are presented 
for a Gaussian pulse approaching the dielectric square at 
45 degrees. The incident electric field is given by 


] [ -1 (•cos + ysin + 1/2 -- t) 2 Ez(x.y.t) =exp [2a2 • 7 • 
with a = 0.05. In all cases. the time step is chosen to 
produce a Courant nulnber of unity outside the dielectric 
square, where the Courant nmnber is defined as cAtlAx 
and the propagation speed, c. is unity in free space. Since 
the propagation speed in the square is half that in fi'ee 
space. the Courant number in the square is one half. 


Figure 2 shows contours of the electric field intensity at 
t = 1.4 computed using the high-accuracy finite-difference 
scheme on an equispaced grid with 400 intervals in each di- 
rection. Negative values of electric field intensity are shown 
by dashed contours. The contours obtained on a 100 by 100 
grid displayed in Figure 3 show little difference from those 
obtained on the finer grid. In contrast, Figure 4 shows re- 
suits computed using a finite-difference scheme consisting 
of second-order centered differences with a small amount 


of artificial dissipation coupled with fourth-order Runge- 
Kutta time nmrching. again on the 100 by 100 grid. These 
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Figure 5: Error in the electric field intensity as a function 
of the uumber of nodes in the grid. 
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Figure 6: Electric field intensity on the diagonal of the 
dielectric square. 


r 


Figure 7: Sketch of perfectly-conducting cylinder. 


5.2 Perfectly-conducting cylinder 


The previous example shows the potential of the Cartesian 
grid approach for implementing high-accuracy schemes. 
Unfortunately. it is extremely difficult to develop stable 
and accurate boundary and interface lornrelations when 


the boundary does not lie along a grid line. One option is to 
impose the change in permittivity gradually [12]. However. 
this approach leads to significant errors which. although 
acceptable for a second-order formulation. preclude its use 
with high-accuracy operators. Other pronfising methods 
for handling interfaces include the finite-surface method 
[11] and the use of collar grids which overlap a Cartesian 
grid [.5]. However, both of these approaches are difficult to 
extend to higher order. 


We now consider an example using a curvilinear grid 
which consists of a pulsed waveform incident ou a perfectly- 
conducting cylinder. The geometry and a grid are shown 
in Figure 7. The polar grid extends out four cylinder radii 
froin the surface. The incident field is 


] E•.(x.y.t)=exp [2a2 + 15/2-t) • 
with rr = 0.3. For all of the computations, the time step is 
chosen to produce a maximum Courant number of unity. 
Grid metrics are calculated using the same operator as is 
applied to the spatial derivatives. 


The finest grid used has 480 grid intervals in the cir- 
cumferential direction and 320 in the radial direction. The 


solution computed using the high-accuracy finite-difference 
scheme on this grid is used as the reference in determining 
the errors produced on coatset grids. Contours of electric 
field intensity in the region near the cylinder at t = 8.8 are 
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Figure 8: Contours of electric field intensity computed us- 
ing high-accuracy scheme on 480 by 320 grid. 


shown in Figure 8. The solution computed using the high- 
accuracy scheme on a 120 by 80 grid is shown in Figure 9. 
Agreement with the fine grid results is excellent. Note that 
the jagged contours in Figure 9 are caused by the contour 
plotting; the solution itself is smooth. Figure 10 shows 
that the second-order scheme produces considerable error 
on the 120 by 80 grid. 


The electric field intensity along the dashed line in Fig- 
ure 7 is plotted in Figure 11. As in the Cartesian grid 
example, the solution computed using the high-accuracy 
scheme is substantially more accurate than that computed 
using the second-order scheme on a grid with four times as 
many nodes. Figure 12 shows the L2 norm of the error in 
the electric field intensity along this line for several grids. 
We have selected this line because the error for the ;;'hole 


domain is dominated by that occurring in the large cells 
at the top and bottom of the domain. The trends shown 
are independent of the line chosen. The solutions shown in 
Figure 11 are indicated by a 1 and a 2 in Figure 12. The 
relative efficiency of the two schemes is virtually identical 
to that obtained on the Cartesian grid. The error produced 
by the high-accuracy scheme on the 120 by 80 grid is less 
than one-fourth that produced by the second-order scheme 
on a 240 by 160 grid. For these solutions, the computing 
time of the high-accuracy scheme is less than one-fourth 
that of the second-order scheme and the memory require- 
ments are six times smaller. Once again, the high-accuracy 
solution computed on the 120 by 80 grid is slightly more 
accurate than the second-order solution on a grid with six- 
teen times as many nodes, which required over thirty-two 


Figure 9: Contours of electric field intensity computed us- 
ing high-accuracy scheme on 120 by 80 grid 


Figure 10: Contours of electric field intensity computed 
using second-order scheme on 120 by 80 grid. 
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0.5 


-0.5 
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Figure 11: Electric field intensity along the dashed line in 
Figure 7. 


10 '2 


, 
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Figure 12: Error in the electric field intensity as a function 
of the number of nodes in the grid. 


tintes more computing time and twenty-four tintes more 
computer memory. 


6 Conclusions 


We have implemented a high-accuracy finite-difference 
scheme to solve numerically the two-dimensional time- 
domain Maxwell equations. The interface formulation 
preserves the high accuracy of the interior scheme. The 
examples presented include both scattering from an in- 
terface between media with different permittivities and 
from a perfectly-conducting surface. Excellent results are 
obtained for Cartesian and curvilinear grids. The high- 
accuracy scheme proved to be substantially more efficient 
than a second-order scheme in terms of both computing 
time and computer memory. 
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High-Order Entropy Conserving Difference Methods for Nonlinear 
Conservation Laws 


Pelle Olsson* 


Abstract 


It is demonstrated how entropy pairs can be obtained for 
symmetrizable systems of conservation laws by solving Eu- 
ler's differential equation. This procedure suggests a way 
of discretizing the conservation laws such that the resulting 
difference scheme is entropy conservative. This technique 
will result in entropy conservative schemes of arbitrary or- 
der of accuracy as long as the difference operators satisfy a 
summation-by-parts rule. Having established entropy con- 
servation, it is straightforward to prove generalized energy 
estimates for the semidiscrete equations by solving Euler's 
differential equation. 


Key words: high-order, entropy, finite differences. 


AMS subject classifications: 65M12. 


i The continuous problem 


We shall consider one-dimensional hyperbolic systems of 
the form 


ut + fx =0, x G (0,1), t > 0 
(1) 0)= 


where u, f(u) • R a. At the boundaries we prescribe data !) 
for the ingoing characteristics, which will be defined later. 
Jacobians will be denoted by 


O•fa ... O•dfa 


'Gates 2B MC 9025, Stanford University, Stanford, CA 94305, 
email: olsson¸sccm. stanford. edu 


A major concern when analyzing such systems is the exis- 
tence of an entropy pair (r•(u),q(u)), r•, q scalar functions 
and r• convex, satisfying the additional conservation law 


(2) •t+qz --0 


for smooth solutions u of eq. (1). It is well known [2. 7] 
that such an entropy pair exists if[ the hyperbolic system 
(1) is symmetrizable, i.e., there exists a change of variables 
u = u(v) such that the Jacobians uv, gv are symmetric; 
g(v) _= f(u(v)). Furthermore, uv is assumed to be positive 
definite, u• > 0 for short. 


It is easy to see that eq. (1) implies an additional con- 
servation law [6] if the entropy condition 


(3) T T r/• f• = q• 


holds; r• denotes the gradient 


ß 


r•u --- 


O•ar/ 


with a similar definition of q•. Although theoretically very 
elegant, eq. (3) may be hard to solve explicitly for q and q. 
Therefore, we propose a simple solution procedure based 
on Euler's differential equation. Furthermore, the solutions 
will be obtained in a form that is suitable for proving the 
existence of a generalized energy estimate for eq. (1) and 
its semidiscrete counterpart. 


Assuming that eq. (1) is symmetrizable by means of a 
change of variables u = u(v) yields 


A=g•=(g-O)•+O•, 


where G - G(v) is an arbitrary function. Take G to be the 
solution of Euler's inhomogeneous differential equation 


(4) 
ICOSAHOM'95: Proceedings of the Third International Con- 


ference on Spectral and High Order Methods. @1996 Houston Thus, 
Journal of _Mathematics, University of Houston. (5) 


1 Ovv = -O + g .: '.. O(v) = g(Ov)dO. 


f• = (G•v)• + Gvv•, 
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which is a variant of the skew-symmetric form described 
in [10]. It follows immediately that G•, is symmetric. Sim- 
ilarly, 
(6) •t = (r•vv)t + uv•, 


where U(v) is the solution of 


(7) rA,• = -r• + • •--• u½,) = •(O•)dO, 


which clearly shows that U,, is symmetric positive definite 
(SPD). Hence, 


0 = vT(ut + f•) 


where the last equality follows because of the symmetry of 
the Jacobians Us, and G•,. Thus, defining 


(s) q(•) -- 
we obtain the additional conservation law 


r/t + q• = 0. 


Now. by (4) and (S) it follows that 


qu (vT g _ vTG)u T T = = v• (v 9 - v•G)•, 


where the last equality is a consequence of the chain rule. 
Hence. the product rule yields 


.... % (g• v + 9 - G - G•v) 


since G•. is symmetric. Invoking (4) once more yields 


T T fT v q• = v,•g•. v = (9•v•)rv = •, . 


Similarly, 
•=(u•v•)*v=v, 


whence 
T T 


% f• = q• ß 


Furthermore, r/•, = v•, > 0. Consequently, (r/, q) consti- 
tutes an entropy pair. 


Before proceeding to the semidiscrete case we make one 
more observation about the entropy condition (3). Follow- 
ing Mock [7] we define the new variable v = rh,. Then 
v• = r]u, > 0 because of convexity, whence the transfor- 
mation v = v(u) is well defined. Clearly, v•, is symmetric. 
Furthermore, 


gv -- fury = Uv(Vufu)•v. 


Being the inverse of the symmetric positive definite matrix 
v•,, it follows that u• is SPD. Now, v,•f,• = %,•f,,, which 
is symmetric [1]. The equation above thus shows that #• 
is symmetric. The entropy condition (3) can now be ex- 
pressed as (by applying the chain rule to #(v) • f(u(v)) 
and r(v) • q(u(v))) 


r )r vT gvvu = (V u rv • 


T vT gv -- rv , 
which after transposition yields (g•, symmetric) 


(9) gvv--rv. 


(tl) 


where 


But this is Euler's differential equation for g with r• as 
forcing [4]. Similarly, the chain rule implies 


(•0) •,•' = •.• 
where •(v) =_ r](u(v)). Thus. neither u(v) nor g(v) will. 
in general, be homogeneous functions. The solution of 
eq. (10) can be written as 


•(•) = Jo (0•) •o = o,, 0 ' 


•(v)_= •o:t •dO. 
Suppose that u(v) is homogeneous of degree p. i.e., 
u(Xv') = XPu(v) for some p • R. Then by eq. (11) (w = Xv) 


that is, 
Ov (,•%') •-- )•p+l 


Upon normalizing 0(0) = 0 we obtain 


(12) e(/•7?)--- ,•P+lo(u) ß 


Conversely, 0(Av)= •p+lo(u) • •(•v) = •P•(u). Con- 
sequently, u(v) is homogeneous of degree p iff O(v) is ho- 
mogeneous of degree p + 1. Similarly, g(v) = •(v) is 
homogeneous of degree p iff •(v) is homogeneous of degree 
p + 1, where 


½(•) • do, 


which follows from eq. (9). Thus, eq. (1) can be re-written 
• [7] 


(13) ut + fx = ut + g• = (Ov)t + (O•,)x = O. 


Harten [3] has constructed an explicit family of symmetriz- 
ing transformations satisfying u•v - pu, #•v = p#, for 
the Euler equations of gas dynamics. The homogeneity 
assumption will be of fundamental importance when ana- 
lyzing the semidiscrete scheme. 
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2 The semidiscrete problem 


We now turn to the semidiscrete problem. Rather than 
discretizing eq. (1) directly we first use eq. (5) to reformu- 
late the space operator. 


ut+(GvV)z+GvV,c=O, z•(0,1), t>0 
(14) Lor(V)v(O,t) = 0 


•(x, 0) = •(x), 


where Lo(v) represents the characteristic boundary con- 
ditions. For convenience we only consider solutions sup- 
ported at x = 0. The generalization to include boundary 
conditions at x = 1 is straightforward. Furthermore, we 
confine ourselves to homogeneous boundary conditions. It 
will be shown in a future paper how to handle inhomoge- 
neous boundary conditions. 


Define the grid functions v T = (v0 T ...v•) and u T = 
(• ... u• = u(v•) The semidiscrete scheme is for- 
mulated as 


., ut + P(DG'v + G'Dv) = -L(LrV'L)-I(LrV')tu 
(•ø;•,(0) 
where G • = diag(G•(v•)), G•(v2) defined by eq. (4), 
L r = (L•(v)0 ...0), V' : diag(v•(uj)), v•(uj) being 
the Jacobian of the transformation v = v(u); P is the pro- 
jection operator defined by 


P = I - L(LrV'L)-•LrV' 


and D is a difference operator satisfying a summation-by- 
parts rule •5, 8, 9] 


(16) (u, Dv)h y r r r (Du, v)a, : •N•N -- •0•0 -- 


where (h denotes the mesh size) 
N 


(•7) (•,•)• = ••. 
j=0 


Multiply eq. (15) by P. Hence, 


(•8) P,, + P(DC'• + C'D•) = 0 


Subtraction of eq. (18) from (15) yields 


(z- P)., = -z(z*v'z)-•(z•v')•. 


which upon multiplication by LrV ' from the left implies 


(LrV'u)t =0. 


Only the first element of the left hand side is nonzero. 
Thus, 


(•9) (Z•T('•0)'",(-0)"0), = 0. 


We now assume that the transformation u -- u(v) satisfies 
(cf. [3]) 


UvV = SU, s • O. 


Hence, 
1 


VuU • --V. 
$ 


Substituting this into eq. (19) leads to 


(L0•(v0)v0/s)t =0. 


Consequently, the analytic boundary conditions Lor(Vo) ß 
v0 = 0 are fulfilled for t > 0 if the initial data satisfy 
the boundary conditions. We have thus shown that the 
semidiscrete solution satisfies 


(20) œ•'v = 0, t > 0, 


which is equivalent to 


(21) v: Pry. 


We also note that P has the following structure: 


p= I , Po, I • R dXd, 
', . 


which implies (u, Pv)h = (P•'u, v)•,. 
Scalar multiplication of eq. (15) yields 


(v, ut )h = -(v, P(DG'v + G'Dv) )• - (v, Lw)• . 


where w = (LTVtL)-I(LTVt)tlg. Hence, 


½, •,)• = -(P•, (DC'• + C'o•))• - (•, Z•,)•. 


But v = P•'v, whence 


(•,, •,• )• = -½, (O•' v + •'m) ),• - 


Now, 
(p•,Lw)• = (•,p•w)• = o 


since PL =_ O. Consequently (v is assumed to have com- 
pact support for convenience), 


(22) (v, ut)• = -(v, OG'v)a - (v,G'Ov)h : vo•a•(•o)•o, 


where we used summation by parts and (u,G•v)h = 
(G'u, v)a. Next we employ eq. (6) 


d (v. U' (23) (v, ut)h = (v, (U'v)t)a + (v, U'vt)h = Z v)a, 
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where 


U' -= diag(Uv(vj)). 


Introduce the notation (cf. eq. (8)) 


ß 


e---- , ti• 


and 


vøvv (vø)vø) ß 


( %a,,(vo)vo ) ß 


q= ß 


v•G•(v2v)v•v 


Eqs. (22) and (23) can then be combined into 


(24) (e. tit + Oq)h = 0, 


which is the discrete counterpart of eq. (2). The following 
proposition has thus been established: 


Proposition 2.1 Suppose that the conservation law (1) 
can be symmetrized by means of a variable transformation 
u(v), g(v) --_- f(u(v)), satisfyingu•.v = su, g•v = sg, s • O. 
The• the semidiscrete initial-boundary value problem (15) 
is entropy conservative. 


It is obvious from eq. (7) that Uv > 0 (and symmetric). 
We thus have a generalized scalar product 


XX• use "generalized" to emphasize that the scalar prod- 
uct itself may depend on the solution u. For symmetric 
hyperbolic systems, however, one has U•= (1/2)1 (cf. the 
linear case). Combining eqs. (22), (23) yields 


• v•G•(vo)vo (26) = ß 
The homogeneity •sumptions u•v = su and g•v = sg, 


s • 0 imply that 


1 1' 
(27) U(v) = --u(v) G(v) - (v) s+l ' s+l g ' 
where s > -1, s • 0. Define the generalized scalar product 


(u, v)h • (u, u%)h , u• = diag(u•(vj)) . 


Eq. (26) can thus be written as 


(28) 
It should be remarked that eq. (28) holds for any s • -1,0, 
although U(v) and G(v) are well defined only for s > -1. 


The reason for this is that the homogeneity assumptions 
actually allow us to derive eq. (28) without introducing 
U(v) and G(v). Since g• is symmetric we have A = QTg•Q, 
where the columns of Q are the (orthogonal) eigenvectors 
of g•. Partition 


Ao ' 


where the elements of At are given by •j > 0; the elements 
of Ao satisfy Aj < 0. The characteristic variables X are 
defined as (v • R a) 


X = Q rv. 


Let X• = Q•v and Xo = Q•v denote the in- and outgo- 
ing characteristic variables. The characteristic boundary 
conditions can thus be expressed as 


= o ,: ,,. = 0, 


Eq. (28) can thus be expressed as (v • R d(N+l) now de- 
notes a grid vector) 


dt 


aut (cf. (20), 


Pry = v • LJ(vo)vo = 0 • X• = O. 


Integration with respect to t thus proves 


Proposition 2.2 Suppose that the conservation law (1) 
can be symmetrized by means of a variable transformation 
u(v), g(v) • f(u(v)), satis•ing u•v = su, g•v = st, s • 
0,-1. Then the solution of the semidiscrete problem (15) 
satisfies the generalized energy estimate 


for homogeneous characteristic bo•ndaw conditions. 


Remark •.1 It should be noted that the energ• estimate 
follows for any discrete difference operator D satisfying 
a s•mmation-by-parts r•le (16) with respect to a scalar 
product of the form (i 7). Ezplicit 3rd, 4th, and 5th order 
accurate ezamples can be found in [9]. 


The Euler equations of gas dynamics satisfy all of the 
hypotheses of proposition 2.2 [3]. Thus, it is possible to 
generate entropy-conservative finite difference approxima- 
tions of arbitrary order for the Euler equations. Further- 
more, if shocks are present one can add artificial viscosity 
to (1•) such that the resulting scheme will satisfy an en- 
trop• inequality. This is the topic of a forthcoming paperß 
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Intermediate Boundary Conditions for 
Runge-Kutta Time Integration of 
Initial-Boundary Value Problems 


D. Pathria* 


Abstract 


Pseudospectral and high-order finite difference methods 
are well established for solving time-dependent partial dif- 
ferential equations by the method of lines. The use of high- 
order spatial discretizations has led in turn to a concomi- 
tant interest in high-order time stepping schemes, so that 
the temporal and spatial errors are of comparable mag- 
nitude. Explicit Runge-Kutta methods are widely used 
in practice, but a difficulty encountered with these is the 
loss of accuracy that results from wrong specifications of 
intermediate-stage boundary conditions. The best pre- 
scriptions to date can do no better than achieve third- 
order accuracy for general nonlinear problems. On the 
other hand, if these artificial boundary values are not ex- 
plicitly prescribed but are computed by integrating the 
semi-discrete equations at the boundary, the maximum al- 
lowable time step is significantly reduced. The remedy 
proposed here is to prescribe analytically those values that 
would result from applying the Runge-Kutta solver at the 
boundaries, and hence maintain accuracy without incur- 
ring further step size restrictions. We describe in detail 
the implementation for hyperbolic equations, and present 
both scalar and vector examples. 


1 Introduction 


A principal advantage of the method-of-lines approach 
for solving time-dependent partial differential equations 
is that it allows one to consider separately the issues re- 
lated to the spatial and temporal discretizations. It is com- 
mon practice to use standard ordinary differential equation 
(ODE) solvers for the time evolution, and among these, the 
one-step Runge-Kutta (RK) methods are a popular choice. 
A Runge-Kutta method constructs the numerical solution 
as linear combinations of approximations, usually of order 
lower than the scheme, computed at stages intermediate 
to the discrete time levels. Suppose we wish to solve 


(1) ut =?u, 


where u(t) may be a vector and where .• is some operator 
acting on u. Given u m, the numerical solution at time tin, 
an explicit s-stage RK method forms intermediate values 
u (•), u (2), ..., u © according to 


i--1 


(2) u 
j=l 


from which the approximation at time level t,•+• = t,•+At 
is assembled, 


Key words: initial boundary value problems, Runge- 
Kutta methods. (3) 
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u '•+• = u • + At • bi.•'u (i) . 
i----1 


The order and stability properties of the method are deter- 
mined by the particular values of the coefficients aij and 
bi. Our interest here is in (stable) methods which, for suffi- 
ciently smooth problems and sufficiently small time steps, 
are of order p > 3 for general nonlinear .T'. Such meth- 
ods are particularly valuable when the ordinary differen- 
tial equations originate in the semi-discretization of partial 
differential equations. High accuracy is needed to reduce 
phase errors in the computed solution, and especially im- 
portant in long time integrations, so that time stepping 
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schemes of error comparable to the spatial discretization 
are used. In what follows, we assume that the dominant 
error is due to the time stepping, and that the spatial accu- 
racy is of order at least as high as the Runge-Kutta method 
in question. 


Suppose the problem (1) does come from a partial dif- 
ferential equation. Then u depends on other variables such 
as x, .T' involves spatial differential operators (or their dis- 
crete counterparts), and boundary conditions supplement 
the initial value problem. Given a time-dependent Dirich- 
let boundary condition, 


(4) u(xo,t) = g(t), 


it is usual to prescribe u• +• = g(t,•+•), where the sub- 
script denotes the numerical value at x0. The question 
now arises of what boundary conditions, if any, to impose 
on the intermediate values. This problem is not so trivial 
as it may first appear, and there are two basic approaches 
[1, 21 . The first is to ignore the given boundary condition 
(4) and to compute u(0 *) by extending the inner Runge- 
Kutta scheme up to the boundary (one-sided stencils may 
be used with finite difference methods, whereas the dis- 
crete differentiation operator is automatically defined for 
pseudospectral discretizations). With this approach, the 
formal order of accuracy is preserved, but the step size 
one may take is significantly smaller than that allowed if 
intermediate boundary values are explicitly enforced [1]. 
The second approach is to explicitly prescribe intermedi- 
ate stage boundary conditions, but it is not immediately 
obvious what these should be. A few specific formulations, 
known in the literature, are summarized below. 


The conventional method views u © as an approximation 
i-1 


to u(t,• + ciAt) where ci = Y•j=• aij, and sets 


(5) U• ¸ -'- g(trn J• Ciht) 
at the end of each time increment. The connection be- 


tween the ith stage and time t,• + ciAt is somewhat vague, 
however, since an order p method does not necessarily have 
u (i) -- u(t,• +ciAt) +O(AtP+•). In fact, this strategy turns 
out to be a rather poor choice. For fixed CFL number • and 
general RK methods, the accuracy is reduced to second or- 
der across the domain [1]. A second strategy augments the 
ordinary differential equations at the interior nodes with 


(6) u•(t)=gi(t) 


at the boundary. If the operator .T' were independent of 
At, the formal order of the RK solver would be retained. 


lroughly, the ratio of the time step to the grid spacing at the 
boundary. ¾Ve shall make this more precise in the context of our 
numerical experiments. 


When operating with a fixed CFL number, however, the 
relationship between At and Ax results in a degradation 
of accuracy to third order, even for the case of constant 
coefficient scalar problems. 


A third strategy, proposed by Carpenter et al. in the con- 
text of hyperbolic problems, essentially amounts to replac- 
ing every application of .T' in the Runge-Kutta algorithm 
with a time differentiation at the boundary [1]. For exam- 
ple, the classical four-stage fourth-order method (RK4) 


u (•) = u -• 
1 


u (2) = u -• + •At.T'u (•) 
1 


u (3) = u -• + •At.T'u (2) 
u(4) _ u-• +At)ru © 


At 2.T.u(2) .T.u(4) urn+ ! = U rn + -•-- (.T'u (•) + + 2.T'u © + ) 
is supplemented by the intermediate boundary conditions 


1 
u? ) : 55tg 


1 i 1 At2gii 72• 3) = g(trn ) -[- •Atg (trn) -[- • (trn) 
At2 /i At3 i/i t . u[ 4) = g(t•) + Atgi(t.•) + -•-g (t•) + •-g ( 


This procedure may be viewed as augmenting the inner 
equations with the boundary system 


I • __ gill Uo(t) = v(t),v'(t) w(t),w'(t) (t). 


In general, the strategy integrates ut = .T'u at the bound- 
dkg(t) 


ary, and then replaces .T'•u with d t • . 
When .T' has no time dependence, this is exactly what 


is needed and the Runge-Kutta method retains its formal 
order of accuracy. When .T' depends on time, however, ei- 
ther explicitly or implicitly through some nonlinearity, the 
recipe is not quite right, and one can generally get no bet- 
ter than third order out of it. There is a simple reason 
for this difference. Carpenter's strategy holds in the time- 
independent case because it is exactly the Runge-Kutta 
method of the interior applied at the boundary. For the 
time-dependent case, the agreement between the bound- 
ary and interior treatments is only approximate, and this 
inconsistency forms a barrier to attaining higher order. 
The conventional boundary treatment deviates still fur- 
ther from the Runge-Kutta algorithm and, as a result, its 
order is even lower. 


The main point of this paper is that a Runge-Kutta in- 
tegrator with a high order of accuracy for pure initial value 
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problems will very likely lose this advantage unless the in- 
termediate boundary data exhibits the same time errors as 
the intermediate stage values of the Runge-Kutta method 
are designed to do. A second point is that, for reasons of 
numerical stability, it is preferable to derive analytic for- 
mulas for these intermediate boundary values rather than 
simply apply the Runge-Kutta solver there. The paper 
is structured as follows: in section 2, we explain the ba- 
sic principle and prove that the formal order is preserved 
if the boundary procedure follows the Runge-Kutta steps. 
Nonlinear conservation laws are discussed in Section 3, and 
we close in Section 4 with some general remarks. 


2 The general recipe 


A Runge-Kutta method of order p will not in general have 
u (i) = u(t,• + ciAt) + O(AtP). The algorithm relies on 
a systematic cancellation of lower order errors made at 
intermediate stages to recover the full accuracy at the dis- 
crete time levels. If the intermediate values are modified 


at order less than p, the necessary cancellations may fail to 
take place and the overall accuracy reduced. This is espe- 
cially true when assigning values to the boundary nodes. 
The discrepancy between what is assigned and what would 
have been computed from the internal scheme (integrating 
ut = • at the boundary) is reflected in the numerically 
computed space derivatives and, with At being related to 
the grid spacing through a CFL-type relationship, there 
follows a global reduction in the space-time order. A de- 
tailed examination of this process for the advection equa- 
tion discretized by finite difference schemes can be found in 
[1]. The correction proposed there turns out to be a simple 
example of the general remedy: to examine the boundary 
values as the Runge-Kutta method would compute when 
no intermediate-stage boundary conditions are prescribed 
(and full order is achieved). and to enforce these, to O(At p) 
at least, using the differential equation to obtain analytic 
expressions. 


Consider the one-dimensional scalar equation, 


= f(u)ux, u(0, t) = g(t), 


with f(u) < 0 on 0 _< x _< 1. The first step in the method 
of lines procedure is the spatial discretization which in- 
volyes replacing the continuous variable x by the discrete 
variable _x = Ix0 = 0, xx,...,x2v_x,XN = 1] T. Here, 
and in what follows, underscores denote vectors in 
while subscripts indicate the grid location. Matrices, in 
•(.v+x)x(•¾+x), are capitalized and D represents the dis- 
crete differential operator defined on all N + I grid val- 
ues. If we step the semi-discrete system forward using the 


classical Runge-Kutta integrator RK4, without imposing 
intermediate boundary values, the fully discrete method is 


u(1) _ u m 


_u(2) = _u(x) + -•F(_u(X))D_u (x) 
_u(3) - _u(1) + -•F(_u(2))D_u (2) 
_u(4) - _u(X) + AtF(u(3))Du (•) 


At (F(_uO))D_u(•) + 2F(u_(2))D_u(2 ) 
+ 2F(u(3))Du_ (•) + F(u(4))D_u ©) + 5m+xe_0 . 


Here F(_u) -- diag(f(uo),f(u•),...,f(uN)), e_o -- 
11,0,0,...,0] T. and 5 "•+• is defined so as to reset the 
physical boundary condition at the end of the time step. 
Since we assume that the spatial discretization is at least 
fourth order, for smooth solutions and sufficiently small 
time steps, the leading term in the local error due to the 
time stepping is O(At•). 


Imposing intermediate-stage boundary conditions dur- 
ing the time increment results in a local modification of the 
above Runge-Kutta algorithm at each intermediate stage, 
viz. 


v(1) _- urn 


v (2) = v_(h) + -•F(v(X))Dv__ (x) + _e (2) 
v (•) = v (•) + -•F(v(2))Dv__ (2) + _e (3) 
v (4) = _v (x) + AtF(v(•))Dv (•) + _e © 


At (F(_v(•))Dv(X) 2F(v_.(2))Dv(2 ) v_ •+x : v_( h )+•- + 
+ 2.F(v_(3))Dv (3) + .F(v(4))Dv_ ©) + em+X_e.o 


where _e (i) - e(i)e_o are chosen to impose the desired arti- 
ficial boundary values and e '•+x sets vo(t,•+x) - g(t,•+l). 
These modifications can be viewed as small input pertur- 
bations in the Runge-Kutta algorithm whose sum effect on 
the intermediate function values can be written 


v(0 = u(0 + 


where 


-- 


•(•) 
-- 


•(•) 
-- 


- 0 


= e(2) 


= •(a) + _•F(v__(2))D?) + 
At•(2)F'(u(2/+(9(2)i(2))Du(2) 
2 
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_•(4) = •(4) q_ AtF(v(3))D•(3) 
q_AtP © F' (t/© q_ (•(3)•(3))DT/(3). 


Here, /•(i) = 
diag(•i) g(i)) F'(u) = diag(f'(uo) f•(UN)), and ,'ø ø' N ' 


.. (i) < 1. These ex- e © = diag(0o ©, .,07) with 0 _< Oj _ 
pressions easily follow using Taylor's theorem under the 
assumption that f is continuously differentiable. If the 
numerical procedure is run with a fixed CFL ratio, that 
is. with At/Ax constant for a finite difference method on 
a uniform grid or AtN 2 constant for a pseudospectral ap- 
proximation, then, near the boundary, the effects are of 
the order of the input perturbations, 


•(•) = 0 
-- 


= 
•(3) __ O(6(2),6(3)) 
_•(4) __ 0(6(2), 6(3), 6(4)). 


Away from the boundary, they are weaker: zero for finite 
difference schemes since D is band-limited, and smaller by 
a factor At for pseudospectral methods since the entries of 
D decay as N --ø off the diagonal. 


At the end of the time step, v m+• = u '•+• + i'•+•, 
where the elements of i'•+• are O(e (2), e ©, e(4),e '•+•) in 
the neighbourhood of Xo = 0, and zero (finite differences) 
or one order higher (pseudospectral) away from it. If e (2), 
e ©, and e (4) are O(Atq), then for q > 5, fourth order accu- 
racy is retained. For 1 <_ q < 4, the local truncation error 
is O(At q) near x0, and O(At q-•) (pseudospectral) or zero 
(finite differences) away from it. In both cases, however, 
the boundary error restricts the global error to O(Atq) [5]. 
Consequently. the order to which the prescribed boundary 
values deviate from those of the free Runge-Kutta method 
determines the order of the fully discrete scheme. To re- 
tain fourth order accuracy using RK4, the imposed values 
should agree to O(At4). 


In terms of formal order, it would be enough to use 
a Runge-Kutta method without imposing intermediate 
boundary values. However, the stability of the scheme is 
noticeably reduced since .F involves (high-order) spatial 
differentiation operators, and the inclusion of the bound- 
ary points is enough to produce a significant reduction in 
the maximum allowable time step. Consequently, while 
artificially imposed boundary values should agree with the 
numerical ones that would be obtained through recur- 
sive computations .F.F....Fu, the spatial derivatives of u 
should be expressed as far as possible in terms of g(t) and 
its time derivatives. If O r is time-independent, each iterate 
u © is some linear combination of u, ut, utt, and simply 
replacing every application of .F by a time differentiation 


would be enough. This is the generalization of Carpenter's 
scheme, and we shall refer to it as the "linearly consistent" 
strategy. For time-dependent operators, Oru © no longer 
neatly corresponds to u © and its specification in terms of t , 


g(t) becomes more complicated. In what follows, we con- 
sider the definition of "fully consistent" strategies for the 
solution of conservation laws. 


3 Conservation laws 


3.1 The scalar case 


If we solve the scalar equation 


ut- f(u)u• 


using a Runge-Kutta method, the computations are easily 
traced by using the inverse relation 


1 


(7) u•: - f(u) ut 
to express higher-order space-time derivatives and interme- 
diate values as algebraic functions of u and its time deriva- 
tives. The classical fourth-order Runge-Kutta method. for 
example, becomes 


u (2) = u+-•-ut 
u (3) -- u + 


2 


At f(2) 
-- u+ ----ut + -- 


2 f 


u © = u + Atf ©u? ) 
f(3) 


= u+ At--•-ut 


At2 f(2) 
4 io. 


At2 f(3) (f(2) fut 2 2 f•ut 2 + -• 2 f3 _ f(2) f(2)futt) 
At 3 f(3) (-2 f•(2) • 4 f4 ffuut 3 + 2 fu (2)f2ututt 


-2 f(2)ffuut 3 _ 6 f(2)ffuututt 
+f(2) 2 f(2) 2 3 f Uttt q- 6 fuUt) 


At4 f(3)fu2) 2 2 


-1 8 f4 (f•2ut4 -- 2 f fuut2utt + f utt ) 
where f denotes f(u(t)), f(2) denotes f(u(2)), f(3) denotes 
f(u(3)), and so on. 


At an inflow boundary, given u(xo, t) = g(t), every term 
on the right hand side is known exactly so the analyti- 
cal expressions can be explicitly imposed at intermediate 
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stages. In doing so, there is no need to express f(2), f(3), or 
f?) in terms of u, ut, utt, ..., since they may be evaluated 
without degrading the stability properties of the scheme 
(that is done by the iterated x-differentiation). Neverthe- 
less, it is instructive to do so here and examine the Taylor 
series expansions, 


At 


u (2) = u+-•-ut 
At At • 


- 2f•ut + 2ff•utt) ut 
At 4 


+o(it 
At • At • 


• 3 


At4 (6f•Au;• + 24 • 4 4 
2 9 2 2 9 4 +12 f fuuU;Utt 33 2 - f/jututt+ f'A•ut 


+6 f•ututtt) + O(At•). 


Xote that the first intermediate value of the conventional 


treatment differs from the one above in the O(At •) term. 
Accordingly, the resulting scheme is expected to have or- 
der two. If u'(xo, t) = g'(t) is adjoined to the equations of 
the interior, the difference occurs at the O(At •) term, for 
a third-order approximation. Further examination shows 
that Carpenter's scheme is exactly the Runge-Kutta se- 
quence problems when f does not depend on u. For non- 
linear problems, however, the second and third interme- 
diate boundary values differ at the O(At •) term, and so 
third order accuracy is anticipated. 


Example: We solve the nonlinear equation ut = (u•)• 
on the domain 0 • x, t • 1, for the exact solution 


x 


t) = _ t)' 
A Legendre pseudospectral approximation on N+ 1 Gauss- 
Lobatto-Legendre collocation points is used to approxi- 
mate space derivatives. The classical fourth order Runge- 
Kutta integrator is used for the time stepping, subject to 
conventional, u • (1, t) = g• (t), linearly consistent, fully con- 
sistent, and no intermediate boundary treatment at the in- 
flow boundary x = 1. At x = 0, the solution is identically 
zero, and causes no interference with our results. With a 


-2 CFLnumber fixed at At=N , the errors at timet= I 


very nicely demonstrate the predicted convergence rates of 
2, 3, 3, 4, and 4 respectively (Fig. 1). [] 
When the CFL ratio is increased to 6.5, the instability 


10 '5 


• 1040 
uJ 


10 -15 , , I , i 


10 -3 10 -2 10 4 
Time Step 


Figure 1: Log-log plot of the L2 errors at time t = 1 for 
the nonlinear equation ut -- (u2)•, computed using con- 
ventional (-), u•(1, t) = f(t) (-.),a linearly consistent (...), 
fully consistent (o), and no (4-) intermediate conditions at 
x = 1. The discretization was Legendre pseudospectral in 
space, with N = 3,..., 27, marched forward with RK4 and 
a fixed CFL ratio At = l/N:. 


associated with free intermediate boundary conditions be- 
comes apparent. Table I lists the CFL number (integer) 
at which each algorithm exhibited arithmetic overflow with 
polynomial degree N = 25. A four-fold gain is achieved by 
imposing some intermediate boundary conditions. 


We make one note here, that the vanishing of f(u) at the 
point (1, tin) causes no real difficulty. A simple remedy is 
to take a few very small time steps without imposing any 
boundary conditions at the intermediate stages. 


3.2 The vector case 


Now suppose that g E •'•, and we have the nonlinear 
hyperbolic system 


•t = F(•)• 


where F(ff) E •nxn. The intermediate values for the clas- 
sical Runge-Kutta method are then 


•(•) = ff +-•-ut 
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Intermediate CFL--1 CFL=6.5 Overflow 


Boundary At CFL # 
Treatment 


L2 L• L2 L• (N=25) 


Conventional 2.3279 2.1662 2.0402 1.8399 28 


Solve u'(1, t) = g'(t) 3.1646 2.8873 2.8841 2.6075 31 


Linearly Consistent 3.3426 3.1312 3.0544 2.8499 31 


Fully Consistent 4.0029 4.0011 3.7895 3.7873 34 


None 3.9929 3.9923 .0030 -0.2490 7 


Table 1: Convergence rates for the Legendre-RK4 Solution of ut = (u2)x, based on linear least squares fit to the log-log 
errors at time t = 1, when using polynomials of degrees N = 3, ß ß., 27. Results are presented for CFL numbers N2At = 1 
and X2At = 6.5. The table also lists the CFL ratio (integer value) at which the numerical procedure with N - 25 
resulted in arithmetic overflow. 


At (o) At2 (2)- /•(3) : • + •-F • •7• + -•--F u•t 


5 © : //+A tF(3)ffx + 2 


and all terms on the right can be written without reference 
to space derivatives. Letting B(ff) = r-l(a), we may fom 
in sequence: 


which, together with the relation if?) = •7• +l/2Ati•t, can 
be inserted into the expressions for if(a) and if(4) above to 
obtain the correct intermediate behaviour at the boundary. 


This behaviour is explicitly known only when all char- 
acteristics at x0 are flowing into the domain. More typi- 
cally, the given boundary conditions will be fewer in num- 
ber than the unknowns. Obtaining exact expressions for 
the intermediate values is as hard as solving the original 
problem, so numerical values of unspecified components of 
i and their time derivatives must be used. •Ve can accept 
an O(At p) error in the intermediate function values; this 
is entirely consistent with the error in the numerical ap- 
proximations. Temporal derivatives are needed at lower 
orders; specifically, an O(At p-k) approximation of the kth 
time derivative is required. These may be calculated from 
stored values at previous time levels together with the cur- 
rent numerical value of if. Weights for one-sided difference 
approximations are easily computed using Fornberg's al- 
gorithm [3]. 


Example: The shallow water wave equations for the 
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height of a fluid h(x, t) and its velocity u(x, t), 


..-. 


u t G u u 0 ' x 


where c is the gravitational constant, have an exact solu- 
tion 


t) = 2v/-5½ - 


where • = 1 + 3x/-St and H represents the equilibrium 
height. Defining 6 = u+2v/-• and •) - u-2v/-• converts 
the system to characteristic form, 


( ̧  ) 1 (30+•) 0 ) (:) (0) U' + • 0 o + 3z;, = 0 ' 
t x 


The problem could in fact be solved for the characteristic 
variables but, for the sake of generality, we continue to 
solve the system (8) for the primitive variables h and u. 
Boundary conditions are, however, imposed through the 
characteristics for reasons of stability [4]. With c = H = 1, 
0(x. t) flows to the right for 1 _< x _< 3/2, while •(x, t) flows 
to the left. so that one boundary condition is required at 
each endpoint. For illustration, we take a common sort of 
specification 


h(1,t) = g•(t). •(3/2, t) = g2(t) 


for which the characteristic boundary conditions become 


rS(1, t) = 4x//'•t)+½(1,t), ½(3/2, t) = 292(t)-O(3/2, t). 


These are imposed as follows. Consider the point xo - 1 
(the point x.v - 3/2 is treated similarly). Having calcu- 
lated u• and h• '• numerically by applying the Runge-Kutta 
method at all points, the boundary values are adjusted as 


Exactly the same sequence is followed at intermediate 
stages, using the numerically computed values of U(o ¸ and 


The linearly and fully consistent schemes require approx- 
imations to the first three time derivatives. The derivatives 


of •)o are computed using •p•-4, W•-a .... , •p•: from these 
those of 6o may be formed, 


0• •_ 4d&v/øg•(t,•) + -- 
Ot • dt • Ot • ' 


and subsequently the approximations to the derivatives of 
h• and u•. Starting data is generated by taking a few 
very small steps without imposing intermediate boundary 
conditions. For the conventional treatment and integrat- 
ing the boundary conditions, which need exact values at 
intermediate times, the boundary conditions are imposed 
directly on the primitive variables h and u. There is no 
exact value, not even an O(At p) approximation, of u(1, t) 
at time tin+l/2 say, so that ½(1, tm +At/2) cannot be com- 
puted (although it could be extrapolated from stored val- 
ues). 


Figure 2 shows the error decay when the various bound- 
ary treatments are applied at CFL numbers 0.2, 2, and 3, 
while Table 2 lists the convergence rates as found by linear 
least-squares fitting. Fourth-order accuracy is obtained by 
the fully consistent treatment at all CFL numbers, and the 
method allows a time step far greater than that permitted 
when no intermediate boundary conditions are imposed. 
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Figure 2: Log-log plot of the L2 errors of the Legendre-RK4 solution of the shallow water wave equations at time t: 1. 
Fixed CFL ratios of 0.2, 2, and 3 were used for N = 5,-.., 25 in each case. The convergence rates for the different 
boundary conditions are listed in Table 2. 
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Intermediate CFL-0.2 CFL=2 CFL=3 Overflow 


Boundary at CFL # 
Treatment 


L2 L• L2 L• L2 L• (N=25) 


Conventional 3.3027 3.4850 2.9913 2.9101 2.1078 2.0313 3.196 


h'(1,t)=g•(t), u•(3/2, t)=g•(t) 3.6434 3.4850 3.2166 3.0047 2.4779 2.4089 3.264 


Linearly Consistent 3.6665 3.5594 3.2959 3.0961 2.7039 2.5564 3.230 


Fully Consistent 3.7887 3.6679 3.9146 3.9475 4.5357 4.5308 3.400 


None 3.7253 3.6014 ***** ***** ***** ***** 0.272 


Table 2: Convergence rates for the Legendre-RK4 Solution of the shallow water wave equations, with CFL numbers 
0.2, 2 and 3. In each case, the rate was calculated by a linear least-squares fit over those points where the L2 error was 
strictly decreasing as At was reduced. The last column lists the CFL ratios AtN • at which arithmetic overflow occured 
when solving the shallow water wave equations on an N = 25 grid up to time t = 1. 
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4 Conclusions 


In this paper, we have presented a logical and consistent 
principle for formulating intermediate boundary conditions 
for Runge-Kutta methods, and have demonstrated its use- 
fulness for the solution of nonlinear conservation laws. The 


basic idea is that prescribed boundary values at interme- 
diate stages should exhibit the same time errors as the 
Runge-Kutta method would compute when no intermedi- 
ate boundary conditions are imposed. The importance of 
matching interior and boundary errors has appeared be- 
fore. notably in connection with operator-splitting meth- 
ods [6], but appears not to be widely recognized in the 
Runge-Kutta context. For stability reasons, it is prefer- 
able to derive analytic formulas for the error terms than 
to form them using numerical space derivatives. Much re- 
mains to be done, ho•vever, to adapt this idea to problems 
in higher space dimension and for more general operators. 


We have confined our attention here to the temporal 
accuracy of the scheme, but similar arguments can be 
made regarding the spatial approximation. Our analysis 
at the boundary has completely ignored the presence of 
discretization errors in the interior. Artificial boundary 
conditions should ideally take this into account, so that 
the numerical solution over the full domain is as smooth 


as possible. The treatment presented here for the time er- 
rors should be complemented in space, possibly through 
the use of penalty methods. and remains the subject of 
future work. 


[5] B. Gustafsson. The Convergence Rate for Differ- 
ence Approximations to Mixed Initial Boundary Value 
Problems. Math. Comp., 29(130):396-406, 1975. 


[6] R. J. LeVeque. Intermediate Boundary Conditions 
for Time-Split Methods Applied to Hyperbolic Partial 
Differential Equations. Math. Comp., 47(175):37-54, 
1986. 
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Accuracy Comparison of High-Order 
Finite Difference Schemes for the Evolution of 


Two-Dimensional Finite-Amplitude Disturbances 
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Abstract 


Direct sinrelations of small- and finite-amplitude distur- 
bances in spatially periodic plane Poiseuille flow were per- 
formed. The ability of three high-order finite difference 
methods to predict the proper behavior of the disturbances 
was under investigation. The proposed procedure allowed 
to conclude about the spatial resolution and time-step re- 
quired bv those schemes to produce numerically accurate 
results. 


Key words: high-order schemes, finite differences, finite- 
amplitude stability. 


AMS subject classifications: 35A40, 35B20, 65P20. 


1 Introduction 


During the last years, an increasing number of Navier- 
Stokes solvers has been reported with which unsteady 
flow solutions have been sought. Most of these numeri- 
cal schemes are at least second-order accurate (based on 
local truncation analysis), which is accepted to be a min- 
imum requirement for any numerical scheme purporting 
to perform physically meaningful unsteady simulations [3]. 
Irrespectively, difficulties arise when aiming to assess the 
accuracy of the numerical predictions making use of avail- 
able results on unsteady fluid flow. Similar problems con- 
cerning the numerical solution errors and their estimation 
assume even stronger significance in large-eddy simulations 
(LES). In the context of LES, so that effective testing of 
subgrid-scale models can be achieved, one must be able to 
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separate the issue of numerical scheme accuracy and the 
evaluation of the subgrid-scale model assumptions. 


Spectral methods are the most natural option for a nu- 
merical scheme to carry out the above mentioned simu- 
lations, because of the high accuracies of these methods. 
However, finite-difference schemes present easier imple- 
mentation and extension to complex geometries, despite 
that their accuracy level is often inadequate. To investi- 
gate the ability of established finite difference methods to 
provide the correct description (concerning damping and 
phase accuracy) of relevant standard problems is, there- 
fore, a subject of great relevance. With this goal in mind, 
the problem of the evolution of finite-amplitude distur- 
bances seems to be an appropriate background to enable 
such investigations to generate significant information on 
the effectiveness of the numerical methods, when these are 


applied to real situations ranging from hydrodynamic in- 
stability to turbulent flow simulations. 


It must be mentioned that the issue of finite-amplitude 
stability has been the object of systematic investigations. 
Among these we emphasize the work of Fasel [41, Orszag 
and Patera [13, 14], and Orszag and Kells [•2], deeming 
the problems of boundary layer, plane Poiseuille and Cou- 
ette flows. See also Patera and Orszag [15] for the case of 
pipe flow. In earlier years, limited computer resources have 
forced other researchers to the use of approximate meth- 
ods. However, reliable results have been provided, e.g., by 
George and Hellurns [6], for the case of two-dimensional 
plane Poiseuille flow. 


The present work presents a methodical evaluation of 
the performance of finite difference schemes in which the 
two-dimensional Navier-Stokes results reported by George 
et al. [7] have been used as a reference for the transient 
behavior of finite-amplitude disturbances. There is not 
any a priori excuse for the choice of a two-dimensional 
test case. However, as pointed out by Jim•nez [8], two- 
dimensional cases are simpler to compute and still relevant 
understanding can be gained from such analyses. In Sec- 
tion 2, the governing equations and the numerical schemes 
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are described. The following temporal discretizations were 
employed: quadratic Leith, Crank-Nicholson and Adams- 
Bashforth. These discretizations were used together with 
third-order (using quadratic upstream interpolation) and 
fourth-order (fifth-order upwind-biased approximations for 
the convective terms only) spatial accuracy. In Section 3, 
a careful characterization of the test cases (including val- 
idation via linear stability theory) is given. The last two 
sections report the results and main findings of the present 
study. 


2 Numerical formulation 


2.1 Governing equations 


The conservative form of the continuity and momentum 
equations for incompressible flow, expressed in Cartesian 
coordinates (x.y) with corresponding velocity components 
(u. v) and p the pressure. are given by 


(1) ux + vy = 0 


1 


1 


(3) vt ß (uv).• • (vv)y: -Pu q- •ee (v•x q- vyy), 
where subscripts indicate partial differentiation, the 
Reynolds number Re = •oa, with Uo standing for a char- 
acteristic velocity. h for a characteristic length and u for 
the kinematic viscosity. 


The primitive equations (1) - (3) will be integrated in 
time by the well known pressure-correction method which 
requires the solution of a Poisson equation. A staggered 
grid system will be used for the discretization of the gov- 
erning equations. In the presence of solid boundaries, no- 
slip conditions will be imposed for velocities. All the al- 
gorithms to be presented here are based on a conservative 
control-volume formulation. 


2.2 Discretization schemes 


Finite difference methods intended to investigate problems 
involving hydrodynamic stability and transition or the sim- 
ulation of turbulent flows have to meet a number of require- 
ments in order to ensure successful calculations [3]. It is 
known that, when solutions are of periodic nature, the 
numerical method must be at least second-order accurate 


(including initial and boundary conditions), based on lo- 
cal truncation analysis [2]. However, spatial second-order 
accuracy may still be inadequate for the above mentioned 


simulations to be performed using realistic computational 
grid sizes [17]. The migration of those schemes to higher 
order of accuracy, although desirable, brings along the is- 
sue of stability. High-order accurate finite difference meth- 
ods are often plagued by numerical instability, taking the 
form of unphysical oscillations which corrupt the expected 
solution. Nevertheless, the lack of robustness exhibited by 
such methods may be combated. Employing high-order 
upwind-biased finite difference schemes, the undesirable 
non-physical effects such as artificial viscosity may be ex- 
cluded or at least minimized to acceptable level, while its 
basic stable convective sensitivity property is retained. In 
order to enable the investigation of physical instabilities 
(unstable waves), the transient character of the flowfield 
must also be resolved accordingly. Further, Fasel [4] indi- 
cates that second-order accuracy for time derivatives is an 
additional requirement. 


In the next paragraphs a succint description of the dis- 
cretization schemes used in the reported calculations is 
given. 


Scheme A employs the third-order accurate QUICK for- 
mulas [9] to approximate the convective terms occurring 
in equations (2) and (3). A three-point upstream-weighted 
quadratic interpolation is used to obtain each grid cell wall 
value individually, in accordance to a conservative formu- 
lation. The consistent treatment of the diffusion is equiva- 
lent to central differencing. A Leith-type of temporal dis- 
cretization is also employed, making use of Lagrangian in- 
tegrals to derive the finite difference expressions. as shown 
by Leonard [9]. The resulting explicit formula for convec- 
tion and diffusion, for example in the one-dimensional case 
with u• > 0 is given by 


= u2-_ 


(4) 
1 1 •2 ß 


- - x + 3u_, _ 


where C is the Courant number, 'y denotes the non- 
dimensional diffusion coefficient and the superscripts in- 
dicate the time level. The use of quadratic upstream in- 
terpolation allows to obtain third-order truncation error 
in time, as long as Re remains high. Further details for 
the application of this method, known as QUICKEST, to 
two-dimensional fluid flow problems, were given by Pereira 
and Sousa [16]. 


In scheme B, the convective terms are also approxi- 
mated using the third-order accurate QUICK finite dif- 
ference formulas and the diffusion terms are discretized 
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using second-order accurate central differencing. However, 
in this case, the simulations advance the variables in time 
using the second-order accurate implicit Crank-Nicholson 
tinhe-stepping method for the viscous terms, while the 
second-order accurate explicit Adams-Bashforth method 
is applied to convective terms. Once again, for the one- 
dimensional case with ui > 0 one may write 


_ •3• _ • (•+• (5) u• +• - u•+7, ", H/•-•) +• ' +M/•) 


+ 3u? - 7u?_ + 
(6) 


xU = - 2u? + 
Scheme C employs high-order finite difference approx- 


imations for all terms arising in the set of equations (1) 
- (3). The algorithm is explicitly advanced in time us- 
ing the second-order accurate Adams-Bashforth method. 
First-order accuracy on the viscous terms is tolerated be- 
cause the problems to be investigated are at large Re. Sim- 
ilarly to the aforementioned schemes, one may write 


- • raH.• _ H/•-•) + M/•. 


Here the convective terms Hi are approximated using fifth- 
order accurate upwind-biased differences. The first-order 
derivatives arising in the non-linear terms are discretized 
using seven-point stencils, originating the corresponding 
discrete contributions to Hi. For example, in the one- 
dimensional case with ui > 0, one writes 


(8) [ Ou 2 --6u•-2 +60U,+l +40ui -- 120u,_• +30uz-2 --4u,-a 
The finite difference contributions to the diffusive terms 


M•, arising from the second-order derivatives, are obtained 
using fourth-order central differences approximations as 


[O2u] • --u,+2+16u,.•-30u,+16u,_i--u•_2 (9) L• 
The pressure gradient terms in equations (2) and (3) are 


also discretized using high-order finite differences. Fourth- 
order of accuracy was required for the approximation of 
first-order derivatives, but one should note the implications 
of using a staggered grid system, yielding 


(10) i-• 24•x 
The divergence operator arising in equation (1) mw be 


obtained by the application of the finite difference approxi- 
mation to a first-order derivative in each spatial direction. 
Requiring fourth-order accuracy, the central differencing 
formula reads 


12Ax 


Scheme C also employs a fourth-order accurate dis- 
cretization of the Poisson equation that arises in all these 
numerical schemes using the pressure correction method. 


It should be mentioned that, due to the staggered grid 
arrangement, the u and v velocity components are some- 
times required at locations where they are not available. 
For consistency, a cubic interpolation technique based on 
Lagrange polynomial method, which is fourth-order accu- 
rate, is used. 


Near solid boundaries the overall accuracy of the method 
is reduced. Grid points lying next to the boundaries where 
no-slip conditions are imposed, are treated using either 
second-order accurate finite difference stencils (pressure 
gradient and viscous terms, and both the divergence and 
Laplacian operators) or a third-order accurate upwind- 
biased scheme (convective terms) which may be written 
as 


2u•_•+3u,-6u,_•+u,_2 


for the one-dimensional case •vith u, > 0. 


3 Test cases 


Aiming to evaluate the accuracy and robustness of the nu- 
merical schemes presented in the previous section. two test 
cases are carefully described here. 


3.1 Small-amplitude disturbances 
The first test case consists in the calculation of the evo- 


lution of small-amplitude disturbances in channel flow. 
It is our ultimate objective to make available numerical 
schemes which are able to accurately perform the simu- 
lation of finite-amplitude disturbances. However. before 
committing oneself to carry out this kind of simulations, 
the above referred methods must be applied to a closely 
related problem allowing results validation. In the case of 
small- amplitude disturbances, exact solutions are avail- 
able from linear stability theory (LST). 


The flowfield is initialized as 


u (x, y, t) 
(13) v(x, y, t) 
where (•,•) represent an eigensolution of the Orr- 
Sommerfeld equation for Re = 7500 and wavenumber 
ct = 1.00. The parameter z defines the amplitude of the 
disturbance and therefore it must be small. The value of 


z = 0.001 has been used. A supercritical Reynolds number 
(Re > Re•,Rec = 5772.22 with ct = 1.02 [11]) has been 
chosen in order to investigate the ability of the numeri- 
cal schemes to describe the behavior of linearly unstable 
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disturbances. As a basis for the comparison with the eigen- 
solution, the energy associated to the perturbation in the 
channel is computed at each time step. It may be defined 
as 


(14) z(t) = + dx dy, 
1y0 


and the monitorization of the quantity •oo' where E0 = 
E(t = 0), altows to assess the accuracy of the employed 
schemes. In accordance to LST, •o is expected to grow in 
time as ½2crt, where rr = 0.002235 [10]. It is further envis- 
aged that this preliminary test will indicate the adequate 
numerical grid sizes to be used later in the simulation of 
finite-amplitude disturbances. 


3.2 Finite-amplitude disturbances 


The second test case comprises the development of an ini- 
tial disturbance which was also superimposed to the fully 
developed laminar channel flow solution, analogously to 
what expressed by equation (13). However, in this case, 
the perturbation takes the following form 


= fy(a, cos(.) 
(1,5) 5(z,y) = cf(a.y) sin(cx), 


where f(a, !l) is a function given by 


(16) f(a,y)_ f. [cosh(ay) cos(ay)] cosh(a) cos½) ' 


with • = 0.105 and c• = 1.05 for Re = 4000. The constant 


f• is a normalization factor so that the maximum value 
of f(a.0) is unity and a is a root of the transcendental 
equation 


(17) tanh(a) + tan(a) = O. 


The above defined function belongs to a class of orthog- 
onal functions which satisfy four boundary conditions (the 
function together with its first derivative vanishes at the 
ends of the chosen interval, i.e., at the solid walls of the 
plane channel in the present case). The details in the 
derivation of this type of functions may be found in Chan- 
drasekhar [1, Appendix V•. Solutions of the above indi- 
cated form have been sought by George et al. [7] using a 
spectral method [6]. They have found that the fluctuation 
amplitude of the disturbance shows a small decay followed 
by a sustained slow growth. This behavior hoists up this 
test to a very effective estimation of the damping and phase 
accuracy inherent to a particular numerical scheme [5]. 


4 Results 


The numerical simulation of a small-amplitude distur- 
bance has been performed using the three finite difference 
schemes already described, employing three computational 
grid sizes. The numerical grid is equispaced in the stream- 
wise direction but stretched in the wall-to-wall direction. 


The stretching of the mesh was obtained through a mild 
geometric progression (an expansion rate of 1.05 was em- 
ployed). 


Figure i shows the behavior of the perturbation energy 
in the channel, given by equation (14), as a function of 
the non-dimensional time. The (exact) solution from LST 
corresponds to the solid line, showing an amplification of 
about one order of magnitude during the simulation time. 
For a (16 x 65) computational grid, amplification was ob- 
tained only for scheme C. However, it can be seen that too 
much dissipation occurs. When a (32 x 65) grid was used, 
amplification of the initial disturbance occurred for all the 
three schemes. Yet, whereas scheme C complies with the 
exact solution for the actual spatial resolution. this grid 
still demonstrates inadequacy for schemes A and B, which 
exhibit considerable damping errors. Employing these lat- 
ter two schemes, a (64 x 65) grid was found to be required 
for the reproduction of the LST solution. 


•.z A (64x65) 
-- 4•-4• A (32x65) •:• / 
- • B(64x65) • .• • 


• z '5. • '• •_• -- • • • - -- 


O 29• '>50 3 :o 


Figure 1: Energy growth rates for the numerical schemes. 


Based on the results provided by this preliminary test, 
the computational meshes to be used in the simulation of 
the proposed finite-amplitude disturbance problem have 
been selected. Therefore, a (32 x 65) grid will be used in 
conjunction with scheme C, while (64 x 65) control vol 
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umes are expected to be required for an accurate simula- 
tion when schemes A and B are employed. 


The finite-amplitude disturbance simulations have been 
performed following the strategy delineated in Subsection 
3.2. As mentioned earlier, the results reported by George 
et al. [7] will be used as reference solution. 


Figure 2 displays the results obtained with scheme A. It 
can be observed that the numerical method is very much 
demanding in terms of the Courant number. In fact, this 
parameter had to be reduced to very small values (C = 
0.05) before the method could produce acceptable results. 
For the chosen spatial resolution, numerical dissipation and 
dispersion are seen to seriously corrupt the solution when 
the Courant number is increased. Actually, for Courant 
numbers above 0.2, sustained growth of the disturbance 
could not be obtained employing this method. 


The results obtained xvith scheme B are portrayed in Fig- 
ure 3. In contradistinction to scheme A, scheme B is much 


less stringent with respect to the time step. The Courant 
nmnber could be increased up to C - 0.4 without resulting 
in any noticeable change in the computations. The com- 
parison of the behavior of the present solution with the one 
reported by George et al. [7, Figure 1], clearly shows that 
the temporal and spatial resolution are adequate to accu- 
rately resolve the present flow problem. Gao and Leslie 
[5] have also performed these same calculations utilizing 
a similar numerical discretization. Our results employing 
the (64 x 65) grid are clearly less damped and show a larger 
phase change in the period of simulation than the ones re- 
ported by the mentioned authors. However, they have used 
a spatial resolution of (32 x 64) grid nodes only (actually 
the computational mesh was (32 x 4 x 64)). For this rea- 
son, the results of a sample computation using a (32 x 65) 
grid were included in Figure 3. These compare well with 
the results of Gao and Leslie [5], unequivocally indicating 
inadequate spatial resolution. 


Figure 4 shows the results produced by the application 
of scheme C. It has been observed that, for the present 
scheme. a spatial resolution of (32 x 65) is sufficient to yield 
accurate results. Further, the simulations were found to be 
nearly insensitive to the Courant number, up to C = 0.4. 


Finally, Figure 5 summarizes the results obtained em- 
ploying the three numerical schemes under scope, for a 
realistic Courant number (C = 0.2) if one bears in mind 
the aim of carrying out real fluid flow calculations. The 
solutions obtained with scheme B are very close to those 
generated by scheme C, but they require the double of 
control volumes. 


5 Conclusions 


An accuracy comparison of high-order finite difference 
schemes has been performed. The first scheme (QUICK- 
EST) employed a quadratic Leith-type of temporal dis- 
cretization together with the third-order accurate QUICK 
formulas for the approximation of the convective terms. 
The second scheme used the same spatial discretization 
but the time-stepping procedure was constructed using the 
Crank-Nicholson/Adams-Bashforth method. In the third 
scheme, Adams-Bashforth was used again for the time ad- 
vancement of variables; fourth-order accuracy was required 
for spatial discretization but, for the convective terms, 
fifth-order accurate upwind-biased differences were used. 


The finite difference methods were evaluated using two 
test cases: the evolution of small- and finite-amplitude dis- 
turbances in spatially periodic plane channel flow. The 
results obtained for these test cases allowed to quantify 
the grid and time-step requirements in order to obtain ac- 
curate results. As a reference for the comparison, linear 
stability theory and spectral method solutions have been 
used. The following conclusions were drawn: 


For the same spatial resolution, the QUICKEST 
•cheme required very low Courant numbers (C < 
0.05) to avoid that damping and phase errors cor- 
rupted the solution; 


. The second scheme has shown to be insensitive to the 


Courant number (at least up to C = 0.4; however, 
the method is still quite demanding with respect to 
grid requirements, as accurate results could only be 
produced employing a (64 x 65) computational grid: 


. The third finite difference scheme investigated in the 
present work demonstrated the ability to accurately 
perform the simulations embraced by the test cases 
employing only 50% of the control volumes required 
by the remaining methods; small sensitivity to the 
Courant number effect was also apparent from the 
simulations reported herein. 
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Figure 2: Temporal evolution of the v-velocity component for scheme A. 
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Figure 3: Temporal evolution of the v-velocity component for scheme B. 
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High-Order Compact Finite Difference Methods 
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Abstract 


In this work we present a general approach for develop- 
ing high-order compact differencing schemes by utilizing 
the governing differential equation to help approximate 
truncation error terms. As an illustrative application we 
consider the stream-function vorticity form of the Navier 
Stokes equations, and provide driven cavity results. Some 
extensions to treat non-constant metric coefficients result- 


ing from mapping from a physical to a reference domain 
and to 3D potential problems are considered. Supporting 
numerical studies showing the higher-order rates of con- 
vergence and the local superconvergence at the nodes are 
presented. 


Key words: high order. finite difference, compact. 
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1 Introduction 


The standard strategy for generating higher-order differ- 
ence schemes is to expand the stencil (see, for example, 
Leonard [8] or Castillo [4]). This has the obvious disad- 
vantages of creating larger matrix bandwidths, complicat- 
ing the numerical treatment near the boundaries and in- 
creasing communication requirements for implementation 
on parallel computer architectures. In light of the prob- 
lems caused by non-compact finite difference schemes, it 
is desirable to develop a class of schemes that are both 
high-order and compact. Hirsh [7] conducted numerical 
experiments with a class of high-order compact schemes in 
which the first and second derivatives are treated as un- 


knowns. This results in a mixed method and the approach 
is different than in the present work. 
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It is known that compact difference approximations ex- 
ist for certain operators that are higher-order than stan- 
dard schemes. As an example, for the 2D Laplacian, the 
difference coefficients at the nine grid points correspond- 
ing to the compact patch of four cells surrounding a given 
node can be selected so that the second-order truncation 


error terms cancel [19]. More generally, by utilizing the 
governing differential equation it is possible to produce 
alternative lower-derivative expressions equivalent to the 
higher-order truncation error terms [12]. These alterna- 
tive expressions can then be differenced compactly on the 
stencil, and this leads to a family of compact higher-order 
difference schemes [9, 10, 11, 1]. 


In the present work we provide a general formulation 
and approach for developing such higher-order compact 
(HOC) schemes for the prototype steady elliptic diffusion 
and convection-diffusion problems. We consider the exten- 
sion to problems with non-constant convection coefficients 
and apply this strategy for the decoupled stream-function 
vorticity formulation of the Navier-Stokes equations. Com- 
parison studies of the higher-order compact methods and 
standard methods for the driven cavity problem are made. 
We also examine the effects of non-constant metric coeffi- 


cients associated with mapping from a nonuniform grid on 
a physical domain to a uniform grid on a reference domain. 
Finally, we present a compact higher-order scheme for the 
Poisson equation in three dimensions. 


2 High-order compact schemes 


To introduce the basic idea, let us consider the elementary, 
steady, 1D convection diffusion equation, 


(1) d2& d•- - dx-- W +c = f, 


where ½ is the transport variable of interest and c and f are 
smooth functions of x. We define •x½i,n -- 1,2 to be the 
standard central difference operator for the n-th derivative 
of ½ at point i on a uniform grid of mesh size h. Central 
differencing (1) yields 


(2) -- •x20i q- CiSxOi -- Ti -- fi, 


397 
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where •-i is the local truncation error at node i, 


h2 [ d3• d40] h- O(h4). (3) •-i: • [2c• 3 d2;4 i 
•% seek to approximate the leading term in (3) and 


include it in the difference formulation to yield an O(h 4) 
method. Assuming the solution is sufficiently regular, we 
may accomplish this by differentiating (1) to yield 


d3 q5 i [d20 dc d½ df ] dx 3 -- c•'x2 h- dx dx •x i' 
which can be approximated compactly as 


d30 i (4) dx 3 


and similarly 


d4o 


= 
-- 


-- 


: Ci6x20i h- 6xCi6x(•i -- 6xf i h- O(h2), 


d 0 dc d 2 & d 2 c dO d 2 f ] c d--•-3-.3 + 2 dx dx 2 • dx • dx d:c2 i' 


030 i • 2 Ci •x 3 + 26xc,6•:0i + 6xCi6xqSi- 
6•fi+O(h2). 


Relations (4) and (5) can be combined with (3) to yield 
the new truncation error expression: 


h 2 


Ci(•xfi h- (•.•fi I q- O(h4), 


which we can use to increase the accuracy of our approxi- 
mation (2). The resulting high-order compact scheme is 


-- Ai6x220i q- Ci6xOi -- Fz h- O(h4), 


where 


h 2 


(7) = 1 + - 
h 2 


h 2 


(9) Fi = fi + • (6•fi - ci6•fi) . 
The asymptotic convergence of the HOC formula ob- 


tained by dropping the O(h 4) term from (6) has been ver- 
ified previously [17]. We present here convergence results 
for the model problem c(z) = 10, f(x) = 0 on (0, 1) with 
boundary conditions ½(0) = 0, •(1) = 1, which has ex- 


e cx --1 
act solution 0 = •_•_œ. Figure i shows the experimental 
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Figure 1: Convergence for 1D convection diffusion, c = 10. 


asymptotic convergence rate m of the error E at the point 
x = 0.75 for the central difference scheme (CDS), upwind 
difference scheme (UDS) and the HOC scheme, computed 
by using the results for the meshes h = •2, h = •4' These 
experimental rates match the theoretical rates. 


In addition to greater accuracy. HOC schemes may sup- 
press or eliminate spurious numerical oscillations that arise 
in more standard lower-order schemes. For example, the 
HOC scheme for the homogeneous 1D convection-diffusion 
equation with constant convection has been proven non- 
oscillatory [12, 15] for all values of the product ch. This is 
demonstrated in Figure 2 for the case c = 50, h = 1/8, 
which clearly violates the well-known cell-Peclet condi- 
tion, ch < 2. Obviously, the CDS solution exhibits non- 
physical oscillations in the solution, while the HOC solu- 
tion is smooth. 


The curves in Figure 3 correspond to bounds on the con- 
dition number for each of the 3 schemes (CDS, UDS, and 
HOC) for the 1D convection diffusion problem. Here, we 
have graphed the bound as a function of cell-Peclet number 
ch. For a given ch the values of the curves give condition 
number bounds for large N (small h) for each of the re- 
spective methods. Clearly, utilizing the HOC correction 
terms results in a slightly higher condition number, which 
implies that an iterative solver should require more itera- 
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Figure 2: CDS and HOC solutions for c = 50, h = 1/8. 
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Figure 3: Condition numbers for CDS, UDS and HOC in 
1D as a function of ch. 


tions to solve an HOC system than it would for CDS or 
UDS systems for the same problem data and grid. Some- 
what surprisingly, however, HOC formulations have been 
demonstrated [16] to solve faster than CDS or UDS using 
gradient-type solvers. This may indicate that HOC eigen- 
values are more tightly clustered or that HOC is particu- 
larly well-suited for diagonal scaling, which was utilized in 
the aforementioned experiments. This result, coupled with 
the fact that HOC schemes allow for much coarser grids, 
give HOC schemes a considerable performance advantage 
over more conventional schemes. 


3 Stream function vorticity 


As an illustrative practical application we consider the 
HOC solution of the stream function (•))/vorticity (•)form 
of the 2D Navier-Stokes equations for steady, incompress- 


ible flow. The governing equations are 


(10) -q72½ = (, 
(11) -q72(+ ReV. q7( : f, 


where f is a forcing function, the velocity V = ui + v), 
where { and ) are unit vectors in the x and y directions, 
respectively, and Re = --• is the Reynolds number, with 
U a characteristic velocity, L a characteristic length scale, 
and v the kinematic viscosity of the fluid. The governing 
equations are augmented by the auxiliary relations 


(12) u = Oy' v = Ox 


For the purposes of this study, we will consider wall bound- 
ary conditions, as these present some difficulty in maintain- 
ing high-order accuracy. The velocity relationships (12) 
can be used to relate any velocity boundary conditions to 
the stream function. For a wall boundary moving tangent 
to its surface with a constant velocity V•,, the no-slip. no- 
penetration condition becomes 


(13) On = +V•, O'•' = O, 
where n is the direction normal to the wall, and s is tangent 
to the wall. The latter equation implies ½' is constant on 
the boundary. Transport equations (10) and (11). together 
with velocity relations (12) plus boundary conditions (13) 
complete the mathematical description of the fully coupled 
stream-function vorticity problem. 


3.1 HOC formulas 


The HOC approximation to this system of equations can be 
derived in the same manner as for 1D convection diffusion 


and can be found in [18]. The HOC scheme for (10)is 


(14) 
2 h 22 


_ 


1 + 'i-5' + % + 


The HOC approximation for (11) is more complicated due 
to the non-constant convection velocity. It can be ex- 
pressed conveniently in the form 


(15) 
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where the coefficients Aij, Bi;, Cij, Dij, Fij and Gij are 
given by 


]./2 


: + 5 - 
h 2 


h 2 
2 dij 5y] cij, Cu = cu + • [5• + 5• - •uS• - 


h 2 


Dzj = dij + • [• + • - cij•x - dij•y] dij, 
h 2 


= + + - - 
Gij = 5yCij -- cijdij + 5xdij, 


and we let cij ---- Re.uij, and dij = Re.vij. We must 
also approximate the velocities u and v to a consistent 
degree of accuracy with respect to the rest of the numerical 
approximation. The HOC formulas are 


h 2 


(16) ui; ----- 6•c'•j + • (6y•ij + •½i•) + 0(•4), 
h2 


which are to be used in the vorticity transport equation. 
Compact approximations to the normal boundary con- 


dition • = •,. that maintain the same high-order of 
accuracy present a nontrivial challenge. This relation- 
ship requires one-sided differencing of ½ which in turn 
yields truncation error terms of O(h), O(h2), and O(h 3) 
which must be approximated compactly to yield an O(h 4) 
method. Still, such an approximation is possible. For ex- 
ample. consider a vertical wall on the left side of a rectan- 
gular cavity. After some algebraic manipulation, the HOC 


approximation to - • •J = Vl; 


(lS) --(•x •lj -- -]- 6 x 


h3 (1•½ Vlj•y- (•y2)] Clj -+-O(]g4) ---- 24 


h3 /•+c2 O(h4), vtj - •-• • • %v•j -f•) + 
where the operator 6•+ denotes one-sided forward differ- 
encing. Similar conditions can be derived for the remain- 
ing three walls of a rectangular cavity and lower-order ex- 
pressions (which will be needed later) may be obtained by 
dropping the appropriate higher-order terms in (18). 


Boundary conditions at the corners are handled in a sim- 
ilar manner. The restricted geometry at the corners pre- 
vents the derivation of a fourth-order compact formula, 


but a third-order approximation is possible. For example, 
at the upper left corner (xl y•), we can approximate ' On 


in both the horizontal and vertical directions. Summing 
these results and replacing high-order terms with appro- 
priate difference expressions, we obtain 


h /,2 


(19) + + + - = 
--Ul• • -- Ul• I-- 


h• [•;UlM + •;•1,•] + O(h3) 6 ' 


3.2 HOC results 


In the present work we use a decoupled block iterative 
scheme to solve the stream function vorticity system. Solu- 
tion proceeds from an initial vorticity iterate by first solv- 
ing (14) for •b with Dirichlet boundary conditions, using 
the current values for •b and • to update the velocities us- 
ing (16) and (17). Then these values are used in (15), (18), 
and (19) to solve for •, at which point the iterative proce- 
dure can be repeated. In practice, successive iterates may 
have to be under-relaxed in order to converge. That is to 
say, if • is the stream function computed from the first 
half of the decoupled algorithm, then ½ at iteration level 
n + 1 is given by 


½n+1 __ a:½' + (1 - w)V n, 


where • is the relaxation factor. 


To illustrate the O(h 4) accuracy, we construct a test 
problem with known solution by specifying the stream- 
function 


• -- --8(X -- 2•2)2(•/ -- y2)2 
on the unit square • = (0, 1) 2. The corresponding vorticity 
function, derived from equation (10), is 


( = 16[(6x 2 - 6x + 1)(y - y2).o + (x - x2)2(6y2 - 6/7 + 1)], 


and the velocities, derived from (12) are 


u = -16(x- x2)2(y-/72)(1- 2y), 
v = 16(x- x2)(1- 2x)(y- y2)2. 


This model problem was designed so that the no-slip, no- 
penetration condition holds for the velocities u and v on 
the boundary. The flow is driven by the forcing function 
f, which is constructed by substituting the above func- 
tions (, u and v in (11). In the following numerical test 
we solve the linear Stokes flow problem, Re = 0, to bet- 
ter isolate the effect of the choice of boundary condition 
accuracy. The fourth-order scheme is applied in the inte- 
rior and O(h2), O(h 3) and O(h 4) boundary conditions are 
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Figure 4: HOC vorticity error convergence plot on the 
boundary for the (•'. () model problem with Re = O. 
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Figure 5: HOC vorticity error convergence plots at the 
midpoint for the (•. () model problem with Re = O. 


compared. Figures 4 and 5 show the vorticity error at a 
representative boundary point (x = 0.5, y = 0), and at 
the midpoint (x = y = 0.5) respectively for a succession 
of meshes and for each of the following implementations 
of the wall boundary conditions: O(h 2) boundary condi- 
tions are labeled :'SECOND" in the plots, O(h 3) bound- 
ary conditions are labeled "THIRD," and O(h 4) boundary 
conditions are labeled "FOURTH." The experimental con- 
vergence rates at the stated points are computed as in the 
1D example. and are seen to agree with the theoretical 
rates. 


The second problem studied was the lid-driven cavity 
flow. a standard test case for steady Navier-Stokes compu- 
tations with numerous published results that can be used 
for comparison purposes. This problem is complicated, 
however, by the presence of two corner singularities [6]. 
We consider the unit cavity again with horizontal lid ve- 
locity u = 1, v - 0 along the top. On the remaining sides 


The HOC (•b, () approximation provides highly accurate 
results for the driven cavity when O(h 3) boundary con- 
ditions are used. Somewhat surprisingly, though, O(h 4) 
boundary conditions result in isolated oscillations in the 
vorticity on the moving wall. More complete results can 


be found in [18], but some conclusions are summarized 
here. The fourth-order boundary conditions can lead to 
oscillations in the vorticity solution along (and only along) 
the moving wall if the cell-Peclet condition, Re ß h < 2 is 
violated. An example of this is depicted in Figure 6. This 
is most likely due to the presence of the convective term 
tangent to the wall in (18). Supporting this conclusion 
is the fact that no oscillations appear on stationary walls 
(where this term is zero) and no oscillations appear at all 
if third-order BCs are utilized by neglecting the high-order 
term which contains the convective contribution. 


For this reason, third-order boundary conditions were 
used to solve the driven cavity problem. In a similar vein, 
at the two upper corners where singularities exist, lower- 
order corner boundary conditions worked best. Therefore, 
O (h 2) B Cs, the lowest-order approximation which still uti- 
lize the vorticity were used at the corners. 


As an example of HOC driven cavity results, we present 
results for the relatively convective case of Re = 1000 on 
a coarse grid of 41 x 41. For such data, the CDS solution 
is wildly oscillatory and not included. The UDS yields 
smooth but inaccurate results. We compare our HOC re- 
sults to the fine-grid (129 x 129) second-order results of 
Ghia, et al [5]. Figures 7 and 8 show cross-sections of the 
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Figure 6: Vorticity on the four boundaries of the driven 
cavity problem for Re = 1000 and O(h 4) boundary condi- 
tions. 
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Figure 7: Driven cavity results for the horizontal velocity 
component along the vertical centerline, Re = 1000. 
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Figure 8: Driven cavity results for the vertical velocitv 
component along the horizontal centerline, Re = 1000. 


-2O 


-40 


-60 


-8O 


-100 


-120 
0.0 


Re = 1000 


I I I I I I I I I 


[ HOC (41x41) -- 
- [ UDS (41x41) --- 


[ Ghia (129x120) • 


[ I I I I I I I I I 
0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1,0 


x 


Figure 9: Driven cavity results for the vorticity along the 
moving wall, Re = 1000 and O(h 3) side boundary condi- 
tions. 


velocities on the interior of the cavity, and Figure 9 shows 
the vorticity along the moving wall. Clearly, the HOC 
results are far superior to the UDS results and achieve ac- 
curacy comparable to the reference results using roughly 
10• of the number of grid points. 


4 Some extensions 


The HOC examples shown so far give promising results, 
but there are some undesirable restrictions. For exam- 


ple, the approximations described above require uniformly 
spaced meshes. Also, HOC schemes offer the greatest 
promise for 3D applications, but the algebraic complexity 
of these numerical schemes grow with problem dimension 
and complexity. In this section we hope to address some 


of these issues and give an indication of future areas of 
research in the area of HOC finite differences. 


4.1 Nonuniform grids in 1D 


It is common practice in numerical methods to map the 
given problem from the physical domain •2 to a reference 
domain • and to solve the transformed problem approx- 
imately on • using a uniform difference grid. Since the 
HOC methods have been constructed for uniform grids, 
this mapping formulation is a natural approach for ex- 
tending the ideas to nonuniform grids. However, as we 
shall demonstrate, there are additional considerations that 
must be addressed for the compact schemes to remain high- 
order. 
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As a first step, we restrict the treatment to the 1D case 
and again consider the model convection diffusion equation 


(20) d 2o + u(x) = 
with the familiar boundary conditions 0(0) = 0, 0(1)= 1. 
Let us construct a map x = x(•) to transform (20) from a 
graded mesh on 0 _< x _< I to a uniform mesh on 0 _< • _< 1. 
The transformed equation is simply 


(21) - •xx d• '7 + • d x 2 ] • = • ' 
where •(•) = 0(x(•)), a(•) = u(x(•)), •0(•) = g(x(•)), and 
the metric coefficients • and •d•-•-2i now enter the formula- 
tion. It is well known that the metric coefficients in (21) 
must be approximated accurately. Here, we are specifically 
interested in retaining accuracy within the high-order com- 
pact framework. 


Provided the map is regular and non-degenerate (so that 
d-X" • 0) we can write (21) convenientIv in the form rig' • 


(22) d2c} d• - + = 
where 


(23) C(•): dx dx 2 f(•)_ •0 


Equation (22) is in exactly the same form as (1), so we 
can apply the previous HOC scheme in (6) to the mapped 
problem. However, note that the coefficients in (7)-(9) 
involve differences of the rational expressions in (23) and 
these, in turn, contain first and second derivatives of the 
transformation function. This implies not only more com- 
putational work to implement (6), but also raises some im- 
portant open questions concerning the effect of the trans- 
formation and difference approximations in the compact 
formulation. 


Consider the model 1D test problem again. To illustrate 
the idea let us introduce the mapping function 


(24) x(() = • + 2 sin w•, 0 5 • • 1, 


where V is the grading p•ameter. The map is invertible 
for I•/•< 1; • > 0 corresponds to compression (clustering) 
to the right and similarly to the left for 7 < 0. In the 


• which corresponds following calculations we choose 7 = • 
to a moderate grading to the right. 


The test problem was computed on a sequence of uni- 
• • • for u = 20. The error formly refined grids h = 4, s .... eq 
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Figure 10: Convergence results for 1D convection diffusion 
on a nonuniform grid with exact metrics, u = 20. 


was computed in the same manner as the 1D example on 
uniform grids at representative grid point xi = x(•i = 
0.75), and is graphed in Figure 10 against mesh size h 
on a log-log scale for the central difference scheme (CDS). 
upwind difference scheme (UDS) and high-order compact 
(HOC) scheme. The calculations for the high-order scheme 
utilize full knowledge of the analytic map (24) to compute 
the metric derivatives • and dd2•-• exactly. and the optimal 
superconvergent O(h 4) rate is obtained. 


In practice, the map may not be specified analytically 
and the metric coefficients may have to be differenced. We 
examine the effect of this approximation using the grid 
from the preceding test. That is, we take precisely the 
nonuniform grid generated by (24) and evaluate the en- 
tries in (23) at each point by locally differencing for dd-•x 
and dd•. This would be a natural approach given an ar- 
bitrary graded mesh {xi}. The results for the compact 
formula (6) with this approximation are summarized in 
Figure 11. Note that the effect of approximating the met- 
ric derivatives by differences is to degrade the asymptotic 
rate of the HOC scheme reducing it to O(h2), although for 
the case u - 20 the HOC scheme is almost an order of 


magnitude more accurate than for the CDS. 
This is encouraging, but the mesh gradation is mild and 
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Figure 11' Convergence results for 1D convection diffusion 
on a nonuniform grid with differenced metrics, u = 20. 
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Figure 12: Boundary layer results for the HOC scheme 
•vith differenced metrics, u = 500, ? = 0.9, and h =. 


the Peclet number of 50 is quite moderate so the boundary 
layer near x = I is relatively modest. The ability of the 
method to function with more strongly graded meshes and 
at higher convection levels is therefore relevant. In fact, if 
faithful representation of the layer structure is desired then 
the mesh should be graded so that there are a few grid 
points guaranteed to lie within the layer. Figure 12 shows 
the boundary layer results for 1D convection diffusion on 
a nonuniform grid with u: 500, 7 = 0.9 and h = 1/40. 
Clearly there is excellent agreement with the exact solution 
using only a few points to resolve the layer. 


If the map x(() is not known explicitly, it may have been 
generated by the numerical solution of some differential 
equation (as in PDE grid generators). It is then possible 
to recover the full O(h 4) estimate suggested by (6) in a 
manner analogous to the •vay in which the HOC scheme 
was developed for the governing transport equation. To 
illustrate this idea, let us introduce the boundary value 
problem 


d2x 
(25) + •r2z = •r2•, 


d• 2 


•vith boundary conditions x(0) = 0, x(1) = 1, which cor- 
responds to a Helmholtz PDE grid generator in 1D with 
a positive source term proportional to •. The exact so- 


lution is precisely the grading function x(•) in (24). Let 
us assume now that the grid (and indirectly the map) is 
generated by solving (25) accurately using a uniform grid. 
Now (25) can be used as an auxiliary relation for the differ- 


ence approximation of the metrics • and d2g • at grid point 
i. Specifically, we can use HOC methodology to derive 


which are O(h 4) approximations to the metric derivatives 
of interest [17]. 


Figure 13 shows the convergence results for the case 
where the metrics are computed using this auxiliary 
equation •. The HOC method does in fact recover the op- 
timal O(h 4) result. 


•As an alternative to utilizing a relation such as (25) in this way, 
one could simply use more adjacent grid points to approximate the 
metric derivatives more accurately. While this is counter to the goals 
of a compact representation, it may be acceptable since the grid 
metric coefficients can be computed explicitly prior to constructing 
the HOC stencils. This implies that the HOC scheme (6) can be 
constructed even for very irregular grids in 1D where there is no 
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u = 20.0, Auxiliary Metrics 
le+00 ....... , ....... 
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1 e-02 


le-03 
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le-06 


le-07 


UDS o 
m = 0.99 ..... 


CDS + 
m = 2.00 ............ 


HOC [] : 
m= 4.00 .... 


le-08 
0.01 0.10 1.00 


h, Computational Mesh Size 


Figure 13: Convergence results for 1D convection diffusion 
on a nonuniform grid with approximated metrics using an 
auxiliary equation, u: 20. 


4.2 3D Poisson 


An O(h ø) conspact scheme for Laplace's equation in 2D has 
been available in the literature for sonhe time [19, 2]. Here, 
we present a construction for the 3D Poisson equation on 
a structured grid, leading to an O(h 6) scheme for the case 
where the necessary derivatives of the source term can be 
obtained explicitly and O(h 4) where differencing is used to 
compute these derivatives. 


Consider the Poisson equation 


for specified forcing function f in 3D domain F• with ap- 
propriate boundary conditions on c9F•. Using the same 
approach as in the rest of this work, a sixth-order HOC 


specified algebraic mapping function or PDE grid generator a priori. 
For example. the mapping x(•) could be constructed for a set of 
points {x•} using the Lagrange basis on the domain. 


approximation to (26) on a uniform grid is 


(27) 


ijk 
where V '4 is the bi-harmonic operator. The resulting sten- 
cil involves all 27 grid points surrounding an arbitrary in- 
terior node, including the 8 corner points, and is depicted 
in Figure 14, along with the resulting matrix coefficient 
entries. 


z 


3 14 


3 8 


1 


x 30h2 


Figure 14: 27-Point O(h •) HOC Stencil. 


Equation (27) is O(h •) accurate only if the higher-order 
derivatives of f can be computed analytically. If this is 
not the case (equation (10) is a good example) then we are 
limited to O(h4). Neglecting the O(h 4) terms from (27) 
yields a simpler stencil, depicted in Figure 15, that does 
not involve the 8 corner nodes of the associated cube. 


As a 3D test case we constructed a problem with a non- 
zero forcing function. For the domain F• = (0, 1) 3 with 
4> - 0 on the entire boundary &F• and forcing function 


f = -37r 2 sin 7rx sin 7ry sin 7rz, 


the exact solution to (26) is 


sin rrx sin 7ry sin 7rz. 


The results for central differencing, fourth-order compact 
(HOC4) and sixth-order compact (HOC6) are presented in 
Figure 16. The sequence of mesh sizes is h - • • • 1 2 • 4' 6• •' 
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10 , 


1 


Figure 15: 19-Point O(h 4) HOC Stencil. 


and • and rather than measure the error at a single point, 
we examine a more global measure of the error, namely 


E __ eijk 
N 


where .¾ is the total number of grid points and eijk = 
o•.3•,. - o(x•. y3. z•). The predicted convergence rates were 
achieved. 


5 Conclusions 


In this study we describe a strategy for developing HOC 
difference formulas and demonstrate the performance of 
such schemes for representative problems in one, two, and 
three dimensions. The methods are appealing since they 
provide high accuracy on coarse grids and this can signifi- 
cantly impact CPU time, particularly in 2D and 3D appli- 
cations such as the viscous flow example where results on 
a 41 x 41 HOC grid are superior to those in the literature 
for a 129 x 129 grid using a more conventional method. 
We have also shown that the methods may be more robust 
insofar as numerical oscillations are concerned. 


Some extensions to nonuniform grids obtained by map- 
ping are also considered and we are presently extending 
the approach to certain classes of nonlinear problems. The 
present treatment considers only equilibrium problems but 
clearly can be applied to evolution PDEs. Indeed there are 
often related studies in the literature (e.g., see [8, 14]). In 
some sense the ideas here are related to superconvergence 
theory which is a topical research area in finite element 
analysis, but primarily as a post-processing technique [3]. 
There have also been some related investigations of Petrow 
Galerkin finite element schemes where similar high nodal 
accuracy is attained [13, 20]. Clearly, there are many 


le-01 


le-02 


le-03 


le-04 


le-05 


le-06 


CDS * 
m=1.86 ..... 


HOC4 + 
m=3.89 


HOC6 [] 
m=5.89 - - - 


le-07 • ........ 
0.10 1.00 


h 


Figure 16: Convergence Rates for 3D model problem. 


issues that still need to be investigated with regard to 
these higher-order compact schemes. These include their 
use for multi-grid problems, post-processing strategies and 
mixed methods (for example, we have recently extended 
the method to mixed methods for elliptic problems). Fi- 
nally, we remark that the main difficulty we perceive is the 
formidable algebra that must be carried out to formulate 
the method for more complex PDEs. Symbolic manipula- 
tors hold some promise here but have not produced useful 
results to date. 
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High-Order Finite Difference Methods 
for Hyperbolic IBVP 


Bo Strand * 


Abstract 


We have derived stability results for explicit high-order 
finite difference approximations of systems of hyperbolic 
initial-boundary value problems (IBVP). The schemes are 
a generalization of a fourth order scheme by Gustafsson, 
Kreiss and Oliger [5] to general order of accuracy 2 r. The 
stability results are obtained using the theory of Gustafs- 
son. Kreiss and SundstrSm (G-K-S) for the semi-discrete 
IBVP. These results are then generalized to the fully dis- 
crete case using a theory of Kreiss and •Vu [7]. 


Key words: finite differences, wave equation, stability 
analysis. 


AMS subject classifications: 65M06, 65M12. 


I Introduction 


In this paper we develop explicit high-order difference 
methods for hyperbolic systems and use them in prac- 
tical computation of the two-dimensional wave equation. 
For a hyperbolic system to preserve the spatial accuracy, 
a pth-order inner scheme must be closed with at least a 
(p- 1)th-order boundary sche•ne, see Gustafsson [3] and 
[4]. 


When investigating stability of the numerical approxi- 
mation of the IBVP, we rely on the stability theory analy- 
sis based on normal mode analysis, developed for the fully 
discrete case by Gustafsson, Kreiss and SundstrSm (G-K- 
S) [6], and for the semi-discrete case by Strikwerda [10] and 
Gustafsson, Kreiss and Oliger [5]. The G-K-S theory gives 
conditions that the inner and boundary schemes must sat- 
isf•v to ensure stability. The following theorem states when 
hyperbolic systems are G-K-S stable. 


•Department of Scientific Computing Uppsala University Upp- 
sala, Sweden 


Theorem 1.1 Necessary and sufficient conditions for sta- 
bility (fully discrete [6] or semi-discrete [5],[10]) of the 
finite-domain IBVP is that, the inner scheme must be 
Cauchy stable on (-c•, c•), and that the Kreiss condi- 
tion is fulfilled, i.e. there are no eigensolutions for the two 
quarter-plane problems. 


Furthermore, in [5] it is shown that if the conditions in 
theorem 1.1 are fulfilled, the normal mode analysis leads 
to strong stability. 


Here, we will use the method of lines approach, the hy- 
perbolic systems are discretized in space but the time is left 
continuous. The semi-discrete system is then analyzed and 
stability results derived. The stability of the fully discrete 
problem follows from a result of Kreiss and •Vu [7]. They 
have shown that under weak conditions, if specific Runge- 
Kutta or multi-step schemes are used for ti•ne-integration, 
the stability of the fully discrete problem follows from the 
stability of the se•ni-discrete problem. 


Explicit difference operators for PDEs have been con- 
sidered, for example in [1], [2], [5] and [9]. In [5] strong 
stability for hyperbolic systems in one dimension is shown 
for the fourth order case. In this paper we generalize the 
result to general order of accuracy 2 r. The organization 
of the paper is as follows. Section 2 presents the stability 
analysis on the scalar model problem ut = au•:. In sec- 
tion 3 the result is generalized to systems, and in section 
4 nmnerical results on the two-dimensional wave equation 
are presented. 


2 Scalar model equation for IBVP 


Consider the problem 


(1) a(x,t) a t) -- •, a•0, 0<x<c•, t>0, Ot a Ox - - 


ICOSAHOM'95: Proceedings of the Third International Con- (2) 
ference on Spectral and High Order Methods. ¸1996 Houston 


Journal of Mathematics, University of Houston. (3) 


u(x,O) ---- f(x), 


u(0, t) = g(t), if a < 0. 


4O9 
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We xvant to solve the above problem by difference ap- 
proximation. Therefore, we introduce the mesh width 


and divide the x-axis into intervals of length h. For 
= -r + 1,-r + 2,...,0, 1,... we use the notation 


vj(t) = v(xj,t), xj = j h. 


We approximate (1) for j - 1,2,... by a centered finite 
difference scheme of order 2r 


(4) 


where 


ova(t) = aQvj(t), ot 


v:(O) = f(x:), 


is difference operator and the coefficients are given by 


(-1)t:-i (r!) 2 
&• = v(r+v)!(r-v)!' /2 = 1,..., 
C•-u -- --Ctu. /2 -- 0,..., 


Because the operator is 2r + 1 points wide we need extra 
boundary conditions at points x-v, /2 = 0, 1,..., r - 1. If 
a > 0. we have outflow at x -- 0, and use extrapolation of 
order q 


(7) (hz•+)q•,_•(t) = o. /2 = o, 1,...,•- 1. 


If • < 0. x = 0 is an inflow boundary, and by differenti- 
ating the boundary condition u(0, t) = #(t) and using the 
differential equation we obtain 


(s) 02•u(O,t) ct 2• Or2• -- g(2V)(t), /2 = 0, 1 ..... 
We need 


Lemma 2.1 We have the following expansion for smooth 
functions u(x) 


(9) (D+D_)•u(O) = u(2•)(0) + • cyh2Ju(2•+25)(0), 


where h D+ = E-I and h D_ = I-E -x. The coefficients 
are defined as 


(2(•,+j))! = k (-1)k(/2- k)2(v+J) 
j = 0,1,..., /2 = 0,1,.... 


Proof 


This shows that (D+D_) • has an expansion of the form 
(9). To compute the coefficients cy we note that 


2/• 


k:O 


where the binomial theorem have been used. Thus, 


(D+D_)%(O) = l • (2•)(--1)ku(xv_k). h2v k=O 


Expanding u(x•_k) in Taylor series implies 


= l! (-1)•(/2 - k)l' 
/=o k=0 


The coefficient cy is then obtained for l = 2(/2 +j) and the 
proof if complete. [] 


As boundary conditions for the difference approximation 
in the inflow case we approximate (8) for/2 = 0,.... r - 1 
by 


r--u--1 (lO) •(•+•_)•vo(t) = 
j=0 


For u = 0 the coefficients are c? = 6j.o, and (10) is valid 
also for the analytic boundary condition. 


2.1 Necessary and sufficient conditions for 
stability 


A necessary condition for stability of our semi-discrete ap- 
proximation, defined in (4), (7) and (10), is that the as- 
sociated eigenvalue problem has no eigenvalues or general- 
ized eigenvalues. That is, our semi-discrete problem with 
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g = 0, f = 0, has no solutions of the form 


(11) = e "t 


where s are the eigenvalues. Substitution into (4), (7) and 
(10) yields the eigenvalue problem 


(12) •:j = a • a•j+/2, j = 1,2,..., g = s h, 


(13) D•_4_/2 = 0, t, = 0,...,r-I, if a>0, 


(14) (D+D_)/2•;o = 0, t, = 0,...,r- 1, ifa < 0, 


(15) 


The characteristic equation to the difference equation (12) 
is 


(16) 
/2ml 


Scalar product and norm are defined by 


(17) (v, 
j=l 


First we note that in [5] it is shown that for su•ciently 
large ',5•. Re • > 0, there are no eigenvalues. Furthermore, 
when Re • • •. the n with In[ < 1 converges to zero. 
•X• need 


Lemma 2.2 1) The characteristic equation (16) has ex- 
actly r roots 


[•j[ < 1 forReg>O, j = 1,...,r, 


and there are no roots with ]/'•j] = 1 for Re g > O. 
2.) For • = 0 the only roots to the characteristic equation 
(16) with absolute value one are n = 4-1. Furthermore they 
are simple. 
$) In a neighborhood of • = 0 the roots with [njl < 1 for 
Re • > O, and absolute value one for g = O, are of the form 


• ---- -1+ s +O(g2), ira>O, 
26 • ( r!)2 


'• 0(,•2), /f a < O, <• : 1+•+ 


Proof 


1) The statement follows from a result in [•]. 
2) Also in !.5] it is shown that the operator can be factorized 
as 


Q = Do 
/2=0 


where the coefficients are defined recursively by 


4u'-+2/•/2-1, 


30 = 1. 


Since (h2D+D_)/2n j nJ (•_•)2. = • , the characteristic equa- 
tion can be written as 


r-1 (•;_ 1)2/2 
/2=0 


Let • = 0, n = e i•, -•r _• • _• •r, and note that 


ei • = (--1)/222/2 (sin •'2/2 
then the condition to have a root on the unit circle is 


aisin•y•/222(sin•) 2 = O. 
/2-----0 


The second factor is positive for all • except • = 0 for 
which it is zero. Therefore the condition can be fulfilled 


only if• = 0 or • = 4-•r, i.e, if n = 4-1. To show that 
these roots are simple, let p(n) = Z;=I o•/2(/•/2 - N-/2). A 
necessary condition for n = 4-1 to be a multiple root is 
dp(4-1)/dn = 0, but 


dp(n) 


•p(-•) 
d• 


= + 
/2=1 


= 2 • c•/2• = 1. 
/2=1 


= -2 • 
/2=1 


- 2 • (r!)2 -- (•+/2)!(•_/2)! • 0, 


shows that n - 4-1 are simple roots. 
3) For g = 0, the solutions to the characteristic equation 
(16) with absolute value one are 


n (•'2) = 4-1. 


Since, 
(1 = 1 + 


and 


(-1 +e) • = (-1)•(1-ek) + O(62), 
the characteristic equation (16) gives for small • and nO) = 
1+e 


g = a•'•ak((l+e) k--(l+e) -k) = 2ae,•akk+O(e2). 
k=l k----1 
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Consistency implies that •k=• ak k = 1/2, therefore 


n (•) = 1+-+O(õ2). 


With a(2) = -1 + e we have (19) 


• = 2a• • •(-1)•+•k+o½ 2 ) 
k=l 


= 2ae (•+k)!(r-k)! + ) with 


r (r!)•- is positiveß Thus, where •-]•=• 


•(2) = -1 + + O(•2). 
2a (•+•)!(•_•)! 


k=l 


By selecting the roots satisfying Inl < 1 for Re J > 0, the 
third statement follows and the lemma is complete. [] 


By Lemma 1.2, there are r roots n•, •, = 1,...,r, with 
I•! < 1 for Re • > 0. The general solution of (12) with 
l[•ll• < •: can be written in the form 


(20) 
g3 : c•f3[ni] 4-o2fj[n2.a•]-i-... +crfj[n•,...,n•], where 


(lS) 
• •= •.. i • k, j = 1,2,.... 


where 


fj[•t. •] = f•[• ...... •-•]-L[•,-• ..... •u] l > k. .... t• l --t• k , 


If for instance • = •2 = • is a double root, then fj [•2, •] 
becomesj•'-• If• =•2 =•3:•is a triple root then 
fj[•3.•2. s•] will become j(j- 1)• j-2. If • -- •2 ..... 
•z = a is a root with multiplicity 1, then fj[•z,...,•] 
becomes •! •-(z-•) and the solution (18) to the (J-U-•))• ' 


eigenvalue problem in this case can then be written as 


• = (h +&j +...+hf-•)n • + • •f•[n•,...,n•+•]. 
u=l+l 


Therefore by using the form (18) we can treat simple roots 
and multiple roots simultaneouslyß 


To be able to express the boundary conditions in terms 
of • we need the following relations for the difference op- 
erators D+ and D_ and 


(•D+)•,• : (•D+)•-•(• •+• - •) 


= (•D+)•-2•(•- 1) 2 


..... •(•- 1)q, 


ß : h2uF) u F) u•-j : h2v/92v•cJ -v (h2D+D_)• 


By (18) the outflow boundary conditions becomes 


(hD+)q•-v • ck(hD+)qf_•[*•,...,*q] 


• Ckgu[•k,...,•l] = O, 
k=l 


v = 0,1,...,r-I, 


g•[•] = 


ß, t½l --t• k 


The inflow boundary conditions becomes 


, l>k. 


(h2D+D_)•o 


(n-l) 2• 


• c•(h2D+D-)•fj[•k, .... nz] 
• Ckgu[•k, ... ,N'I] = O, 


k----1 


v = 0,1,...,r-I, 


ß • tqI--t• k ' 


The systems of boundary conditions (19) and (20) we write 
as 


c2 


D . =0, 


Cr 


where D is the (r x r)-matrix 


(•_•)• 
,½• , a < 0, 


•[•] = 
(•-•)• 


•-• , a>0, 


ß , tq l --tq k 


_-- nJ-v(n -- 1) 2v. The be able to calculate the determinant of D we use 
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Lemma 2.3 D can be factorized as 


D D - 
with 


B•, = 0 t}• ' 


r>l, 


1 -1 


1 


h-. 0 ) C• = o •, ' 


( go[•x] go[•2] ... go[•,-] ß o 


g•-•[•] g•-z[•=] ... g•-z[•] 


Here B•C• and 1• are of size (r x r), P• is of size 
((v + 1) x (• + 1)), • is of size (• x •), and I•denotes 
the identity matrix of size (• x •). 


Proof 


D 


go [•x] ß 


go[•x] ... go[•-2, ß ß ß, •1 go[•,--x, ß ß ß, •2] ß 


g•-•[•] ... g•-x[•-2,...,•x] g,--,[•,--z ..... •1 


By repeating this procedure gives the factorization. [] 
The factorization of D makes it easy to calculate the de- 
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terrainant. First we note that 


detBj = 1, 


I-Ik=l ( r-3+k -- n•)-l, detCj = J n ß 
Therefore, 


j - 1,...,r-I, 


j = 1,...,r-1. 


r--1 r--1 j 


II dctC• = H H (•r-•+•-•) -• 
3----1 3----1 k----1 


= (/{r --/{1)-- 1 (/{r_ 1 --/{1) --1 


(Nr--N2)--I... (N3--N2)--I... (Nr--Nr_l) --1 


: II (•_•)-1 


= (_1)«(•-•> • H (•,_•j)-i 
r_>j>i>_l 


= (-1) «{•-•)• H (•i-•]) -1 
r_>j >i_> l 


Now it only remains to calculate the determinant of/•. 
In the outflow case we have with •/j = (K s - 1) q 


ß , ß 


where the •) is a Vandermonde matrix. Let 


XO :El ß ß ß Xn 


then the determinant of V is •n•j>i•o(Xj -xi). With 
• = r - I and xi = 1/ni+•,i = 0,...,r - 1 we have 


_ • •t• - H ( • •)= H (• r-l•j>i•0 nj.• n•+x r•j>i•l 


and 


Finally, 


detD = H 
r_>j >i_> l /•i -- /•j kl-ll(/•k __ 1)q. /qi/qj 


the outflow problemß 
In the inflow case we have 


Since this also is a Vandermonde matrix we immediately 
(n•_r --1) 2 get with xi = •+1 


: ( (• _•)2 (• _•)•. ) detD = H . • • 
r_>j>i_> l 


= H (•-•)(•-•) r > 1. 


Thus, 


H (1- I ), c>1 detD = r_•j>i_• l • 
1, r: 1, 


which only can be zero if nit•j = 1, i • j, 1 _< i, j _< r, r > 
1. By Lemma 1.2 this is not possible for Re • > 0, and 
there are no eigenvalue to the inflow problem. 


We have proved 


Lemma 2.4 There are no eigenvalues • with Re • > 0 to 
the eigenvalue problem (12) with outflow (13) or inflow 
(14) boundary conditions. 


Finally, we have to show that there are no generalized 
eigenvalues when Re • goes to zero. We have 


Lemma 2.5 There is constant 5 > 0 such that, on any 
compact set I•l <- c, Re •-> O, the roots nl, ..., n• of the 
characteristic equation (16) satisfy the inequalities 


I•j - II >_ 5, j = 1,... ,r /fa > 0, 


ll----• I >a i•j, I <i,j <rifa<O. M•t• 3 .... 
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Proof 


The roots are continuous functions of •. Therefore, the 
inequalities can only be violated if for some •, Re • _> 0 


nj = 1 whena>0or ninj =l, i•jwhena<0. 
The first statement of Lemma 1.2 tells us that this can- 


not happen for Re • > O. 
Let a > 0 and nj = l, then from (16) • = 0. However, 


the third statement of Lemma 1.2 tells us that nj = -1 
and we have a contradiction. 


Let a < 0 and •inj = 1, i • j, then (16) implies 


,• _ •(• - • ) = •(• - • ) 


Thus. • = 0 and we have a contradiction since n•nj • 1 
according to statement two and three of Lemma 1.2. This 
proves the lemma. 


2.2 The main results 


We now have the main result 


Theorem 2.1 The approximation defined in (•), (7) and 
(10) is strongly stable and the error of the solution is of 
order h 2•' if q _> 2r. 


Proof 


From I5] it follows that the approximation is strongly sta- 
ble since it has no eigenvalues or generalized eigenvalues 
and the operator is semi-bounded for the Cauchy problem. 
Therefore it remains only to validate that the error of the 
solution is h 2r. Let u be a smooth function and denote by 
ej(t) = u(xj.t) - vj(t) the error, then we have 


•%(t) = aQej(t) + h2rFj(t), j = 1,2, dt ' ß ' • 


ej(O) = 0, j = 1,2,... 


For the boundary conditions we have, if a < 0 


h •-" (a •"(D+D_)"•(0, t)- o •" 


0 0, and therefore the error of We note that for • -- 0, cr - 
the analytic boundary condition e0 = 0. 
For a > 0, 


(•D+)•e_,(t) = (•D+)%(•_,,t) - (•D+)•_,(t) 


= (•D+)•(•_,t) 


- h qø•(•-•'•) o(h q+•) o(hq), -- Oxq + = 


v = 0,1,...,r-1. 


Therefore, from the strong stability and since the forcing 
is of order O(h 2• + hq), we have the following estimate for 
the error 


II¾t)11• = co•st (11A2•F(•)IIZ+IO(h2•)12)d• = O(h4•), 


if q • 2r. • 


3 Systems 


Consider the system 


(21) ut = Au•. O<x<•c. t>O, 
-- _ 


with initial conditions 


(22) u(•, 0) = f(x). 


Approximate by a finite difference approximation of order 
2r 


dv,• (t) at = Qvj(t), j = 1,2,..., 
(23) 


w(O) = fj, j = 1,2,..., 
where 


Q=A• . 
Since A can be diagonalized, we can assume A having di- 
agonal form with 


( Az ) A' A z' A = A• • , > 0, < 0. 


The boundary conditions can be written as 


(24) •"(0, t) = s•(0, t) + g(t). 


Differentiation of the boundary conditions (24) and the 
differential equation (21) give us 


o•"(o, t) o•(0,t) (A• 


(2s) 
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As boundary conditions for the in-going characteristic vari- 
able we approximate (25) for/2 = r - 1,..., 0 by 


(26) 


where 


r--•,--1 


Q• = (z•+z•_) • - • cy •v Q•+•. 
j=l 


The reason to define Q• this way is that Q•u(O) will be 
an approximation of u(2•)(0) of order h 2r-2•. This is ex- 
actly what we need for the boundary conditions to be of 
order h 2r. For the outgoing characteristic variable we use 
extrapolation conditions 


(27) D•_,,L•(t) = 0, /2 = 0,1,..., r - 1. 
We have the following result 


Theorem 3.1 The approximation defined by (25), (26) 
and (27) is strongly stable and the error of the solution is 
qf order 2r if q _> 2r. 


Proof 


The t 'I approximation is decoupled from v TM and is already 
discussed and strongly stable. \Ve can now think of v •r as 
a given function and write the boundary conditions for v H 
as 


/2 ---- 0,...,r--1. 


Now we can think of the approximations of v H as consist- 
ing of scalar equations which we already have discussed. 
By theorem 1.1 they are strongly stable. 


Let u be a smooth solution. Denote by, ej(t) = 
u(z b. t) - v• (t), the error, and we obtain the system 


dcd (t) at = Qej(t) + h2*Fj, j = 1,2,..., 


ej(0) = 0, j = 1,2,.... 


For the inflow part of the boundary conditions we have 


= h2• (Q•un(O,t)-S•Q•uz(O,t)-(AZZ)-2•g(2•)(t)) 


and for the outflow part 


(•D+)•eL•(t) = (•D+)•d(•_•,t)- (•D+)%,œ•(t) 


= (•D+)•(•_•,t) 


__ hq Oqu•(x_• ,t) -- Oxq q- O(hq+l) 


: O(hq), /2 = O, 1,...,r - 1. 


This shows that the forcing is of order O(h 2") + O(h q) and 
the desired estimate follows from the strong stability of the 
approximation. [] 


4 Numerical results 


Consider the two-dimensional wave equations 


Ut -- AlUz• +A2ux2, 
(28) 
where u = (p u v) T and 


Ax = -1 0 0 
0 0 0 


O_<xx_<l, O<xo<l, t>_O. 


0 0 -1) A2 - 0 0 0 . 
-1 0 0 


The components of u are pressure and the velocity in the 
x• and x2 direction. With the boundary conditions 


p(x•,O,t) = p(xt,l,t) = 
(29) p(O, x2,t) = p(1,x2,t) = 0, t _> 0, 


and initial conditions 


p(x•,x2,0) = sin(•x•)sin(•2x2), 


(30) u(xx, x2,0) = 0, 


v(x•,•:2,0) = 0, 


where cv•: ran' and •2 - nn', ra, n - 1, 2,..., the exact 
solution is 


p(x•,x2, t) = sin(•lX•)sin(•2x2) cos(v•t), 


u(x•,x2,t) = -• cos(•x•) sin(•2x2) sin(v•t), 
v(x• x2 t) = -?-•- sin(•x•) c0s(•2x2) sin(v•t), 


(31) 
where A = •2 + co• . Let h• and h2 be mesh widths in the 
x•- and x2-directions, and divide the axis into intervals of 
length h• and h2 respectively. For i = -r + 1,..., N• + 
r-landj = -r+l,...,N• 2+r-lweusethenotation 


u/h,j(t) -- uh(xli,X2j,t), x•i -- ihl, x2j = j h2, 
= O(h2"), /2 = O,...,r-1, h•Nx• = h2,¾z2 = 1. 
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We approximate (28) by a centered difference approxima- 
tion of order 2 r 


h 


d u i.J 
dt = (A1Q•,i + A')Qz2) u'•' i - 1. Nx• - 1, - •../, ß . . , 


j = 1 .... ,.\•21, 
(32) 
where u. •. = (p/' u/' ,h r ,.• • )i.j and 


Qx. = h17 • o, EY 
= = 


3,= 1,2, 


To get extra boundary conditions for the numerical scheme 
we differentiate the boundary conditions (29) with respect 
to tilne and use the differential equation (28) to obtain 


{ 33) 02•p('j"r2't) /'J2"p(x 1 "i't) o.,.•,' o.d" = O. j = O. 1. 


We approximate (33) for v = 0 ..... r- 1 with 


)2,,pt.,. = 0. j : 0._•,. i = 1 ..... _\-• -1. I D_.,-, D_ •'2 '-.• - - 


•34) 
where D_.,._ aud D_ ,._ are the usual forward and backward 
differences in the the -,-direction. At a'l = 0.1 we need 
boundary conditions for u. • and at x2 = 0.1 for v •. These 
couditions are obtained by extrapolation of the locally out- 
going characteristic variables. Thus. for •, = 0 ..... r- 1 
we have 


(h•D..,.•)2,.(ph _ uh)_.j = 


(hlD_,.t)2,.(ph + uh).x_.q +v.d = 0. j = 1 .... ,-Vz2 - 
(35) 


(h2D ..... )2,-(ph __ uh)i._. __ 
- 


(h2D_.•. 2 )2r(ph + Vh)i.X,.2+•, = 0. i = 1 .... , A%• -- 1. 


We now use the numerical boundary conditions (34) and 
(35) to modi•' the operator close to the boundary. The 
reason why we solve the differential equation only at in- 
terior points. i = 1 ..... .\• - 1, j = 1,...._'\•., - 1, is 
that it simplifies the implementation, and since p = 0 at 
the boundary. we will have u = 0 at x2 = 0, 1 and v = 0 
at x• = 0.1. Furthermore. u•. ,.j at i = 0, '¾x• and u/h.j at 
j = 0. _\:•_.are given bv the extrapolation conditions (35) 
with v = 0. 


Figure 1 shows the pressure component of the nmnerical 
solution obtained using the sixth-order scheme, (32), (34) 
and (35) with r= 3. 


i 


0.5 -. 


o 41! 
• '½ ' *' , ½' "'-:.'1t' -1 


1 '. '•..' ::;.:. .. 


o o 


Figure 1' Pressure component of numerical solution of the 
two-dimensional wave equation at t = 0.5. ,.'• = 


4.1 Convergence rate of high-order meth- 
ods 


To analyze the convergence rate of the numerical so- 
lution we make a grid refinement study on the two- 
dimensional wave equation. The Logm of the L2 error. 
Logm(llu - u•ll2), is computed at a fixed time t = T. and 
the convergence rate between two grid densities are plot- 
ted. For the second- and fourth-order scheme a fourth- 


order Runge-Kutta scheme was used for time-integration. 
and for the sixth-order scheme a sixth-order Runge-Kutta. 
The time step was chosen such that the error of the time- 
discretization was smaller than the error of the space- 
discretization. The convergence rate was computed as 


Ilu - u h' 112 hi 
q -- logm(llu_ u•=l12)/løgm(•) ß 


The results are shown in table 4.1. 


The results in table 4.1 agrees well with the theory of 
Gustafsson [3] and [4] which predicts that boundary con- 
ditions of order p - 1 must be imposed to retain pth-order 
global accuracy. Since all boundary conditions considered 
here are of order 2r- 1 we get global accuracy of order 2r. 


4.2 Efficiency of high-order methods 


The efficiency of high-order methods compared with sec- 
ond order methods has been studied in [8] and [11]. The 
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Second-order Fourth-order Sixth-order 


Grid Log(L2) q Log(L2) q Log(L2) q 


21 -1.176 -2.708 -4.262 


41 -1.753 1.92 -3.956 4.14 -6.622 7.83 


81 -2.344 1.96 -5.177 4.06 -8.149 5.07 


Table 1: Grid convergence of schemes on two-dimensional 
wave equation with ";• = ";2 = 2•r, T = 1. 


conclusion is that the high-order methods are more efficient 
than low-order ones for hyperbolic problems with smooth 
solutions, except when very low accuracy in the solution is 
needed. 


As a test of the efficiency of the fourth- and sixth-order 
methods compared xvith the second-order method, we com- 
pute the numerical solution and compare it with the ex- 
act solution of the two-dimensional wave equation. This 
is done at a fixed time, t = 0.5, on successively refined 
grids. with :V• = 3,•2 = N, and for different frequencies 
-;• = -;2 = -;. On each grid we compute the relative error, 
Ilu- uh!12/llul[2,and measure the consumed CPU time 
Tcp•,. For the second-order and the fourth-order schemes 
a fourth-order Runge-Kutta scheme with four stages was 
used to integrate in time. For the sixth-order scheme a 
sixth-order Runge-Kutta with seven stages was used. For 
all Runge-Kutta schemes the time step was chosen such 
that the error in the time-discretization was of the same 


order as the error of the space-discretization and as close 
to the stability limit as possible. All computations was 
done on a SUN Spark-Station 10 equipped with a 40 MHz 
processor and without external cache. The results are pre- 
sented below. 


Table 4.2-4.2 shows clearly the high efficiency of the 
fourth- and sixth-order methods compared with the 
second-order one, this is true in particular for high fre- 
quencies and high accuracy requirements in the solution. 
If we want to compute the solution of the problem with 
"; = 4•r, with a relative error of 0.001, the second-order 
method would need approximately 0.9 CPU hours while 
the fourth-order method would need less than 29 seconds 


and the sixth-order one less than 15 seconds. For lower 


frequencies and lower accuracy requirements in the solu- 
tion the gain is not that big. In table 4.2 a relative error 
of 0.01 xvould require approximately 0.5 second CPU time 
for the second-order method, 0.1 second for the fourth- 
order method and less than 0.3 seconds for the sixth-order 


Second-order 


[[u--uh 1[• Tcpu 


Fourt h-order Sixt h-order 


IlU-U•][2 Tcpu tlu--uh ][2 Tcpu [lUll2 IlUll2 


9 5.88 


17 1.63 


33 4.10 


65 1.02 


129 2.56 


257 6.40 


513 1.60 


10 -2 0.03 3.46 


10 -2 0.14 2.43 


10 -3 0.90 1.50 


10 -3 6.7 8.95 


10 -4 52 5.36 


10 -s 415 3.26 


10 -5 3305 


10 -3 0.09 5.01. 10 -4 0.32 


10 -4 0.57 2.47- 10 -6 2.0 


10 -• 3.8 6.62. 10 -8 15 


10 -7 29 9.59. 10 -•ø 115 


10 -8 228 1.22. 10 -• 911 


10 -• 1822 1.52.10 -•3 7268 


Table 2: Relative error and consumed CPU time. 


Second-order Fourth-order Sixth-order 


[I u-uh [12 Tcpu I[ u-uh [[2 Tcpu [I u-ua 112 Zcpu 1111112 IlUl[2 1111112 


9 5.03 


17 1.15 


33 2.72 


65 6.74 


129 1.70 


257 4.29 


513 1.08 


10 -• 0.03 1.01 


10 -• 0.14 7.75 


10 -2 0.90 4.44 


10 -3 6.7 2.52 


10 -• 52 1.48 


10 -4 415 8.96 


10 -4 3312 


10 -• 0.10 2.59. 10 -2 0.33 


10 -3 0.57 4.50. 10 -4 2.0 


10 -4 3.8 7.38. 10 -6 15 


10 -s 29 8.66. 10 -s 115 


10 -• 228 9.95. 10 -m 913 


10 -8 1818 1.19.10 -• 7277 


Table 3: Relative error and consumed CPU time, "; = 2 :r 
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Second-order Fourt h-order 


Ilu--uhl12 Tcpu Ilu-uhl12 Tcpu 


Sixth-order 


u-u• 112 T•pu 
9 1.29 10 ø 


17 7.84 10 -1 


33 2.67 10 -1 


65 6.10 10 -2 


129 1.45 10 -2 


257 3.59 10 -3 


513 8.95 10 -4 


0.03 


0.14 


0.91 


6.8 


52 


416 


3314 


9.50 10 -1 


1.69 10 -1 


1.09 10 -2 


6.55 10 -4 


4.03 10 -5 


2.51 10 -6 


0.10 1.66.10 ø 0.33 


0.58 4.63- 10 -2 2.0 


3.9 4.40.10 -4 15 


29 2.73.10 -6 116 


229 5.05- 10 -s 913 


1817 8.86.10 -lø 7274 


Table 4: Relative error and consumed CPU time, w = 4 •r 


Second-order Fourth-order Sixth-order 


]lU -uh I]2 Tcpu II u-uh 112 Tcpu II u-uh 112 Tcpu 
9 1.00.10 ø 0.02 1.00- 10 ø 0.10 1.00.10 ø 0.32 


17 1.14-10 ø 0.13 1.41.10 ø 0.57 9.87-10 -1 2.0 


33 9.85. 10 -1 0.90 2.72- 10 -1 3.8 3.84- 10 -2 15 


65 5.22. 10 -1 6.7 1.97. 10 -2 29 3.76. 10 -4 115 


129 1.23. 10 -1 52 1.25 ß 10 -3 228 6.33. 10 -6 911 


257 2.90. 10 -2 415 7.84 - 10 -5 1822 1.09- 10 -7 7268 


513 7.15. 10 -3 3315 


Table 5: Relative error and consumed CPU time, a; - 8 •r 


one. Thus, it is only for a relative error of the order 0.1 and 
low frequencies that the second-order method can compete 
with the high-order ones. Tests with a three-stage second- 
order Runge-Kutta in combination with the second-order 
scheme in space was also made. However, the combination 
second-order in space and fourth-order in time turned out 
to be more efficient. 
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Figure on reverse: 
Direction of advection through an interface of two do- 
mains for advection-diffusion equation. (From ':Some 
applications of adaptive domain decomposition meth- 
ods in fluid dynamics '• by C. Carlenzoli, page 423) 
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Abstract 


Advection-diffusion equations are often used as kernels for 
the simulation of various kinds of problems. When dealing 
with Navier-Stokes problems for instance the ratio of the 
advective part to the diffusive one is represented by the 
flow Reynolds number. Domain decomposition methods 
based on Dirichlet/Neumann iterations are effective only 
when the diffusive part is dominant, whereas if the con- 
vective part becomes more relevant the natural interface 
conditions may produce instabilities. 


Moving from these considerations we apply the adap- 
tive methods ADN and ARN for the simulation of prob- 
lems which develop internal or boundary layers holding the 
s•noothness of the numerical solution and keeping a very 
effective rate of convergence. 


Key words: boundary value problems, spectral methods, 
domain decomposition procedures, convective domi- 
nated problems, nonlinear equations, incompressible 
Navier-Stokes equation. 


AMS subject classifications: 65M55, 65M70, 65N35. 
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1 Introduction 


In this paper we are interested in some applications of the 
adaptive schemes introduced in [5]. These schemes were 
proposed to solve Advection-Diffusion (AD) equations in 
the framework of nonoverlapping multidomain partitions. 


These equations could be the numerical kernel of var- 
ious kinds of problems. In particular, in this paper we 


*Dipartimento di Matematica, Politecnico di Milano. 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. ̧ 1996 Houston 
Journal of Mathematics, University of Houston. 


will investigate the simulation of incompressible Navier- 
Stokes equations in case of high Reynolds number. Since 
the diffusive part of the equation depends on this number, 
whereas the convective part is associated to the velocity 
of the flow, we may therefore have to treat AD equations 
that are donfinated by advection. 


It is well known that in the domain decomposition frame- 
work the classical Dirichlet/Neumann method can perform 
very poorly when equations are dominated by convection. 
These instabilities are due to treatments of interfaces which 


although being mathematically correct, are inconsistent 
with the hyperbolic limit of the advection-diffusion equa- 
tion. 


In the following we give a short outline of the paper. 
In Section 2 we illustrate the advection-diffusion equa- 


tion and its weak formulation with several choices of 


boundary conditions. 
In Section 3 we recall the classical Dirichlet/Neumann 


method and the adaptive methods proposed in [5] called 
ADN and ARN methods. Moreover we extend the analy- 
sis to the case of subdomain partitions with internal cross 
points (i.e. a common point of four subdomains) 


In Section 4 we illustrate the behavior of the adaptive 
schemes when dealing with vector fields which form dif- 
ferent angles of incidence with the interface. Simulations 
of physical problems with boundary layer are shown using 
different subdomain partitions. 


In Section 5 we investigate a nonlinear time dependent 
extension of the AD equation. We use the ARN method 
at each time level and we show that the numerical solution 


holds its smoothness although it develops an internal layer 
during the time evolution. 


Finally, in Section 6 we consider the approximation of 
the incompressible Navier Stokes equation. W'e make use 
of a projection method introduced by Chorin in [6] and 
Temam in [18]. We show, as numerical test, a simulation 
of the so called driven cavity. 


All the numerical experiments refer to a discrete approx- 
imation by spectral collocation methods. 


423 
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2 The differential equation 


2.1 The advection-diffusion boundary 
value problem 


We consider the boundary-value problem: 


(1){L,u-=-eAu+b.Vu+au=f inf• u = g on oqf• 


where a > 0, f• is a two dintensional domain with boundary 
0•2, b, g and f are given functions. 


Let us consider a partition of f• by M non intersect- 
ing open subdomains f•i i=I,...,M and denote by F,,3 = 
0•2, • Of•j i, j=i,...,M the common boundary between f•i 
and •2• (see Fig. 1). 


Under these assumptions, problem (1) can be refornm- 
lated as follows: 


Find {u• =_ ul•,} i:l,...,M such that, setting {f• _= 
fl_o.,}: 


where 


0 u, _Sb.n,u 8=0orl, 'I'l•)(u•') -- • 0 n• 
n• is the outward normal unit vector to cgf•, and o de- 
notes the normal derivative on 0•2i. 


Both choices of 6: 0 and 8: 1 are suitable. 


2.2 Variational multidomain formulations 


and interface conditions 


To start with, let us define 


Moreover, let us set 


H•(f•):{ulu•H •(f•) ß u=0on 
and 


tq• (n) = {ulu • tq • (n) ß u: g on On} 


(see [10]). 
Let us consider problem (1) in case of 5=0. 
The weak form of (1) (which is formally obtained multi- 


plying the first equation by a test function v 6 H i (f•) and 
using the Green formula) is: 


Find u • Ho 1 (f•): 


V u. V v +(b. V u) v+a uv]df•= 


Now, if we set: 


(4) 


Jfn, [s Vu. Vv +(b.Vu) v+a uv]dfh 


is readily seen that (3) is equivalent to the following mul- 
tidomain problem: 


Find {u i •-• ulf2, } i=i,...,•Vl such that. setting {f, _= 


(•) 


0 / • (•, •) = f•,dU• w, e H• (n•) 


u, = g on Of• • Ofh 


ui = uj on F,.j 


Z ap (ltl, ½I) ---- • fl½Id•l 
/--1 /=1 


where i. j = 1, ..., M. 


ß is the space of traces on F = [Ji.j=• F,.j of the fi•nc- 
lions of H• (f•) (see [10]), and 0• denotes any possible con- 
tinuous extension of ;v to •2i (e.g., its harmonic extension). 


Note that from (5) we can easily deduce (2). As a matter 
of fact, counterintegrating by parts the last equation of 
(5) and using the previous equations, we obtain the flux 
balance condition: 


Ou Ou 
(6) e-- + •-- = 0 on Fi,j 


Oni Onj 


When 8=1, we provide a different weak formulation of (1). 
which is alternative to (3). The difference stands from the 
fact that this time we also integrate by parts the convective 
term, and obtain: 
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•'-•5 
F4,5 


I '441 F,2 F4,s 
r2,3 r3,4 


Figure 1: Two examples of computational regions partitioned into non overlapping subdomains (M=5) 


aø(u.v)_ = /[-: I7 u. V v - div(bv) u +a uv]dD= 


The multidomain formulation of (7) still takes the form 
(5), provided now •)is used instead of ½}0) and a i 
instead of a½ (u, v), where: 


(8) a i 


In turns, this is now the weak formulation of (2) and the 
transmission condition in the current case reads: 


( ) Ou _ b ß niui + *•j b . njuj = 0 S Oni 
(9) on 


3 Subdomain iterative methods 


3.1 Multidomain methods based on 


Dirichlet/Neumann iterations 
For the sake of simplicity we split the domain D into two 
non overlapping subdomains 12• and 122 and denote by F•,2 


their interface. Then the Dirichlet/Neumann subdomain 
iteration procedure for problem (1) reads: 


for a given value A •, we look for a sequence u/k with k _>1 
and i=1.2 such that: 


Ls u• k =f• inQx u• = g on 0f• f3 0fi• 
'u• •' -- A k on Fl.2 


(10) 


where 


L, u2 k -- f2 in D2 u• = g on OD f-) 0122 
,,,(0), k, •[0) Ul k 0 •2 tu2•+ ( )= on 


A k+l _____ 0 U2 d- (1 - 0) A k on 


Choosing a suitable parameter 0 > 0 is necessary to 
achieve convergence. 


For the convergence analysis in case of a self adjoint 
operator see e.g. [1, 8, 11]. 


When s tends to zero the effectiveness of the Dirich- 


let/Neumann method can deteriorate (see [5]). This is due 
to the fact that the interface conditions can be inconsis- 


tent with the hyperbolic limit of the Advection-Diffusion 
equation. In [5] we have proposed two different approaches 
to avoid these instabilities. 


The first approach (Adaptive Dirichlet Neumann 
method, ADN for short) is simply based on an adaptive 
choice of the Dirichlet and Neumann interface conditions 


according to the direction of the vector field b. 
Indeed, when b.n r is positive on a side of the inter- 


face Neumann conditions are there imposed. whereas when 
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b.n r is negative Dirichlet conditions are in order (here n r 
represents the outward normal unit vector to the interface 


The second approach (ARN for short) comes directly 
from the variational formulation (7) of the differential 
problem (1). 


This new approach has been named Adaptive Robin 
Neumann method as it replaces Dirichlet interface con- 
ditions with the Robin ones. 


Under the same assumptions used for the Dirich- 
let/Neumann scheme we can formulate the ARN method 
as follows: 


for a given value A •, /• and u• we look for a sequence 
u½. with k _>1 and i=1,2 such that: 


L• u• = f• in 
___ 


= o• F• n 


(11) 


where 


on r• n 


and 


• k+l : 0 Ul k q_ (1 -- 0) •t k on r• •'t 


We have set F} n =- {xEF1,2 ß b.nl<0} andF• •t • 
{x G F•,2 ' b.n• ) 0} 


We remind that the interface conditions required in this 
approach still impose the continuity of the solution along 
the interface provided b.nl • 0 (and then we can still 
look for a numerical solution in HJ (fi)). 


The formulation (11) differs slightly from the one in [5] 
for what concerns the rel•ation procedure. In this c•e we 
apply the procedure on the whole Robin interface operator 
•) i=1,2, 


(e O•-b-nlu•) =-0 (e O•-b.n2u•) + On • On 2 


(1--O) e On2 -b.n2u 2 onF1,2 
and not only on the second part 


eOn• b nlu• +b.n2 


(0 u• + (1 - 0 ) u 2 on rl, 2. 


F14= I'41 Cp 


•"•1 F12= F21 
Figure 2: The partition of [2 with an internal cross point 


Figure 3: The effect of the vector field b t = (1, 1) 


3.2 Multidomain formulation with "cross 


points" 


In this Section we will illustrate the implementation of 
the adaptive schemes proposed when the computational 
domain [2 is partitioned in at least four subregions with a 
common vertex (the so called cross point). 


For the sake of simplicity, let us consider a domain f• 
partitioned in four subdomains as in Fig. 2. 


When using Dirichlet/Neumann schemes the choice of 
interface conditions for internal cross points is a very cru- 
cial problem. In general ones should impose a Dirichlet 
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condition on each subdomain and then correct this value 


using a particular equation related to the variational for- 
mulation of the differential problem (see [12]). 


Using ADN and ARN methods, we would like to avoid 
the Dirichlet condition on each subdomain and at the same 


time we would like to use the adaptive conditions even at 
the internal cross point. 


To start with, let us consider the boundary value prob- 
lem (1) where f• is a computational domain partitioned as 
in Fig. 2. 


For simplicity let us suppose to deal with b t -- (1, 1). 
Recalling the effects of the vector field b in the choice 


of interface conditions in the adaptive schemes,ADN and 
ARN, we have a situation that can be represented as in 
Fig. 3. 


Then the ARN scheme proposed reads as follows: 
for given values A• ø, u• and u4 ø, we look for a sequence 


u, •, with k _> I and i = 1, 2, 3, 4 such that: 


(12) 


in 
on Of• • 
on 
on F14 
on Cp 


or,(1) / W32 •,U3) : --kI/•)(/Z2 k-l) 
W34 [/-/3) -- 


•l'•(•t w tI'(1)% • = 'd3'2=12 (/Z3 k) + 34 14 k 3) 
re(l) .-(1), k--l\ --•:23'•21 (U2 k-l) --0343W41 [U 4 ) 


in •3 
on (• N øq•3 
on F32 
on F34 
on Cp 


k 


L• Up = fp in k 


Up = g on 0fi •10•2p 
=pl -- :': lp \"'1/ on Fpl 
•D(o)(up• ) .,.(o), k, on Fp3 =p3 = -- W3p [/23 ) 
k (A1 • + u3•)/2 on Cp /gp -- 


where p = 2, 4, A1 • = OUl i + (1 - 0)/•1 k--1 on F12 [.J F14 and 


(,) Ou _ 6b.niju with nij the unit normal vector ,r o (u) = • O-•ij 
from •2• to •2j. 


We remind that the weights Odij are related to the Gauss 
Lobatto quadrature weights according to the variational 
formulation of the differential problem. 


The ADN scheme can be obtained in a very easy way 
from the ARN one substituting Robin conditions with 


Dirichlet conditions and taking Wp3 -- Wap = 1/2 with 
p = 2, 4 in the second step of the scheme (12). 


For more general vector fields b the generalization of 
the scheme is straightforward. The only exceptions are 
those related to a vector field orthogonal to one edge of 
the subdomains (i.e. in Fig. 3 ½ =0, 7r/2, 7r, ...). In such a 
case we could impose the interface conditions as if b was 
ingoing (or outgoing) to one subdomain. For instance, if 
b t = (1, 0) (i.e. ½ = 7r/2) we can arbitrary decide to require 
the interface conditions as if b t = (1 +v, 0) with v > 0 (and 
therefore we can use scheme (12)). 


4 Numerical results 


In this section we want to study the behavior of the adap- 
tive methods proposed when the vector field b forms dif- 
ferent angles of incidence ;vith the interface F. It is ;yell 
known that this angle influences the effectiveness of several 
subdomain iterative schemes when dealing with convective 
dominated equations (see [17, 2]). 


We consider a computational donrain f] =(-1,1)x(0.1) 
partitioned in two subdomains with common interface F = 
{(as, y) : as=0, 0<y< 1}. 


The domain decomposition methods introduced before 
can be implemented using any kind of finite dimensional 
method to approximate the boundary value problems in- 
duced on each subdomain. 


Here, we use the spectral collocation method with a weak 
treatment of boundary and interface conditions. For de- 
tails see, e.g., [4, 13, 7]. 


The boundary value problem considered is 


cos q 


u = g on Of] 


Note that the magnitude of the vector field b is equal 
to one independently of the angle ½ (see Fig. 4 and 5). 
To start with, we consider as test function u(x, y) = e '•+y, 
the right hand side f and the boundary values are com- 
puted accordingly. The numerical approximation is based 
on the spectral collocation method using 10x10 nodes in 
each subdomain. 


The stopping criterion is fulfilled when the difference be- 
tween two subsequent iterates is less than 10 -•ø (Euclidean 
norm of the relative error). 


We can see in Fig. 6 that the optimal number of ADN 
iterations grows smoothly as far the angle • tends to zero, 
whereas in ARN method if g is close to zero the conver- 


gence rate deteriorates when e gets large. Such behavior 
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(-1,0) 0 


(1,1) 


Figure 4: Vector field b with an angle of •r/4. 


70 • 


60 • O ADNg =1.E-4 
] • [] ARN• =1.E-4 


50 •- • •, ADNg=I.E-3 
X ARN_____• =1.E-__3 


NIT 3O 


10 


0,00 0,01 0,02 0,05 0,10 0,20 0,39 0,79 1,57 


radiant (•) 


(1,1) 
¾¾ 


1 f 2 


(-1,0) 0 


Figure 5: Vector field b with an angie of •r/2. 


is strictly related to the Robin interface conditions •I l) 
imposed. Involving the normal derivative weighted with 
the viscosity z. the Robin condition deteriorates the con- 


vergence as far ]b--•nrl grows on the interface. In this case 
the conditions 9? ) and 910) tend to be the same (in par- 
ticular 91 •) converges to 9? )) and ARN method becomes 
unstable. 


The convergence of the ARN method, however, looks 
optimal even in the case of b .nr=0 when z gets small 
(see in Fig. 6 the curve relative to e = 10-4). In this 
case actually both the interface conditions involved by 9? 
and 91 l) can be written as follows (we recall that a weak 
treatment is in order), 


Figure 6: Number of iterations for ADN and ARN methods 


(14) 
w L, u• +0(• ) Onx -- 


(f2 - œE 


XVe remind that (14) is the weak formulation of the Neu- 
mann condition ([4]) and therefore co and • are related to 
the weights of the Gauss Lobatto quadrature formula. 


In ARN method co is exactly one of them xvhereas 
is still a weight of the Gauss Lobatto formula but it is 
nmltiplied by a factor dependent on the magnitude of 
in the computational subdomain •2i. Thus, when z is close 
to zero the condition (14) tends to be the natural outflow 
condition for the hyperbolic limit of the advection-diffusion 
equation, which reads, 


(15) Lo u• = f• 


In the second test problem we consider the same differ- 
ential operator as in (13). In this case, however, we are 
interested in a physical problem with boundary layers. 


Then we prescribe the numerical solution to be zero on 
the boundary of the computational domain and the right 
hand side f equal to one. 


When • tends to zero the solution develops a boundary 
layer depending on the direction of the vector field b. For 
instance if ½ is equal to • the layer will be close to the 
right edge of the domain, whereas when ½ is equal to • it 
will develop on the top-right vertex of the dmnain (see Fig. 
7,8,9 and 10). 
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I 


0.5 


O, 


1 -1 


Figure 7: • - 10 -2, ½ = •r/2, 0 = 1, 6x6 and 9 iterations 


In each example we have used a different subdomain par- 
tition in order to capture the development of the bound- 
ary layer. Figures 7 and 8 refer to the following de- 
composition: •] =(-1,0.95)x(0,1) and •2 =(0.95,1)x(0,1). 
For the last two figures we have: •t• -(-1,0.95)x(0,0.95), 
f•2 =(0.95,1)x(0,0.95), [23 =(0.95,1)x(0.95,1) and •4 =(- 
1,0.95)x(0.95,1). We report in the captions of the figures 
the degrees of freedom used and the number of iterations 
obtained to get convergence using the ARN scheme. 


Notice that in the last two examples we have used a 
partition containing a cross point as described in the last 
section. 


To illustrate in particular the behavior of the conditions 
described in Section 3.2 we show in Fig. 11 the number of 
iterations with respect to the impinging angle •. Further 
we report in the round brackets of the legend the relaxation 
parameter 0. The numerical approximation is still based 
on the spectral collocation method using 12x12 nodes in 
each subdomain. 


The stopping criterion is fulfilled when the difference be- 
tween two subsequent iterates is less than 10 -m (Euclidean 
norm of the relative error). 


As we can see, the convergence rate deteriorates as far 
as the angle tends to zero. This is due to the fact that if 
b-n r tends to zero the Robin and Neumann conditions 
are very similar as previous explained. 


When s in not sufficiently small, using the ARN scheme 


Figure 8: s = 10 -3, • - •'/2, 0 = 0.98, 16x16 and 7 
iterations 


is equivalent to impose on both sides of the interface Neu- 
mann conditions and this produces instabilities which af- 
fect the effectiveness of the scheme. 


To avoid this lack of consistency we imposed a lower 
bound on b.nij. When lb-n/j[ is less than •/s (where •/is a 
fixed constant) we add to b.nij the quantity -•/s + b.nij 
(we recall that b.nij is less than zero because we are 
considering inflow boundary points). In practice the Robin 
condition imposed becomes: 


Ou 


ß •) (u): s a--•-•j + max (lb. 0s) u. 
We can see in Fig. 11 how • = 10 (see the round brack- 


ets in the legend) improves the rate of convergence of the 
scheme in case of small •. 


Finally in Fig. 12 we illustrate the behavior of the 
scheme with respect to the degrees of freedom. As we 
can see, when the impinging angle is small the correction 
introduced before doesn't seem to be still effective. 


Since no theory is available at the moment, we can just 
give some heuristic explanation to this bad behavior. 


When we increase the number of degrees of freedom 
the spectral approximation of the differential operator be- 
comes in some sense more elliptic. The eigenvalues of the 
pseudospectral operator actually grow like N 4 where N is 
the polynomial degree used in the approximation. 
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Figure 9: e = 10 -2 . • = rr/4, 0 = 0.96, 10x10 and 12 
iterations 


Figure 11: Number of iterations for ADN and ARN meth- 
ods with an impinging angie g = •r/k 


1.5 


0.5 • • 0.5 
1 


Figure 10: e = 2 10 -3, • -- •r/4, 0 = 1.1, 12x12 and 17 
iterations 


However the second order operator is multiplied by e and 
this allows us to treat the whole operator like an hyperbolic 
one when N is quite small. 


On the contrary when N grows the pseudospectral oper- 
ator is more elliptic and then the Robin condition involved 
in the ARN scheme is no more sufficient to ensure a fast 


convergence. 


Since the normal derivative is a first order operator and 
since for first order operators the eigenvalues of the spec- 
tral approximation grow like N 2, we haxre chosen 0 • a 


linear function of N 2 (i.e. '• = --) obtaining a sensi- 
14 


ble improving in the convergence rate as shown in Fig. 12 
(the case labeled in the legend with a star). 


In the third test problem we consider a vector field b 
that changes direction along the interface F. In particular 
we have chosen 


(sin (•(2y- 1)) ) b = x (5(2y - 
Note that the magnitude of b is still equal to one. 
The computational domain and the test function are still 


those considered in the first example. Fig. 13 shows the 
number of iterations using ARN and ADN metho• for 
different choices of the relaxation parameter 0. ARN looks 
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Figure 12: Number of iterations for the ARN scheme with 
an impinging angle q = •r/k, k=4 and 500 


tnore stable than ADN. Moreover in ARN method the op- 
timal relaxation parameter is bigger than the one of ADN 
and consequently less iterations are occurred to get con- 
vergence. 


The numerical approximation is still based on the spec- 
tral collocation method using 10x10 nodes in each subdo- 
main. Again the stopping criterion is fulfilled when the dif- 
ference between two subsequent iterates is less than 10 -1ø 
(Euclidean norm of the relative error). 


5 Extension to the nonlinear case 


In this section we are interested in the extension of the pre- 
vious approach to a time dependent nonlinear advection- 
diffusion equation. We consider the model problem, 


Ou 


zx u + ß v u+a, = / 
(17) in a x (0, r) 


where b(u) is a vector function depending on u. 
To advance in time, we introduce a finite difference tem- 


poral approximation. We note by u k the value of u at the 
time level (k At), where At is the temporal discretization 
parameter. 


We consider a semi-implicit scheme as follows: 


Figure 13: Number of iterations for ADN and ARN 
methods for the vector field b = (sin(.•(2y-1)), 
cos(•(2y- 1))) t 


Given u ø, solve 


(1)uk+ • uk+, •-•+a -,/X +b(u •) .V = 


(18) =/•+1 + A'• k = 0, 1 .... 
In this way at each time level we have to solve an 


advection-diffusion problem like the one faced in Sections 
3.1 and 3.2. 


Using ARN for instance the interface conditions between 
• and •2 become (for simplicity we report only the con- 
ditions relative to u• +•, the ones for u• +• are imposed in 
a similar way): 


s On• -b(u•)-n• = 
Ou k+l . u• +1 _• 2 +b(u•) n2 0n2 


0u• k+i 0u2 k+i 
Onl On2 


(19) 


ifb(ul•).nl<0 


otherwise. 
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k i=1,2 stands for the solution of We remind that here u i 
the i-th subdomain at the time level k. Then we can use 


the scheme (11) to approximate (18)-(19). 
We consider now a test problem in which 


(-1.-1) 2 a = f = O, b(u)= (•)e = 10 -5 and , , 


the initial condition is 


uø(x, y) = + y - - ax) 
Although initially smooth, the solution of this problem 


develops an internal layer at some finite time. This fact 
suggests to use a decomposition of • into three subdomains 
instead of two. This allows to capture the development of 
the internal layer. 


Then we consider •1 = (- 1, 0) x (- 1, 1), •2 = (0, 0.4) x 
(-1.1) and •a = (0.4, 1) x (-1, 1). 


As boundary conditions, we prescribe u(x,y,t) = 
uø(x, y) Vt > 0 for all points (x, y) belonging to the lower 
horizontal as well as the two vertical sides of •. Further, 
we require that the normal derivative must be zero on the 
upper horizontal edge of the computational domain. 


Each time level is solved with ARN method with a re- 


laxation parameter equal to one. We obtained a number of 
ARN iterations independent of the time level (i.e. 5 itera- 
tions). The numerical approximation in space is still based 
on the spectral collocation method using 16x16 nodes in 
each subdomain. Again the stopping criterion is fulfilled 
when the difference between two subsequent iterates is less 
than 10 -m (Euclidean norm of the relative error). 


The time step used in this computation is 1/2000. 
In Fig. 14 we have drawn the solution at different time 


levels T. 


We can see that the development of the internal layer 
doesn't affect the smoothness of the numerical solution. 


Moreover since the time-dependent solution changes its 
sign along the interface F•,2 we plot in Fig. 15 the de- 
pendence on time of the zero - point (i.e. the point where 
the vector field b(u) has a zero component with respect to 
the interface normal direction). We remind that this point 
indicates the exchange of the interface conditions in the 
ARN method at each time level k. 


-1 o•.•• 1 o 


1 


'•1 o•••11 1 


1 -1 


Figure 14: The solution of the nonlinear problem at time 
levels T-0.10-0.20-0.30 
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Figure 15: The y-coordinate of the zero-point from T=0 
sec to T =0.30 sec 


6 The use of adaptive methods 
in the framework of projection 
methods for Navier Stokes equa- 
tions 


In this last section we are interested in the approximation 
of the incompressible Navier Stokes equations 


(2o) 


0u 


ot 
-- -e A u+ (u.V) u+Vp = f in fl x [0, T] 


divu=0 in •x [0, r] u lt:o=uo 


For the simulation of the equation (20) we will consider 
the so called projection methods. 


These schemes have been proposed for solve the un- 
steady incompressible Navier-Stokes equations (see [6, 18] 
and some extensions in [9, 20, 19]). 


The simplicity and efficiency of projection methods ren- 
der them particular attractive. The idea behind these 
kinds of methods is to split the equation into intermedi- 
ate steps in order to decouple the viscous effects and the 
incompressibility condition. 


A rigorous error analysis for these projection schemes 
has not been available until recently. In Shen ([14, 15]) 
the author gave a first error analysis for some frequently 
used projection schemes. Although many authors have 
observed second order accuracy for the projection scheme 
presented in [20] only in the last few months Shen ([16]) in 
a further paper has established in a rigorous manner this 
property. 


To start with, we consider the following projection 
scheme derived from the one proposed in [3]: 


Given u ø = u0(x, y), we solve 


(21) 


fik+l _ u k 
At 


•lk+l -- g 


- , A fi•+l +B (fi•,fi•+l) + 
7X7 p& = fk+l 


in •2 


on c9•2 


(22) 


(23) uk+l = fik+l _ • A t •7 ((1 + vat) p•4-1 _ p•) 


where ,$ > 1 and B (u, v) = (u. V)v. 
Since we are interested in simulations of high Reynolds 


flows the diffusive part of the equation (21) is dominated 
by the convective one B (u, v). 


Then ARN and ADN methods can be easily adapted to 
effort the solution of each component of the vector equation 
(21). 


To solve equation (22) we use a classical Dirich- 
let/Neumann procedure. 


As numerical example, we want to show a simulation of 
a viscous, incompressible flow. We consider the so-called 
driven cavity problem. 


The data are as follows: •2 = (0, 1) 2 , s: 10 -a. f = 0. 
The boundary conditions 


are: u = 0 on c• {(x, 1)10_<x<l} and u = (1,0) • 
on {(x, 1)10 _< x _< 1}. Then the Reynolds number is equal 
to 1000. 


We split the computational domain • in two subdo- 
mains: •1 =(0,1)x(0,0.8) and •22 =(0,1)x(0.8,1). The nu- 
merical approximation is still based on the spectral collo- 
cation method using 24x18 nodes in each subdomain. 


Constants in scheme (21)-(22)-(23) are chosen accord- 
ingly to the so called non incremental version of the pro- 
jection scheme (see [9]). 


Then we have • -- 1, v = 0 and '7 = 1. The time step is 
At=l/20. 


For this simulation we have used the ADN method with 


a relaxation parameter 0 equal to 0.65 obtaining a number 
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0.2 0.4 0.6 0•8 1 


Figure 16: Vector field distribution for the driven cavity, 
Re=1000 


of iterations (25/26) independent of the time level (except 
for the first few iterations when the fluid is not moving yet 
across the interface). 


In Fig. 16 we have shown the vector field distribution of 
the velocity for the example illustrated. 
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A Spectral Domain Decomposition Technique 
for Viscous Compressible Flows 


S. Gauthier * F. Renaud * 


Abstract 


A donhain decomposition method is proposed for the nu- 
merical solution of the viscous compressible time-depen- 
dent Navier-Stokes equations. The solution technique con- 
sists of a Fourier- Chebyshev collocation method combined 
with a patching method. The computational domain is de- 
composed into subdomains in the vertical direction only. 
The elliptic problems coming from the viscous terms are 
solved iteratively by means of the Chebyshev procedure. 
Density is matched with a simple upwind procedure, while 
the velocities and the temperature are handled with the 
influence matrix method. Numerical examples are per- 
formed on both stationary - Rayleigh-B•nard convection 


and time-dependent (the so-called "mixing layer") com- 
pressible viscous flows. The method may be extended to 
three-dimensional flows with non-periodic directions. 


Key words: spectral methods, domain decomposition, 
viscous compressible flows. 


AMS subject classifications: 65M99, 65M50, 65M35. 


I Introduction 


Domain decomposition methods have become popular in 
the last years [1]. The motivation is at least twofold. First, 
these methods are well suited to handle complex geome- 
tries. Second, they naturally lead to algorithms adapted 
to parallel computers. However, in the framework of spec- 
tral methods, there is a third motivation since domain de- 
composition methods are also a way to handle flows with 
strong gradients. In this case, the main gradients of the 
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flow are embedded in a subdomain that can follow the gra- 
dients. Moreover, in each subdomain, a transformation of 
coordinates may be used to increase the global accuracy. 


The adaptive coordinate transform based on the min- 
imization of some norms was first introduced in [2] and, 
independently, in [3]. In [2], a coordinate transform was 
chosen to minimize the weighted second Sobolev norm of 
the solution. The numerical method was proven to be 
efficient to compute steady non-axisymmetric as well as 
unsteady axisymmetric flames. In [3], the same norm - 
the weighted second Sobolev norm - was used to simu- 
late a two-dimensional plane flame moving into a reactive 
medium. The histogram of the Chebyshev expansion of the 
solution proves that spectral accuracy has been reached. 


In [4], mappings are used to solve a linear hyperbolic 
equation with a Fourier or a Chebyshev method. The so- 
lution obtained with a mapping adapted with the norm 
displayed much fewer oscillations than the solution without 
mapping. It turns out that the best results are obtained 
with the H2-norm. 


In [5] and [6], the authors compare three functionals: the 
weighted Sobolev norms introduced in [2] and [3], the non- 
weighted norm, and the functional proposed in [7]; which is 
an upper bound for the maximum norm of the spectral in- 
terpolation error. They found that, at least for the studied 
cases, the choice of a specific functional is not too critical. 
However, the crucial point is the actual evaluation of the 
functionals. They selected the best way to perform this 
computation. This numerical procedure is used to simu- 
late the temporally growing compressible mixing layers. 


However, such a method cannot handle several stiff gra- 
dients on the same domain: the effect of the presence of 
one gradient is to bring most of the collocation points in 
the vicinity of the strong gradient. It may result in a lack 
of resolution elsewhere. In other words, there is only one, 
or sometimes two, parameters in the mappings, making 
them not flexible enough for some complicated solutions. 
This is the reason the domain decomposition strategy may 
be useful in simulating these flows. 


The domain decomposition strategy may be used in two 
ways: applying it to methods of variational type and ap- 
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plying it to patching methods. Examples belonging to 
the first type are the spectral element method [8] and the 
method described in [9]. In these methods, one defines 
a large number of subdomains, with a small number of 3. 
collocation points, without transformation of coordinate. 
The accuracy is obtained by increasing the number of sub- 
domains rather than the number of points in each subdo- 
main. The second type of methods - the patching methods 
- uses a relatively small number of subdomains with a large 
number of collocation points in order to reach spectral ac- 
curacy. In each subdomain, self-adaptive transformations 
of coordinate, which depend on one or more parameters, 
may be used. The values at the interfaces are solutions of 
a system which can be solved directly or iteratively. 


The first application of a spectral multi-domain method 
for viscous compressible flows was presented in [10]. The 
method imposes a global flux balance condition at the in- 
terface. This scheme is applied to one-dimensional super- 
sonic viscous compressible reacting flows up to Mach 11. In 
the middle domain. a mapping is used and the parameter 
is adjusted by hand. 


Domain decomposition for inviscid compressible flows 
have been investigated by Kopriva [11], who successively 
studied multidomain in one and two-directions of a two- 


dimensional space. In the latter case, the solution in com- 
plex geometries is obtained using a combination of patched 
and overset grids. The extension to viscous flows is pre- 
sented in [12], where a two-dimensional, nonoverlapping 
multidomain spectral collocation method is applied to sub- 
sonic and supersonic flows over a fiat plate. In each subdo- 
main, linear, non-adaptive transformations of coordinates 
are used and time marching is explicit. (1) 


In this paper, •ve present a multidomain patching tech- 
nique for the full Navier-Stokes equations. The depen- 
dent variables are expanded on the Fourier functions in 
the horizontal homogeneous direction and on the Cheby- 
shev polynomials in the vertical inhomogeneous direction. 
The features of our method are as follows: 


which reflects the continuity of the function and its 
first normal derivative at the interface. 


In each subdomain, a self-adaptive transformation of a 
coordinate is used. Indeed, since strong gradients may 
occur in the middle of the subdomain, a transforma- 
tion of coordinate is used to bring the mesh points in 
the vicinity of the gradient. These mappings need to 
be self-adaptive because these gradients move in time. 
Consequently, the parameters of these mappings are 
recalculated frequently during the computation. This 
technique leads to a better accuracy. The parameters 
of the mappings are optimized by minimizing the H i 
norm, as in [5]. 


The numerical algorithm is first tested against a steady 
state of the compressible Rayleigh-B•nard convection. 
This solution is used as a test of the multidomain method, 
since no strong gradients occur. Then, simulations of 
the time-dependent Kelvin-Helmholtz instability, in which 
strong gradients occur in the middle of the central subdo- 
main and move in time, are carried out and analyzed. 


The next section recalls the basic equations. The algo- 
rithm is described in Section 3. Numerical applications are 
reported in Section 4. 


2 Governing equations 


We use the full Navier-Stokes equations under the form 


Op 
-- •- •7 ipU i ---- O, 
Ot 


Opui 
(2) 
The energy equation is written for the total energy E, it 
reads 


1. Time marching is done with a semi-implicit third or- (3) 
der Runge-Kutta scheme in a low-storage formulation 
[13], [14]. The advective terms are treated explicitly 
and all diffusion terms are handled implicitly. Since 
transport coefficients are constant, the implicit stage 
is performed in the Fourier space by means of a Cheby- 
shev iterative scheme [15]. This procedure allows us 
larger time steps. 


The vertical direction is decomposed into nonoverlap- 
ping subdomains. Density is matched with a simple 
upwind procedure. The velocities and the tempera- 
ture are handled with the influence matrix method 


, 


0•-- •- •7ipui E + AT 
•-BT•7i•7iT •- CT•7i ((•ijuj) , 


where o'ij is the viscous stress tensor. 


(4) 25 u o-ij -- •7iu j -•- •7ju i - • iJ •7œ œ. 
The system of equations is close with the perfect gas law. 
The thermal conductivity and the dynamic viscosity have 
been taken constant and the values of the constants ap- 
pearing in the Eqs.(1-4) will be specified below, in the nu- 
merical applications. 
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3 The numerical method 


3.1 The domain decomposition method 


The physical variables p, u = (u, v) i and E are expanded 
on each subdomain, on the Fourier functions in the hori- 
zontal homogeneous direction, and on the Chebyshev poly- (7) 
nomials in the vertical inhomogeneous direction. The tem- 
poral discretization is the third order, low storage, semi- 
implicit Runge-Kutta scheme [13], [14]. All diffusive terms 
are handled implicitly in the Fourier space by means of a 
Chebyshev iterative procedure according to [15]. 


The system of the full Navier-Stokes equations is incom- 


pletely parabolic, since the equation for the density is hy- (8) 
perbolic. The matching of the density requires only the 
continuity of the function. A simple scheme for this reads 


r/ps+• (zb,s+l) if v < 0 
P (Zt.s) = r]Ps (Zt.s) + 


(1 - 7) Ps+x (zb.s+x) if v > 0 
for s=l, .... S-l, 


where zt..• (resp. zb,s) is the upper coordinate (resp. lower) 
of the interface of the subdomain s, and S is the total 
number of subdomains. The parameter r• is a real number 
between 0 and 1. The value r• - 1 corresponds to a pure 
upwind scheme. In this case, the density equation is solved 
in the subdomain number 1, without boundary conditions. 
In the second domain the equation is solved by using the 
value of the density of the previous domain, at the inter- 
face, as a boundary condition. For any value different from 
r• - 1, Eq.(5) is an averaging procedure between two ad- 
jacent subdomains. The parabolic equations require the 
matching of the function and its first derivatives. Several 
solution techniques are available (for a review, see [13]) 
and we chose. for the simulations reported here, the influ- 
ence matrix technique used in the domain decomposition 
framework in [16] and [17]. Since all diffusive terms in the 
full Navier-Stokes equations are nonlinear, these terms are 
separated into two contributions as 


100'ij _ ( • 1 ) 00'ij 100'ij (6) p Oxj ps + Ps Oxj 


where p = p (x, z, t) and ps -- p s (z). This does depend 
upon the z-coordinate and thus may be close to the total 
density. The difference between p - Ps is only due to the 
variation of the density in the x-direction. The first part 
is treated explicitly, while the second is handled implic- 
itly. This splitting has been suggested in [18] and used by 
several authors [19]. 


The matrix influence method is applied to the temper- 
ature and to the two components of the velocity. The 
method for a scalar variable is given in [16] and in the 
latter case, it is generalized as follows. The solution is 
decomposed as 


s s s s 


n s = H s q- AlU 1 q- A2il 2 
s s 


+A}u}+A4u 4 for s=l,...,S 


The A• are real coefficients which have to be determined 
with the continuity conditions. The velocity •s is the so- 
lution of a non-homogeneous elliptic problem 


d2• s d-U s 


dz 2 cr,• s - n,• d--J- = S,•, 
d2U s d• s 


dz 2 cr,• s - n,• dz -S'•'s=I'"'S' 
with homogeneous Dirichlet boundary conditions 


(9) aS(z,s) :0, =0, 1,...,s. 


The u• are solutions of homogeneous problems 


2 s dv• d Up 
dz 2 rr,uUp - n,u dz = 0, 


(10) 2 s d Vp du} 
dz 2 cr,•v• -- •,• dz = 0, 


fors=l,...S, and p-1,2,3,4 


with non-homogeneous Dirichlet boundary conditions 
written as 


(11) 
U--; ( Zb, s) -- •lp , •; ( Zt,s ) -- •2p 
--s (Zb,s) __ (•3p •; (Zt,s) -- •4p Up , 


for s-1,...S, and p-1,2,3,4 


The problems defined by Eqs.(8-11) are one-dimensional, 
linear with variable coefficients. It is well-known that the 


matrix associated to this system is ill-conditioned. As a 
result, it is solved with the Chebyshev iterative procedure 
detailed in [15]. The physical boundary conditions are of 
the general form 


du 


O•i,u•Z Z (Zb,1) -+-•l,uU(Zb,1) -- 0, 
(12) 


du 


(z,,s) + Vs,u (z,,s) = o, 
and the same set of equations for the vertical velocity. The 
matching conditions read 


II s (Zt,s) ---- U s+l (Zb,s+l) , 8: 1,...,S- 1, 


(13)duS duS+l (Zb.s+l) $--- 1,... S- 1 dz (z•,s)- dz ' ' ' 
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Rayleigh V.•a• MaChmax Pmax Truax Pmax a•max a•min (divu)max (divu)min 
number 


1000 15.125 0.175 0.068 0.063 0.051 75.595 -75.595 5.141 -10.246 


Table 1: Characteristics of the Rayleigh-B•nard steady solution. The Rayleigh number is equal to 1000, Z - 1, m - 1, 
the Prandtl number and the adiabatic index are equal to 0.71 and 1.67, respectively. The norm of the velocity is V. Pmax, 
T,•a•, and Pmax are the maximum of the relative fluctuations of the density, temperature and pressure, respectively. 
The vorticity is o: and divu is the divergence of the flow. 


The set of Eqs.(12, 13) is a linear algebraic system of 4S 
equations. The resolution provides the A's that allows us 
to build the solution in each subdomain through Eq.(7). 


3.2 The adaptive coordinate transform 


As already stated, the representation of a strong gradient 
anywhere in the domain [-1, 1] requires a huge number of 
polynomials unless a transformation of coordinate of the 
form z = f (•,a) is used, where a is a real parameter. 
The physical z-space is mapped, by the function f, in the 
computational i-space. In this new space, functions which 
exhibit rapid variations in the physical space, have a slow 
variation, provided the parameter a is correctly chosen. It 
has been shown [2], [3] that the optimal choice is obtained 
by minimizing the interpolation error. This one is bounded 
by the norm of the solution itself through the inequality 


for cr _> 1/2 and 0 


The inequality (14) provides a criterion to select the best 
value of the parameter a. The practical computation of the 
weighted Sobolev Hi-norm is detailed in [5]. The criterion 
applies to one variable or a combination of variables. This 
choice depends upon the flow. Our numerical experiments 
show that the best choice is the horizontal velocity for 
the Kelvin-Helmholtz flow. This is agreement with Ref.[5]. 
There is no very strong gradient in the Rayleigh-B•nard 
convection, as a result, all variables, except the density, 
lead to the Gauss-Lobatto mesh. 


4 Numerical results 


4.1 The Rayleigh-B•nard instability 


We first simulated the Rayleigh-B•nard convection as a 
test of the domain decomposition method since there is no 
strong gradients in this flow. The fluid layer is extending 
from Zo to Zo + d, where Zo is the altitude and d the layer 


thickness. The vertical z axis is directed downwards so 


that the gravitation represented by the vector g = (0, g) is 
positive along this direction. The equations are classically 
written under a dimensionless form by using d as the unit 
of length so that the fluid extends from Z -x to Z -x + 1, 
where Z = d/zo. The units of density and temperature 
are the values at the top of the layer, p (Zo) and T (Zo), 
respectively. The unit of time is given by the viscous time 
scale d2p (Zo)//•, where/• is the constant dynamic viscosity. 
Moreover, we choose a zero temperature at the origin so 
that the basic conduction state, obtained by canceling O/Or 
and the two components of the velocity u and v in the 
Navier-Stokes equations, reads [15] 


(15) To (z) = zZ, Po (z) : [zZ] m, 


where m is the polytropic index. The equation of state is 
the perfect gas law. The constants introduced in Eqs.(1-4) 
are expressed as 


Au :'•../(o'(m-t- 1)2 Z2 Im-•_ 1 */-•11) , 
(16) B•=i,C.•=O,C•=A•(Z(m+i)), 


where • is the Rayleigh number, the Prandtl number is • 
and 7 is the adiabatic index. The boundary conditions are 
of Neumann type for the velocity and of Dirichlet type for 
the temperature. 


(17) v=0, O•u=O on z=Z -•,Z -•+1 T=i,Z+i on z=Z-•,Z-•+i 


A steady solution characterized by a Rayleigh number 
equal to 1000, Z = 1, m = 1, a Prandtl number and 
the adiabatic index equal to 0.71 and 1.67 respectively, 
has been computed. This solution h• also been obtained 
with a single domain pseudo-spectral code [20] and it is 
used here • a test of the multidomain method. The mesh 


is made of two subdomains, the interface is located at 
z = 1.5, 26 Chebyshev polynomials and 32 Fourier func- 
tions have been used in each subdomain. Some character- 


istics of the solution are given in Table 1. The differences 
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between the multi and single-domain are very small. This 
solution has been obtained for three values of the toler- 


ance of resolution of the elliptic problems: 10 -s, 10 -1ø 
and 10 -12. The formula (5) is mainly used with r/ = 1. 
However, the choice r/- 0.5 has been tested and does not 
affect this steady state. 


This solution has also been obtained with 2 domains 


and the interface located at z = 1.67. In this case, 37 and 
17 Chebyshev polynomials with 32 Fourier functions have 
been used in each domain. In all cases, the matchings of 
the functions are exact. The error on the first derivatives 


across the interface is defined as 


' + ' ,s = 1,...,s-1. tis t/s+ 1 
(18) 
This quantity is of the order of 10 -1ø for the velocity and 
the temperature. We have checked that spectral accuracy 
has been reached by looking at the decay of the coefficient 
of the expansions in the Chebyshev-Fourier space. The 
vorticity contours of this steady convection are shown in 


.•_ 2.01 
'01 1, 


0.0 0.5 1.0 1.5 2.0 2.5 


X-axis 


Figure 1: Contours of the vorticity in the Rayleigh-B•nard 
flow. 


Fig. 1 and contours of the divergence are in Fig. 2. Note the 
smooth contours of these quantities, obtained by derivation 
of the primitive variables. 


In these steady solutions, matchings of the second 
derivatives of the velocity and temperature are very good. 
It depends on the tolerance of resolution of the elliptic 
problems defined by Eqs.(8-12). For a tolerance of 10 -s, 
the accuracy is of the order of 10-2; for a tolerance of 
10 -12, the errors are only of 10 -5 - 10 -6. 


4.2 The Kelvin-Helmholtz instability 


This flow has received much attention in the last years, due 
to its application in Scramjet conception. Direct numeri- 
cal simulations have been carried out using either finite- 
difference type method and spectral methods [5]. The 


2.0 


1.0 


0.0 0.5 1.0 1.5 2.0 2.5 


X-axis 


Figure 2: Contours of the divergence in the Rayleigh- 
B•nard flow. 


method used in this reference has been detailed in the in- 


troduction. It is based on a Chebyshev expansion in the 
two directions and an adaptive mapping in the vertical di- 
rection. The domain decomposition method described pre- 
viously has been run on this configuration. We present in 
this section some simulations of this flow. From a numeri- 


cal point of view, the interest comes from the presence of 
large gradients of horizontal velocity in addition with the 
unsteady character of this configuration. The basic state 
is found by assuming, as in the boundary layer approxima- 
tion, that the pressure is constant and the total enthalpy 
is constant with the Prandtl number is equal to one. 


1 


u = •Tanh (2z), v -- 0, 
(19) T = 1 + 3'- 1 •2r 2 (1- 4u 2) 2 ' 


i 1 


A•, 47M2 , B•, Re' C.,• O. 
(20) 


AT-- (?--1-•--•) BT = -- CT=4(^/--1) 3/I2 ? ' Reef' Re 
Regarding the boundary conditions, both the horizontal 
velocity and the temperature are of Neumann type 


(21) v = 0, 0zu = 0, cqzT = 0 on z = zb,1, zt,$. 


The code h• be run on a Kelvin-Helmholtz flow defined 


by a Reynolds number equal to 400, a Mach number equal 
to 0.8 and a wavelength of 20. The Prandtl number is 
1 and the adiabatic index is 1.4. Three runs have been 


c•ried out with 3 subdomains with 72 Fourier functions 


and 5•/5•/5•, 5•/73/5•, •/5•/• Chebyshev polynomi- 
als. The interfaces are located at z = •4. The match- 


ings of the functions are exacts. The error on the first 
derivatives, computed with the formula (18), is of the or- 
der of 10 -m for the velocity. Since mappings •e adapted 
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Discretization Vraax Machraax Pmax Truax Praax (•d/P)raax (•d/P)rnin 
51/51/51 0.64141 1.0695 0.32357 0.13266 0.35080 0.01072 --0.85754 
51/73/51 0.64141 1.0691 0.32423 0.13343 0.35011 0.01089 --0.85762 
91/51/91 0.64124 1.0692 0.32298 0.13245 0.35000 0.01023 --0.85763 


Table 2: Characteristics of the time dependent Kelvin-Helmholtz solution, at t - 40, computed on three domains. The 
interfaces are located at z - +4. The Reynolds number and the Mach number are equal to 400 and 0.8 respectively. 
The wavelength of the initial perturbation is 20. The Prandtl number is 1 and the adiabatic index is 1.4. The potential 
vorticity is (w/p). 


on the horizontal component of the velocity, the error on 
the matching of the first derivative of the temperature is 
slightly larger: of the order of 10 -s. The results of these 
three runs are very close to each other: notice that the 
meshes are not the same in these three test cases. This so- 


lution has been computed by [5] using their adaptive pro- 
cedure on a single domain. The comparison is performed 
by looking at the evolution of global quantities, such as the 
vorticity thickness, and some characteristics of the solution 
reported in Table 2. The vorticity thickness is defined as 


(22) •,j,• = • , 
where the overbar denotes the average in the x-direction. 
Its evolution is represented in Fig.3 and is very good agree- 
ment with the thickness reported in [5]. The vorticity con- 
tours of this unsteady solution are represented in Fig. 4 
and contours of the divergence are displayed in Fig. 5. The 
importance of the velocity gradients are revealed in Fig. 6. 
These gradients justify the use of both domain decompo- 
sition and self-adaptive coordinate transformations. 


In these time-dependent simulations, especially when 
the spatial resolution is not high enough, the second deriva- 
tives deteriorate as time goes on. However, in the results 
presented in the paper, the errors remain acceptable. 


5 Conclusions 


One of the first examples of domain decomposition, as- 
sociated with a self-adaptive coordinate transformation, 
for the numerical solution of the viscous compressible flow 
simulations has been described. Numerical applications 
to stationary and time-dependent two-dimensional viscous 
compressible flows have been carried out. 


One of the difficulties is that the number of mesh points 
has to be large enough to ensure accurate derivatives at the 
interfaces. In this way, the coefficients of the influence ma- 
trix are precisely computed. As the solution becomes stiff, 


2.0 


1.0 


0 10 20 30 40 


time 


Figure 3: Evolution of the vorticity thickness in the Kelvin- 
Helmholtz flow. 


the number of mesh points needed can be very large. An 
approximate solution of the influence matrix linear system 
and the equations of the continuity of the second deriva- 
tives, might be a way to overcome this difficulty. 


The extension to three-dimensional flows with two ho- 


mogeneous directions is straightforward. Generalization to 
multiple non-periodic directions is also possible. 
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Figure 4: Contours of the vorticity in the Kelvin-Helmholtz 
flow at t -- 40. 
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for Multi-Domain Solution of the Unsteady, 
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Abstract 


We develop a unified approach for dealing with open 
boundaries and patching of non-overlapping subdomain 
boundaries when performing simulations of the unsteady, 
three-dimensional, compressible Navier-Stokes equations 
given in conservation form. The appropriate boundary 
operators are derived by utilizing linearization and local- 
ization at the boundaries, and enforced through a penalty 
approach. 


We apply a polynomial collocation method as a spatial 
approximation scheme and prove the semi-discrete initial- 
boundary value problem asymptotically stable through an 
energy method. The scheme converges uniformly to the 
limit of vanishing viscosity and, hence, remains valid also 
for the Euler equations. 


The {zersatility of the scheme is demonstrated for multi- 
domain solutions of quasi-one-dimensional transonic nozzle 
flows and for flow around an infinitely long circular cylin- 
der. 
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I Introduction 


The issue of the application of spectral methods to prob- 
lems involving complex geometries has been a subject of 
active research in the last decade. Spectral methods re- 
quire interpolation at the nodes of a Gauss type quadrature 
formula. Thus, the mesh points are predetermined and in- 
flexible. In particular, the distribution of grid points is 
denser in the neighborhood of boundaries. This fact leads 
to considerable difficulties, even in one dimension, since 
for many problems the information is given in points dif- 
ferent from those required by the spectral method. This 
fact manifests itself more severely when dealing with multi- 
dimensional problems and seems to limit the applicability 
of spectral methods to simple domains. 


A powerful method used to overcome the limitations of 
spectral methods is the use of multi-domain techniques, in 
which a complex domain is decomposed into several geo- 
metrically simpler subdomains. An additional advantage 
of this approach is that multi-domain spectral methods are 
well suited for coarse grain parallel computing, with each 
subdomain being assigned to an individual processor. 


The natural question posed by the multi-domain ap- 
proach is how to specify appropriate patching conditions 
between the subdomains. For purely hyperbolic problems, 
it is well known that patching through the characteristic 
variables leads to a stable approximation. However, for 
dissipative wave problems the procedure is considerably 
more complicated. 


Naturally, we must require the patching conditions to 
lead to a well-posed, continuous problem in each subdo- 
main. For wave problems of dissipative type, the problem 
must, in order to be compatible with weak boundary lay- 
ers, remain well-posed even in the limit where the dissipa- 
tion vanishes and the problem becomes purely hyperbolic. 
In addition to this, we wish that the discrete approxima- 
tion of the problem is asymptotically stable, and that the 
boundary conditions are easily implemented. 


For general non-linear problems the issues of well- 
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posedhess and asymptotic stability are very complicated 
and for most problems only very little is known. However, 
as discussed by Kreiss and Lorenz [1], we may, for a large 
class of operators, simplify the problem significantly if the 
solutions are smooth. It was shown that in this case it is 


sufficient to consider the questions of well-posedness and 
asymptotic stability for the linearized and locally constant 
coefficient version of the full problem with homogeneous 
boundary conditions. 


In this paper we present a unified approach for deal- 
ing with open boundaries and subdomain boundaries when 
performing simulations of the three-dimensional, com- 
pressible Navier-Stokes equation in conservation form. The 
presentation is partly based on results from [2, 3] where 
similar problems are treated in detail. The emphasis will 
be on, essentially, one dimensional patching schemes. How- 
ever, by •vriting the Navier-Stokes equations in general 
curvilinear coordinates we obtain a scheme that is also ap- 
plicable to multi-dimensional problems, provided patching 
is required along one coordinate axis only. 


In the development of the scheme, we apply the energy 
method to the linearized, constant coefficient version of 
the continuous problem to obtain energy inequalities which 
bound the temporal growth of the solutions to the initial- 
boundary value problem. This approach allows us to derive 
a novel set of boundary conditions of Robin type, which 
ensure the complete problem to be well-posed. This result 
is obtained for the Navier-Stokes equations given in general 
curvilinear coordinates. 


It has traditionally been found difficult to apply bound- 
ary conditions of Robin type when doing pseudospectral 
simulations of non-linear equations. Here, we show how 
to implement the boundary conditions as a penalty term, 
which allows for enforcing open boundary/patching condi- 
tions of a very general type. An attractive feature of this 
approach is that we may prove asymptotic stability of the 
semi-discrete scheme, thus gaining confidence in the com- 
puted results when addressing unsteady problems where 
long time integration is required. 


A multi-domain scheme, where the patching of sub- 
domains is based on a penalty method, is strictly local in 
space and time, thus making it well suited for implementa- 
tion on contemporary parallel computer architectures with 
distributed memory. 


Several schemes for calculating the multi-domain solu- 
tion of viscous compressible flows have recently appeared 
[4; 5, 6]. However, the emphasis has been on methods for 
steady state problems. All previous methods for viscous 
flows are based on applying a separate treatment to the 
inviscid part of the equation; in most cases using methods 
known from the Euler equations, and applying a separate 


treatment to the viscous part of the equation. This second 
contribution is then applied as a correction to the result 
obtained from the inviscid patching. 


The main difference between the previously proposed 
methods and the one developed here is that we develop 
a patching which accounts for the inviscid and viscous 
part of the equation simultaneously. Emphasis is directed 
towards developing methods that can handle general un- 
steady flows, and we apply high order explicit time integra- 
tion schemes to verify that the proposed method, indeed, 
is well suited for simulating unsteady flows. 


The remaining part of the paper is organized as fol- 
lows. In Sec. 2. we introduce the penalty method and 
demonstrate the idea for the scalar wave equation. Sec- 
tion 3 contains the central parts of the paper, where well- 
posed boundary conditions to the three-dimensional, com- 
pressible Navier-Stokes equations in conservation form are 
derived and a semi-discrete asymptotically stable penalty 
method for enforcing these conditions is proposed. This 
leads to Sec. 4 where we present several examples of the 
use of the proposed scheme when addressing one- and two- 
dimensional compressible flow problems. Section 5 con- 
cludes with a brief summary. 


2 The penalty method 


Prior to developing the scheme for the compressible Navier- 
Stokes equations, we illustrate the idea behind the penalty 
method for the scalar problem 


{ ut--,ux I1_<1, v(x,0) = h(x) , 
v(1, t)=g(t) 


where A > 0. We wish to solve this problem using a Legen- 
dre collocation method. The choice of the Legendre basis 
is made merely to simplify the example. The main results 
carry over to other polynomial collocation methods, e.g. 
Chebyshev methods. The Legendre interpolation opera- 
tor, IN, is defined as 


N 


.l'NV(X) ---- • u(xi) fi(x) , 
i=0 


where A (x) are the Legendre-Lagrange interpolating poly- 
nomials [7], and xi denotes the Legendre-Gauss-Lobatto 
collocation points. We seek a solution, u(x, t), such that 


Ou Ou 


• =• at x=xi, i• [0...,N-I] . 
The usual way to impose the boundary condition is to en- 
force u(xN) = g(t). However, this approach does not take 
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into account the fact that the equation should hold arbi- 
trarily close to the boundary. To circumvent this problem, 
Funaro and Gottlieb [8, 9] developed the penalty method 
which enforces the boundary conditions, as well as the 
equation at the boundary. They propose to use the scheme 


where 


(1) 


au = x Ou _ rQ+(x) [u(1) - g(t)] • Ox ' 


Q+(x) -- (1 + x)PJv(X ) 
2P•(1) 


Here, PN is the Legendre polynomial of order N. Note 
that Q+(x) equals zero at all the collocation points, ex- 
cept the endpoint, XN = 1. By using the penalty method, 
the boundary condition becomes a part of the equation, 
although it also implies that the boundary condition is en- 
forced only weakly. 


The parameter r is then to be determined such that the 
semi-discrete initial boundary value problem is asymptot- 
ically stable. Without loss of generality we may assume 
g(t) = 0 [1], and obtain a sufficient condition for stability 
through the use of an energy argument as 


•=0 i=0 


N 


(2) -• • •(xi)Q +(xi) u(1)•i 5 0 , 
i•0 


where •i are the Legendre-Gauss-Lobatto weights [7]. 
Using the Legendre-Gauss-Lobatto quadrature formula, 
Eq. (2) becomes 


ld 1 


2 d• I1•11• = • [u•(1) - u•(-1)] - •u•(1) 5 0 , 
wh• •: 2/•(• • 1) and I1' II • •Xgnme• •he L•-norm. 
Hence, asymptotic stability may be obtained if • is chosen 
such that 


• •(• + 1) 
- 2• 4 


We note that for N • • the penalty method is equivalent 
to the traditional approach. Although not relevant for this 
simple problem, it is important to realize that since the 
boundary operator is applied • an independent part of 
the equation we may impose even very complicated types 
of boundary conditions in a straightforward and consistent 
manner when using the penalty method. 


The only difference between the Legendre and the 
Chebyshev collocation scheme is that the expression for 
• may not be found by analytical means in the latter c•e 
[8, 10]. 


In [9] the penalty method is extended to systems of hy- 
perbolic equations, and it is shown that the results carry 
over when the boundary conditions are imposed through 
the characteristic variables. 


3 The compressible Navier-Stokes 
equations 


Consider, now, the non-dimensional, compressible Navier- 
Stokes equations in general curvilinear coordinates 


__ O•i 1 (a) oq+ = 
Ot O•i Reref 


Here, and in the remaining part of the paper, we will use 
the summation convention unless otherwise stated. The 


curvilinear coordinates, (•1, •, •a) • f•, are defined as 


and related to the Cartesian coordinates, (x•,x2,x,), 
through the transformation Jacobian 


The state vector, q, and the inviscid flux vectors are de- 
fined as 


q = Jq , Fi = JFj , 


where we have introduced the symbols 


•_ 0• • Ou• T•_ OT Ox• ' u• = o• ' - 0• ' 
and likewise for the Cartesian velocity components, 
(u•,u=,ua), and the temperature field, T, which will be 
introduced shortly. The Cartesian components of the vec- 
tors are given • 


q __ 


p 


pu2 


pu3 


E 


, Fi-- 


pui 


pului + 5•i p 
pu•ui + 5• p 
puaui + 5•i p 


(E + p)u• 


Here, p is the density, E is the total energy, p is the static 
pressure and 5ij represents the Kronecker delta-function. 


The total energy 


(1) E = p T '•- •UiU i , 
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and the pressure are related through the ideal gas law 


P= (7-1)pT , 


where 7 = Cp/Cv is the ratio between the heat capacities at 
constant pressure (Cp) and volume (cv), respectively, and 
is assumed constant. 


The viscous flux vectors are in a similar manner defined 
as 


with 


= JFj •i , 


0 


7'2•1X i 


7-X3Xt 
.yk OT 


Considering only Newtonian fluids, the elements of the 
symmetric stress tensor are given as 


loci Ou) 
Here,/2 is the dynamic viscosity, h is the bulk viscosity and 
k is the coefficient of thermal conductivity. The velocity 
flux and the temperature derivatives are obtained as 


Oui • j OT • i 
Ox• = ui •k , Oxi = T •k ß 


The equations are normalized using the reference values, 
ttref = •, Pref = /5, Pref : /5•2, Tref: a2/Cv, where (/5, 6) 
is some characteristic state, and a reference length L. This 
yields a Reynolds number as Re = PaLIft and a Prandtl 
number as Pr = Cpfi/[c. Note that the Reynolds number 
in Eq.(3), R%ef (based on the reference values) is, in gen- 
eral. different from Re. In the remaining part of the paper 
we shall refer to the latter as the Reynolds number unless 
clarification is deemed necessary. With this normalization 
we need to specify the Mach number, M, the Reynolds 
number, Re, the length scale, L, and a dimensional tem- 
perature, To. 


We consider only atmospheric air and take 7 = 1.4 and 
Pr = 0.72 in all problems. To model the temperature 
dependence of the dynamic viscosity we apply Sutherland's 
viscosity law [11] 


•t(r) __ (r •3/2 rs q_s 


where we have/z, = 1.716 x 10 -5 kg/msec 2, R = 273 øK 
and S = 111øK for atmospheric air. Assuming that the 


Prandtl number is constant allows for modelling the tem- 
perature dependency of the coefficient of thermal conduc- 
tivity similarly, and in all simulations we adopt Stokes hy- 
pothesis (see e.g. [11]) to obtain A 2 = -X/z; although the 
analytic results are given for the general case. 


3.1 Well-posedness and boundary condi- 
tions for the continuous problem 


In order to develop the appropriate boundary operator, we 
begin by splitting the viscous flux vectors as 


3 


j=l 


where we introduce the vector, 1-I&• = JII&•;, defined as 


0 


•/(V•i. V•j)7.L• q_ X• V•j. U j q_ •/•31. Vii. u j 
+ xsfvs. + u 


(v5i. + 52v5. + 
•(V•j' H)(V•i' U j) + •(V•i' U)(V•j' U j) 


+ (V•i. V•j)(•u. u j + •kTJ5 ''' Pr ] 


with uJ = (u•, u•, u•). This splitting is equivalent to the 
one proposed in [12], although here it is given in general 
curvilinear coordinates. Borrowing the terminology from 
that work, we term the inviscid flux vectors as the hyper- 
bolic part of the flux. For i = j we obtain the parabolic 
part of the operator, while summing the parts with i y• j 
results in the mixed contribution. 


We continue by introducing the transformation JacobJan 


(4) Ai- o_ 
where we define 


qi = O•i 
This allows for writing Eq.(3) as 


where summation over indices is assumed as usual. Note, 
that by construction we have Bij -- l•ji. 


It is well known that Navier-Stokes equations, although 
being an incomplete parabolic system, support waves very 
similar to those encountered in the hyperbolic Euler equa- 
tions. For hyperbolic systems, Gottlieb et al. [13] have 
shown that enforcing the boundary conditions through the 
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characteristic variables of the system results in a stable ap- 
proximation. 


VVe will seek a boundary operator appropriate for enforc- 
ing ,boundary conditions in the El-direction. For simplicity 
we assume E1 mapped such that E1 E [-1, 1]. 


For Navier-Stokes equations, we linearize around a uni- 
form state, •t, by fixing •4i and Bij, and transform into 
characteristic variables by diagonalizing •41 through a sim- 
ilarity transform, A -- •q-l•41•q , where A is the diagonal 
eigenvalue matrix with Aii = •i and • and •-l are the ma- 
trix of right and left eigenvectors, respectively. We must 
require ]$] and ]$-•] to be bounded. Applying this, the 
symmetrized, linearized set of equations transforms into 


where • = 8-1q are the characteristic variables. We have 
introduced a positive definite, symmetrizing diagonal ma- 
trix, QT Q = diag[X, 2, 2•/(7- 1), 2, 1], where • = •• 
is the uniform state sound speed. Additionally, we define 
the symmetric matrices [2] 


The expression for the explicit entries in Bi•. may be ob- 
tained from [3], where the diagonalizing matrices, 8 and 
3-• are also given. 


The entries in the diagonal matrix, A, are found as 


and correspond to the velocities of the characteristic waves 
for the Euler equations. We have introduced the unit vec- 
tor. fl. pointing along • • 


Additionally, we obtain the characteristic functions, R, as 


• - •i + • (z + • - •i•i) 
(• - pa•)• - (• - p•l)• 


(• - pa•)•l - (• - pa•)• 
-(mi - p•i)ni + • 


where mi = pUi iS the momentum. Here Rx and R• cor- 
respond to co- and counter propagating sound waves, re- 
spectively; R2 and R4 represent vorticity waves whereas 
R• is an entropy wave. 


By defining a viscous correction vector, G, as 


• • = r• • + (rl• + •)• + (rh + r•l) a• ' 


we are now ready to state the main result of this section. 
The Lemma will be given without proof, as a detailed proof 
for the Cartesian case may be found in [2]. 


Lemma 3.1 Assume there exists a solution, q, which is 
periodic or held at a constant value at the 62- and •3- 
boundary. If the boundary conditions in the El-direction 
are given such that 


1 TA• 2 •TQTQ _•0 , V(•2,½•) ' -3 Refer e•=_• 
and the fluid properties are constrained by 


•_o, •o, •+•_o, •---•po, •,_•1, 
- Pr - 


then Eq. (5) constitutes a well-posed problem and the solu- 
tion is bounded as 


l d 1 • (OR-13.•.OR• 2 dt II •ll 2 < 


The proof is b•ed on the hct that Bi•. = B•i all are sym- 
metric matrices. Thus, well-posedness is ensured by prov- 
ing the quadratic form under the integral semi-positive. 
This is obtained provided the fluid properties are con- 
strained as given in the Lemma and the mapping is non- 
singular. For details we refer to [2]. 


For most real fluids under non-extreme conditions, it 
is true that • is positive, • is negative and the following 
relationship is obeyed [12] 


> 5+2• • • . 
Pr - 


Thus, the conditions on the fluid properties as given in 
Lemma 3.1 are only natural. In fact, if this is not obeyed, 
Navier-Stokes equations may be shown to violate the sec- 
ond law of thermodynamics [14]. 


As stated in Lemma 3.1, the appropriate boundary op- 
erator must be determined by construction such that 


-- •50 . 
2 Refer - 1 


Since QrQ is a diagonal positive definite, this may conve- 
niently be reformulated • 


where Ai are the wave speeds by which the characteristic 
variables are advected (as given by the diagonal elements 







450 ICOSAHOM 95 


of A), and we have introduced e = Reref -1. This for- 
mulation makes it straightforward to devise inflow-outflow 
boundary conditions, which are maximally dissipative and 
ensure well-posedness of the complete problem. 


We note, in particular, that the formulation takes into 
account the off-diagonal terms of the stress tensor, which 
may be of importance if the artificial boundary is intro- 
duced into a strongly vortical region of the flow. 


Using this, the boundary operators on the characteristic 
variables may be expressed as [2] 


Inflow Boundary ß Tg-R - eG-G 
Outflow Boundary ß 7•+•+ sG+• 


We have expressed the operators by introducing 4 di- 
agonal matrices, 7•-, 7• +, •- and •+, which ensures 
the correct construction of the operators. The four ma- 
trices are defined as 7•- = diag[A1, A2, •3, •4, a•5] and 
•- = diag[1, 1, 1, 1, 1] at the inflow boundary with c• = 0 
for subsonic conditions, and c• - i for supersonic condi- 
tions. 


At the outflow we likewise define the operators 7• + = 
diag[0.0.0, 0, 21•51] and •+ = diag[0, 1, 1, 1, 1], where/• = 
1 for subsonic conditions, and/• = 0 for supersonic outflow 
conditions. These result are obtained assuming aini > 0 
at the boundary. Similar results may be obtained in the 
case •irti < O. 


It was shown by Strikwerda [15] that the proper number 
of boundary conditions for an incomplete, parabolic system 
as the compressible Navier-Stokes equations is 5 in the 
inflow region and 4 in the outflow region. Our result clearly 
conforths with that. 


We also note that in the limit of infinite Reynolds num- 
ber, these boundary conditions converge uniformly toward 
the well known characteristic boundary conditions for the 
compressible Euler equations [16]. This property is impor- 
tant because it allows us to avoid weak boundary layers of 
the order exp(-61/• ) [17]. 


At first, it may seem as if all we have accomplished so 
far is to derive proper open boundary conditions to the 
compressible Navier-Stokes equations. When considering 
a multi-domain approach, the important observation to 
make is that we may equally well treat a subdomain bound- 
ary as an open boundary. However, it is a very special 
open boundary since we may at all times obtain boundary 
conditions from the neighboring subdomains. 


The single remaining question is how to impose these 
complicated boundary operators in a spectral model of the 
compressible Navier-Stokes equations in a consistent and, 
preferably, simple way. This is the question we will address 
in the following section. 


3.2 The semi-discrete penalty scheme 


Following the line of thought leading to the asymptotically 
stable penalty scheme for the wave equation, we propose 
a collocation method for enforcing the boundary operator 
derived in the previous section for the compressible Navier- 
Stokes equations as 


Oq O•i 1 
0'--•' + 06'•" = Reref 06i 


Reref 


Here we have defined 


Q-(x): (1 - x)Pk(x ) Q+ (1 + ' = 2g(1) ' 
and the symbols •0 = •(- 1, 62, 63), •0 = •(- 1, 62, 6a), 
and, likewise; Rs = R(1,62,63), G.¾ = G(1,62,63). The 
values at the two boundaries are given through the remain- 
ing symbols depending on whether the boundary is an open 
boundary or a subdomain boundary. Hence, at 6 - -1 we 
obtain in the latter case that R-1 represents the value of 
the characteristic vector in the neighboring subdomain and 


-- 


similarly for the viscous correction vector, G-1. If, on the 
other hand, the inflow is an open boundary, the values of 
R-1 and G-1 must be specified, i.e. 


•-1 -- $-l(jg(t)) , •-1 -- •--•--1•(t) , 


where g(t) gives the values of the state vector and •(t) 
accounts for information of the gradients at the boundary. 
In most cases nothing is known about this and one may 
use •(t) = 0. At the outflow, 61 = 1, the variables • and 
G• are specified in a similar manner. 


At an open boundary we may use the expected value of 
the state vector, g(t), to linearize around; whereas we use 
the value of the state vector at the previous time step as 
linearization vector at a subdomain boundary. 


We now need to specify rl and r2 such that the semi- 
discrete scheme is asymptotically stable. By noting that 
the proposed multi-domain scheme is algebralely equiva- 
lent to a one domain scheme with open boundaries, we 
need only prove stability for one domain with homoge- 
neous boundary conditions. We state the result without 
proof, but refer to [2] for a detailed proof in the Cartesian 
case. 


Lemma 3.2 Assume there exists a solution, q, which is 
periodic or held at a constant value at the 62- and 
boundary, and that the fluid properties of the uniform state, 
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are constrained by 


fi_>0, 5_<0, X+fi_>0 , p•>_0 , 7>1, 
and related as 


> X+2> . 
Pr - - 


The linearized, constant coefficient version of the proposed 
scheme is asymptotically stable at the inflow if 


1 (l+n+•)_>•h_> 1 (l+n lx/'i--•) 
Here 


I I 7•: 
2• Reref Pr•51•ini ] ' 


This result is dependent upon whether the inflow is sub- 
.sonic or supersonic. 


For supersonic outflow 


For subsonic outflow 


__1 (l+n_q_•) >•_o> 1 (l+n+•) -- . 


The value of ,: depends on the choice of basis functions. 
For Legendre polynomials one should use 


2 


N(N + 1) ' 


where N is the number of modes in the expansion. For 
Chebyshev polynomials one gets 


1 


•d-- N2 . 


This last result is based on extensive numerical experi- 
ments [2, 3, 10]. 


We wish to emphasize that the bounds on r• and r2 given 
in Lemma 3.2 remain valid in the limit when the Reynolds 
number approaches infinity. This is realized by expanding 
the bounds for z << 1 to obtain 


1 1 


in the inflow region and 


1 1 


for supersonic and subsonic outflow, respectively. The lin- 
earized, constant coefficient version of the Euler equations 
may be transformed into five independent hyperbolic equa- 
tions for which we should expect the bounds on the penalty 
parameters to be given by the results in Sec. 2. We ob- 
serve that the bounds given above converge uniformly to 
the expected values in the limit of vanishing viscosity and, 
thus, the scheme remains stable. The observation that no 
bounds are necessary on r2 for supersonic outflow simply 
reflects the fact that no boundary conditions are required 
for the Euler equations at such a boundary. 


Note that the presented scheme assumes that the veloc- 
ity, (•ini), is positive, i.e. inflow at • = -1 and outflow 
at ix = 1. However, in [2] stability was proven at inflow 
and outflow independently, and we may thus choose any 
combination of inflow-outflow patching consistent with the 
flow realization while maintaining the asymptotic stability. 


We have used an adaptive 4th order Runge-Kutta 
scheme for temporal integration of the Navier-Stokes equa- 
tions. The boundary conditions and the patching are per- 
formed at each intermediate time step followed by enforc- 
ing continuity across the subdomain boundaries. 


The global time step, At, is found as [18] 


CFL x 


27 /a viv• min Iviui[ + c '• + PrRer•----• p 
where CFL is the CFL-number. We have defined the local 


curvilinear vector as 


v = - 
where A/E1, Aj• 2 and Ak• 3 is the local grid-size along the 
three coordinate axes with respect to the indices (i, j, k). 


4 Numerical examples 


In this section we will present schemes and results for the 
multi-domain solution of steady and unsteady compress- 
ible flows. 


4.1 Quasi-one-dimensional nozzle flows 


Consider the flow in a quasi-one-dimensional Laval nozzle. 
The dynamics of the fluid is then described by a simplified 
set of equations as 


0q OF 1 0F • 
(6) •-+•xx +H-Rer•f Ox ' Ix[_< 1 , t>0 . 
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Here we have 


q= puA , F= 
EA 


o ] F •: Arxx 


Au•-xx + A-•r aT 


puA 
(pu 2 + p)A 
(E + p)uA 


0 


, H dA -- -P•xx 
0 


This set of equations is obtained from Eq.(3) by using 
it = x and •2 = •3 = 0, thus cancelling all u2-and u3- 
components and •2-and •3-derivatives. Additionally, we 
use the fact that for a slowly varying area variation, A(x), 
the quasi-one-dimensional divergence of a vector function, 
f = (f, 0), may be approximated as 


V. f = Of A 


As reference values for non-dimensionalizing the equations, 
we use the val•les at the throat. 


For this problem the wave-speed of the characteristic 
waves becomes 


and the characteristic functions, R, are defined as 


_ ap + z:2 (E + _pa2 _ pu) a 2 


• -2 _ pu•) = p- + 
- • -2 pu•) - + + - 


For simulations of inviscid flows, specification of these 
characteristic functions whenever they enter the compu- 
tational domain leads to a well-posed problem. 


The viscous correction vector, G, becomes 


G1 1 Pr _ Ox 
ePr Ox • G3 • •(•-•) • 4• 


Pr Ox -- • Ox 


where we, for simplicity, introduce 


2• 


7-1 


Here 0(x/0x is a consequence of the normal heat fl•, while 
OG/Ox accounts for the normal stress at the boundary. 


4.1.1 Numerical tests 


As a test case for the proposed multi-domain scheme we 
have chosen a symmetric converging-diverging Laval nozzle 
with a cross-sectional area given as 


A(x)=l-0.8x(1-x) , 0<_z<_ I , 


a) 
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Figure 1: Steady state solution of the Mach profile for the 
viscous transonic nozzle flow. For the one-domain solu- 


tions (full line) at Re=100, N-32 collocation points were 
used, whereas N=48 were used at Re:250. The solutions 
symbolized by the dots represent the four-domain solution 
with the subdomains being equally sized and with N/4 
modes in each. CFL-3.0 was used in all simulations. 


and a ratio between the stagnation pressure and the back 
pressure of 0.78. This results in a choked flow through 
the nozzle with the supersonic flow being terminated by a 
stationary shock in the divergent part of the nozzle. In the 
inviscid limit, this problem has an analytic solution with a 
shock at x •_ 0.773 with shock Mach number, 34r• = 1.32. 
We have chosen the length of the nozzle, L = 0.1m, the 
stagnation temperature, To = 300øK and M - 1.0, as the 
flow is choked. 


Although the transonic nozzle flow leads to a steady 
state solution, we have implemented the scheme as a fully 
unsteady problem using a 4'th order Runge-Kutta method. 
Additionally, we have in all simulations applied an high or- 
der exponential filter to the solution at each time step. 


As initial condition we used, the inviscid solution, 
smoothed by a 4'th order exponential filter, i.e. it is far 
from the steady state solution. As boundary conditions at 
the open inflow and outflow boundaribs is used the invis- 
cid solution, which, at least at high Reynolds numbers, is 
a very good approximation. 


In Fig. 1 we show the steady state solutions obtained 
for Re = 100 and Re = 250 and we observe good agree- 
ment between the one and the four domain solutions. As 


a way of testing the accuracy of the multi-domain scheme 
we calculate the residual in L2 as 
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Figure 2: History of convergence of the Mach number for 
the one and four domain solutions. 


Residual(f(t + At)) = [If(t + At)- f(t)11 
I[f(t)ll 2 


In Fig. 2 we show the corresponding residuals of the Mach- 
number. The results for other variables are similar. We 


find that the one domain as well as the multi-domain so- 


lution converges to machine-precision with the same rate 
of convergence. The slight difference in the actual physical 
time of convergence is a consequence of the initial accuracy 
of the approximation. As we use the same total number of 
modes in the one domain and four domain solutions and 


both solutions converge at approximately the same physi- 
cal time, we obtain a significant decrease in wall-clock time 
by employing the multi-domain approach. In this case the 
multi-domain scheme is more than 10 times faster than the 


one domain approach. 
As final evidence of the performance of the scheme, we 


show in Fig. 3 the steady state Mach-profiles of the tran- 
sonic nozzle flow at increasing Reynolds number, compared 
with the purely inviscid analytic solution. All viscous so- 
lutions are obtained using a five domain solution, with the 
domains clustered around the viscous shock. We observe 


that for a low Reynolds number, the flow becomes purely 
subsonic and consequently the Mach-profile changes up- 
stream, as well as downstream, of the inviscid shock. For 
transonic flows, the steady state profiles are similar to the 
inviscid solution except in the highly viscous region in the 
neighborhood of the shock. For high Reynolds numbers 
(Re _> 500) we find that the solution converges to the in- 
viscid solution as Re -1/2, as expected. All viscous steady 
state profiles are computed with an œ2-residual less than 
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Figure 3: Steady state Mach profile for the transonic vis- 
cous nozzle flow at Re=100, 250, 500, 1000 and Re=oc. 
All solutions for finite Reynolds number are obtained as 
five domain solutions with CFL=3.0. 


10 -10 ' 


4.2 Flow around a circular cylinder 


As a second test case for validating the proposed scheme, 
we have chosen unsteady compressible flow around an in- 
finitely long circular cylinder. This flow is one of the most 
documented examples of simple exterior flows for which 
there exists an abundant amount of experimental results 
(see [19] and references therein). 


We wish to simulate the unsteady subsonic flow in the 
yon Karman shedding region for 60 < Re < 180, where 
Re is based on the free stream values of the flow and the 


diameter of the cylinder. It is, therefore, sufficient to de- 
velop a two-dimensional model. The dynamics of the flow 
is described by the two-dimensional, compressible Navier- 
Stokes equations as given in Eq.(3), which we have nor- 
malized using the free stream values of the flow. We wish 
to simulate the dynamics of the flow by applying a multi- 
domain approach, where the full computational domain, 12, 
is constructed by several non-overlapping concentric annu- 
lar subdomains. 


Each annular subdomain is mapped onto a rectangular 
computational domain, (•1,•2) • [0,27r] x [-1,1]. The 
branch cut, across which periodicity is enforced, is cho- 
sen at •1 = 0, such that the physical grid relates to the 
computational grid as 


•1 -- /'(•2)COS•(•1) , •2 --' r(•)sing(•l) , 
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where (xz,x2) are the Cartesian coordinates, (r, 0) are the 
corresponding polar coordinates and (•z,•2) are the gen- 
eral curvilinear coordinates. As a consequence of the ge- 
ometry of the problem it is natural to choose a Fourier col- 
location method in • and a Chebyshev collocation scheme 
in •2. 


By writing the problem in general curvilinear coordi- 
nates we obtain that although we treat a two-dimensional 
problem, we need only give boundary conditions and per- 
form domain patching in the •2-direction as boundary con- 
ditions in ix are given through periodicity. Thus, the one 
dimensional approach for patching may be applied for solv- 
ing this problem. 


We obtain the characteristic functions, 


where 


-- Z 


-(mi - pai)ni q- v-.• (t? + «puiui - 


x/V•2' V•2 ' 


is a unit vector pointing along •2. The four corresponding 
eigenvalues are 


yielding the wave speed of the co-propagating sound wave, 
the vorticity wave, the entropy wave and the counter- 
propagating sound wave, respectively. 


Likewise, we obtain the viscous patching vectors, G = 
J(G1. G2, G3, G4) T, as 


where we, for convenience, have introduced the symbols 


2• 
•i--R1 +R4---R3 , •2 :R1-R4 . 


7-1 


The terms depending on Or•/Or account for the effect of 
normal heat flux at the boundaries, while the remaining 
terms in G represent the effects of normal and tangential 
stress at the boundaries. 


Re St St 
computed experiment [19] 


75 0.149 0.149 


100 0.165 0.164 


125 0.177 0.175 


Table 1: Comparison of Strouhal number computed and 
reported from experiments. 


At the subdomain boundaries we use the values of the 


state vector at the previous time-step as linearization pa- 
rameters, and at the open boundary we use the free stream 
values. At the solid cylinder wall we assume no-slip, 
isothermal boundaries, i.e. q(r = L/2) = (p,0, 0, pT•) •, 
where p is determined numerically. 


The scheme has been time-stepped using an adaptive, 
explicit 4'th order Runge-Kutta with the boundary condi- 
tions and the subdomain patching being enforced at inter- 
mediate time steps, where we also enforce continuity of the 
global solution and apply a high order exponential filter to 
the solution. All simulations to be presented were done 
with CFL = 3.0. 


4.2.1 Numerical tests 


We have performed tests with a cylinder of diameter 
L = 0.1m, a free stream Mach number, M : 0.2, and 
a stagnation temperature, To: 300øK. 


We have done simulations at various Reynolds numbers 
using a 5 domain non-conforming grid. We use high or- 
der interpolation between the different grids. In Fig. 4 we 
show contour plots of the normalized density, normalized 
pressure, vorticity and local Mach-number. This clearly 
shows the well known von Karman street rear of the cylin- 
der. We observe that the contour lines are continuous 


across subdomain boundaries, and we note that the vor- 
tices propagate undisturbed across the subdomain bound- 
aries without any reflections from the artificial boundaries. 
Also, the contour lines of the vorticity, X7 x u, remain 
continuous across subdomain boundaries indicating that 
the gradient is continuous across subdomain boundaries as 
well. To evaluate the performance of the algorithm quan- 
titatively, we have performed several computations at var- 
ious Reynolds numbers. In Table 1 we compare the com- 
puted Strouhal number, i.e. the non-dimensional shedding 
frequency St = wL/a, with that found in experiments [19]. 
The Strouhal number is calculated from time traces of the 


pressure in various positions in the computational domain. 
We observe very close agreement between computational 
and experimental results. These results lead us to conclude 
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A Conservative, Staggered-Grid Multidomain Method 
for the Euler Gas-Dynamics Equations 


David A. Kopriva* 


Abstract 


We describe a new multidomain spectral collocation 
method for the solution of compressible flow problems that 
has features lacking in most current methods. Based on a 
staggered grid, it defines the solutions at the nodes of a 
Chebyshev Gauss quadrature rule and the fluxes at the 
nodes of a Chebyshev Gauss-Lobatto rule. The method 
is conservative and free-stream preserving. By way of 
numerical experiments, we show that it is exponentially 
accurate. A significant advantage of the method is that 
subdomain corners are not included in the approximation, 
making complex geometries easier to treat. 


Key words: spectral methods, domain decomposition, 
compressible flows. 


AMS subject classifications: 65P30, 76N99. 


I Introduction 


In this paper, we describe a new multidomain spectral col- 
location method for the solution of inviscid compressible 
flow problems. The method is based on a staggered grid, 
analogous to fully staggered grids often used with finite 
difference methods. In our case, however, the solutions are 
defined at the nodes of the Chebyshev Gauss quadrature 
rule, while the fluxes are evaluated at the nodes of the 


Chebyshev Gauss-Lobatto rule. Staggered grid spectral 
approximations were first proposed for the solution of the 
incompressible Navier-Stokes equations (c.f. [1], pg. 234). 
Our grid will be identical to the fully staggered grid of 
Bernardi and Maday [2]. 


When applied to the Euler gas-dynamics equations, the 
staggered grid multidomain concept has many desirable 
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features. First, like the cell averaged method of ref. [3], 
it is conservative. Thus, it should be possible to apply 
shock capturing techniques to the approximation. Only 
flux values are required at interfaces, not their derivatives, 
so discontinuous changes in the grids can occur across in- 
terfaces. The result is that subdomains can be defined in- 


dependently of their neighbors, which makes the method 
geometrically flexible. Also, the interface conditions can 
be computed to the same temporal accuracy as the inte- 
rior points, unlike the correction scheme methods [4]. Most 
important, in multiple space dimensions, the method does 
not include (the Gauss rules being open) the corners of sub- 
domains. Thus the coding of the method does not require 
special cases at corners, and any number of subdomains 
can meet at a point without coding difficulty. 


The paper is divided as follows. After the equations 
that we intend to solve are presented in Section 1, the ap- 
proximation is described in Section 2 for problems in two 
space dimensions. In Section 3, we show that the method 
is both conservative and free-stream preserving. Section 
4 provides three examples of the use of the method for 
two-dimensional problems. The first problem is that of a 
point source flow, for which there is an exact solution. We 
show that exponential accuracy is obtained for this prob- 
lem. The next problem is a steady subsonic flow through 
an array of cylinders in a duct. We then solve a transonic 
flow in a two-dimensional converging-diverging nozzle and 
compare the results to experimental data. Concluding re- 
marks are made in the final section. 


2 The equations 


In this paper, we describe the approximation of the Euler 
equations of gas-dynamics in conservative form, 


OQ OF OG 
ot =ø' 
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where Q is the vector of solution unknowns and F(Q) and 
G(Q) are the advective flux vectors 


pu F = Q= pv 
pe 


pu 


P + pu 2 
puv 


u(pe + p) 


pv 


puv 


P + pv 2 
v(pe + p) 


(2) 
We assume the gas is perfect so that pe = p/(7--1)+p(u 2 q- 
v2)/2 and '7: 1.4. For axisymmetric problems, such as the 
transonic flow in the converging-diverging nozzle discussed 
later, we interpret x as the axial coordinate and y as the 
radial coordinate. In that case we add the vector 


(3) H-- 1 
pv 


puv 


pv 2 
v(pe + p) 


to the right hand side of equation (1). 


3 The staggered grid 
approximation 


3.1 Notation 


The staggered grid approximation computes the solution 
values and advective fluxes on different grids. Unlike the 
common approximation [1], which uses only the nodes 
of the Chebyshev Gauss-Lobatto quadrature as colloca- 
tion points, the new method uses both the Gauss and the 
Gauss-Lobatto points. We denote the Lobatto points by 
Xj and the Gauss points by Xj+I/•_, defined by 


- Xj -- • , 


-- i (l_cos(2J+•7r•) Xj+I/2 : • [,2N+2 ] J = 0, 1,..., N - 1 
(4) 
In equation (4), we have mapped the usual collocation 
points defined on [-1, 1] to the more convenient unit in- 
terval. The overbar and half point notation for the Gauss 
points is used only for its value as an analogy to stag- 
gered grid finite difference methods. It is understood that 
the Gauss points do not lie halfway between the Lobatto 
points [1]. 


We also define two polynomial approximations, one for 
the Gauss grid, and one for the Lobatto grid. Let the 
space of polynomials of degree less than or equal to N be 
denoted PN. Let fj (•) • P• be the Lagrange interpolating 


polynomial 


i=O 


defined on the Lobatto grid. On the Gauss grid, we define 
hi+l/2 • F'N-1 to be the polynomial 


(Sb) = II /=o •j+l/2 -- •i+1/2 


Finally, let Qj be a grid point value on the Lobatto grid 
-- 


and Qj+•/2 be a value defined on the Gauss grid. Then we 
write the polynomials that interpolate these values as 


(6a) 
N 


Q(X) = qej(x) 
j=O 


(6b) 
N-1 


•(X) : E •J+l/2hj+I/2(x)' 
•----0 


3.2 Mapping of the subdomains 


In two space dimensions, we subdivide the computational 
domain, f•, into multiple quadrilateral subdomains, 
We make two assumptions about the subdivision in this 
paper. First, we restrict subdomains to intersect only at a 
point or along an entire side. Thus, we do not consider ge- 
ometrically non-conforming approximations here. Second, 
we assume that the subdomain boundaries do not vary in 
time. 


Once defined, the individual subdomains are mapped 
independently onto the unit square by an isoparametric 
transformation. Let the vector function g(s), 0 _< s _< 1 
define a parametric curve. Define also the polynomial of 
degree N, 


N 


(7) re): 
j=0 


that interpolates g at the Gauss-Lobatto points, defined in 
the first part of equation (4). For each subdomain, f•t•, we 
define four such polynomial curves, Fro(s), m = 1,2,3,4 
that bound the subdomain. Finally, we map each f• onto 
the unit square by the linear blending formula 


x(X, v) 


(s) 


(1 - Y)I'• (X) + YF3(X) + (1 - X)F4(Y) 
+XF2(Y) - x•(1 - X)(1 - Y) 
-x2X(1 - Y) - x3XY - x4(1 - X)Y , 
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Figure 1: Diagram of the fully staggered grid in two space dimensions. 


where •he xj's represent the locations of the corners of the 
subdomain. As an added restriction on the method, we 
will require that the polynomial orders on either side of an 
interface match, making the approximation functionally as 
well as geometrically conforming. This requirement means, 
•s•entially, that the grid points from either side coincide 
along an interface. 


Under the mapping •k •_• [0, 1] x [0, 1], the Euler equa- 
tions (1) become 


(9a) 0Q 1 [0• 0(•] o-•+Y •+5-V 


where 


(95) 
•" = y•NF -- x•NG (• = --yxNF + xxNG 
J(X,Y)=x NoN N N X sY -- xy Yx 


Since we assume that the subdomain boundaries do not 


move in time, we can write equation (9a) as 


o• 0•(q) 0•(q) 
(10) Ot + 0--•-- + OY - 0 
where (• - JQ and the fluxes are still defined in equa- 
tion (9b). 


3.3 Computation of the interior fluxes 


A fully staggered grid is used in two space dimensions. 
A schematic of the grid on a single subdomain is shown 


in Figure 1. This grid is the same as the staggered grid 
proposed by Bernardi and Maday [2] for the solution of the 
incompressible Navier-Stokes equations. In what follows, 
we will ignore superscripts that denote which subdomain 
is being considered, unless necessary. 


Points of type "a" in Figure 3 represent the 
Gauss/Gauss points (•i+l/2,Yj+l/2), i -- 0, 1,..., N - 
1, j - 0,1,...,M- 1. The grid that results from 
these points is the tensor product of the one dimen- 
sional grid defined in equation (4). We approximate 
the solution and the transformation JacobJan at the 


Gauss/Gauss points, and denote them by Qi+l/2,j.l/• and 
Ji+l/2,j+l/2 = J(Xi+l/2,j+l/2, Yi+l/2,j+l/2). From these, 


~ 


we compute the Gauss point values of Qi+l/•,j+l/• - 
Ji+l/2,j+l/•Qi+u•,j+l/•. Finally, the interpolant of the 
solution through the Gauss points is a polynomial in 
PN-1,M-1 -- PN-1 •) PM-i: 


(•) •(X, r) = 
N-1M-1 


Y•. • (•i+1/2,j+1/2 hi+l/2(X) hj+U2(Y) 
i=0 j=O 


The points of type "b" in Figure i form the 
Lobatto/Gauss grid whose points are written as 
(Xi, Yj+l/2), i = 0,1,...,N, j = 0,1,...,M- 1. On 
this grid are evaluated the horizontal flux vector, •' and 
the metric terms y•- and xy. The metric terms are the an- 
alytical derivatives of the polynomial functions defined by 
equation (8) evaluated at these points. Then the horizon- 
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tal flux is the polynomial in P•v,M-• that passes through 
the grid point values 


Fi,j+l/2 
(12) o 


In equation (12), Q(X,¾) is the polynomial of the 
type (11) that passes through the points (•i+1/2,j+1/2/ 
Ji+l/2.j+l/2. Only the interior flux points are computed by 
equation (12). The boundary and interface flux definitions 
are described in the next sub-section. 


The vertical flux and the derivatives yx and xx are 
defined on the Gauss/Lobatto grid, marked by "c" on 
Figure 1. The points on this grid are (•i+•/2,Yj), i: 
0, 1 .... , N - 1, j = 0, 1,..., M, and the vertical flux is the 
polynomial in P,v-•.M that passes through the points 


•,+1/2.j 
(13) 


-Yx(Xi+i/2, Yj) F (•(•i+1/2, •j)) 
N-- 


"•xx(Xt+I/2, •j) G (•(•i+1/2, •j)) ß 


Like equation (12), equation (13) is only applied to the 
calculation of interior point fluxes. 


While it may appear that defining quantities on three 
different grids would lead to a significantly more compli- 
cated method than a single grid Lobatto approximation, 
this turns out not to be the case. First, the definition of 
the fluxes by equations (12) and (13) imply that the re- 
construction procedure, i.e., the interpolation needed to 
compute the fluxes at the Lobatto points, is not a two- 
dimensional operation. Rather, it can be computed by a 
less expensive sequence of one-dimensional interpolations. 
The values of the solution vector that are required to com- 
pute the flux vectors are 


N-1M-1 


•(Xt.•j+i/2) -- Y• Y• •i+1/2,j+1/2 
i=0 j=0 


x h•+l/2(Xi)hj+•/2(Yj+W2) 
N--1 


(14a) -- Z •i+l/2,j+l/2hi+l/2(xi) 
i=0 


and 


N-1 M-1 


i=0 j=0 


X hi+l/2(Xi+l/2)•j+l/2(•j) 
M-1 


(14b) = Z •i+1/2,j+l/2hj+l/2(•j) 
j=0 


since, by construction, 


hm+l/2(Yj+l/2) = 5rn,3 


hn+l/2(Xi+l/2) = 5n,i 


where 5j,• is the Kronecker delta function. 
Next, when derivatives need to be evaluated at the 


Gauss/Gauss points, they can also be done as a sequence 
of one-dimensional derivatives. To compute the derivative 
approximations, the interpolants of the grid point values 
of the fluxes are differentiated, and the result is evaluated 
at the Gauss points. Computationally, this becomes 


(15) 
i+1/2,j+1/2 


i+1/2,j+1/2 


N 


---- Fn.j+l/2gn(Xi+l/2) 
n:O 


N 


---- Gi+l/2,rngrn(rj+l/2) 
rr*=0 


The reconstruction and differentiation operations repre- 
sented by equations (14) and (15) can both be computed 
by matrix multiplication. 


The total work associated with the interpolation and 
differentiation operations in two space dimensions is twice 
that of a method that only uses the Lobatto grid. On the 
other hand, the method requires the same amount of work 
as the cell averaged method [3] in two space dimensions. 
The equivalence of the amount of work is due to the more 
complex nature of the reconstruction for the cell averaged 
method in two space dimensions. 


3.4 Interface and boundary fluxes 


To describe how to compute the interface and boundary 
conditions using the staggered grid approximation, we will 
refer to Figure 2, which schematically represents four sub- 
domains and the locations at which solution and flux val- 


ues are computed. Only the grid points near the bound- 
aries are marked. The circles represent the solution values, 
which are located on the Gauss•/Gauss grid. The locations 
of the horizontal flux values, Fi,j+•/2, are represented by 
solid squares. The locations of the vertical flux values, 
•i+U2,j, are marked by hollow squares. From the dia- 
gram, we see that along the vertical interfaces between 
subdomains 1 and 2 and between subdomains 3 and 4, 
only the horizontal fluxes need to be computed. Along 
horizontal interfaces, like those between subdomains 1 and 
3, only the vertical flux needs to be computed. Because the 
grid is fully staggered, the coupling is through subdomain 
faces only, not through corners. 
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Figure 2: Diagram of four subdomains s_howing locations near interfaces where solutions and fluxes are computed. 
Symbols: circle - solution; solid square - F; hollow square - (•. 


Figure 2 indicates a significant advantage to the use of 
the fully staggered grid over the use of an unstaggered 
approximation, e.g. [4]. An unstaggered approximation 
requires special corner algorithms to be devised to com- 
pute corner solutions to ensure stable propagation of waves 
through the corners. The choice of bi-characteristics that 
determines the domains of dependence becomes more com- 
plex as the number of subdomains/boundaries that come 
together at a point increases. The staggered approxima- 
tion does not include subdomain corners, so conditions do 
not have to be specified at corner points. Thus, any num- 
ber of subdomains can come together at a point without 
the need for special point approximations and code. 


The interpolation of the solution by equation (14) pro- 
duces two solution values at an interface point, one from 
each of the two contributing subdomains. We do not ex- 
pect these two values to coincide, except in the limit of 
infinite resolution. A single flux is calculated by solving an 
approximate Riemann problem that considers waves prop- 
agating normal to the interface. This normal wave approx- 
i•nation is common for finite difference approximations [5] 
and has been used for spectral approximations in [3]. Sev- 
eral solver choices are possible, but we have used Roe's [6] 


solver with the entropy fix. To illustrate the procedure, let 
us consider the situation along vertical interfaces shown 
Figure 2. Formally, given the two states QL and QR that 
have been computed from the interpolation of the Gauss 
point values, Roe's approximate Riemann solver writes the 
horizontal flux as 


(16) •,(QL, QR)= 


2 


where R is the matrix of the right eigenvectors of the Ja- 
cobian of •', computed using the Roe-average of Q•; and 
QR. The matrix A is the matrix of the eigenvalues of •. 
This formula is modified to correct the entropy across sonic 
points. A detailed account can be found in [5]. 


Physical boundaries can be viewed as interfaces betxveen 
the external flow and the computational region. Wall 
boundaries can be computed by imposing an opposing flow 
that enforces zero normal momentum flux across the in- 
terface. Subsonic inflow and outflow boundaries can be 


computed by replacing the solution that would have come 
from a neighboring subdomain by the free-stream values, 
if they are known. Thus, the flux at the boundary on the 
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left of Figure 2 would be computed by •'(Q•c, QR). If the 
full state of the exterior flow is not known, an alternative 
procedure can be used such as that applied for the nozzle 
calculation below. Supersonic outflow boundaries require 
no extra conditions. 


3.5 Discretization of the equations 


From equations (11)-(15), with boundary and interface 
fluxes defined by equation (16), we can now define the 
semi-discrete approximation for the solution unknowns 
within a subdomain: 


dQi+l/2.j+l/2 [OP-• -+ 
i =0,1,...,N-1 
j =0,1,...,M-1 


=0, 


Equation (17) is a system of ordinary differential equa- 
tions that must be integrated in time to get the approxi- 
mate solution values at the Gauss points. In principle, any 
common integration procedure can be used. We have cho- 
sen to use low storage Runge-Kutta methods that require 
only 2-N storage locations. In this paper, we consider only 
the computation of steady-state problems, for which the 
time discretization is only an iterative procedure, so it is 
sufficient to use the low-order nfid-point rule. For each 
subdomain. we compute 


(•rt+l/2 ~ n i+1/2.j+1/2 ---- Qi+l/2.j+l/2 


2 q- i+1/2,j+1/2 
i-- 0,1,...,N- 1 
j-0,1,...,M- i 


(is) 
(•n+l ~ n ,+1/2,j+1/2: Qi+l/2,j+l/2 


i = o, 1,... ,N- 1 
j = O, 1,...,/F/- I 


i+1/2,j+1/2 


where the superscript n denotes the time level. For the 
staggered grid approximation, this method appears to have 
a good balance between the time step required and tem- 
poral damping introduced by the scheme. With additional 
knowledge of the eigenvalue structure of the differentia- 
tion matrices, other choices might include schemes opti- 
mized for rapid convergence to steady-state, such as those 
discussed in [7]. 


4 Properties of the staggered 
grid approximation 


The staggered grid approximation is both conservative and 
free-stream preserving. A net gain or loss of (• is de- 
termined only by a net gain or loss through the exterior 
boundaries. Also, if the solution is constant in space, then 
the solution must remain constant in time also, even in the 
presence of a spatially varying mapping. 


We first show that the staggered grid approximation 
is conservative. It is sufficient to consider four subdo- 


mains as shown in Figure 2. Let the quadrature weights 
Wi+l/2, •]j+l/2 be defined so that 


1 1 N- 1 •¾I- 1 


i=0 j=0 


(19) VP ß P.¾-l.•-i 


By the exactness of the quadrature, the sum of equa- 
tion (17) times Wi+l/2t]j+l/2 over all the points within a 
subdomain is 


(2o) 


N- 1.iV/- 1 ~ 


Y• dd-•t i+l/2.j+l/2•'i+l/2t]j+l/2 i,j=0 


fo• •-• dXdY 
N-1 


Z [• q- •-•]i+1/2,j+1/2 wi+l/2•j+l/2 
i,j=O 


Thus, for each subdomain, 


• (•dXd¾ = - •'(1,¾)d¾ + •'(O,¾)dY 


- + 
(21) 


When equation (21) is summed over all subdomains, the 
interior integrals cancel so that only the boundary contri- 
butions remain: 
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dT • (•idXdY = 


(22) 


(•'q(O, Y) + •'a(O, Y)) dY 


(•'2(1, Y) + •'4(1, Y)) dY 


0) + 0)) 


+ ax 


Tke staggered grid approximation is also free-stream 
preserving, which means that the isoparametric spatial 
mappings do not introduce false source terms. It is suffi- 
cient to consider the approximation within one subdomain, 
since all derivatives are computed locally by subdomain. If 
we take r(Q) = G(Q) = x, then the approximation (17) 
beccmes 


=0 


Since x N • PN,N, 


that 


(25) d_•[ =0 i=0,1,...,N-1 i+1/2,j+1/2 j = O, 1,..., M - 1 


5 Examples 


In this section, we use the staggered grid approximation 
to compute three steady flow problems. The first problem 
is subsonic flow from a point source. The flow is com- 
puted on a multiply connected geometry to show' that the 
,nethod is suitable for complex geometries. This problem 
has an exact, analytic solution, and we show' that exponen- 
tial convergence is obtained. The next problem is a steady 
subsonic flow through an array of cylinders in a duct. The 
final problem computes a transonic flow in an axisymmet- 
ric converging-diverging nozzle. The solution for the nozzle 
is compared to experimental data. 


5.1 Subsonic point source flow 


As our first example, we consider the flow of a steady, irro- 
rational gas exiting from a point. This flow can be solved 
exactly by a hodograph transformation [8]. The stream- 
lines are radial, and level curves of the Mach number, pres- 
sure and density are circles centered on the source. 


We solve the point source flow on the grid shown in 
Figure 3. The geometry, a square with five circles cut out 
of its interior, was chosen to show that the method can be 
used to compute a flow in a complex, multiply connected 
region. Twenty four subdomains were used to cover the 
computational domain. Shown on the figure are the grid 
lines of the Lobatto grid. The solutions themselves are 
actually defined interior to each "cell" bounded by the grid 
lines. 


Figure 3: Grid for point source problem. 


The boundary conditions were chosen so that the exact 
steady solutiou is radial flow' with a point source at the 
center of the nfiddle circle of Figure 3. The center cutout 
circle was specified as an inflow boundary, with the condi- 
tions chosen so that the Mach number of the incoming flow 
was 3I = 0.6. The boundary conditions along the remain- 
ing cutout circles were either inflow or outflow, depending 
on the direction of the normal velocity. The square outer 
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boundary of the problem was an outflow boundary. For all 
inflow/outflow boundaries, the exact solution was used to 
provide the external flow values required by the Riemann 
solver. 


In Figure 4, we plot the exact and computed Mach num- 
ber contours for the solution of the point source flow. The 
contour lines of the exact solution, which are plotted with 
dashed lines, are coincident with the solid contour lines of 
the computed solution. In this figure, and in those follow- 
ing, contours are plotted using solution values interpolated 
from the Gauss points to the Lobatto points. The inter- 
polation is done for display reasons, since a plot using the 
Gauss points would show gaps between the subdomains, 
representing the fact that the solution is not defined on 
the interfaces. On the other hand, plotting the interpolant 
does give some indication of the size of the jumps in the 
solution at the interfaces. 


/ 


x / 


Figure 4: Solution of the point source flow for the geometry 
shown in Fig. 3. The exact solution is plotted with dashed 
lines, the computed with solid lines. 


Figure 5 shows the maximum error in the density as a 
function of the number of points per sub domain and indi- 
cates exponential convergence of the solution. We see that 
doubling the number of points per subdomain causes the 
error to decay by approximately two orders of magnitude. 


-1.5 


4 6 8 10 12 14 16 


N 
Figure 5: Convergence of the density for the solution shown 
in Fig. 4. 


5.2 Subsonic flow through an array of 
cylinders in a duct 


Our second example is the solution of a flow through 
array of cylinders inside a straight duct (Figure 6). Wall 
boundary conditions were enforced on the upper and lower 
boundaries, in addition to the cylinder surfaces. The 
boundary conditions at the left and right enforced a hori- 
zontal, Mach 0.25 free stream. The initial conditions spec- 
ified the uniform flow everywhere. Solution contours for 
the Mach number are shown in Figure 6b. 


5.3 Transonic flow in a 


converging-diverging nozzle 


To show that the method is applicable to transonic prob- 
lems, we compute the flow in an axisymmetric converging- 
diverging nozzle. We have chosen the nozzle used in the 
experimental investigation of Cuffel et al. [9], which was 
designed to show significant two dimensional effects. The 
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Figure 6a: Grid for flow in a duct. 


Figure 6b: Mach contours for the flow in the duct. 


nozzle consists of a converging section with half angle of 
45 ø and a diverging section with half angle of 15 ø. The 
experimental tests were done in air with a stagnation tem- 
perature of 300K and stagnation pressure of 1.01 x 10 -2 
Pa. Figure 7 shows the nozzle geometry and the grid used 
in our computations. 


Figure 7: Grid for the 45ø-15 ø converging-diverging nozzle. 


equations (1)-(3) by p = P*/Ptot,P = P*/Ptot, where 
* represents the dimensional quantity. Under this sca!ing, 
the temperature and entropy become T = T*/Ttot, $tot = 
0. The initial condition for the computation was the ex- 
act solution of the quasi-one-dimensional nozzle having the 
same area as the two-dimensional nozzle. For the inflow 


condition at the left boundary, we specify the tangential 
velocity to be zero, the entropy to be zero, and the tem- 
perature to be equal the total temperature specified by the 
experiment. At the right boundary, the outflow is super- 
sonic, so no boundary condition is necessary there. 


Since not all of the external flow values are known at 


left boundary, particularly the inflow velocity, it is not con- 
venient to use the Riemann solver to impose the boundary 
condition. Instead, we use the following characteristic-like 
method that allows us to specify the known parameters. 
The fact that the inflow condition enforces v = 0 means 


that the flow is essentially one dimensional there. In terms 
of the Mach number, M, and the sound speed, a, the left- 
going Riemann invariant for the one dimensional flow will 
satisfy 


To match the experimental conditions, we scaled the 
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Figure 8: Comparison of computed and measured Mach 
number near the nozzle throat. 


(26) acomp.(Mcomp. 2) 7-1 


where the computed quantities represent values computed 
at the boundary by the reconstruction procedure. Equa- 
:.•n (26), plus the relationship between the Mach number, 
total sound speed and sound speed gives 


1+ 7-1 


Equation (27) can be written as a quadratic equation in the 
Mach number and solved directly. Once the inflow Mach 
number is known, the sound speed can be computed. From 
the Mach number, the sound speed, tangential velocity and 
-ke entropy, all remaining variables and the boundary flux 
can be computed. 


Some results computed for the nozzle are shown in Fig- 
ures 8 and 9. First a comparison of the computed Mach 
cuntours and the measured Mach number in the neigh- 
borhood of the nozzle throat is shown in Figure 8. We see 
good agreement between the computed Mach contours and 
q:e measured values up to about M = 1.6. We note that 
the discrepancies are consistent with the discrepancies ob- 
served with other inviscid flow solvers reported in [9]. A 
comparison between the computed and measured values of 
•he pressure along the upper wall of the nozzle is shown in 
Figure 9. 


0.8 I Computed o Exp 
• 0.6 


0.2 


-2 -1.5 -1 -0.5 0 0.5 I 1.5 2 


X'Xth 
Figure 9: Comparison of computed and measured upper 
wall pressure as a function of distance [rom the nozzle 
throat. 


6 Concluding remarks 


We have described a new, staggered-grid Chebyshev spec- 
tral multidomain method for the solution of inviscid com- 


pressible flow problems. In this method, the solutions are 
defined at the nodes of a Gauss quadrature rule, while 
the fluxes are evaluated at the nodes of a Gauss-Lobatto 


rule. An approximate Riemann solver is used to determine 
the characteristic decomposition needed to advect waves 
through a subdomain interface. •Ve have presented appli- 
cations here to two dimensional problems, but the method 
is also applicable to one dimensional problems, and should 
extend directly to three dimensions. The method should 
also be applicable to the solution of any hyperbolic sys- 
tem in which the flux vector itself can be decomposed 
into wave components. The staggered grid multidomain 
concept has many desirable features. including conserva- 
tion, free-stream preservation, geometric flexibility and 
programming simplicity. 
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A Domain Decomposition Solver 
for the Steady Navier-Stokes Equations 


E. M. R0nquist* 


Abstract 


We present two new domain decomposition solvers in 
the context of conforming spectral element discretizations. 
The first is a domain decomposition solver for the discrete 
steady convection-diffusion equation, while the second is a 
domain decomposition solver for the discrete steady Stokes 
or Navier-Stokes equations. The solution algorithms are 
both based on the additive Schwarz method in the context 


of nonoverlapping subdomains. The key ingredients are: 
(i) a coarse global system; (ii) a set of local, independent 
subproblems associated with the subdomains (or spectral 
elements): (iii) a system associated with the unknowns on 
the subdomain interfaces; and (iv) a Krylov method such 
as the CG algorithm or the GMRES algorithm. We present 
numerical results that demonstrate the convergence prop- 
erties of the new solvers, as well as the applicability of the 
methods to solve heat transfer and incompressible fluid 
flow problems. 


Key words: spectral element, domain decomposition, 
additive Schwarz, convection-diffusion, Navier-Stokes. 
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I Introduction 


In this paper we shall discuss the solution of the steady 
convection-diffusion equation as well as the solution of the 
steady, incompressible Navier-Stokes equations. In terms 
of spatial discretization, our primary focus will be the use 
of conforming spectral elements [39, 32], however, the gen- 
eral framework should also apply to the p- or h-p- type 
finite element method [5, 3, 4, 18, 37, 36]. The spectral 
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element method is very similar to the p-type finite ele- 
ment method, but with a particular emphasis on tensor- 
product forms: tensor-product nodal bases, tensor-product 
Gauss quadratures, and tensor-product sum-factorization 
techniques for efficient matrix-vector product evaluations 
[3s, 32]. 


The solution of the resulting set of algebraic equations 
poses a special challenge for high-order methods due to 
the long-range couplings and the severe conditioning as- 
sociated with these methods. Direct methods are very 
computer intensive and therefore rarely practical, espe- 
cially when considering general three-dimensional geome- 
tries and general elemental decompositions. An iterative 
approach seems to be the only viable alternative for such 
problems. 


For the steady Stokes problem, a popular approach has 
been to use a form of the Uzawa procedure [26, 27, 31]. The 
attractive side of this approach is that it decouples a sad- 
dle problem into two symmetric, positive (semi)-definite 
forms, one for the pressure and one for the velocity. The 
solution can thus be obtained by solving a series of elliptic 
problems, with each elliptic problem solved with a stan- 
dard conjugate gradient like method. 


For the steady convection-diffusion problem. the pres- 
ence of the nonsymmetric convection term has prevented 
an efficient iterative solution of the discrete, steady equa- 
tions in the past. The most popular approach for spec- 
tral element discretizations has been to solve an unsteady 
problem, and integrate these equations until a steady state 
has been reached [32, 33]. Following such an approach, 
the nonsymmetric convection term is typically treated ex- 
plicitly, while the symmetric diffusion term is treated im- 
plicitly, thus avoiding a linear system of equations with a 
nonsymmetric matrix. A similar approach has also been 
applied for solving the steady Navier-Stokes equations. 


Iterative techniques for nonsymmetric problems, such as 
the GMRES algorithm [46], has earlier been used in the 
context of solving the fully coupled, discrete Navier-Stokes 
equations. However, the availability of good precondition- 
ers is still very limited. In the context of low-order finite 
element discretizations, the most common precondition- 
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ers are either based upon a diagonal scaling [50], or some 
form of element-by-element preconditioning [51, 42]. In 
the context of high-order finite element/spectral element 
discretizations, even less progress has been made in terms 
of constructing efficient preconditioners. 


The work we present in this paper is an attempt to ad- 
dress this deficiency. The algorithms we propose are in- 
spired by recent progress in domain decomposition tech- 
niques, in particular, iterative substructuring techniques 
[8, 10, 11, 21]. Although an impressive development has 
taken place over the past few years [35, 47, 22, 20, 30], in- 
cluding nonsymmetric problems [53, 14, 15], only very lim- 
ited results seem to have been reported in the area of solv- 
ing Stokes and Navier-Stokes problems [9]. Although our 
algorithms cannot claim to have a polylogarithmic conver- 
gence rate (at least not yet), we believe that they nonethe- 
less represent a significant advance compared to current 
iterative methods for solving steady, incompressible fluid 
flow problems. 


Our approach will be as follows: As a point of departure 
we shall use an additive Schwarz method without overlap, 
that is, we shall use what is also referred to as an iterative 
substructuring method. Recently, polylogarithmic conver- 
gence rates have been reported for elliptic problems in the 
context of three-dimensional spectral element discretiza- 
tions using this class of solution methods [40, 41]. The 
method we propose for the elliptic kernel in this study 
will. however, be less optimal than the solution method 
proposed in [40, 41]. The reason for this is that the method 
we propose for the interface system is very simple and easy 
to invert, and that it can readily be extended as a building 
block for the Navier-Stokes solver that we propose. 


The outline of the paper is as follows: In Section 2 
we present spectral element discretizations for the Pois- 
son problem, the steady Stokes problem, the steady 
convection-diffusion problem, and the steady Navier- 
Stokes problem. In Section 3 we propose iterative sub- 
structuring methods for the resulting discrete systems, 
and in Section 4 we present two-dimensional and three- 
dimensional numerical results. The major conclusions 
from this study are presented in Section 5. 


2 Spectral element discretizations 


2.1 The Poisson equation 


We consider here the solution of the Poisson problem in a 
domain •, 


(1) -V'2u - f in •, 
(2) u = 0 on c•fi, 


where f is the given data and u is the solution. In deriving 
the set of discrete equations we shall assume that • is a 
two-dimensional domain. This assumption simplifies the 
definition and discussion of the spectral element method, 
and is used for reasons of exposition only. Fully three- 
dimensional cases will be considered later. 


As a point of departure for our numerical discretization 
we consider the equivalent variational formulation of prob- 
lem (1)-(2): Find u • 12 -_- H•(•) such that 


(3) a(u, v) = re) w • 12, 


where the bilinear form a ß 12 x 12 -• R and the linear form 


f ß 12 -• R are defined as 


(4) a(u,v) = 


(5) f(v) 


nV'u ß Vv df• , 
/n f vd• . 


Here, 12 = H0•(•2) is the standard Sobolev space. 
Next, we assume that the domain • is broken up into 


K non-overlapping and geometrically conforming quadri- 
lateral elements (or subdomains) f•, 1 _< k _< K. This 
implies that the intersection of two elements • and •t is 
either empty or reduced to a common vertex or a common 
edge; in the latter case we define the open interval F•.t as 


(6) F•,• = O• • O•. 


The discretization of problem (3) consists of choosing 
a finite-dimensional space V that approximates 12: Find 
u5 6 V such that 


(7) a(u•,•,) = f(•), w,, • v. 


Before we define the discrete space V, •ve first define the 
space Q• (•) to be the set of all polynomials of degree less 
than or equal to N in each spatial direction on the refer- 
ence domain • =]- 1, 1[ 2 in R 2. Let F•(•, •2) be the affine 
transformation (or isoparametric mapping) from the refer- 
ence domain • onto •. The polynomial approximation 
space QN(•) is then defined as 


We now proceed by defining the space 1• of piecewise poly- 
nomials as 


(9) • = { •. v•, 1 _< • _< K, • = •l• e Q.¾(•) }. 
The finite-dimensional space V is then defined as 


(10) 
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In order to derive a set of algebraic equations, we need 
to define a quadrature rule in order to evaluate the inte- 
grals (4)-(5) in the variational form, and we also need to 
define a basis for the discrete space 17. It is natural to 
use quadrature formulas of the Gauss-Lobatto Legendre 
type [32, 43], constructed from the zeros •j, 0 _< j _< N in 
the interval A -] - 1, 1[ of the polynomial (1 - •2)L'N(•). 
Here, L•v denotes the Legendre polynomial of degree N 
over A. The quadrature rules for the multi-dimensional 
case are then constructed as the tensor-product extension 
of the one-dimensional Gauss-Lobatto Legendre (GLL) 
points. For the two-dimensional case, the set of points 
•pq = (•p, •q), 0 __• p, q <_ N refer to the GLL points on 
the reference domain • = A x A =] - 1,112. These points 
are then mapped via the aft:inc transformation (or isopara- (12) 
metric mapping) Fk((•, (2) onto f•k, defining the points 
•p•q = (•p•,•q•). 05p, q_•N, l_•kSK. 


A typical integral over the subdomain fl• in the varia- 
tional form is then evaluated in the following way: 


I 1 


jf• o(x,y)dxdy = /_ /_ k 1 1 


N N 


a=0,3=0 


Here, J• is the Jacobian associated with the a•ne trans- 
formation F•, and p•, 0 5 j N N are the GLL quadrature 
weights associated •vith the GLL points •j, 0 5 j 5 N. 
• remark that the numerical quadrature formula is ex- 
act for polynomials 0 • Q=•-•(•) [49]. 


Having defined a numerical quadrature rule we can now 
pose the discrete problem as: Find u5 • V such that 


where • and f in (7) have been replaced by aa and fa to 
indicate integration of the bilinear and linear form by GLL 
quadrature. 


The GLL points are also used to define a tensor-product, 
Lagrangian interpolant basis [32, 43]. These basis func- 
tions are defined over each • • polynomials H• • 
Qx(•) that satisfy 


Vp, q,p',q', 0 • p,q,p',q' 5 N, H•(•,,•,) =Spp, Sqq,. 
(13) 


In order to define a b•is for the space •, these polynomials (14) 
are extended by zero in all the other subdomains. An 


• (•) element v • 17 can then be expressed as 


K N N 


, 
k=l p=O q=O 


where 


w, 5 _< x, = = 


The basis (11) represents a tensor-product, Lagrangian 
inte_rpolant basis where the degrees-of-freedom of elements 
in V are the nodal values 17•q = v•(•p•q), 0 _< p, q _< N, I _< 
k <_ K. In order to represent an element in the discrete 
space V, we also need to honor the C O continuity require- 
ment across the elemental boundaries F = {F•,l}, as well 
as the homogeneous boundary conditions along 0fL 


Choosing appropriate test functions, we are now in a 
position to derive a set of algebraic equations which can 
be expressed in matrix form as 


Here, __A is a symmetric positive definite (SPD) matrix rep- 
resenting the discrete Laplace operator, u is a vector repre- 
senting the nodal unknowns, and f represents the discrete 


-- 


right hand side. 


Remark 2.1 The extension to three-dimensional domains 


follows readily from the application of tensor-product forms 
[38, 32, 


Remark 2.2 For problems including non-homogeneous 
Dirichlet boundary conditions, a standard approach is to 
act on these boundary values with a discrete Laplacian cor- 
responding to Neumann boundary conditions. The result is 
then subtracted from the right-hand side f, and we arrive 
at a system similar to (12), to be solved for the internal 
nodal values u. 


Remark 2.3 In the case of Neumann boundary condi- 
tions, the variational form naturally results in surface in- 
tegrals due to the integration by parts [•8]. The given Neu- 
mann boundary conditions are then inserted into these sur- 
face integrals, and the result is absorbed into the right hand 
side. 


2.2 The steady Stokes equations 


We now turn to the discretization of the steady Stokes 
equations 


-tzV2u+Vp = f in f•, 
V.u = 0 in 


u = 0 on Of•. 


Here, u is the fluid velocity, p is the pressure, /• is the 
viscosity, and f is a body force. Again, for reasons of ex- 
position, we assume that f• is a two-dimensional domain. 
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A spectral element discretization of (13) - (15) is based 
on the equivalent weak form. For two-dimensional prob- 
lems and homogeneous velocity boundary conditions we 
can formulate this problem as: Find u • 122 = [H0X(f•)] 2 
and p • 142 = L20(f•) such that 


a(u,v)+b(v,p) = f(v) Vv•122, 
b(u,q) - 0 Vq•142. 


Here, the bilinear form a: 122 x 122 _• R, the bilinear form 
b: 122 x 142 -• R, and the linear form f: 122 _• R are 
defined as: 


(16) a(u,v) : •jffiVu. Vvdf• , 
(17) b(u.q) : -/n(V.u) qdf•, 
(18) f(v) : f.q fvd. 
Here. W = L•(f•) is the space of all functions which are 
square integrable and have zero average over •. 


The discretization of the steady Stokes problem now con- 
sists of choosing a discrete velocity space V 2 that approx- 
imates 122 and a discrete pressure space W that approx- 
imates M;. For the discrete velocity space V 2, we shall 
consider the space V as defined in (10) for each velocity 
component. As a pressure space W we need to choose a 
compatible space that honors the Brezzi-Babu•ka (inf-sup) 
condition [12, 2]. For spectral element discretizations, a 
good choice is to use the discrete pressure space [6, 32, 34] 


I;V---- {v:' Vk. 1_< k_< K, Wk--Wln k GQN-2(•k), 


}, 
that is. the polynomial degree for the pressure is two or- 
ders lower than for the velocity inside each subdomain (or 
spectral element). We remark that since the pressure needs 
only be square integrable, no continuity requirement for 
the pressure is enforced between the elements. 


As for the Poisson problem, we evaluate all the integrals 
in the variational form by a tensor-product GLL quadra- 
ture rule, and we can pose the discrete problem as: Find 
ue • V 2 and pe • W such that 


(19) a•(ue,v,) +b,(ve,pe) = fe(ve) Vv5 • V 2 , 
(20) b•(u•,q•) = 0 Vq• • W. 


where a, b, and f in (16)-(18) have been replaced by a,, 
b,, and f6 in order to indicate integration of the bilinear 
and linear forms by GLL quadrature. 


The basis for an element in V (e.g., a single velocity 
component) is the same as the one defined for the discrete 
Poisson problem, i.e., a tensor-product, Lagrangian inter- 
polant basis associated with the GLL points. The basis 
for an element in W (e.g., the pressure) is also taken to be 
a tensor-product, Lagrangian interpolant basis, however, 
this basis is associated with the internal GLL points [1]. 
Specifically, the basis functions are defined over each • 


as polynomials •pkq • Q2v-2(f•) that satisfy 
Vp, q,p• q', l<p,q,p' q'_<N 1, -k k k , _ , - = 
In order to define a basis for the space W, these polynomi- 
als are extended by zero in all the other subdomains. An 
element w E W can then be expressed as 


K N-1 N-1 


k=l p=l q=l 


where 


, k 


Choosing appropriate test functions. we arrive at a set 
of algebraic equations which can be expressed in matrix 
form as 


(21) Au-•rp = •, 
(22) D u = • . 


Here, A is the discrete viscous operator, • is the discrete 
divergence operator, and its transpose •r is the discrete 
gradient operator. The vector g contains the nodal veloc- 
ity values, p represents the nodal pressure values. and • 
are the nodal forces. 


Remark 2.4 The extension to three-dimensional domains 


follows readily from the application of tensor-product forms 


Remark 2.5 In the case of non-homogeneous Dirichlet 
velocity boundary conditions, we follow a similar procedure 
as for the Poisson problem. 


Remark 2.6 The non-staggered discretization procedure 
outlined above is valid for polynomial approximations N • 
2, that is, the coarsest discretization represents the use of 
a Q2/Qo element. 


2.3 The steady convection-diffusion equa- 
tion 


We now consider the steady, scalar convection-diffusion 
problem 


(23) -0v2+u.V = f in 
(24) 
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where f is the given data, c•0 is the diffusivity, u is a given 
convecting velocity field, and ½ is the solution. 


Using a similar procedure as for the Poisson problem, 
a Galerkin formulation of (23) can be expressed as: Find 
05 • V such that 


a.(,•, •,•) + c(o•, v•) = f(v•), w• • v, 


where the bilinear form c: V x V --, l• is defined as 


(2•) c(½,•) = • V;u. Veda. 
A spectral element discretization of the steady 


convection-diffusion problem (23) results in a set of discrete 
equations which is linear and nonsymmetric, and which can 
be expressed in matrix form as 


(26) [A +___.C]_½ = .f . 


Here. the matrix __A represents the discrete Laplace opera- 
tot (linear and symmetric), while __C represents the discrete 
convection operator (linear and nonsymmetric); the vector 
,0 represents the nodal values of the discrete solution ½5. 


-- 


Remark 2.7 Equation (25) represents the convective 
form of the convection operator. There are alternative 
forms that can be used [gg], however, we shall not consider 
these here. 


Remark 2.8 No upwinding is used in constructing the 
d•.screte, spectral element convection operator. 


2.4 The steady Navier-Stokes equations 


We shall treat each component of the advection term in 
a similar fashion as the convection term in the steady 
convection-diffusion equation. Otherwise, we follow the 
same procedure as outlined for the steady Stokes problem. 
We then arrive at a set of discrete equations which can be 
expressed in matrix form as 


(27) A u + C__(_u) _u- DTp = _f, 
-- 


(2s) •)u = o, 


where C(u_) represents the discrete, nonlinear, nonsymmet- 
ric advection operator. 


3 Iterative substructuring meth- 
ods 


Iterative substructuring methods are solution methods 
based on a decomposition of the original domain into 


nonoverlapping subdomains [10, 11, 21, 47]. This class of 
domain decomposition methods has reached a high degree 
of maturity over the past few years, in particular, for sym- 
metric, positive definite, elliptic problems [20]. A general 
and powerful domain decomposition approach for solving 
the discrete Poisson problem (7) consists of first decom- 
posing the finite-dimensional space V into a sum of M + 1 
subspaces [21, 41], 


M 


and then consider the solution of new, smaller subproblems 
associated with these subspaces. The space V0 typically 
represents a global, coarse space, while V/, i = 1, .... 3// 
are subspaces associated with the individual (local) sub- 
domains, both interior and interfaces. 


In terms of matrix algebra we can summarize the ap- 
proach as follows: Instead of solving the original system 
of algebraic equations, equation (12), we consider the so- 
lution of a preconditioned (or transformed) system 


(29) __B -z A u = __B -z f, 


where the preconditioner B -• is defined as 


i=0 


xvith 


Here __A is the matrix version of the symmetric, positive 
definite, bilinear form a : V x V -• R, while •i is the 
matrix version of a symmetric, positive definite, bilinear 
form •i ' V/x V/-• R. The operator (or matrix) Ri extends 
the nodal representation of an dement in the subspace V/ 
to an element in the global space V, while the operator __R• 
represents the associated restriction operator. 


For each subspace V/we also introduce the operator Ti ß 
V -• V/such that Vv5 • V, Tiv5 • Vi is the solution of the 
following problem on V/ 


ai(Tivs, ws) = cl,(vs, ws) Vw5 • Yi . 


In the case that 5i(.,-) = a(.,.) the operator Ti repre- 
sents an orthogonal projection from V onto V/. However, 
this framework also allows for the consideration of letting 
ai(., .) represent an approxitnation to a(.,-), a possibility 
that we will later exploit in several different ways. 
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If v_ is the nodal representation of an element ve • V, 
the above projection can be expressed in matrix form as 


In particular, we can express the projection of the exact 
solution as 


ri•: je i 
where 


Equation (29) can now be expressed as 


(31) Tu--j e , 


where T__ = E;u=0 T i and •_ = 
The preconditioned (or transformed) system (31) is now 


typically solved by a Krylov method such the conjugate 
gradient method. We remark that if the operators B__ i (or 
T•) are well chosen, the operator T = B-•A will be quite 
well conditioned, and the iterative procedure will converge 
rapidly. From (30) we see that each preconditioning step 
consists of solving M + 1 subproblems. Because of the ad- 
ditive nature of the preconditioner, the solution of these 
subproblems can be performed in parallel. As we shall 
discuss more later, the use of inexact solvers for the lo- 


cal subproblems xvill also allow us to make each precondi- 
tioning step inexpensive relative to the cost of performing 
global matrix vector products, resulting in a cost-effective 
solution algorithm. 


In the next section we shall apply the additive Schwarz 
procedure outlined above to solve the Poisson problem (12) 
in the context of spectral element discretizations. In Sec- 
tion 3.2 we shall propose an extension of the above pro- 
cedure to solve the steady Stokes problem, and in Section 
3.3 and Section 3.4 we shall propose further extensions in 
order to solve the steady convection-diffusion equation and 
the steady Navier-Stokes equations, respectively. 


3.1 An iterative substructuring method 
for the Poisson problem 


Here. we consider the solution of the Poisson problem (12) 
discretized using spectral elements. The method we pro- 
pose employs the following decomposition of the discrete 
space V: 


K 


(32) V = Vo + E Vk + Vt. 
k=l 


With V defined in (10), we also define the particulax real- 
ization V• o to mean that a fixed polynomial approximation 
No is used in every element. With this notation, the space 
V0 can be defined as 


(33) V0 = V• o 1 _< N0 < N. 


The space V0 is thus associated with a coarse discretiza- 
tion of the original problem. Previous studies have demon- 
strated the importance of including a coarse problem as 
part of the preconditioner in order to allow for a global 
information transfer mechanism [52]. 


The subspace Vk is associated with an individual spec- 
tral element (or subdomain), and is defined as 


(34) Vk = (v' v • QN(Qk), Vl&% : 0). 


Finally, the space Vr is defined as 


(35) = w v), 


where F refers to the collection of all the edges F•.t defined 
in (6) for two-dimensional problems, and faces for three- 
dimensional problems. 


In terms of the basis for the subspaces V0, V•,k = 
1, ..., K, and Vr, we use a nodal, Lagrangian interpolant 
basis defined in terms of the tensor product Gauss-Lobatto 
Legendre points, similar to the basis for the global space 
V. Note that an element in the space Vr is extended by 
zero from the element interfaces to the GLL nodes in the 


interior of the elements. 


•Ve now discuss the approximate projection operators 
To, T•, k = 1,..., K, and Tr associated with these sub- 
spaces. First, we let To represent an orthogonal projection 
from V to V0, i.e., a0(.,.) = a(.,.). In matrix form this 
means that we can express A 0 as 


(36) •0 = ---R0•A--R0 ß 


Here the prolongation operator _R 0 represents an operator 
which takes an dement in V0 (the coarse global space) and 
represents it in terms of the basis for the global space V. 
In practice, this is done by taking a global coarse solution 
and performing an interpolation in each spectral dement 
from a polynomial order No to a polynomial order N. 


Next, we let T• represent an approximate p•rojection 
from V• to V. In particular, we let a•(., .) (or A• in ma- 
trix form) represent a linear finite element approximation 
associated with the GLL points, 


(37) = 
In two space dimensions we use linear triangular elements 
based on the GLL nodes, while in three space dimensions 
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xve use linear tetrahedral elements based on the GLL nodes. 


Earlier studies have shown that such a finite element pre- 
conditioner is spectrally close to the original local spectral 
operator (denoted in matrix form as Ak) , with a condition 
number bounded by a constant as the polynomial degree 
.V increases [19]. The reason for using a finite element 
preconditioner is that it reduces the computational com- 
plexity associated with solving the subproblems for the 
individual spectral elements, while still resulting in a good 
conditioning of the transformed problem (31). 


Finally, we consider the approximate projection opera- 
tor Tr. In order to compute the nodal values along the 
subdomain interfaces, we shall simply use the diagonal of 
the discrete Laplace operator, i.e., 


(38) •r -- diag(---A)lr. 


A better choice would, of course, be to use an approxi- 
mation to the Schur complement on the subdomain inter- 
faces. Hoxvever, as we shall see later, the simple diagonal 
preconditioner (38) gives remarkably good results. This is 
particularly true when •ve later on consider solution algo- 
rithms for the steady Stokes problem and for the steady 
Xavier-Stokes problem. 


In summary, the preconditioner __B -t that we use can be 
expressed as 


K 


(39) B-X = B---ø-• + Z B• +B•l 


where 


--1 T 
-Wt = A0 , 


~ -1___.• gZ = 


The system (29) is now solved by the conjugate gradient 
method. We remark that K + 2 subproblems need to be 
solved for each iteration, see 


The coarse system matrix A__ 0 is explicitly assembled and 
then factored using a banded direct solver for symmetric 
systems from the LINPACK library. Hence, only back- 
substitution is needed during the iteration. If No is small, 
both the number of unknowns and the bandwidth will be 


small. 


The local systems matrices -_A•, k = 1, ..., K are also ex- 
plicitly assembled and then factored using a banded direct 
solver for symmetric systems (from LINPACK). We remark 
that the bandwidth for the finite element approximation is 
a factor of N smaller than the bandwidth for the original 
local spectral operators A•, k = 1, ..., K. The operator _Rk 


extends the solution in • by zero to all the other subdo- 
mains. Hence, R• represents the identity operator for the 
nodal values associated with subdomain •, and the zero 
operator for the nodal values associated with the rest of 
the computational domain. 


The matrix '__A r is diagonal, which makes the inversion of 
this operator trivial. The operator __R r represents the iden- 
tity operator for the degrees-of-freedom associated with the 
element interfaces, and the zero operator for the degrees- 
of-freedom associated with the interior of the elements. 


3.2 An iterative substructuring method 
for the steady Stokes problem 


Iterative substructuring methods have shown great 
promise for solving symmetric and nonsymmetric systems 
of equations [35, 47, 14, 53, 41, 16]. However, there are still 
very limited results and experience from applying such al- 
gorithms directly to solving the discrete Stokes or Navier- 
Stokes equations [4]. 


In the past the most commonly used methods to 
solve (21) - (22) have either been iterative methods based 
on a global Uzawa decoupling procedure [26, 27, 31] or di- 
rect solvers. The large bandwidth typcially associated with 
spectral element discretizations makes direct solvers prac- 
tical only for relatively small two-dimensional problems. In 
order to solve three-dimensional systems, it is imperative 
to have good iterative solvers. Even though a global Uzaxva 
procedure results in a relatively well-conditioned system 
for regular geometries [31], the convergence rate can de- 
teriorate significantly for irregular computational domains 
(e.g., large aspect ratios). 


In this section we shall propose an iterative substructur- 
ing method for solving the steady Stokes equations in two 
or three space dimensions. Throughout the rest of this sec- 
tion, we assume that the Stokes problem is discretized us- 
ing spectral elements, that is, we assume a decomposition 
of the original domain into K spectral elements (or sub- 
domains), and a high-order, tensor-product, polynomial 
approximation inside each element. However, we remark 
that the method we propose should in general work for 
systems based upon p- or h-p-type finite element methods 
[5, 3, 4, 37]. 


The general approach will be similar to the additive 
Schwarz method for the elliptic Poisson problem, namely, a 
decomposition of the finite-dimensional velocity and pres- 
sure spaces V • (d = 2, 3) and W in order to define smaller 
and more tractable subproblems: (i) a coarse Stokes prob- 
lem defined over the entire domain fl; (ii) local Stokes 
problems associated with the individual spectral elements 
fl•, k = 1, ..., K; and (iii) a Poisson type subproblem asso- 
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ciated with the subdomain interfaces F. Finally, (iv) due 
to the fact that the (fully coupled) steady Stokes problem 
represents an indefinite saddle problem, a global iterative 
scheme will be based on the GMRES method [46] . 


We start by proposing the following decomposition of 
the finite-dimensional spaces V d and W for the velocity 
and the pressure in d space dimensions. 


K 


w = 


A coarse Stokes problem is associated with the subspaces 
k• d and •1•. Similar to the definition of V0 in (•)• we 
define the coarse velocity and pressure spaces •s 


= vJ 0 
•l• = •0-2. 


With this definition of V• and W0, the coarse Stokes prob- 
lem is defined as the particular realization of the origi- 
nal Stokes problem, defined by K conforming spectral el- 
ements and assuming a (fixed) polynomial degree N0 for 
the velocity and N0 - 2 for the pressure inside each spec- 
tral element (or subdomain). In other words, the coarse 
Stokes problem is the standard P.¾/P.¾-2 method [34, 1] 
with :V = N0 • 2 in each spectral element. 


In practice, the polynomial degree N0 that we use for 
the coarse Stokes problem cannot be too high; a typical 
value for N0 is 2 or 3. Hence, a typical spectral element 
for the coarse Stokes problem is either a Q2/Qo element, 
or a Q3/Q• element. The main reason for this choice is 
that larger values for N0 make the solution of the coarse 
Stokes problem too expensive. This is particularly true 
when considering a direct solver for the coarse problem. 
For three-dimensional problems only a quadratic element 
might be practical. However, in this case the Q2/Qo spec- 
tral element is expected to be inferior to the Q2/P• finite 
element [25]. We shall therefore also consider the use of low 
order finite elements for the coarse problem, see Section 4 
for numerical results. 


We now proceed by considering the subproblems associ- 
ated with the individual spectral elements. For each spec- 
tral element (or subdomain) fik we define a local Stokes 
problem with homogeneous velocity boundary conditions. 
That is, for each spectral element fik,k = 1,...,K we 
search for a discrete velocity u,,k • Vff and a discrete 
pressure P6.k • Wk• where 


v[ = k= 


[/V'k : {Wk' Wk • QN-2(•k), /•2 Wkd•:O} ß 
The space V• is defined as 


Hence, V• is defined similarly to Vr for the Poisson prob- 
lem. We remark that there are no pressure degrees-of- 
freedom along F. 


•Ve are now in a position to propose an additive Schwarz 
algorithm for the Stokes problem. We start by first ex- 
pressing the original discrete Stokes equations (21)-(22) in 
the compact form 
(40) Sx = g 


where 


A -D tr ) s= b-_ 


= [_m 


g_ = 0] r. 
•Ve then consider the preconditioned (transformed) 


Stokes system 
(41) Q-•Sx: Q-•g, 


-- 


where Q-• represents the Stokes preconditioner, that is, 
-- 


an operator that approximates the inverse of the original 
discrete Stokes operator and is relatively inexpensive to 
evaluate. Before we discuss the Stokes preconditioner, we 
remark that the indefinite, nonsymmetric system (41) is 
solved using a global iterative procedure based upon GM- 
RES. For each global iteration we need to perform two 
global matrix-vector products of the type y = Q-1 S__x. 
If the preconditioner is well chosen, the number of itera- 
tions will be small, and not very sensitive to the number of 
spectral elements K or the polynomial degree N associated 
with each element (or subdomain) f•k, k = 1, ..., K. 


We now proceed with discussing the Stokes precondi- 
tioner Q-1 which we define as 


-- 


K 


(42) •-• -- •__•o -• + (I +_q•__G) [ E qj•]+ q__• 


where 


___Q;1 = RkSk R___k , k: 1,...,K 
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The first part of the preconditioner represents the solu- 
tion of a coarse Stokes problem similar to the solution of 
a coarse Poisson problem in (30). A coarse version of the 
original Stokes problem can be expressed as 


S0• = go' 


Here the subscript zero indicates that we are searching 
for a solution in the subspaces V0 d and W0 instead of the 
original spaces V d and W. In addition, the subscript zero 
indicates that a low (fixed) polynomial degree -No is used 
in order to construct the individual discrete operators in 


S O as well as the right hand side• The operator •0 that 0' • 


we use in the preconditioner (42 is simply 


The prolongation operator R_R_o can be expressed as 


o 1 _ R_p,o ' 


Here, R•, 0 represents an operator which takes an element 
in 1/• d and represents it in terms of the basis for the global 
space Va. while Rp. o represents an operator which takes 
an element in 15• and represents it in terms of the basis 
for the global space W. In practice, this is done by taking 


a global coarse Stokes solution (U_o, P-0)' and performing an 
interpolation in each spectral element from a polynomial 
order (,¾0, N0 - 2) to a polynomial order (N, -N- 2) in all 
!2k, k = 1, ..., K (in the case of spectral elements). 


\Ve remark that when we apply this coarse Stokes opera- 
tor as part of the preconditioner (42), the associated right 


hand side go = [g-m0'g-p,0 IT will in general be nonzero, 
including g-p,0' In our implementation, the coarse Stokes 
operator is explicitly assembled and then factored using a 
banded direct solver from the LINPACK library. Hence, 
only back substitution is necessary during each GMRES 
iteration. 


•Ve now proceeed by expressing the local (spectral) 
Stokes problems associated with the individual spectral el- 
ements' 


(43) 


where 


(44) S•=(Ak -D• ) D• _0 ' 


Note that subscript k here refers to a particular subdomain 
•k, and should not be confused with summation over re- 
peated indices. 


The operator • that we use in the preconditioner (42) 
will be based upon a modified (approximate) version of Sk 


in (44), defined as 


The original (spectral) viscous operator in (44) is here re- 
placed by a finite element operator; this operator is derived 
by using linear finite elements on the GLL nodes in a simi- 
lar fashion as the subdomain preconditioner for the Poisson 
problem. Hence, instead of solving (43) we solve 


(45) 


Again, we remark that the right hand side g_• - 
[g-u,k' g-p,k IT will in general be nonzero, including gp,•. The 
prolongation operators Rk, k -- 1, ..., K are defined in an 
analogous fashion to the Poisson problem: each operator 
represents an identity operator for the degrees-of-freedom 
associated with f]•, and the zero operator for the remain- 
ing degrees-of-freedom. 


We solve the coupled, saddle Stokes system (45) by first 
applying a Uzawa procedure, that is• by applying a block 
2 x 2 Gaussian elimination. The result is a decoupling of 
the pressure and the velocity into a positive semi-definite 
system for the pressure and a positive definite system for 
the velocity: 


(46) ;• - D• .•[tg•,• UkP-k : •--p,k 
(47) Aknk = •,k+•Sk , 
where the Uzawa pressure operator •k is defined as 


(48) •k = Dk -'•-•'•' Dk T ß 


We construct •k explicitly, and factor the matrix using a 
symmetric solver from the LINPACK library. Hence, only 
back substitution is necessary during the global iteration. 
Note that the Uzawa pressure system is singular, reflecting 
the fact that the pressure pk is only determined up to a 
constant. In order to obtain solvability we therefore fix 
the pressure to be zero at a single (interior) GLL point, 
and later adjust the pressure level such that the average 
pressure is zero in each subdomain. The correct pressure 
level in each subdomain is actually provided by the coarse 
problem. We now make the important observation that the 
coarse problem is not only necessary in order to improve 
the conditioniong of the transformed problem (41); the 
coarse problem is, in fact, essential in order to compute 
the correct solution. 


Once the pressure p_k has been computed, we can solve 
for the velocity by inverting the viscous operator. Again, 
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as for the Poisson problem, we form explicitly the scalar, fi- 
nite element based Poisson operator. Next, we factor this 
scalar operator using a banded, direct solver from LIN- 
PACK. The velocity u k is then computed by performing d 
back-substitutions, one for each velocity component. 


Next, having computed x k = [uk,pk]T for all f•k, k = 
1 .... , K, we apply the gradient operator G defined as 


0 +D T ) (49) G_G__ = 0_- 0_--- 
The result from this operation, restricted to F, is added 
to the original contribution along the interfaces F. The 
nodal values along F (velocity degrees-of-freedom only) are 
then computed by inverting the diagonal of the viscous 
operator, that is, 


(50) •r = diag(A)lr ß 


Finall)', the prolongation operator R r represents the iden- 
tit), operator for the velocity degrees-of-freedom along F, 
and the zero operator for the remaining degrees-of-freedom 
in the donmin. Again, we remark that there are no pres- 
sure degrees-of-freedom along the interface F. 


3.3 An iterative substructuring method 
for the steady convection-diffusion 
equation 


We are here interested in solving the discrete system (26) 
using an iterative substructuring approach. As a starting 
point we shall use the algorithm presented for the Pois- 
son problem. which corresponds to solving the system (26) 
without any convection. 


The addition of the linear convection term modifies the 


Poisson algorithm in two ways. First, the system is no 
longer symmetric, so we have to replace the conjugate gra- 
dient algorithm with a GMRES algorithm. This means 
that two global matrix-vector products are required for 
each iteration (as opposed to one for the conjugate gradi- 
ent algorithm). 


Second, the Poisson preconditioner (39) is modified in 
the following way: The coarse problem corresponds to 
a coarse discretization of the original convection-diffusion 
problem, including the convection term, but the local prob- 
lems and the interface problem are left unchanged. 


It is well known that using a coarse, low order discretiza- 
tion to resolve convection-diffusion problems will produce 
wiggles. For the coarse problem we therefore add an 
anisotropic diffusion term [28], which is equivalent to the 
incorporation of a streamline upwinding procedure [13]. 


The modified diffusivity can be expressed as 


Oiij --- Oto q- (•ij 


where a0 is the original (isotropic) diffusivity in (23). The 
added symmetric diffusivity tensor &ij at a particular (in- 
tegration) point in space can be expressed as in [28] 


U H (ui Uj (•iJ = C T ' U 2 )' 
Here, H is the local mesh spacing, U is the magnitude of 
the velocity, and ui,i -- 1, ..,d are the corresponding ve- 
locity components. The constant c is chosen such that the 
grid Peclet number is less than 2 everywhere on the coarse 
grid. We note that there is no diffusion in the direction 
perpendicular to a streamline, hence the name streamline 
diffusion (or streamline upwinding). 


3.4 An iterative substructuring method 
for the steady Navier-Stokes problem 


We start by first expressing the original, nonsymmetric, 
nonlinear, discrete steady Navier-Stokes system (27)-(28) 
in the compact form 


(51) Fx =g , 
-- 


where 


_x - [_u,•_]T , 
g '-- [gu' g_p]T • If, 0]T 


As usual we linearize the system (51) and perform a New- 
ton iteration. For each iteration we have to solve a system 
of the form 


(52) N 5x n = g - Ex n-• 
-- 


where __N represents the linearized Navier-Stokes operator, 
x a is the solution after n Newton iterations, and •x a = 
X n __ X n-- 1. 


The iterative substructuring algorithm we now present 
is for the system (52). Our method can therefore be de- 
scribed as a Newton-Krylov method. We proceed by di- 
rectly considering the preconditioned (transformed), lin- 
earized, steady Navier-Stokes system 


M-•N 5x • = M-•(g- Fx •-•) , 


where M -• represents the Navier-Stokes preconditioner. 
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The Xavier-Stokes preconditioner can be expressed in a 
form similar to that for the steady Stokes equations, 


K 


(53) M -1 = M___.o -1 + (I + M•'IG) ['• M• '1 ] + M• '1 
k=l 


where 


M• = _RkN__k _Rk ,k 


Our choice for the individual components of this precon- 
ditioner will be: 


I•0 • •NO,FE,SU , 
= 


lq r = diag(A)l r . 


Here. N__o.F•.S v represents a coarse discretization of the 
original, linearized Xavier-Stokes operator. For this coarse 
discretization we use low-order finite elements (or low- 
order spectral elements) on the original spectral element 
decomposition. In addition, we also add streamline dif- 
fusion in a similar fashion as for the convection-diffusion 


problem. Hence, our Xavier-Stokes preconditioner is based 
upon a hierarchy of discrete, spatial operators, starting 
with a linearized Xavier-Stokes operator for the coarse, 
global problem, a steady Stokes (mixed) operator for each 
individual, local problem, and finally, an elliptic (Poisson 
type) operator for the interface problem. 


Our experience has been that using streamline upwind- 
ing on the coarse grid is perhaps most useful as a means 
of obtaining a good initial condition at a very low compu- 
tational cost. A good initial condition reduces the initial 
residual on the fine grid (and thus the overall cost), and 
it also provides a good starting point for the initial lin- 
earization in (52). Using upwinding in the construction of 
•---0 does not always seem to make a substantial difference. 
However, more testing is necessary in order to quantify this 
effect more precisely. 


4 Numerical results 


The purpose of this section is to explore the behavior of 
the algorithms that we have just presented. We will study 
the conditioning of the elliptic systems together with the 
convergence rate for the Stokes systems. We shall also 
study the steady convection-diffusion problem as well as 
the full Xavier-Stokes problem. Finally, we will compute 


the error of some model problems in order to verify that 
we indeed end up with the correct solution when we apply 
these algorithms. 


4.1 The Poisson problem 


We shall first study the solution of the Poisson problem (1)- 
(2) in a domain f• =]0, 1[ a, d - 2,3. We choose a forcing 
function f such that the exact solution u can be expressed 
as 


u(x,y) = ux(x)©ux(y) (d=2) 
u(x,y,z) = u•(x)©ux(y)©ux(z) (d=3) 


where 


u•(t)=t(1-e•(t-•)) . 


We have chosen f such that the exact solution represent 
a tensor-product, "boundary-layer" type solution. In all 
the numerical experiments we use a value /3 = 10. V•re 
remark that the solution cannot be represented exactly by 
polynomials, and does not represent an eigenfunction of 
the Poisson operator. 


We break up the computational domain f] into K square 
or cubic spectral elements, each element being of order 
N. For each discretization (characterized by K and N). 
we shall compute the condition number n •3 = hmax//kmin 
for the preconditioned system (29). This is equivalent to 
considering the following eigenvalue problem: 


where __B is the preconditioner defined in (39). X represents 
-- 


an eigenvector, and h represents the corresponding eigen- 
value. 


We start by first looking at the special case K = 1, i.e, 
the pure spectral case. In this case the preconditioner B__ 
does not include any interface system __B r. For illustration 
we shall not include any coarse system either. Hence, the 
preconditioner B consists entirely of a finite element sys- 
tem constructed as a triangulation/tetrahedrazation based 
on the tensor-product Gauss-Lobatto Legendre nodes. 


Finite element preconditioning of spectral systems has 
been used with success in different contexts [19, 19, 24], 
and we shall here verify the good conditioning properties 
for this Galerkin based discretization of the Poisson prob- 
lem. 


Table I reports the computed condition numbers that 
we obtain in d = 2 and d = 3 space dimensions for practi- 
cal values of the polynomial degree N associated with the 
spectral operator. As expected, the condition number is 
0(1). 
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N d=2 d=3 


3 1.34 1.59 


4 1.55 2.01 


5 1.70 2.31 
6 1.79 2.51 


7 1.82 2.44 


8 1.89 2.48 


9 1.95 2.52 


10 1.99 2.57 


11 2.03 2.61 


12 2.06 2.65 


Table 1: Condition number n B (K = 1) 


We proceed by now considering the multi-domain case. 
Unless otherwise stated we construct a coarse, global prob- 
lem based upon K elements, each of order No = 2. Table 2 
reports the condition number for the two-dimensional case, 
while Table 3 reports the condition number for the three- 
dimensional case. The results indicate that the condition 


number n s is independent of the number of elements, K, 
and gro•vs approximately like N 2. This is also consistent 
with our experience that the number of conjugate gradient 
iterations grows approximately linearly with N. 


N K=16 K=64 K=256 


3 3.65 3.70 3.65 


4 5.14 5.20 5.22 


5 7.48 7.55 7.59 


6 10.3 10.4 10.5 
7 13.4 13.5 13.6 


8 17.2 17.3 17.4 


9 21.2 21.3 21.4 


10 25.8 26.0 26.1 


11 30.7 30.9 


12 36.3 36.5 


Table 2: Condition number n B (d = 2) 


N K=27 K=64 K=125 


3 5.49 5.60 5.65 


4 7.88 7.97 7.99 
5 12.2 12.1 12.1 


6 17.4 17.6 17.5 


7 23.6 23.6 23.5 


8 31.0 31.0 31.0 


9 39.2 39.2 39.2 


Table 3: Condition number n s (d = 3) 


In order to verify that the solution algorithm indeed 
computes the correct solution, we also compute the error 


[[ u- u5 [[ between the exact solution u and the numer- 
ical solution u5 in the relative semi-norm. For the two- 


dimensional case (d = 2) we use K = 4 spectral elements, 
each of order N. For the three-dimensional case (d = 3) 
we use K = 8 spectral elements, each of order N. For the 
error calculation we use the discrete semi-norm, however, 
we use a finer mesh in order to avoid quadrature errors. 
For the results presented for the Poisson equation, we use 
a polynomial degree M = N + 3 inside each element in the 
error calculation. The results are reported in Table 4. As 
expected, exponential convergence is achieved as the poly- 
nomial order N is increased with K fixed. It is interesting 
to notice that the relative error is essentially independent 
of the number of spatial dimensions; this is most likely due 
to the tensor-product form of the exact solution. 


N d=2 d--3 


3 2.23.10 -• 2.25.10 -x 
4 6.55.10 -• 6.62.10 -: 
5 1.62.10 -• 1.64- 10 -• 
6 3.44.10 -a 3.46.10 -a 
7 6.30.10 -4 6.34.10 -4 
8 1.02.10 -4 1.02.10 -4 
9 1.46.10 -5 1.47.10 -5 


Table 4: Discretization error II u- 11 /!l u II 


Finally, we look at the Poisson model problem in 
a "stretched" two-dimensional domain fl =]0, a[x]0, 1[. 
Hence, the domain aspect ratio is equal to a. The compu- 
tational domain is now broken up into K rectilinear spec- 
tral elements, each of order N and xvith an element aspect 
ratio equal to ak, k - 1, ..., K. 


In the first experiment, we choose the domain aspect 
ratio a -- 10 and the element (subdomain) aspect ratio 
ak = 1, k = 1,...,K. In order to realize this choice, we 
choose K• = 40 elements in the x-direction, and K2 = 4 
elements in the y-direction. Hence, the total number of 
elements is K = Kx x K2 - 160. In the second experiment 
we choose a = 10 and ak = 10, k = 1, ..., K. Here, we use 
K1 = K• = 4, i.e., K = 16. In each case we compute the 
condition number n • for the preconditioned system (29). 
The results are reported in Table 5. 


We see that the results for the first case, with a = 10 
and au = 1, are almost identical to the results reported 
in Table 2 for the case a = I and au = 1. Hence, we 
conclude that the condition number of the preconditioned 
system is insensitive to the domain aspect ratio. However, 
the second case, with a = 10 and au = 10, indicates that 
the condition number is strongly dependent upon the sub- 
domain aspect ratio. 
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N c•k--1 c•k- 10 
3 3.70 53.9 


4 5.20 75.9 


5 7.58 110 


6 10.4 150 


7 13.6 193 


8 17.4 244 


9 21.4 299 


10 26.1 363 


11 31.0 429 


12 36.6 505 


Table 5: Condition number n 8 (a = 1) 


4.2 The steady Stokes problem 


In this section we shall study the convergence rate for the 
preconditioned Stokes system (41). We shall use the stan- 
dard driven cavity problem in d - 2 and d - 3 space 
dimensions as a sample problem. Since the steady Stokes 
system represents a saddle problem, we will not report the 
condition number as we did for the Poisson problem, but 
rather the number of GMRES iterations, m c•, required in 
order to reduce the initial residual with five orders of mag- 
nitude. 


While the original grid is based on K spectral elements, 
each of order N, the coarse grid will be based on K finite 
elements of the type Q2/P•. As discussed earlier, our ex- 
perience has been that the Q2/P• element is, in general, 
better than the Q2/Qo element, which is the lowest order 
spectral element that we can use. This finding is also con- 
sistent with previous studies [25]. As expected, our experi- 
ence is also that a Q3/Q• element is even better. However, 
this element is expensive to use for large three-dimensional 
Stokes problems given the fact that we are using a direct 
banded solver for the coarse, global problem. For the re- 
suits that we report in the following, the coarse grid is 
based upon using Q2/P• elements on the original spectral 
element decomposition. 


N K=16 K=64 A/'d.o.f. 
3 17 17 1,314 
4 21 21 2,498 
5 22 23 4,066 
6 26 27 6,018 
7 30 30 8,354 
8 32 34 11,074 
9 35 38 14,178 
10 38 41 17,666 


Table 6: Number of iterations ra Q (d = 2) 


N K=27 K=64 Afd.o.f. CPU 
3 25 25 4,505 5 min. 
4 31 32 11,853 9 min. 
5 35 39 24,673 18 min. 
6 43 46 44,501 34 min. 


Table 7: Number of iterations ra Q (d = 3) 


In Table 6 and Table 7 we report our results. We no- 
tice that, similar to the Poisson problem, the number of 
GMRES iterations, ra Q, seems to be rather insensitive to 
the number of elements (or subdomains), K. The number 
of iterations seems to grow approximately linearly with re- 
spect to the element order, N. In Table 6 and Table 7 
we have also included the number of velocity and pressure 
degrees-of-freedom, A/'•.o.f., for the case with the largest 
number of elements (K - 64). For the three-dimensional 
case, see Table 7, we have also included the total CPU 
time required in order to solve the for the corresponding 
number of degrees-of-freedom, starting from a zero initial 
condition. The computer we used for these experiments 
was a Sun Sparc II workstation with 64 MB of memory. 
All the calculations were done in double precision. It is 
interesting to notice that the CPU time per d.o.f. stays 
almost constant. 


4.3 The steady convection-diffusion prob- 
lem 


We shall here solve the standard two-dimensional driven 


cavity problem as well as an associated convection- 
diffusion heat transfer problem; the computational domain 
is ft =]0, 1[ 2. The boundary conditions for the heat trans- 
fer problem is u = 1 along x = 1, u - 0 along x = 0, and in- 
sulated (zero Neumann) conditions along y = 0 and y = 1. 
•Ve shall solve the problem corresponding to a Reynolds 
number Re - 100 and a Peclet number Pe -- 100. We 


first solve the fluid problem, and then solve the associated 
steady heat transfer problem. 


In Table 8 we report the number of iterations, m c, re- 
quired in order to reduce the initial residual for the scalar 
convection-diffusion problem with 5 orders of magnitude 
starting with a zero initial condition. We show the results 
for three different meshes, K = 16, K = 64, and K - 256, 
and for different values of N. 


For the case K = 16 we also show the number of itera- 


tions, for the pure diffusion case (Pe = 0); we know from 
the results in Table 2 that these results are independent of 
K. We notice that the number of iterations decreases as 


K increases, and approaches the result for the pure diffu- 
sion case. This is due to the fact that, as K increases, the 
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coarse, global problem resolves the exact solution better, 
that is, the grid Peclet number decreases. These results are 
consistent with previous findings for nonsymmetric prob- 
lems [53]. 


N K=16 K=64 K=256 K=16 (Pe=O) 
3 24 15 11 10 


4 22 17 13 12 


5 25 21 15 14 


6 30 24 17 16 


7 34 27 19 18 


Table 8: Number of iterations m c (d = 2, Pe = 100) 


4.4 The steady Navier-Stokes problem 


We no•v illustrate the spatial convergence rate associated 
with the spectral element discretization of the steady two- 
dimensional Navier-Stokes equations. Kovasznay [29] gives 
an analytical solution to the Navier-Stokes equations which 
is similar to the two-dimensional fio•v field behind a peri- 
odic array of cylinders: 


us = 1 - e -xx cos(2,ry) 


A -x• sin(2•ry) -- 


uy = 271' e 


1Re+v / 1 h = • •Re 2+4rr 2, 
where Re is the Reynolds number based on the mean flow 
velocity and separation between vortices. We solve this 


• Re - problem numerically in the case of Re = 40, ,• = [ 
v/¬ Re"- + 47r 2, imposing the analytical velocity solution on 
the domain boundary. 


We break up the computational domain f• =]- 
0.5.1.0] x1 - 0.5, 1.5[ into K = 6 equal quadrilateral spec- 
tral elements, each of order N. We then solve the discrete 
system of equations using the Newton-Krylov algorithm 
proposed in Section 3.4. The main reason for doing this 
test is to confirm that the algorithm computes the correct 
solution. 


N Q2/P• (upwinding) Qa/Q• 
4 6.84.10 -2 6.84.10 -2 
5 1.25.10 -2 1.25.10 -2 
6 2.09.10 -• 2.09.10 -• 
7 3.10.10 -4 3.10- 10 -4 
8 4.08.10 -s 4.08.10 -s 
9 4.73.10 -• 4.73- 10 -• 
10 5.01.10 -7 5.01.10 -7 


Table 9: Discretization error II u- II/II u II 


In Table 9 we show the (relative) velocity error in the 
discrete semi-norm as a function of the polynomial order 
N. The results clearly demonstrate that exponential con- 
vergerice is achieved, both in the case of using a coarse 
grid based upon Q2/Px finite elements with streamline up- 
winding, as well as Qa/Qx spectral elements without any 
upwinding. For a fixed N, the error in both these cases is 
the same. 


5 Conclusions and final comments 


We have presented iterative substructuring algorithms for 
the Poisson problem, the steady convection-diffusion prob- 
lem, the steady Stokes problem, and the steady Navier- 
Stokes problem in the context of using spectral element 
discretizations and an additive Schwarz method without 


overlap. The preconditioners for these problems have three 
main components: (i) the solution of a coarse, global prob- 
lem; (ii) the solution of independent, local problems as- 
sociated with the individual spectral elements (or subdo- 
mains); (iii) the solution of a system for the unknowns on 
the element (subdomain) interfaces. 


Associated with the three components of the Navier- 
Stokes preconditioner is a hierarchy of operators: (a) 
a steady, linearized Navier-Stokes operator (including 
streamline diffusion) for the coarse, global problem; (b) 
a steady Stokes operator for each individual, local prob- 
lem; (c) an elliptic (Poisson type) operator for the interface 
problem. 


Earlier studies have demonstrated the importance of in- 
cluding a coarse, global problem in order to obtain rapid 
convergence for elliptic problems. For the Stokes and 
Navier-Stokes algorithm presented here, the coarse, global 
problem is not only important for the convergence rate; it 
is essential in order to compute the correct solution. 


The steady Stokes operator used for each individual, lo- 
cal problem provides an example of using mixed discrete 
operators. Here, the viscous term is treated using a linear, 
triangular or tetrahedral elements on the tensor-product 
Gauss-Lobatto nodes, while the divergence and gradient 
operator represent the original spectral element operators. 


Numerical experiments indicate that the convergence 
rate is independent of the number of spectral elements 
(subdomains), and also independent of the domain aspect 
ratio. The number of iterations grows approximately lin- 
early with the polynomial order inside the elements as well 
as the element (subdomain) aspect ratio. 


We would like to mention that the solution algorithms 
presented in this paper have also been extended to: (i) 
spectral elements of different polynomial order (including 
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nonconforming matching conditions [7]); (ii) problems with [5] 
variable properties (non-Newtonian flows); and (iii) prob- 
lems using the full stress formulation (including the speci- 
fication of Neumann boundary conditions). However, due 
to space limitation, these results will be reported in a sep- [6] 
arate paper together with illustrative examples [45]. 


Future work will focus on improving the preconditioning 
of the interface system; this part seems to be the weakest 
part of the proposed algorithms, in particular, for meshes [7] 
with large subdomain aspect ratios. It would also be in- 
teresting to try other types of Schwarz algorithms, such 
as the the additive or multiplicative Schwarz algorithms 
including overlap [15, 22]. In terms of new application 
areas we plan to extend the current algorithms to solve 
unsteady problems, thus allowing for fully implicit time [8] 
stepping procedures. 


In order to better understand the proposed solution 
methods, as well as to suggest further improvements, we 


hope that the algorithms and the numerical results that [9] 
we have presented in this paper will be followed up with a 
theoretical analysis. 
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Figure on reverse: 
Discretisation of the pipe expansion using 600 tetrahe- 
dral elements. Here we see half of the domain. The 


pipe expands from a diameter of 1 to a diameter of 2 
and the complete domain is 7.5 units long of which 0.5 
units is the smaller pipe. (From "Triangular and Tetra- 
hedral Spectral Elements" by S. J. Sherwin and G. E. 
Karniadakis, page 509) 








The h-p Version of Finite Element Method in R 
Theory Algorithm 


Benqi Guo* 


Abstract 


This paper gives a precise description of regularities of so- 
lutions and their derivatives of all orders for elliptic prob- 
lems on polyhedral domains in the frame of the countably 
normed spaces with weighted Ck-norms in neighborhoods 
of vertices, edges and vertex-edges. Under the guidance of 
the regularity theory, the geometric meshes and P-Q dis- 
tribution (bilinear-linear or linear-uniform) of element de- 
grees are designed accordingly in each of singular neighbor- 
hoods. The algorithms combining the geometric mesh and 
corresponding P-Q distribution of element degree achieve 
the exponential convergence and efficiency of computation. 
The performance of the h, p and h-p versions for a bench- 
mark elasticity problem on a polyhedral domain is given 
and analysed. 


Key words: the h-p version, the finite element method, 
geometric mesh, P-Q distribution, vertex singularity, 
edge singularity, vertex-edge singularity. 
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1 Introduction 


The h-p version, its theory and algorithm, is a new de- 
velopment of the finite element method (FEM) in 1980's 
and 1990's. It was originated in and oriented to the struc- 
tural mechanical problems on nonsmooth domains in R 2 
and R 3, but now its use has been expanded to many other 
fields such as fluid mechanics, thermal analysis, electronic 
engineering, etc.. The methodology developed in the past 
decades has significantly influenced the theory and algo- 
rithm of FEM, the practices of engineering and scientific 
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computation and the industry of commercial FEM codes, 
such as MSC/PROBE, PHLEX, MECHANICAL, STREE 
CHECK, and research code STRIPE (see [34, 35, 39]). The 
h-p version has been one of the most significant achieve- 
ments of FEM's history since 1970's. 


It is well known that the singularities of solutions for 
problems on nonsmooth domains may occur at the ver- 
tices and edges, which severely affect the effectiveness and 
efficiency of finite element solutions. The h-version, which 
reduces the element size h, and the p-version, which in- 
crease the element degree p, may not be able to achieve 
the desired accuracy in practical engineering range. Then 
the h-p version is the only reliable finite element approach 
which is able to provide effective and efficient algorithms. 
It reduces the element size h and increase the element de- 


gree p simultaneously and selectively in order to achieve 
the optimal rate of convergence and the efficiency of com- 
putations. 


The h-p version of FEM in R 2 was introduced in 1980's 
(see [2, 25, 26]) and has been well developed since then. It 
was originated in and oriented to the structure mechani- 
cal problems on nonsmooth domains. Under the guidance 
of the regularity theory in the frame of countably normed 
spaces for the problems on nonsmooth domains (see [3, 4, 
27, 28]), the geometric mesh and the P-distribution of el- 
ement degrees are properly designed, which leads to the 
exponential rate of convergence with respect to cubic root 
of the number of degree of freedom. The exponential con- 
vergence has been seen in numerous computations by us- 
ing commercial and research codes mentioned above. The 
theory and algorithms have been generalized from elliptic 
boundary value problems to interface problems, eigenvalue 
problems, high-order problems, parabolic and hyperbolic 
problems (see [5, 7, 13, 16, 19, 29, 31, 38, 40]). Thus 
the h-p version in R • has already been well established in 
1980's. For survey of the h-p version in R • we refer to [8, 
11]. 


Although the computation and implementation of the h- 
p version in R 3 was started in later 1980's (see [1, 12, 20]), 
there had been no progress on the approximation theory 
until the regularity theory in terms of countably normed 
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spaces for elliptic problems on nonsmooth domains in R 3 
was established in early 1990's (see [20, 22, 23, 24]). There 
are several quite different features of the h-p version in 
three dimensional setting from those in two dimensional 
setting, due to the complexity of singularity at vertices 
and edges. First of all, the geometric meshes are de- 
signed differently in the neiborhoods of vertices, edges and 
vertex-edges. Secondly, in addition to the bilinear or lin- 
ear P-distribution of element degrees, a linear or uniform 
Q-distribution of polynomials of one variable (in the di- 
rection of edges) have to be adopted in edge-neiborhoods 
and vertex-edge neighborhoods in order to achieve the ef- 
ficiency of computations. 


As a major development of the finite element method, 
in theory and practice, the h-p version of FEM in R 3 in- 
volves the regularity theory of PDE on nonsmooth domain, 
the approximation theory of the h-p version, the parallel 
and iterative solvers for large-scale systems resulted from 
the h-p finite element discretization, implementation, ap- 
plications to structural mechanics and engineering com- 
putation, etc.. This paper will focus on the regularity, 
approximation, and algorithm. 


2 A model problem 


Fig. 1. Polyhedral Domain 


Let f• be a polyhedral domain in R 3 shown in Fig. 1, 
and let Fi,i E 27 = {1,2,3,...,I) be the faces (open), 
A,•,m E A4 = {1,2,3,...,M} be the vertices. By 


-- 


we denote the edge which is the intersection of Pi and Fj. 
Let 17,• be a subset {j E 271 Am • Pj} of 27 for ra E A4. 
Let /2 = {ijli, j • 27, Pi D Pj = A/j}, and let œm denote a 
subset of/2 such that œm = {ij • 12 [ Am • Pi • Pj = Aij }. 
We denote by o:ij the interior angle between Fi and Fj for 
i,jEœ. 


By Hk(f•) we denote usual Sobolev spaces furnished 


with norms 


x/2 


"U"Hk(a)--/ Y] "D•u"L2(a) / 0<1•1<_• 


where a = (ax,a2, a3) and Pø•u = u•:•:•2• and 
e lro = 0}. 


We now consider a problem on the polyhedral domain 


-Au = f u]ro = 0, 
Ou 


in 


where F ø = Ui•7• i and F x = Ui6A:'Fi where • is a subset 
of 27 and Af = 27•. We assume that f and g are analytic 
on • and •'•, respectively. Hence the singularity of the 
solution is caused solely by the unsmooth domain. 


To illustrate effectively our main ideas, we consider here 
the Poisson equation with analytic data except the domain, 
but the regularity, the approximation results, and the al- 
gorithms presented in this paper are applicable to general 
elliptic problems with piecewise analytic data (see [9, 20, 
21, 22, 23, 24]). 


There exists a unique (weak) solution u(x) • Ho•(f•) 
satisfying the variational equation 


(1) 


where B(u,v) = f Vu. Vvdx on H0X(f•) x H•(f•) and 


F(v) -- f fvdx 4- f gvd$ on H•(f•). 
f• F • 


Let $N C H0 x(f•) be a properly selected piecewise poly- 
nomial subspace, and UN be the finite element solution in 
$• satisfying 


B(?IN, v)-•- F(v), Vv • SN. 


There holds the error estimates 


(2) 


Therefore, the accuracy of the finite element solution de- 
pends solely on the preciseness of the description of the 
regularity of the solution, and the selection of the sub- 
space SN. To this end we shall decompose the domain f• 
into various subregions, on which we introduce the count- 
able normed spaces to precisely describe the regularity of 
the solution and its derivatives of all orders, and properly 
design the geometric mesh and P-Q distribution of the 
element degrees to achieve the exponential rate of conver- 
gence. 







The h-p Version Of FEM In H 3 491 


3 Regularity and approximation 
in neighborhoods of edges 


We assume that the edge A•t = (z - (0,0, za) l a ( za ( 
b} lies on the z3-axis, and introduce a neighborhood of the 
edge Ast shown in Fig. 2, U - Ue,6(Ast) = (z • Q]0 ( 
r(x) = dist(x, Ast) ( e,x• • I5 = (a.5/2, b-5/2)) where 
e, 5 • (0, 1) are selected such that U•,5(A•t) • Ft =• for 
• • Z and • • s,t. 


By C • Zo (U) we denote a countably norreed space with 
weighted C•-norm which is a set of continuous functions 
u(x) on • such that for a real number •ij • (0, 1) and any 


and 


Hereafter a! = H•=•a•!,d = (d•,d2, da) and d s 
H•=•d• •, C _> 1 and d• _> 1 are independent of a. 


Ai2 


8/2 


8/2 


Fig. 2. Edge-Neighborhood Ue,5(Ast) 


Theorem a.1 The (weak) solution u(x) of (1) ß C 2 
with ,3ij ß (0, 1) satisfying 


(3) /•ij •_ 1- nij , 


•r Fo F1 2,7, if Fi c , Fj C 
I•ij --- •r otherwise. 


Note that the space C 2 •,•(U) is an anisotropic space 
which the solution belongs to. In the edge-neiborhood the 
solution behaves very differently in the direction parallel to 
the edge and the directions perpendicular to the edge. To 
achieve the best approximation by a piecewise polynomial 
we have to define mesh and element degrees accordingly. 


First we divide the neighborhood U = U•,,(A•t) into K 
levels along the edge with a uniform height H, which is 
not necessary to be small and will not be reduced when 
the mesh is refined. Then, according to the distance to 
the edge we divide U into n geometric layers. By Fti,j,• we 
denote an element in the i-th layer and the k-th level with 
1 _< j _< J(i, k) _< J (uniformly bounded with respect to i 
and k). The element Fti,j,• are hexahedral, or pentahedral, 
or tetrahedral, with ht denoting the dimensions in the xt 
directions, I = 1, 2, 3. Select a mesh factor a ß (0, 1), the 
the geometric mesh U• = {Fti,j,•, 1 _< i _< n, 1 < k <_ 
K, 1 _< j _< J(i, k)} over the neighborhood U satisfying 


(4) 


hi: h2 = Cl fin-t, ha = H m 1; 
dist(Ftx,j,•, A•t) = 0; 
c2cr n-i <_ dist(•i,j,•, Ast ) _< cacr n-i 


forl<i<n, and allj, k. 


where ct,œ - 1,2,3 are some constants independent of 
i, j, k. A typical geometric mesh U• is shown in Fig. 3. 
For a precise description of the geometric mesh un• we re- 
fer to [6, 9, 20]. 


X• X2 


1 


o • 


Fig. 3. Geometric Mesh U• 


For the proof of the theorem we refer to [23]. We now define finite element space over the geometric 
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mesh U• 


sv, Q(u•) = {0(x) I 0(x)l•,,•,k = •(x•)•(•a), 
0x (x) is a polynomial of degreepi,j,k, and 
02(x3) is a polynomial of degree qi,j,k in x3} 


and S?'Q'i(U•): S?'Q(U;) A HI(U). 
A linear P-distribution {Pi,j,k, 1 < i < n, 1 _< 


k _< K, 1 < j < J(i,k)} and a uniform Q-distribution 
{qi.j.k, 1 _< i _< n, 1 _< k _< K, 1 _< j _< J(i,k)} should be 
associated with the geometric mesh U•, with 


(5) Pi,j,k = [/•i] for all i,j,k 


and 


(6) qi,j.• = [/•n] for all i,j,k 


where/• > 0 is a degree factor. Hereafter [a] denotes the 
smallest positive integer >a. Then the combination of the 
geometric mesh and linear-uniform distribution of element 
degrees leads to the exponential convergence. 


Theorem 3.2 Let u • C 2 • •(U), and let Uo be the ge- 
ometric mesh defined by (g), and P-Q distribution be a 
linear-uniform distribution defined by (5,6) with the degree 
factor tt satisfying 


(• - &,) ln(i/•) 
(7) • > 


ln(1/F•q) 


whereF•q = min (1-c•)1-• 0<c•<l (1 -•-O•) l+c• (ø•dH)C•' t• = miaxd i. The 
there exists cS(x) • SP'Q'•(U•) such that 


(8) II• - O(•)11H•(U> --< ce-bstN1/4 
where N = O(n 4) is the number of the degree of freedom 
of S?'Q'•(U;), b•t depends on cr, tz and 3•t but not on N. 


For the proof of the theorem we refer to [9]. 


Remark 3.1 Algorithms combining the geometric mesh 
and linear-uniform distribution of element degree achieve 
the optimal convergence and the efficiency of computa- 
tions, because this combination reflect exactly the nature 
of singularity of the solution in the edge-neighborhood U. 
Algorithms, associated with meshes which is not refined 
geometrically along the edge, is never able to reach the ex- 
ponential convergence and computational efficiency. If a 
uniform P-distribution with Pi,j,k : qi,j,k -- [/•n] is asso- 
ciated with the geometric meshes, the exponential conver- 
gence may hold but with much smaller bst in (8), which 
will severely affect the efficiency of the computation of fi- 
nite element solution. 


Remark 3.2 The design of long element fii,j,k near the 
edge reflect the fact that the solution is analytic along the 
edge. The polynomial •b2(x3) of high degree qi.j,k = [km] 
is used to approximate u(0, 0, x•) effectively. Although the 
degree of •b2(x3) is higher than the degree of eke(x), the 
cost of computation for these polynomials c)2 (x) in x3 &- 
rection is very minor, and it can be ignored comparing the 
cost of computations for those polynomials ck• (x). An al- 
ternative approach to use of high-degree •b2(x3) is uniform 
refinement in the x3-direction when the meshes are geo- 
metrically refined in the x•-x2 plane, but it will affect the 
efficiency of computation and significantly increase the cost 
of computation. 


4 Regularity and approximation 
in neighborhoods of vertex- 
edges 


Let A,, be located in the origin. Then a neighborhood 
Os(A,,) of the vertex A,, is defined by 


Os(A,,) = {x • •2 ] 0 < p(x) = dist(x,A,,) < 6} 


X 3 


A23 
A• 


A•2 
Fig. 4. Vertex-Neighborhood O5(A•) 


where 6 e (0, 1) is selected such that Oa(A,•)• • =O 
for 1 • 27,• (see Fig. 4). We further decompose O5(A•) 
into an inner neighborhood and several neighborhoods of 
vertex-edge. To this end we assume the edge Ast, st • œ,• 
lies in the positive xs-direction, and introduce a vertex- 
edge neighborhood shown in Fig. 5 


v = V•,•(A•, &•) = {• e O•(A•), 0 < O < •} 
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X3 solution behaves in this neighborhood very differently in 
• the direction of the edge and in the direction perpendicular 
! to •he edge. Furthermore, note that u(0, 0, x3) is no longer 


I •O)l• I•2 analytic, instead, itbelongstoacountablynormedspace on an interval I5 = (0.5). This features of the regularity 
X2 of solution must be fully considered when we design the 


~ mesh and distribution of element degrees. 


1 


Fig. 5. Vertex-Edge Neighborhood V• •(A,•. A•t) 


where • is the angle between A•t and radical from A,• '•'"' "; 
(the origin) to x, 0 < 5,(• < I such that •&•(A•,A.,t) 
•r,•(A•, œk3) = A• for any st • œ• and kl • œ•,st 
kl. (p, o. •) is the spherical coordinate with respect to 
and Ast. 


Similarly we introduce a countably norreed space 
C•,, •, (V) with weighted Ck-norms, which is a set of con- 
tinuous functions u(x) on •r such that for a pair 3f real 
nmnber $,•..•t = ('•,•, 3•), 0 • •m • 1/2, 0 • •st • 1 and 
for any o. 


•,•.2 (•c)D•(.u(z)_ u(0,0. xa))llco•V ) < cd•a• 
"') x) 3"•'•-•"2 z))&• *'•+•-I and with ,• .... ' "• ;;( (sin • .- 


for I5 • (.0.5) and a: • 0 


neoem 4.X outio of 
to C•.• (V) with 2st • (0, 1) satisfying (J) and 
(0, 1/2) satisfying 


=: 1 + - 
where •) is the smallest positive eigenvalue of the 
Laplace-Beltmmi operator on the polygon S, which is a 
portion of the unit sphere subtended by an infinite cone 
which coincides with • in the neighborhood O5(A•). 


For the proof of the theorem we refer to [24]. 
The spaces C• .... •(V) like the spaces C • , Z•t(U), is an 


anisotropic space which the solution u(x) belongs to. The 


Fig. 6. Geometric Mesh V• 


The neighborhood V is divided into n geometric level 
according to the distance to the vertex A• and n geometric 
layers according to angular distance to the edge Ast. The 
elements fti,j.• located in i-th layer and k-th level with 
1 _• j _• J(i,k) _• J (uniformly bounded with respect to 
i• k) are hexahedral. or pentahedral or tetrahedral. Let 
(0, 1) be a mesh factor, and let hi denote the dimensions 
of element l-)•i,j, k in the x• direction, 1 = 1, 2, 3. Then the 
geometric mesh V• = (•"•i.j,k, 1 __• i __• n, 1 
j _• J(i,k)} satisfies 


hi •'• c10'2n-k-i, h2 •,• C10'2•--k--i, h3 
dist(f•i,jA, A,•) -- 0, dist*(f•l,j,•, Ast) - 0; 


(10)dist[f•i,j,•;A,•) = c•a "-•, for k • I and all i,j; 
ß 


dist*(fti,j,•. As/) = c4c •n-*, for i ;> I and all k,j; 


where = rain • min sin•b(x) is 
x•i,•,• x•i,•,• 


an angular distance between the element •'•i,j,k and Ast. A 
geometric mesh V• n is shown in Fig. 6. For the precise 
description of geometric mesh on V we refer to [6, 9, 20]. 


The corresponding finite element spaces over the geo- 
metric mesh V• n is defined as 


• (x) is a polynomial of degree Pi,j,k and 
(•2(Z3) is a polynomial of degree qi.j,k in 
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and SP'q•'x(V•) = SP'•?(V•) G Hi(V). 
A bilinear P-distribution {Pi,j,k 1 _< i <_ n,1 _< k _< 


n, 1 _< j _< J(i, k) } and a linear Q-distribution {qi,j,k 1 _< 
i _< n, 1 <_ k <_ n, 1 _< j _< J(i,k)} should be associated 
with the geometric mesh V• with 


(11) Pi.j,u = [t•i + uk - P0] for all i,j,k 


and 


(12) qi,j.• = [•k] for all i,j,k 


where Po >_ 0 is a properly selected integer, /•, u > 0 are 
the degree factors. 


Theorem 4.2 Let u • C 2 n z•,•t(V), and let V• be the 
geometric mesh defined by (10) and P-Q distribution be 
bilinear-linear defined by (i1) and (i2) with I• and • sat- 
isfying 


> (1- 
in(l/a) 


and 


(13) 
u > (1- ,•m)ln(1/o') 


ln(1/F•) 


where F• is the value of Fu at H = 1 given in (7). Then, 
there exists a O(x) • S•'Q'•(V•) such that 


(14) 


where N = O(n •) is the number of degree of freedom, 
depends on •, •,•. •t, t• and •, but not on N. [] 


For the proof of the theorem, we refer to [9]. 


Remark 4.1 The geometric meshes V• are refined both 
in p and in o, and P-distribution is bilinear with re- 
spect to the layer number i and level number k, because 
the solution possesses two different types of singularities: 
edge-singularity and vertex-singularity in the neighborhood 
V&• (A,•, Ast), which have been completely exposed in The- 
orem 4.1. The exponential convergence and the efficiency 
of computation are achieved only by those algorithms us- 
ing a proper combination of geometric meshes and bilinear- 
linear distribution of element degrees. 


Remark 4.2 Asymptotically the exponential rate with re- 
spect to N •/• is the best approximation result we can prove, 
due to the refinement in two directions. But for practical 
range of n e.g., n < 10, the exponential rate with respect 
to N TM is possible by select suitable Po, e.g., Po = n. For 
details, see [9]. 


Remark 4.3 The solution along the edge is not analytic, 
instead, u(0,0, xa) belongs to a countably norreed space 
over an interval. Hence, in order to achieve the expo- 
nential convergence and efficiency of computation, the re- 
finement in xa-direction has to be carried out geometri- 
cally, and a linear distribution of element degrees has to be 
adopted for the polynomials •(xa) so that u(0, 0, xa) can 
be approximated effectively. The increase of the number of 
degree of freedom and the computational cost for ½•(x3) is 
very minor and ignorable comparing the total number of 
degree of freedom and the total cost of computation of the 
finite element solution. 


5 Regularity and approximation 
in inner neighborhoods of ver- 
tices 


We define an inner neighborhood of the vertex Am by ex- 
cluding all vertex-edge neighborhoods V,,•(A.•, Ast), st • 
œ,•, 0 = O•(A,•) • O,t•œ,• V&•(Am, A,t), which is shown 
in Fig. 7. We •sume that A• is located in the origin. 


X3 


Fig. 7. Inner Vertex-Neighborhood •5(Am) 


The countably norreed space C•m(• ) is defined as a 
set of continuous functions u(x) on O such that for a real 
number • • (0, 1/2) and any • 


Ilp(x)•m+lal-l/2na(u(x) - u(O, O, 0)) ilco(5 > 
5 cd 


In this neighborhood the solution possesses only vertex- 
singularity. 
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Theorem 5.1 The (weak) solution of (1) belongs to 
C•m (0) with •m • (0, 1/2) satisfying (9). [] 


For the proof of the theorem we refer to [24]. 
Unlike the space C 2 C 2 •(U) and •,•.•(V), the space 


C• (0) is an isotropic space, the solution is singular in 
p, but behaves equally in the x•-direction, œ = 1, 2, 3. Due 
to this character of the singularity of the solution, the mesh 
is refined in one direction, i.e., in p. •According to the dis- 
tance to the vertex Am we divide O,•(Am) into n levels. 
The elements in the k-th level with h• being the dimen- 
sions in the x• direction, œ = 1, 2, 3, 1 _• j _• J(k) _• J 
(uniformly bounded with respect to k), denoted by f•j,a 
are hexahedral, or pentahedral, or tetrahedral. A geomet- 
ric mesh 0• = {flj.a,1 _< k _< n, 1 < j < J(k)) with a 
mesh factor cr • (0, 1) satisfying 


h• • h2 • h3 • clcrn-i; 
(16) dist(f]j,l,Arn)--O, 


ß 


dist(f•j.a, A,•) =cocr n-•, for k > I and all j. 


A geometric mesh 0• is shown in Fig. 8. For the precise 
description on the geometric mesh over O5(Am) we refer 
to [6, 9, 20]. 


A13 


A23 


1 


A12 


Fig. 8. Geometric Mesh 


We define a finite element space over • by 


- I is a polynomial of degree Pj,a} 
and sP'I(O;) 


The character of singularity of the solution in the inner 
vertex-neighborhood is also reflected in the designing of 
element degrees. Only a linear P-distribution {p/,a, 1 _< 
k _< n, 1 _< j < J(k)) is needed with 


pj,• = [yk], for all j, k. 


where v > 0 is the degree factor, because the solution 
behaves equally in all x•-direction and geometric mesh is 
refined in p. 


The algorithms based on the geometric mesh and linear 
P-distribution achieve the exponential convergence. 


Theorem 5.2 Let u • C • ~ • • (0) and let O• be the geomet- 
ric mesh defined by (15) and the linear P-distribution be 
defined by (16) with • satisfying (13). Then there exists a 
•(X) • sP'I(b• n) such that 


(17) Ilu- ce--bmN1/4 
where N = O(n 4) is the number of degree of freedom, bm 
depends on •m, U and or, but not on N. [] 


For the proof of the theorem we refer to [9]. 


6 Regularity and approximation 
of the h-p finite element solution 
on polyhedral domain 


Let f]0 = f] • Ume•405(Am) • Usteœ U•.5 (Ast). Select (5 
and e properly, f]0 will contain no edges and vertecies of 
the domain. f]0 is called the regular region in which the 
sol•tion is analytic. 


Theorem 6.1 The (weak) solution of (1) is analytic on 
•o, and for any r• 


IID%(x)llco½o) 


For the proof we refer to [24]. 
By ,q we denote a multi-index (tim,/•st, m • .M, st • /2), 


with /•m • (0,1/2) and /•st • (0,1), and by C•(•"•) we 
define a countably normed space with weighted C a- norm, 
namely, for u 6 C•(f]), there hold 


Combining Theorem 3.1, 4.1, 5.1 and 6.1, we now have the 
regularity of the solution on whole polyhedral domain. 
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Theorem 6.2 The (weak) solution u(x) of (1) belongs to 
with 2m (0, 1/2),m and &t (0, 1),st C 


satisfying (4) and (9). [] 


Remark 6.1 The regularity results can be given in terms 
of countably norreed spaces with other types of weighted 
norm and in various coordinate systems, for instance, the 
spaces B•(•) with weighted $obolev norms. For the pur- 
pose of numerical approximation we prefer to the descrip- 
tion in terms of the countably normed spaces with weighted 
Ck-norms. The regularity theorems in these countably 
norreed spaces and the relations of these spaces have been 
given in [22]. 


Remark 6.2 The regularity of solution on the polyhedral 
domain is completely described by the local asymptotic ex- 
pansion of singular functions, which contains the power 
of p(x),r(x) and sin(•b(x)) (see[14, 15, 17, 18, 30, 32, 
33, 36. 37]). If the power and forms of leading singular 
functions are known, special elements can be constructed. 
The algebraic rate of convergence of the conventional finite 
element solutions may be improved because of the special 
elements, but the singular basis functions will destroy the 
nice band structure of the stiffness matric and deteriorate 
the condition number. Moreover, in practice the strength 
of singularity and form of singular functions are unknown, 
additional efforts and computations for these information 
are required (see [12]). Hence practically and theoretically 
the h-p finite element solution are the only effective and ef- 
ficient numerical approach for the problems on nonsmooth 
domains, and the regularity theory in the frame of count- 
ably norreed spaces is the only theory which is able to effec- 
tit, ely guide the computational practice and to lead to the 
exponent rate of the convergence. 


l, Ve next design the h-p version finite element algorithms 
on whole polyhedral domain. 


Since the solution u(x) is analytic on •0, we use a fixed 
and coarse mesh • = {•, I _• g_• L). The elements 
•'s are hexahedral, pentahedral, or tetrahedral with hi • 
H • I being their dimensions in the xt-directions, I _• • _• 
3. A uniform P-distribution {pt = p, I _• g •_ L) with 
p coinciding with the highest degree used in elements in 
singular neighborhoods, is associated with the mesh •/, 
and the finite element space is defined by 


I is a polynomial of degree pt = p} 


and SP'I(•-•/) = S P (•/) n H•(•0). 
Note that the accuracy of the finite element solution in 


this region is achieved by uniformly increasing the polyno- 
mial degree, but not by reducing the element sizes. It is 


well-known that for the analytic function u(x) on •0, there 
is a polynomial •b(x) E SP'•(•/) such that 


(18) Ilu - <- ce 
where N is the number of degree of freedom, b0 is inde- 
pendent of N. 


~ 
Let f• be the union of all geometric meshes U•, O•, V• 


and uniform mesh f•, and let P-Q distribution of element 
degree on f• be the union of the linear-uniform P-Q distri- 


H•'s the bilinear-linear P-Q distributions on butions on __• , 
, 


V• the linear P-distribution on O• s and the uniform S, 


P-distribution on •/. Further, by $P'Q(•) we denote 
the finite element space over • of piecewise polynomi- 
als whose restrictions on U•, •,V• and •/ belong to 
the spaces sP'Q(U•n), SP, Q(v•n), sP((•)• n) and SP(•/), 
respectively, and sP'Q'x(12•) = SP'Q(12•)• H•(f•). 


We now come to the conclusion of the approximation of 
the h-p finite element solution. 


Theorem 6.3 Let the geometric mesh f•n and the P-Q 
distribution associated with f•n defined above. Then the h- 
p finite element solution us • SP'Q'•(12•) converges to the 
solution u(x) of (1) exponentially, 


where N is the number of degree of freedom of 
b depends on 2, a, t •, •, but not on N. 


Proof Due to the definition of S P'c2'•(f•) and the com- 
bination of (8), (14), (17) and (18), there exists •b(x) 
$P,Q,I(•n) such that 


where b = min{b•t, bm, bm,•t, b0} depending on 
but not on N, which together with (2) leads to (19) [] 


Remark 6.3 Asymptotically the exponential rate with re- 
spect to N •/• is the best accuracy of finite element solution 
which we can prove. Although the rate is with respect to 
N •/4 in neighborhoods of edges and inner neiborhoods of 
vertices, and N •/• in regular region no, the majority of the 
number of degree of freedom is concentrated in the neigh- 
borhoods of vertex-edges. Hence, as a total performance, 
the h-p finite element solution converges at the exponen- 
tial rate with respect to N •/•. In computational practices, 
if the integer Po in the bilinear P-distribution is properly 
selected and the number of layers and levels are not large, 
then the exponential rate with respect to N TM is possibly 
achievable, as mentioned in Remark 4.3, and also as seen 
in practical computations. 
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7 Numerical example 


A benchmark elasticity problem on a polyhedral domain 
f• with the modulus E = 100 and Poisson ratio v = 0.3, 
shown is Fig. 9, is computed by the h, p and h-p ver- 
sion of finite element method. Let u = (u•,u2, u3) be the 
displacement and T = (T•,T2,T3) be the traction on the 
boundary. The following boundary conditions are imposed 
to this problem: 


i) On 
the 


ii) On the face 
the traction 


iii) On the face 
the traction 


iv) On the face 
the traction 


v) On the face 
vi) On the face 


the faces ACNE, ABDC, AEFB, IJLM, 
traction T=(T•, T•, T3)=0; 


DKLMNC, the displacement ul - 0, 
T•= T3 =0; 
NMJHFE, the displacement u2 - 1, 
T1 ---- T3 -0; 
KGIL, the displacement u• - 0, 
T1 = Ta =0; 
GHIJ, the traction T1 = 1, T• = T3 = 0; 


Fig. 10. Uniform Mesh with h - 1 


The p-version: 
KDBFHG, the displacement u3 = 0, 


the traction T• = T2 = 0. 


W= G •(11,11.11) 


K H 


11 


y 
x 


(0.0,0) 


Fig. 9. Polyhedral Domain f• 


The h-version: 
Uniform meshes of cubic elements with size h - 


1, 1/2, 1/3, 1/4, shown in Fig. 10, are used with the uni- 
form degree p - 2. Table 1 shows the relative error in 
energy norm • 9% when h - 1/4 and N • 300,000 and 
CPU time tl(s) - 29,800sec (single processor). 


h No. of Elm N Ilell,R% t•(s) 
I 331 6708 20.53 120 


1/2 2648 42679 13.32 1890 
1/3 8937 131744 10.56 10130 
1/4 21184 297735 8.99 29800 


Table 1 Performance of the h-version (p = 2) 


Fig. 11. Geometric Mesh f•,n2 with nl = 2, n 2 -- 1 


The finite element solutions of the p-version are com- 
puted on various geometric meshes. The geometric meshes 
of tensor product type are used, namely the meshes are 
heavily refined near the vertex A with layer number n• 
and slightly refined at other vertices with layer number 
n2, because the singularity of solution near A is severe. 
The mesh factor cr- 0.15. A geometric mesh ft• •"•2 with 
nl-2, n•- 1 is shown in Fig. 11. The degreepofele- 
ment uniformly increases from 1 to 10. The performance 
of the p-version on Mesh 3 with n• - 3 and n• - 2 is given 
in Table 2. The relative error in energy norm reduces to 
3% when p - 7 and CPU time t• -- 3305sec (single proces- 
sor). The p-version perform on the geometric mesh much 







498 ICOSAHOM 95 


better than the h-version, but on quasi-uniform mesh, the 
p-version converges only as twice fast as the h-version. We 
will make more comments later. 


p N=DOF lieliE,R% 
2 2925 43.84 33 


3 5135 19.28 56 


4 9328 8.21 169 


5 15549 5.04 481 


6 24404 3.78 1308 


7 36496 3.01 3305 


8 52428 2.49 7408 


9 72803 2.11 14860 


10 98224 1.84 31842 


Table 2 Performance of the p-version (on Mesh 3, n• = 3, 
= 2) 


The h-p version: 
The tensor product meshes with the following combination 
of n• and n2 are used: 


Mesh 1: nl = 1, n2 -- 2; 
Mesh 3: nl - 3, n2 = 2; 
Mesh 5: nl = 5, n2 - 2; 
Mesh 7: n• = 7, n2 - 2; 


Mesh(n•) p N=DOF Ilell•,R% tl(s) 
1 4 464 31.39 1 


3 5 15549 5.04 481 


3 6 24404 3.78 1308 


5 7 67567 1.84 13337 


5 8 97374 1.50 29392 


Table 3 Performanc• of the h-p version 
(on Mesh 1,3,5, and uniform degree p = 


100 


%•.. ' h(.,,,. 3•, ' 


N^(1/5) (resp. t1^(1/5) ) 


Fig. 12. Performance of the h-p Version 
Associated with a uniform P-distribution with p -- 


[/•nl],/• = 1.5 --• 2.0. The Table 3 shows that the 1.84% of 
relative error in energy norm is achieved at n• = 5, n2 = 2 
and p = 7, N = 67,567, and the CPU time t• = 13,337sec. 
On the other hand, the p-version on Mesh 3 needs p -- 
10, N - 98,224 CPU time t• -- 31,842. 


The relative error of the h-p version in energy norm 
Ilell.,. v.s. N,-/* and tz are plotted in Fig. 12. The 
comparison between the h, p and h-p versions are shown 
in Fig. 13 and Fig. 14 where the relative error v.s. N and 
CPU time are plotted in log-log scales. 


lOO 


1 
lOO 


'•X-- h-version ,• p-version II-p version 


Log(N) 


Fig. 13. Comparison between h, p and h-p versions: 
Error v.s. DOF 


lOO --1•-' h-version 
• p-version h-p version 


• '•, x.. .......... 


....... i'o ...... i'•o ..... i"o•o .... i'e;o4 .... f;;o5 
Log(CPU) 


Fig. 14. Comparison between h, p and h-p versions: 
Error v.s. CPU 


Remark 7.1 The computations on this benchmark prob- 
lem has shown that the h-p finite element solution can 
achieve the exponential rate in engineering practical range, 
e.g., 3%, as predicted by asymptotic analyses. 


Remark 7.2 The computation of the h-p version in R a 
have not been exhaustive enough, more experience in com- 
putations and implementations are needed, e.g., how to 
generate a geometric mesh, how to implement the P-Q 
distribution of element degrees (no existing 3-dimensional 
code has this feature yet), and what are the optimal mesh 
factors and degree factors, etc.. 


Remark 7.3 The computation has shown that the p- 
version on an over-refined geometric mesh converges to the 
desired accuracy exponentially before entering the asymp- 
totic phase, it could be an alternative to the h-p version 
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in R 3. The practical strategy to achieve the optimal con- 
vergence and ej•ciency for engineering applications in R s 
needs to be developed further. 
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Boundary Layer Approximation by Spectral/hp Methods 


C. Schwab* M. Suri* C.A. Xenophontos* 


Abstract 


•,Ve present estimates for the approximation of boundary 
layer functions by spectral/hp type methods, both for the 
case that a fixed mesh (with one or more elements) or a 
variable mesh (with two elements) is used. We show that 
the best rate possible that is uniform with respect to the 
boundary layer parameter • • (0, 1] with a fixed mesh is 
O(p-•), where p is the polynomial degree. For a variable 
mesh, we show that an exponential rate may be achieved, 
provided the first element is of size O(ps). We emphasize 
that no analytic or numerical matching of outer or inner 
asymptotic problems is required. We apply our results 
to a model singularly perturbed elliptic problem, as well 
as a one-dimensional advection-diffusion problem, obtain- 
ing exponential convergence estimates for each. Numer- 
ical results conform well with our theory. Although the 
results presented in this paper are one-dimensional, they 
can easily be extended to the treatment of boundary lay- 
ers in higher-dimensional problems via (possibly mapped) 
tensor-product elements, even for unsmooth boundaries 
[14]. 


Key words: boundary layer, singularly perturbed prob- 
lem. p version, hp version, spectral element method. 


AMS subject classifications: 65N30, 35B30, 65N15. 


I Introduction 


In this paper, we report on recent results in the approxi- 
mation theory for boundary layer functions. 


(1) u(x) = exp(-•x/•) 0 < x < L, 


where • • (0, 1] is a small parameter that can approach 
zero, • = a+ib with a 2+b 2 = i and Red > 0. Here, 
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L _> 1 is a typical length scale of the problem under con- 
sideration. Previous approximation theory work along this 
line for the global error has led to optimal convergence es- 
timates being established when a condition of the form 
N > C/e s is satisfied (where N is the number of degrees 
of freedom used) -- see, e.g, [9] for the h version FEM, [5] 
for spectral element methods, and [7] for spectral meth- 
ods using "mapped" basis functions. Here, we are inter- 
ested in obtaining convergence estimates that are robust, 
i.e. uniform in e, when (1) is approximated by piecewise 
polynomials via p and hp type numerical schemes. Robust 
convergence estimates were obtained for h-versions of the 
finite element method in the one dimensional setting, for 
example, in [4, 13]. 


Let I = (c,d) be an open, bounded interval. By L2(I) 
we denote the space of square integrable functions on I, 
equipped with the usual norm I1'1[0. For k • IN, we denote 
by Hk(I) the Sobolev spaces of order k with norm 
We set further Ho•(I) = H•(I) rq {u(c) = u(d)': 0}. 


2 The model problems 


On I = (-1, 1), consider the elliptic model problem 


(2) L•u = -e2u" + u = f 


and the one-dimensional advection-diffusion problem 


(3) L2u = -eu" + u'= f 


with the boundary conditions 


(4) u(-1)--u(1) =0. 


Here f • L 2 is a given function and 0 < e <_ i is a small 
parameter (all function spaces are understood on I). 


2.1 Variational formulation 


The weak formulation of (2), (4) is: Find u• • H0 • such 
that 


(5) v): r , , uv}x le•u•v + = F(v) 
1 
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for all v • H•. 
For the problem (3), (4) we use a saddie-point formula- 


tion: Find u2 G L 2 such that 


/ (6) B2(u2, v) = u2L•vdx = F(v) 
1 


for all v G/_/2 n/-/•. 
Here r(v) = f• fvdx and L;v = -sv" - v' is the formal 


adjoint to L2. 
On H•, the bilinear form B1 (u, v) is coercive in the en- 


ergy norm 


(7) I1•11• -- (Bl(U, u)) 1/2. 
Hence, for every f E L 2, (5) admits a unique solution. The 
form B2(u. v) is stable, i.e. there exists C > 0 such that 


(S) inf sup IB2(•, v)l >_ C 
O•u• L 2 0•v• H2f•H• 


(cf. [31) so that (6) also admits a unique weak solution 
u2 • L 2 for every fE L 2. 


2.2 Regularity 


Generally. solutions of (2)-(4) exhibit boundary layers, i.e. 
solution components of the form 


u•(x) -- exp(-(1 + x)/s), •(x) = (-(1 - x)/s). 


Theorem 2.1 


Let f • C*c([). Then for every M • IN, 


(9) u•(x) M = •a•y(•) + •(•) + B•-•(•) 
'• < C(M,f) forg-O, 1, ..,M where AM+ BM + Uasy œ_ ß 


with C(M, F) bounded independently of e. 
Similarly, for every M • [N, 


(10) u2(x) -- u•y(x) + B M (x)•(x) 


where B M •+ u•v t. <-C(M'f) førf=O'l'""M with 
C(M, F) bounded independently of s. 


The proof is standard and can be found in [6, Theorem 
2.2] and [11, Theorem 2.1]. The parameter s is the length 
scale of the boundary layers. We observe that ux(x) has, 
in general, layers at both ends of I whereas u2(x) has only 
one layer at the "outflow" boundary x = 1. 


We note that u•(x) and •(x) are of the form (1) with 
,X = a + ib = 1. The case where b • 0 will be also contained 
in our approximation results in Section 4 ahead, since it 
arises. for example, for elliptic shells, where a = b = 1/x/• 
and • = x/7 in the layer stemming from the simple edge 
effect (see, e.g., [8]) with t denoting the shell thickness. 


3 The finite element methods 


•Ve obtain approximate solutions by restricting the varia- 
tional formulations (5), (6) to finite-dimensional subspaces. 


ByA ={-l=x0 <x• <x2 <... <xm=l}wedenote 
a mesh in [-1, 1] and set Ij - (xj_•,xj), hj- xj-xj_• for 
j - 1,...,ra. We let further/Y- (p(1), ...,p(ra)), p(j) _> 1, 
denote a polynomial degree vector. Then we define 


(11) •ff(h) : {• • Cø(I): •1Ij • IIp(j)(/j), 
j - 1,...,m). 


(12) Sff(A) = 9•(a) n {•1 u(+l): 0} 
Here, Hp(I) denotes polynomials of degree <_ p. 


Evidently, S#(A) C H0 •. The discretization of (5) is: 
Find Ul F• • S•(A) such that 


(13) Bl(UlFE,v) = F(v) Vv 


which, for every s > 0, admits a unique solution. 
To obtain a stable discretization of (6) we use again 


S#(A) as a trial space. Since H2-conforming test func- 
tion spaces are difficult to construct, (6) is reformulated 
on spaces with mesh-dependent norms. 


Let Hø• denote the completion of H0 • with respect to the 
norm 


•/2 


II=11uo• -- I1•110 + • p•' I•(x•)l 'ø 


where pj :- (hi + hj+•)/2, j = 1,...,m- 1. Then Hø• is 
isomorphic to L 2 © IR •-• i.e. , 


u = (•, d•, ..., d,•_•) • Hø• = L 2 (• IR m-• 


and •/2 


(14) II=11Ho• ---- I1•110 + • PJ Idjl •' 


If u • Høa n H •, then • = u and dj = u(xj). As test space 
we introduce 


(15) H2A = Ho• •3 {v : vl,• • H2(Ij)} 
equipped with the norm 


where 


:r(v'(=•)) = v'(=• + 0) - v'(=• - 0) 
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is the jump ofv • at xj. Note that H• C Hø• C L 2 and 4 
H• D H• D H 2 • H•. On Hø• x H•x we define a bilinear 
form BA(',') by 


Ba(u, v) = 
m rn--1 


Clearly, B• restricted to H• x (H • • H•) coincides with 
B•, i.e. B• is an extension of B•(.,-). 


The weak form of (3), (4) to be discretized reads: Find 
u• G H• such that 


(1•) ,•(u•, , = •(, Vv 


We have for every mesh A [3]: 


inf sup 


so that (17) has a unique solution • for every f • L •. 
A conforming discretization of (17) is obtained with the 
L-spline test space 


• (•) • (• • Co(z) ß 
(18) (L•v)I h • npO)_•(I•) if p(j) • 2, 


v(•l) =0). 


Then the discrete form of (17) is: Find u• E e S•(A) such 
that 


(1•) •(•? v)= •(•) W • f (•). - • L• 


We can prove •he followin• specWal s•abili•y resul• [14]. 


Theorem 3.1 Fo• 


inf sup 
•Es•(•) •Es• 2 (•) , 


with the stability constant given by 
1 


C•(p, A)= 1 + p•_•{pj} Now, 
where p = max•j•m{p(j)}. 


For every fi and A there exists a unique solution of (19). 
Moreover, the finite element solutions u• z are quasiop- 


timal, i.e. 


(20) • - •f•l• •II u• - vll• 
and 


(21) •2-• • 
for every v E S#(A). 


The p and hp boundary layer ap- 
proximation 


We analyze the approximation of boundary layer functions 
of the type (1), along the lines of [11]. •'e give proofs of 
the error estimates which are simpler and shorter compared 
to those in [11], but do not explicitly yield the values of 
constants, and cannot be used to establish pre-asymptotic 
error estimates. Nevertheless, these are sufficient to estab- 
lish uniform (in a) exponential convergence as the spectral 
order p tends to oc. In the case of complex A, however, 
they generalize the results of [11]. 


We begin with a basic approximation result on a single 
element. 


Theorem 4.1 Let u,x.•(x) = exp(-A(x + 1)/e), x 
(-1,1) with e > 0, A = a + ib, 22+ b 2 = 1. Then, 
for every p >_ 1, there exists Sp • IIp([) such that 


(22) 8p(-bl) = ux,•(ñl), 


(23) i[u•'• -- 8p[[L2(I) -- (2p + 1)e ' 


• e ) 2p+1 (24) Ilu•,•-•llL(•) s C•p -• (2p;1)• 
Proof It follows kom Thin. 3.3.4 of [2] that there exists 
3p • •p([) satisfying (22), and such that 


,112 < 1 (25) 
and 


(26) Ilu•,•- svll•(z)_< 


where 


! 9 


[u Ik•(z):= 


u(q+•)- •,• (•)1 


I 


' [w-•(z) v(v + 1)(2v - 1)! I-,• 2 


,(1 - sc2) q lu<•+•)(•)l-ø &. 


- e -2(q+x) I,xl 2(q+x) I exp(-,x(z + 1)/z)l 2 
= e-2(q+ •) e-2a(x+l)/• 


since [A[ = 1. Hence, 


/1 [u•,•l•q(•) = •-.•(s+l) (1 - •-•)q e--•(•+l)/• • 
1 


/: (27) _< e -2(q+x) (1 - •2)q d• 
1 


<__ Cs -2(q+l) (q + 1) -•/2. 
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Stirling's formula yields 


(28) (2q)! - 
2q+1/2 


where C is indeqendent of q. Combining (25)-(28), we get 
(23) and (24). [] 


Estimates (23) and (24) imply super-exponential conver- 
gence as p --+ oc, provided 


• e/2e. (29) i5 :=p+ • > 


For small values of e, (29) will only be satisfied for unrealis- 
tically high values ofp. In fact, it is shown in [11] that when 
p is not of the order given by (29), the super-exponential 
convergence deteriorates. Using more refined techniques 
of proof for Theorem 4.1 (see [11]), which involve Bessel 
functions, we may derive pre-asymptotic estimates for the 
range where/3 does not satisfy (29). With such estimates, 
it may be shown [11] that the best rate uniform in e that 
may be obtained by the p or spectral version on a fixed 
mesh is essentially O(p-•). 


Theorem 4.2 Let u),.• be as in Theorem ,{.1. Let •(A) 
correspond to the pure p version (or spectral element 
method) on a fixed mesh A. Then 


C 


C _< sup i•nf• Ilux,•-vll• <; lx•, P •(0,•1 v e SP(A) 
= 


where the constant C is independent of • and p. 


We now consider an hp approximation result, where the 
mesh changes at each step that p is increased. It turns 
out that only the relative size, and not the number of el- and 
ements needs to be altered to already achieve exponential 
convergence (more precisely, this is an "rp" version). (38) 


Theorem 4.3 Let u),,• be as in Theorem ,{. 1. Let, (A,/3) 
be such that for some n independent of p, • satisfying 0 < 
•o _< n < 4/e, 


/7=(p, 1}, A=(--1,--l+n}s, 1} if ni58<2 
/7= (p}, A: (-1, 1} if n/•e > 2. 


Then there exists •p • •IX(A) satisfying •p(4-1) 
ux.• (ñ1) and 


(30) IItt,k.e -- ?1pile __• C•1/2 q I•, 


(31) - upl[0 _< Ce•/2q •, 


(32) upll• • Cs-•/2q •. 
Here, the constants are independent of p and s but depend 
on no and q < 1 is given by 


e/2/3e if n/3e >_ 2 (33) q := {ne/4, e -a(•-5)} otherwise max 


with 5 > ln•/2• arbitrary. 


Proof If n/3e > 2, then we obtain the result directly from 
Theorem 4.1, since n < 4/e implies q = e/(2/3e) < 1. 


Suppose n/3e < 2. We then construct the function Up(X) 
element-wise. Let c = -1 + n/3e and I• = (-1, c). Trans- 
forming I• to I = (-1, 1), we see that for t = 0, 1, 


(34) / (dtf• 2 (2)2t-•/ (dtfh 2 • dxtJ dx= • •,dytj dy. 
Here, f(y) denotes the image on I of any function f(x) 
defined on I•. In particular, for g = 2/n/3 we have 


(35) 5x,•(Y) = exp(-A(y + 1)n/3/2) = ux,•(y). 


We apply Theorem 4.1 to u,,•(y). Transforming back, we 
obtain a polynomial Sp • 1-lp(I•) such that 


(36) Sp(--1) = t•X.e(--1 ), Sp(C) = TtA,e(œ'), 


(37) 


= en •_ Ceq2•5 ' 


It is seen by (37), (38) that the error in this first interval 
I• satisfies (30)-(32). 


For simplicity, we will only demonstrate that Up may 
be defined on the second interval so as to satisfy the end 
conditions and the estimate (32). To obtain a function si- 
multaneously satisfying the L 2 estimate (31) as well, some 
technical changes have to be made in the definition of Up, 
the details of which may be found in [11]. 
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First, we note that 


]ttA,z(c)] _• e -an13. 


Then we define Up(X) to be the linear interpolant of u,x,e 
at x-candx-ltoget 


~ 


! 


uniformly in s, c for c < 1. Using the triangle inequality, 
it follows that 


! 


• [[•k,zllL2(Ia) -4-[[•pllLa(Ia) 
< Cs-•/2e-'•'•. 


Then (32) follows from (37), (39). 


The following corollary follows immediately from Theorem 
4.3, by using the interpolation inequality 


_ o 


Corollary 4.1 Let u,x.•, Up be as in Theorem ,•.3. Then 


where q is as in (33) and C is a constant independent of 


These approximation results imply exponential conver- 
gence, uniform in e, of the finite element methods (13), 
(19). To illustrate this for (19), consider the problem (17) 
with f(x) = -1/2 and exact solution 


u,•(x) = exp ((x + 1)/-:)- 1 x + 1 
exp (2/z) - 1 2 


The solution consists of a smooth (polynomial) part and a 
boundary layer at x = 1, as expected from Theorem 2.1. 


Further, from the definition of [[u[[•2 it is easy to see that 


(40) II- vii 2 < - vll + 2 Ilu - ' 
Since the linear part is contained in S#(A), the finite ele- 
ment error is essentially the boundary layer approximation 
error. Hence, using the two-element mesh from Theorem 
4.3, we find with (21) and (40) the error estimate 


i.e. a robust exponential convergence rate. 


5 Numerical results 


We present the results of numerical computations for the 
model problem (5) where 


x+l 


f(x) = 2 
This problem was also considered in [5, 7] and its exact 
solution is 


sinh((as + 1)/s) as + 1 
(41) a• (as) = sinh(2/s) 2 
Evidently, it has only one boundary layer near as = 1, i.e. 
A• = 0 in (9). Since we have, moreover, 


(42) ][u•[[2=B•(u• u•)=(1, u•)=O(1) 


we conclude that the relative error in the energy norm, 


S•(d) = [lux- 


should behave like (I>(z, S•(A))where 


(43) (I>(•, S):= inf [1•1 - 


Since u•v(as ) 6 1-1•(-1, 1) for M _> 1, the asymptotic be- 
havior of the error is completely governed by the bound- 
ary layer approximation error for S•(A). Since, moreover, 
u• in (41) has only one boundary layer near x = 1, i.e. 
AM = 0 in (9), Theorem 4.3 requires SF(A) with 


(44) A = {-1, 1 - n•e, 1}, if= (1,p). 


Evidently, N = dimS#(A) = p + I then. 
We will now depict En (d) versus the number of degrees 


of freedom in the finite element method. We compare four 
finite element methods: (a) the p version with one element, 
(b) the h version with p = 1, (c) the hp version with 2 
elements with S#(A) as in (44) and n = I and (d) the 
h version (taking p = 1) with the exponential mesh A = 
{-1, x•,..., x,•_•, 1} where, for m even, 


{ -lifi•0'c•_• , (45) xi= -d/51n 1- ,•_•7, i=l,...ra. 
and c = 1-exp(-1/(d/5)). The mesh (45) is derived in [12], 
[14], where it is shown that when the h version is used with 
p = 1, the error obtained with this mesh is asymptotically 
optimal as ra -• c•. All computations were done in double 
precision on an SGI-2 workstation using MATLAB 4.2a. 


Figures 1, 2 and 3 show the performance of the four 
methods for z = 10-•,• = 10 -4 and • - 10 -8, respec- 
tively. (We obtained graphs analogous to these figures for 
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Figure 1' Comparison of various methods. 
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Figure 2: Comparison of various methods. 
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h-version unlf mesh. p=l 


- _ _ _ _ _ 
p-version 
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Figure 3: Comparison of various methods. 


10 0 
Energy Convergence for heat transfer problem, epsilon=O.01 


10 -3 
hp-version • 


10 ø 10 • 102 103 
Degrees of Freedom 


Figure 4: p and hp energy convergence for (5.6), e = 0.01. 


• ranging from 10 -• to 10-8.) To illustrate that our 
one-dimensional results are, via tensor product arguments, 
also applicable to two- and three-dimensional singularly 
perturbed problems, we consider the following model heat 
transfer problem, the two-dimensional analog of (2). For 
a detailed analysis, we refer to [14]. In the unit circle 
ft={(r,O)'0<O_<2rr,0<r< 1} we consider 


-?Au+u=l inft, 
(46) u = 0 on Oft. 


The exact solution is given by 


u(r,O) _= u(r)= 1 
10(1/•) ' 


xvhere Io(x) is the modified Bessel function of order zero. 
We performed numerical experiments for this model prob- 
lem using the finite element package STRESSCHECK TM, 
for the p and hp versions, with equal number of degrees 
of freedom. The error plots in Figures 4 and 5 show once 
more the convergence in the energy norm. The bound- 
ary layer mesh also gives accurate pointwise function- and 
derivative values. To illustrate this, we show in Figures 6 
and 7 the pointwise convergence of the normal derivative 
on the perimeter of the circle ft. 


Let us summarize some of the observations that can be 


made from the above figures. 


(1) The rate of convergence of the uniform h version is 
O(N -•/2) while the uniform (in •) rate for the p ver- 
sion on a single element is O(N-•), which is double 
the h version rate. For the h version with exponen- 
tial mesh, the optimal algebraic rate of O(N -•) is 
observed, while the hp version shows exponential rate, 
and outperforms all the other methods. 
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Figure 5: p and hp energy convergence for (5.6), • - 0.001. 
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Figure 6: Normal derivative error at (1, 0), z = 0.01. 


Derivative Convergence for heat transfer problem, epsilon=0.001 
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Figure 7: Normal derivative error at (1, 0), • = 0.001. 


(2) 


(3) 


(5) 


(5) 


(6) 


The errors for the h version with exponential mesh and 
the hp version both decrease as s becomes smaller, at 
the rate of O(si/2). The other two versions do not 
display this decrease as • -• 0. 


Asymptotically, the p version with a single element 
will always have the best convergence rate for any 
fixed • according to Theorem 4.1. However, as seen 
from Figures 1 - 3, in practice this asymptotic conver- 
gence is not usually observed. In Figure 1, the slope 
of the error curve for the largest p is better than the 
one for the 2 element hp version, showing that at this 
point, the p version is decreasing at a faste rate. How- 
ever, ER(d) for the p version is still several orders of 
magnitude larger than the value for the 2-element hp 
version. 


For a fixed number of degrees of freedom, the error 
with the hp version is seen to be consistently the small- 
est of the four methods. This version is extremely ro- 
bust and efficient -- even for very small values of ,, 
relative energy errors of 10 -s were reached with only 
N = 15 degrees of freedom. 


Although we report here only the relative energy error, 
the pointwise error was found to behave completely 
analogously (as could be expected by Corollary 4.1). 


Our results with the hp method compare very favor- 
ably with the numerical results presented in [7] for 
the same problem, in which a significant improvement 
over the pure spectral element was achieved by using 
special "mapped" polynomials. 


6 Conclusion 


We analyzed spectral element/hp finite element discretiza- 
tions for two one-dimensional, singularly perturbed model 
problems, the solutions of which behave like a smooth (an- 
alytic) function in the interior of the interval but have 
boundary layers at one or both end points. For problem 
(5), a symmetric selection of test and trial spaces leads triv- 
ially to a stable method. For the advection diffusion prob- 
lem, the saddle point formulation (17) going back to [3] is 
discretized. Selecting the L2-spline test function space (18) 
ensures stability (in the sense of Theorem 3.1) if p -• oc. 
We showed theoretically that using a p version FEM or 
spectral element method on a fixed mesh, the best possi- 
ble robust rate uniform in s cannot exceed O(p-i). We 
also showed that an hp version FEM or spectral element 
method with one "boundary layer element" of width O(sp) 
achieves robust (in s) exponential convergence rates, for 
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both the elliptic-elliptic and advection diffusion problem. 
In numerical experiments, our method consistently outper- 
formed several alternative methods, such as a low order 
(p = 1) method on a strongly refined, asymptotically op- 
timal mesh. The method has been seen to be extremely 
robust and efficient for arbitrarily small boundary layer 
widths (we tested widths down to 0(10 -s) without seeing 
any deterioration in the convergence rate). 


In closing, we comment on the relevance of-one dimen- 
sional model problems. We decoupled completely the sta- 
bility analysis of the scheme from the approximability of 
the solution and obtained exponentially convergent bound- 
ary layer approximation in one dimension. Boundary lay- 
ers in two and three dimensional problems typically show 
the behavior exp(-x/•) only in one direction, namely nor- 
mal to the boundary or the front (see, e.g. the results 
for the Reissner-Mindlin plate in [1]). Therefore, using a 
tensor product argument, our approximation results ap- 
ply directly to these situations [10], [12], [14], provided the 
grids are aligned with the boundary layer. For example, 
for the viscous flows around profiles, the current use of 
highly-refined, body-fitted meshes towards the profile in 
finite difference methods corresponds to the use of the ex- 
ponential mesh in our experiments. A 2-layer mesh for the 
hp method is certainly simpler to generate, once the scale 
parameter • of the laver has been estimated. The savings 
in the number of degrees of freedom in one dimension over 
the low order method with exponential mesh (45) will be 
increased in proportion to the number of degrees of free- 
dom used along the boundary or the front. 


The issue of an efficient numerical implementation of 
the unsymmetric method are, due to the implicit nature 
of the trial functions, to be investigated further, especially 
in higher dimensions. 
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Triangular and Tetrahedral Spectral Elements 


S.J. Sherwin* G.E. Karniadakis* 


Abstract 


In this paper we present a new unstructured spectral el- 
ement method for use on triangular and tetrahedral sub- 
domains. The algorithm maintains the accuracy and ef- 
ficiency of standard quadrilateral/hexahedral spectral el- 
ement methods but offers greater adaptivity. Standard 
unstructured meshes can be used and the order of the 


polynomial expansion can be varied within each triangu- 
lar/tetrahedral sub-domain. To determine the time step 
restrictions when explicitly solving a convectively dom- 
inated flow we numerically analyse the linear advection 
equation. The formulation is then applied to the incom- 
pressible Navier-Stokes equations in the new spectral ele- 
ment code 


Key words: unstructured, spectral, adaptive. 


AMS subject classifications: 65N30, 65N35, 76D05. 


1 Introduction 


The current generation of spectral elements uses quadrilat- 
erals and hexahedral elemental subdomains for discretiza- 


tion. As the complexity of the geometries we want to dis- 
cretise increases the quadrilateral and hexahedral mesh de- 
sign becomes notably more difficult. This issue has been 
partly addressed by using a non-conforming, mortar, dis- 
cretisation [1, 2]. This technique has been implemented on 
quadrilateral domains but until recently had not been im- 
plemented on hexahedra due to its complexity. The mor- 
tar method also allows the polynomial order to be varied 
in each elemental domain by using a projection operator 
at the interface. Another non-conforming mesh approach 
is the modal hp finite element discretisation on quadrilat- 
eral domains [3, 4]. In this approach the polynomial ex- 
pansion can also be varied but unlike the mortar method 


'Center for Fluid Mechanics, Division of Applied Mathematics, 
Brown University, Providence, R.I. 02912, Corresponding Author 


the expansion is conforming over elemental edges. The 
nature of the modal discretisation also allows the poly- 
nomial order to be varied in each elemental domain in 


a more implicit fashion. The trend of both the spectral 
element and hp finite element methods has been towards 
greater adaptivity. Both these methods have adopted non- 
conforming discretisations allowing greater mesh adaptiv- 
ity and they both permit variable order polynomial order 
discretisations. This requirement for greater adaptivity is 
motivated by recognition that for many practical problems 
the solution has a localised structure. An alternative ap- 
proach to achieve this adaptivity is to use an unstructured 
discretisation. 


In this paper we present an unstructured spectral ele- 
ments basis which can be applied to triangular and tetra- 
hedral domains. The construction was motivated by theo- 
retical work by Dubiner [5] in two-dimensions, and can be 
considered as a triangular/tetrahedral extension of the hp 
finite element modal approach. An important property of 
this new expansion is that it maintains a tensor product 
type form allowing the use of sum factorisation to main- 
tain efficiency. The algorithms have an operation count 
of O(L •)+•) where L is the expansion order and D is the 
space dimension. As is demonstrated by a numerical in- 
vestigation of the linear advection equation the new basis 
has an explicit time step restriction which scales as O(L 2) 
which is similar to the standard spectral and spectral el- 
ement method. Both these characteristics have allowed 


an efficient implementation of the incompressible Navier- 
Stokes equations in the new unstructured spectral element 
code Af•Tar. 


The paper is organized as follows: In the next section we 
present the tetrahedral expansion basis which is reduced to 
the two-dimensional basis as a degenerate case. In section 
3 we present a review of the basic operations, in matrix 
form, applied to the new basis. In section 4 we elaborate on 
the linear advection equation, and in section 5 we present 
numerical results. 
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2 Tetrahedral expansion basis 


•Ve wish to formulate a tetrahedral expansion basis for 
the solution of the Navier-Stokes equations extending the 
two-dimensional expansions proposed by Dubinet [5]. A 
detailed description of this formulation in two-dimensions 
is given in [6] and the three-dimensional basis formulation 
can be found in [7]. Here we outline the basic formulation 
by introducing the co-ordinate system and describe various 
properties of the tetrahedral expansion. 


2.1 Co-ordinate system 


To introduce the co-ordinate system we must first consider 
a basic mapping as illustrated in figure 1. Here we see the 
mapping of a rectangular domain in the ((I), 9) space to a 
triangle in the (6, •) space. Although the expansion is not 
associated with any specific set of nodes, the co-ordinate 
mapping shown in figure I forms a more convenient set of 
co-ordinates from the computational viewpoint. 


We define the standard triangle and rectangle as: 


T • = {(o,•:)l-l_<,•,•;•,+•:_<o} 
= 


The rectangular domain R • can be mapped into the trian- 
gular domain T 2 by the following transformation: 


(1+ (I))(1 - •) 
•b -- -1, 


2 


and similarly the triangular domain T • can be mapped into 
the rectangular domain R ø' by the inverse transformation: 


Figure 1: Rectangle to triangle transformation. 


As indicated in figure 1, within T • the co-ordinate (I) has 
a value of -1 along the line •b -- -1 and a value of I along 


the line •b + • = 0 except at the point (p = -1,• = 1) 
where (I) is multi-valued. W•e know that (I) is bounded in 


R • and the same is true in T •. It might appear strange 
to use a co-ordinate system which has a singular point but 
it should be noted that the singularity in the co-ordinates 
does not imply that the expansion is singular. We also re- 
call that both cylindrical and spherical co-ordinate systems 
have multi-valued co-ordinates at the origin. 


Figure 2: Transformation from hexahedral co-ordinate sys- 
tem to tetrahedral co-ordinate system. 


This mapping is the foundation for constructing a co- 
ordinate system in the tetrahedral domain T 3 starting 
from a co-ordinate system in the hexahedral domain R 3. 
To achieve this, we repeatedly apply the two-dimensional 
transformation ((I), 9) *• (P, •) in three steps. Schemati- 
cally this transformation is shown in figure 2: In the first 
step we map R 3 into a triangular prism. Here the Cartesian 
coordinates (a,b,c) define the domain R 3 = {(a,b,c)l-1 _< 
a, b, c < 1}. In the second step, we map the prism into a 
square based pyramid and finally, we map the pyramid into 
the tetrahedron, T 3. The local coordinates (r, s, t) define 
the space T 3 = {-1 _< r, s, t; r + s + t _< -1}. The three- 
dimensional basis can be expressed via the initial set of 
coordinates (a, b, c) as we demonstrate in section 2.2. In 
summary, we can write the hexahedral co-ordinates (a, b, c) 
in terms of the tetrahedral co-ordinates (r, s, t) by repeat- 
edly applying the inverse transformation to arrive at: 


(1 + r) (1 + s) 
a=2(_s_t) 1, b=2(l_t ) 1, c=t. 


For t = -1 we recover the two-dimensional mapping. 







Triangular And Tetrahedral Spectral Elements 511 


t 


a= - 1 a=O a= 1 


t t 


constant 'a' planes constant 'b' planes constant 'c' planes 


Figure 3: Constant planes of the co-ordinates a, b and c on 
the standard tetrahe&on. 


The constant planes represented by (a, b, c) in the tetra- 
hedral space T 3 space are shown in figure 3. We note 
the degeneracy of the coordinate system in the T a space. 
Planes of constant 'a' remain planes as the coordinate 
varies from a - -1 to a - 1 and are dependent on all 
of the basic coordinates r, s and t. However, planes of con- 
stant :b' degenerate to a line as this coordinate varies from 
b = -1 to b = 1 although these planes only depend on 
the basic coordinates s and t. Finally, planes of constant 
'c' degenerate to a point as this coordinate varies from 
c -- -1 to c -- 1 and these planes only depend on the basic 
coordinate t. 


2.2 Expansion basis 


•¾• define a polynomial basis, denoted by glm,•(r, s, t), so 
that we can approximate the function f(x, y, z) by a C o 
continuous expansion over 'K' tetrahedra by the form: 


f(X,y,Z) : • •-• •-• •-•f•mng•mn(I',8, t ). 
k I m n 


Here fp•n is the expansion coefficient corresponding to the 
expansion polynomial k kth glmn in the tetrahedron; (x, y, z) 
are the global spatial co-ordinates and (r, s, t) are the local 
co-ordinates within any given tetrahe&on. 


Vertices Edges Faces 


Figure 4: Tetrahedron notation 


Having defined the co-ordinates (a, b, c) in the previous 
section we can now describe the expansion basis. Using 
the notation given in figure 4 the basis is described by: 


ß Vertex modes 


gvert-A 1-a 1--b 1--c 
100 = 


g vert- B __ ( l +a ) (1-b ] (1-c • 100 -- 2 \ 2 
vert-C 


g010 = 
gvert-D 
001 --- ( 1--•'2 c), 


ß Edge modes (2_< l; 1_< m,n [ I < L; l+m < M' 
l+m+n(N) 


gedge-1 
100 


gedge-2 
lmO 


gedge-3 
lmO 


gedge-4 
10n 


gedge-5 
10• 


edge-6 
gOln 


ß Face modes (2 _< I; 1 _< ra, n [1 < L: I+ ra < M: 
l+m+n < N) 


g face-- 1 
lmO --- 


g face--2 __ IOn -- 


g face-3 
lmn --- 


g face-4 
lmn -- 


ß Interior modes(2 _• I;1 _• ra, n [ I < L;I + m < AI;I + 
m+n < N) 


ginterior 
lmn l•a•(1--a 1,1 l+b 1-b I 21-1,1 2 l+c •l+m•21+2m--l,1 • x 


where the indices 'Iran' in glmn refer to the order of the 
principal polynomial in r, s and t respectively, and L, M, N 
define the total number of modes. We note that when 
I = m + I = n + I the edge and face modes have the 
same shape which allows the basis to be combined into 
a C O expansion by matching the expansion coefficients of 
these modes. However, expansion coefficients of odd order 
modes may need to have their sign changed to ensure this 
continuity. 
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to include the Jacobian, (1--•)[i-c]2 in the quadrature \21' 


weightsß This is advantageous since it avoids explicit 
evaluation of this Jacobian and miniraises the order of 


1.0 


the quadrature required for exact evaluation of the inte- 
gral. Therefore we choose to use a quadrature rule with 0.s 
a = 0,/• = 0 in the 'a' direction, a quadrature rule with 
a = 1, • = 0 in the 'b' direction and a quadrature rule s0.c 
with a = 2, • = 0 in the 'c' direction. The integration rule 
therefore becomes: -o.• 


where 
1.0 


_ 2 ' wj' -- 4 
Here qa, qb, qc are the number of quadrature points in 


the a, b and c directions respectively. The two-dimensional 
rule is shown in curly brackets. 


Unlike standard quadrilateral spectral elements we are 
free to choose any type of quadrature rule (i.e. Gauss, 
Gauss Lobatto or Gauss Radau) with the same cost. 
Gauss-Lobatto is convenient as it has zeros at the ends 


of the integration domain allowing the boundary condi- 
tions to be easily evaluated and imposed. Nevertheless, 
this means that we have multiple quadrature points at ver- 
tex C and D as well as along edge 6 (see figure 4). This 
is undesirable because of the redundancy of quadrature 
points and the fact that it is more difficult to evaluate the 
derivative at these points. To circumvent this problem we 
choose to use Gauss-Radau quadrature in the 'b' and 'c' 
directions. 


The quadrature points for the standard triangle T 2 and 
tetrahedron T 3 are shown in figure 6. The Gauss-Radau 
quadrature we are using includes a zero at s = -1 and 
therefore we do not have any quadrature points at vertices 
C and D or along edge 6. We choose to use Gauss-Lobatto 
integration in the 'a' directions and thus have quadrature 
points along the boundaries of T •and T 3 except at vertices 
C,D and along edge 6. 


3.2 Local projection and notation 


In order to define the forward and backward transforma- 


tions and thereby describe the projection operator we wish 
to introduce some notation to help simplify the descrip- 
tion. To this end, we consider the collocation evaluation 


-1.0 


Figure 6: Quadrature points in the standard triangle and 
tetrahedron space. In the 'a' direction a Gauss-Lobatto 
distribution is used and in the 'b' and 'c' directions a 
Gauss-Radau distribution is used. 


of a function f(a, b, c) at the quadrature points ai, bj, ck. 
Note that we have dropped the superscripts which denote 
the form of the quadrature as explained in the previous 
section. We shall use the notation f to represent a vector 


-- 


of the function evaluation f(ai, bj, ck) at the quadrature 
points where we will assume that the i index runs fastest 


followed by the j index and then k. Similarity we shall 
let je denote a vector of expansion coefficients fimn. Here 
we shall use the convention that the vertices are initially 
stored followed by the edges, then the faces and finally 
the interiorß In each group we assume that the index n 
runs fastest followed by ra and then 1. This convention is 


necessary for the sparsky of the expan•sion to be evident. 
To complement the vectors f and f we introduce the 


matrices lAY and G. lAY is a diagonal matrix containing 
the quadrature weights required to integrate f over T 3. G 
is a matrix whose columns are the discrete values of the 


expansion modes at the quadrature points. These matrices 
have the form: 


Wo •o •o 
ß 


0 0 o,o •,o •2,o 


G • 


gxoo (ao, 0o, co) .-. gt..• (ao, 0o, co) 


gloo(aq,• -1, bo, co) '-- glmn (aqa -1, bo, co) 


gloo(aqa--1, bqb-1, Cqc-1) ''' glmn(aqa-1, bqb-1, Cqc-1) 


Given f, •, W and G we can now define the discrete for- 
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ward and backward transformations. The discrete back- 


ward transformation is very simple as given a set of ex- 
pansion coefficients fi•,m the function at the quadrature 
points is evaluated by the summation: 


(2) u(ai,bj,ck) = Z fi_.tmnglmn(ai,bj,ck). 
Iron 


This summation can be written in matrix notation as: 


u=G•. 
-- _ 


To define the forward transformation we first introduce the 


discrete inner product in matrix notation (recalling that W 
is symmetric): 


b, c), v(a, b, c))T3: = 


This operation is exact if the functions u(a, b, c), v(a, b, c) 
lie within the polynomial expansion space and the quadra- 
ture order is consistent with the approximation. Similarly, 
the discrete inner product of the expansion basis g•m• with 
a function u(a, b, c) can be written: 


,(a, b, 
To determine the expansion coefficients and thus define 
the forward transformation we take the inner product of 
equation (2) with respect to the expansion basis. This 
gives us the matrix equation 


GT[Vu = G•WGfi. 
-- _ 


Since the matrix GTWG is square and invertible we define 
the forward transformation by: 


5 = (G•WG)-IGTWu. 


The discrete projection operator, P, is the projection of 
a given function into the expansion space and is simply a 
forward and backward transformation so 


The projection operator can be interpreted as a collocation 
operator, which is used to evaluate the function at the 
quadrature points, followed by a Galerkin projection. 


The matrix notation describes the above operations 
at the quadrature points; however it should be appreci- 
ated that the approximation of the function is a contin- 
uous polynomial and not a discrete representation at the 
quadrature points. Nevertheless, we frequently only re- 
quire the values of our approximation at the quadrature 
points and therefore find it convenient to consider most 
operations in this matrix formulation. 


3.3 Differentiation 


Differentiation may be performed in either the transformed 
or physical space. However, when dealing with terms 
like the quadratic convection operator that appears in the 
Navier-Stokes equation it is efficient to perform the deriva- 
tive in physical space and then evaluate the convection 
operator in a collocation manner. Differentiation in phys- 
ical space is possible since the space defined by Lagrange 
polynomials through the quadrature points contains the 
expansion space Pc. A function in Pc can therefore be 
represented as: 


u(a,b,c) = • u(ai,bj,c•)hiqa-•(a)hJb-•(b)h•c-•(c) 
ijk 


where h/• is the N th order Lagrange polynomial which has 
a unit value at the i th quadrature point and is zero at the 
other quadrature points. Due to the Kronecker Delta prop- 
erty of the Lagrange polynomial (i.e h•(aj) = 5•j) differ- 
entiation at the quadrature points is very efficient, taking 
O(q) operations to evaluate the derivative one point where 
q is the one-dimensional quadrature order. The local gra- 
dient operator in terms of (r, s, t) can then be recovered by 
use of the chain rule since 


4 O 


•r (1--b)(1-c) Oa 


•ss 2(1+a) 0 •7 --- = (1-b)(1-c) aa 


•t 2(l+a) 0 (1--b)(1--c) Oa 


where 


2 0 


(i--c) Ob 


(•+b) a 
(l--c) Ob 


(l+r) (l+s) 
a=2(_s_t) 1 b-2(l_t ) 1. 


There is potentially a problem when b = 1 or c -- 1 since 
i i become infinite. This was the factors, (1-•)(1-•), (•-b), 


part of the motivation for using Gauss Radau quadrature 
in the b and c directions since this means that we do not 


need to evaluate the derivatives at these points. However, 
the derivatives are well defined in this region but not in 
this co-ordinate system. To evaluate the derivative, one 
can take the derivative of the expansion basis in (r, s, t) 
and multiply it by the expansion coefficients. 


We can represent the partial differentiation with respect 
to a, b and c at the quadrature points by the matrix oper- 
ations: 


Ou Ou Ou 


These matrices are fairly sparse and, from an implemen- 
tation point of view, are most efficiently evaluated as a 
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series of one-dimensional operations. If we use the nota- 
tion A[ijk]•vqr] to represent the matrix entry A[i + qa j + 
(qa qb)k][p+qa q+(qa qb)r] then the form of these matrices 
is given by ß 


dh(a.) D•[ijk]•vqr] = da 
D•[ijk]•vqr] - hi(a,) dhj(bq) hk(c•) db 


dhk(c) 
Dc[ijk]•vqr] - hi(a,)hj(bq) dc 


where we recall that the i and p indices run fastest. We 
can represent the partial differentiation with respect to r, s 
and t using these matrices as: 


( 4 ) D• = A (•_•)(•_c) 


Ds = A (•_•(•_•) D•+A (Wz-•-•) 


(-•(•+•) ) f(•+•)• Dt = A (•_•)(•_•) D• + A D• + D•. 


Here we have adopted the nomenclature that A(f(a,b,c)) 
is a diagonal matrix whose components are the values of 
f(a. b, c) evaluated at the quadrature points. 


4 Linear advection equation 


The three-dimensional linear advection equation for the 
scalar quantity, u(x, y, z; t), can be written: 


Ou 


(3) 0--•- + Lu = •- + (V. V')u = 0 
v - [a, b, z; 0) = u0(, z). 


The initial condition u0(x, y, z) is considered smooth. The 
propagation velocity V is real and will typically be taken 
as constant and divergence free (i.e. V'. V = 0). The 
equation is also supplemented with appropriate boundary 
conditions. 


We will discretise this equation in a Galerkin fashion 
by considering the weak form of equation (3). Therefore, 
if we take the inner product with respect to the function 
v(x, y, z) we obtain: 


(4) + Lu) = 0 


4.1 Discretisation 


We consider the solution in an finite domain 12 which is 


fixed in space and has a boundary 012. The domain is as- 
sumed to be split into K tetrahedral subdomains denoted 


by T• each of which has a local boundary OT•. The union 
of the K sumdomains T• is equal to 12, i.e. 


K 


and the domain boundary, 012, is a subset of the union of 
all the local boundaries, 


K 


If we initially consider a single element and let 
v(x,y,z) = g•,•=(x,y,z) then equation (4) becomes: 


gz,•, •- + (g•,•, Lu) = 0 V(lmn). 
Since the solution is approximated as a polynomial func- 
tion we can represent the solution at the quadrature points 
by u and write the previous equation in matrix form (see 
section 3.2) •: 


(5) GT B•t + GT BL• = O, 
Ou 


where •t = • and that B = WJ (J being a diagonal 
matr• containing the value of the Jacobian at the quadra- 
ture points). Finally we can represent the solution vector 
in terms of the expansion coe•cients since • = G•(t). 
Substituting this into equation (5) and noting that 


Ou Gd• 
ot dr' 


we obtain the Galerkin approximation to equation (3) 
within an element in terms of the expansion coe•cients, 


G• BG + G• BLG• = O. 


If this equation w• to be solved on a local element then 
boundary conditions would need to be imposed. This 
would involve condensing the system of any Dirichlet 
boundaries. However at present, we are interested in con- 
structing the global system for multiple elements. We can 
represent the local approximation to equation (3) over all 
elements as ß 


(6) (a•a) • (a•za)• o, •+ = 


where •t denotes a vector containing all the expansion co- 
e•cient from every element •. The underlined matrix 
denotes a block diagonal system made from the K local 
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matrices. In order to define the global expansion as a 
union of C O continuous expansions we need to construct 
the global matrix systems. The operation of expressing 
the local non-unique expansion coefficients, •, in terms of 
the global unique expansion coefficients, 4a, can be repre- 
sented by the mapping matrix Z (see [6,'•0]) i.e, 


= Zg. 


Substituting this relation into equation (6) and premul- 
tiplying the whole equation by Z r we obtain the global 
matrix system: 


r r d•g Zr(GrBLG.)Z_•g O. z (a = 
If •ve invert the global mass matr• (ZT(GTBG)Z) -• we 
obtain the semi-discrete system for the solution of the 
global expansion coefficients: 


(7) • - (z•(a*•a)z) -•z*(a•a)•gz•. dt '- - 


The complete discretisation involves the solution of this 
system of ordinary differential equations in time. The tem- 
poral discretisation we have adopted is the Adams B•h- 
forth multi-step scheme. 


The system may be solved with a range of appropriate 
boundary conditions. Dirichlet boundaries are imposed by 
performing a local boundary transformation (see [10]) on 
any modes which have a non-zero component along the 
Dirichlet boundary and then condensing these modes out 
of the global mass matrix Zr(GrBG)Z. 


To complete the discretisation we need to describe the 
form of the operator L • (V. V). The differential com- 
ponent of the operator acts on the expansion b•is which 
is in the polynomial space, Pt. Therefore, it can be eval- 
uated exactly by differentiating the La•ange polynomials 
through the quadrature points as explained in section 3.3. 
The operator in full is defined: 


o o Oz' 
If we express the partial derivatives in •, F and z in terms 
of partial derivatives in r, s and t using the chain rule we 
obtain: 


L = (aar ba r + c ø'• 0 as+ Oz)+(aO s bOS ) o •+ a• O• 


+ (aat ba t cO t 0 as + ay + az)•' 
Therefore, the discrete version of the L operator acting at 
the quadrature points can be written as: 


L = RDr + SDs + TDt 


where 


and Dr, Ds, Dt as well as A() were as in section 3.3. For 
straight-sided tetrahedral elements the geometric factors 
Or Os Ot 
Ox, oz, Ox,'" are constants and so if a(x,y,z), b(x,y,z) 
and c(x, y, z) are also constants, then R, S and T are sim- 
ply scalars. 


4.2 Spectrum of the weak advection oper- 
ator 


The main purpose of this investigation is determining what 
time step restrictions are imposed by explicit treatment of 
the advection terms. Considering the semi-discrete form 
of the weak advection equation as given in equation (7) we 
note that for a time stepping scheme to be stable we require 


the eigenvalues of At. (ZT(GTBG)Z) -• ZT(GrBLG)Z 
lie within stability region of the time stepping scheme. 
Here At is the time step and clearly this must decay at 
the same rate that the largest eigenvalue grows in order 
for the spectrum to remain within the stability region. 


The matrix GrBLG represent the discrete form of the 
inner product of the expansion basis with the advection 
operator acting on the expansion basis i.e (gt,•n, Lgpqr). 
Now since we have assumed that the propagation velocity 
V is divergence-free, we can write: 


Lg•n = (V. V)g•,• = V. (Vgz•). 


Since glmn,gpqr are both scalar fields we can apply the 
vector identity (<bY. V = V. (•V) - V•. V) to show: 


(glran, Lgpqr) '-- --(Lglran,gpqr) q- /T a V' (glranVgpqr)•V. 
Applying the divergence theorem to the last term we arrive 
at: 


(gtran, Lgpqr) = -(Lgtmn,gpqr) + •o gzmngpqrV' nSA T • 


where n is the outward normal along the boundaries of a 
tetrahedron. This last result demonstrates that the oper- 
ator is skew symmetric if the surface integral is zero. As 
there is no approximation error in evaluating the L op- 
erator, the matrix representation of the discrete operator 
will also be skew symmetric. The surface integral is zero 
if either of the expansion modes glrnn or gpqr iS an interior 
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mode since interior modes are zero along the boundaries by 
design. We are also imposing C o continuity and assuming 
a conforming discretisation, so the surface integral along 
interfaces between two elements will be equal and oppo- 
site. When the system is globally assembled there will be 
zero net contribution from elemental interfaces. The only 
remaining contribution from the surface integral is there- 
fore along the boundaries of the solution domain. If the 
boundary conditions are skew symmetric (i.e. periodic or 
zero Dirichlet) then the global operator will be skew sym- 
metric. 


Since the global mass matrix (zT(GTBG)Z) is sym- 
metric when it premultiplies the weak advection op- 
erator zT(GTBœG)Z (with skew symmetric boundary 
conditions) the matrix (ZT(G T BG)Z) -• zT(G T BœG)Z 
will be skew symmetric. Therefore, the eigenvalues of 


(Zr(GtBG)Z) -• zT(GTBLG)Z must be purely imagi- 
nary. This means that we require a time stepping scheme 
with a stability region encompassing the imaginary axis. 
The third order Adams Bashforth scheme has a stability 
region which crossed the imaginary axis at: 


At. A•,•.• _• 0.723. 


where 3,,,,,,.• is the maximum permissible eigenvalue for the 
scheme to be stable. 


Figure 7: Periodic domain containing six tetrahedral ele- 
ments as shown on the left where the triangle and circle 
indicate vertices C and D respectively (see figure 4). For 
a range of propagation velocities at L = 10 the maximum 
eigenvalue of the matrix (ZT (G T BG)Z) -] ZT(G T BLG)Z 
was calculated and is shown on the right. The propaga- 
tion velocities have a unit magnitude and are parallel to 
the vector connecting the origin of the right plot to a point 
on the hemisphere. 


In order to determine the maximran eigenvalue of the 


matrix (Zr(G TBG)Z) -• ZT(GTBLG)Z we choose a pe- 
riodic domain formed from six tetrahedra as shown in fig- 
ure 7. The domain spans the space {-1 < x, y, z < 1} and 


as indicated by the circles in the plot, the vertex D of all 
tetrahedral elements is placed at point E (1,-1, 1). The 
triangles in this figure indicate the location of vertex A (see 
figure 4). Since the advection operator L is a function of 


the propagation velocity V the matrix (ZT(G TBG)Z) -• 
ZT(GTBLG)Z must also be a function of V. The varia- 
tion of maximum eigenvalues as a function of the propa- 
gation velocity is shown in figure 7. In constructing this 
plot we have assumed that the propagation velocity has a 
unit magnitude and is oriented in the direction given by 
a vector connecting the origin to a point on the surface 
of the hemisphere. It is only necessary to determine this 
range of propagation velocities since propagation in the 
[1, 1, 1] direction forms a matrix which is the negative of 
the matrix due to propagation in the [-1,-1,-1] direc- 
tion and so they will have the same maximum eigenvalues. 
Since we have restricted the propagation velocity to be of 
unit magnitude it is possible to describe any vector by two 
spherical angles o and 0 as shown in figure 8. In this figure 
we see the absolute maximum eigenvalues as shown in fig- 
ure ? parametrised with the spherical angles o and 0. We 
have reversed the direction of the 0 axis to make the plot 
consistent with figure 7. 


Figure 8: Definition of spherical angles 0 and 0 (left) and 
plot of absolute maximum eigenvalues for a unit propaga- 
tion vector (right). This is the same distribution as shown 
in figure 7. 


The values of 0 and 0 at the nearest calculated position 
to the extrema shown in figure 8 are given in table 1. The 
position and form of the extrema can be attributed to the 
structure of the tetrahedral domain shown in figure 7. For 
example the global minimum (extremum 1) corresponds to 
a unit propagation velocity in the [v/•,-X/•-V•] 
direction which is parallel to the diagonal bisector of the 
whole domain running from position C to E in figure 7. 
The triangular structure of this minimum is consistent with 
the directions in which the tetrahedra bisects the faces of 
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Type ½ (degrees) 0 (degrees) Eig. value 
1 minimum -45.3 56.2 12.35 
2 maximum 90.0 45.3 26.65 
3 maximum 45.3 90.0 26.65 
4 maximum 0.0 135.2 26.65 
5 maximum -90.0 135.2 26.65 


Table 1: Table of position and type of turning point in 
absolute maximum eigenvalue distribution shown in figure 
8. 


the domain. These bisectors run in the directions from 
B to E, C to F and G to E which correspond to the 
spherical angles ((b = -180,0 = 45), (•b = 0,0: 45) and 
(0 = -45, 0 = 180). Figure 8 demonstrates that these 
angles make a triangle of similar orientation to the region 
surrounding the minimum extremum at position 1. Let us 
now consider vectors which bisect the faces in the other 
directions i.e.; form A to F, G to B and D to B which 
correspond to the spherical angles (•5 - 90,0 -- 45), (C5 = 
0,0 = 135) and (0 -- 45,0 - 90). V•Te see from table 1 
these angles correspond to the maximum extrema 2, 4 and 
3. Maximum 5 corresponds to a propagation velocity of 
equal and opposite direction to maximum 2. Finally the 
local minima between the maxima 2-3, 3-4 and 4-5 can be 
attributed to the three remaining diagonal bisectors of the 
complete domain i.e. from D to F, H to B and G to A. 
We see that propagation velocities aligned with the ele- 
ment edges lead to minima in the eigenvalue distribution 
whilst maxima correspond to propagation in the orthogo- 
nal direction to those that lead to the minima. This type 
of behaviour has also been observed in the two-dimensional 


expansion [6]. 
We are now in a position to determine the maximum 


eigenvalue growth rate as a function of expansion order. 
The growth rate for three propagation directions is shown 
in figure 9. The most critical directions are those cor- 
responding to the maximum extrema of the eigenvalues in 
figure 8 and we see that the growth rate in the (•b = 45, 0 = 
90) direction is asymptotically faster than the other sam- 
pled directions but is still bounded by a slope of 2. If we 
consider the last three points of these curves we find that 
the slopes are 1.88, 1.79 and 1.82 for the propagation veloc- 
ities of (• = 45,0 - 90)[D - B], (•b - 45,0 = 56.2)[D - F] 
and (0- -45,0- 56.2)[C'- E] respectively. Therefore, 
the growth rate is bounded by L 2. 


4 5 6 7 8 9 10 


Expansion Order 


Figure 9: Growth of the maximum eigenvalue of the 
matrix (zT(GTBG)Z) -! zT(.•TBLG)Z as a function of 
expansion order for propagation velocities of magnitude 
IV[ = v/• with directions of (•b - 45,0 = 90)[D - B], ((p - 
45,0 = 56.2)[D - F] and (•b - -45,0 = 56.2)[C- El. 


5 Numerical examples 


Extensive numerical results that verify flexibility and ex- 
ponential convergence for the triangular and tetrahedral 
spectral elements can be found in [6], [7], and [10]. Here 
we include two examples: One on the elliptic Helmholtz 
equation, and the second one on a standard Navier-Stokes 
problem. 


The elliptic Helmholtz equation (V • - 1)u = f) was dis- 
cretized on the "helix" domain shown in figure 10. This 
domain is formed by rotating a circle with a triangle com- 
ing out of it about the axis through the center of the circle. 
Also included in the figure is the crossection that gener- 
ates the three-dimensional domain by propagation along 
the axis. This 3D mesh generation algorithm from 2D 
templates is described in [11]. The forcing is chosen so 
that the exact solution is 


1 
z) = 


+ 1 


= 
where R - 1 is the radius of the cylinder. The full domain 
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2 - 


ß Present calculation 


o Quadrilateral cyl. code 


•' Macagno & Hung - Photo. exp. 


c Macagno & Hung - Dye exp, 


A 


L/D o 


50 1 O0 


Reynolds Number 


Figure 12: Growth rate as a function of Reynolds num- 
ber of the streamwise distance to the re-attachment point 
L and eddy center L2 from the expansion shoulder. Also 
shown in this plot is a comparison with a spectral element 
calculation in cylindrical co-ordinates [12] and experimen- 
tal data determined by Macagno & Hung [13]. 


can be seen our calculations are in good agreement with 
both the experimental data as well as the quadrilateral 
spectral element code. 
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Comparison of Different hp- Adaptive Strategies 
in Viscoelastic Flow Simulation 


V. Warichet* V. Legat* 


Abstract 


Accurate and stable numerical methods are particularly 
important in viscoelastic flow simulations. Local h- and 
p-refinements are introduced in order to obtain very high 
rates of convergence, even in the presence of singularities. 
We present several adaptive strategies, based on an error 
estimator which is an extension of some rigorous results of 
Oden, \Vu and Ainsworth ([13, 1, 2]). For Navier-Stokes 
equations, error estimation and adaptivity have already 
been exploited in [14]. Numerical results obtained illus- 
trate both the validity of the error estimation technique 
and the efficiency of the adaptive procedure chosen. A 
comparison is made for each problem between different 
adaptive strategies. 


Key words: hp-finite element, error estimation, vis- 
codastic flows, boundary discontinuities. 


AMS subject classifications: 65N15, 65N30, 65N50, 
76A10. 


1 Introduction 


Accurate and stable numerical methods are particularly 
important in viscoelastic flow simulations. More and more 
attention has been devoted to spectral ([4], [9], [16]) and 
high order methods ([17]). For smooth problems, those 
methods exhibit an exponential rate of convergence and 
an improved robustness when increasing the elasticity of 
the fluid. In order to extend these properties to practical 
applications with singularities, we describe an hp-adaptive 
finite element method. The particular choice of hierarchi- 
cal shape functions and the use of 1-irregular meshes allow 
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us to introduce an interesting combination of local h- and 
p-refinements ([8]). 


The element size h and the order of approximation p are 
adjusted by different adaptive strategies in order to obtain 
very high rates of convergence, even in the presence of sin- 
gularities. Our strategies, based on a priori and a poste- 
riori error estimates, produce hpofinite element meshes, so 
that the computer time required to achieve a target error 
is significantly reduced. 


Numerical results obtained with the classical Upper 
Convected Maxwell-B (UCM) fluid and the Modified Up- 
per Convected Maxwell (MUCM) fluid illustrate both the 
validity of the error estimation technique and the efficiency 
of the adaptive procedure chosen. A comparison is made 
for each problem between different adaptive strategies. 


2 Governing equations 


We consider the steady flow of an incompressible viscoelas- 
tic fluid in a domain f•. If we neglect inertia, the conser- 
vation equations are: 


-V.o- = f 
(1) 


V'u = 0 


where u is the velocity field, f the body force, • the 
Cauchy stress tensor. 


On the other hand, the MUCM constitutive equations 
(see [3, 5]), describing the viscoelastic properties of the 
fluid, are the following: 


• = •'N+•'v--pI 


(2) •'N = 2vND(u) 


•'v + A(tr(•'v)) •'v = 2r•vD(u) 


where p is the pressure, I the unit tensor, D(u) is the 
strain rate tensor. 


The Cauchy stress tensor is splitted into a Newtonian 
component •'N and a viscoelastic contribution •'v. qN 
and •7v are the associated dynamic viscosities. The symbol 
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• denotes the upper convected derivative and ,k is the 
relaxation time of the fluid, defined as follows: 


A0 


(3) = 
ß 


r/v 3'o 


xvhere % is a characteristic shear rate of the problem. 
Dirichlet boundary conditions are imposed on veloci- 


ties at inflow sections and along rigid walls (Of•D) while 
extra-stresses are imposed at inflow sections 0f•rnj'low only. 
Dirichlet and classical Robin conditions are imposed on the 
velocity field respectively at outflow sections 0f•o•uj, low C 
Of•D and along axis of symmetry 0f•R. 


Remark 1 Unlike classical Oldroyd-B model (F - 0) or 
Maxwell-B model (r/N = 0; F = 0), the MUCM model 
guarantees the well-posedness ([5]) of the boundary 
value problem, as the stresses rv remain square inte- 
grable at geometrical singularities. 


The problem can be characterized by the Weissenberg 
number which compares elastic and viscous forces in the 
fluid. Taking V as a typical velocity and R as a typical 
length of the problem, it is defined as: 


We = 


X weak formulation of (1),(2),(3) is built using a 
weighted residual method. The components of the solution 
vector (rv,u,p) are chosen inside the following spaces: 


s = = 


V (s, v, q) • T•P(f•) 


TnP(f•) is built in order to keep the discrete solution 
in Cø(•) when local refinements are applied. At the el- 
emental level, the solution is approximated using hierar- 
chical shape functions. The orders of approximation as- 
sociated with each field cannot be chosen independently. 
We use the Ladyzhenskaya-Brezzi-Babugka (LBB) condi- 
tion to select the pressure approximation and, from nu- 
merical experiments presented in [18], we take Pvelocity = 
P•tra-•tr•** - 1. As in [8], we restrict ourselves to 1- 
irregular meshes. Additional constraints are imposed along 
irregular interfaces in order to enforce the Cø-continuity. 
Local p-refinement of an element doesn't involve any ad- 
ditional constraints. Its neighbours are automatically en- 
riched by the addition of extra shape functions. 


The whole system is solved by a fully coupled Newton- 
Raphson scheme and a direct solver. 


4 Adaptive strategy 


First, we recall briefly our adaptive strategy which is a gen- 
eralized version of the procedure given in [12] and exploited 
in [10]. 


4.1 A priori error estimation 


From the definition of the approximation space ThP(•), 


V • 
the following local interpolation property holds for each 


{u • (H•(f•))•'u = i• on Of•D, u. n = 0 on Of•} scalar variable on element f•K(1 $ K _< N •) ß 


discretization of the Spatial 
problem 


We select a suitable finite dimensional subspace T•P(f•) 
inside S x V x Q • and rewrite the discrete form of the 
weak problem using the classical Galerkin's method. 


• 2•Iv D(uhP) ' 
o 


sdx 


Given body forces f • V*, 
find (•'•?, u •p, php) • ThP(•) such that 


(4) ('F i•P ' $ -•- ,• 'F CP ' $ ) dx -- 


D(v) - f .v = 
(6) jf• q V' . u •p dx = 0 


1A detailed description of ThP(•) is given in [18] 


kmin(p/< +1 -- s, r - s) 


(7) U--•hp s,f•K • C '•K IlUllr.•- 


where u • Hr(fi), r > s, •P is an appropriate approxima- 
tion of u, II is an usual Sobolev norm, h/c is the 
maximal diagonal length inside fi/c and p/c is the lowest 
order of approximation of •P inside 


As a well-known property in all viscoelastic flows, we ex- 
pect the extra-stresses to be mainly affected by errors. The 
convective term in the constitutive equations (2), stress 
concentration near geometrical singularities and the ap- 
pearance of very thin stress boundary layers due to the 
presence of normal stresses are the three main reasons for 
inaccuracies in viscoelastic flow simulation (see [6]). 


To extend the interpolation error (7) to our multivariable 
problem, an energy-like norm is defined on S x V x Q as 
the sum of the following quantities: 


N h 


II[(s'v'q)111•'= E/n K=I /• 


s ß s + 2r/•D(v) ß D(v) + q2dx 
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An a priori error estimator is therefore available by 
rewriting Equation (7): 


K 
(8) [11( 'reftør, uerrør, Perrør)[l[•C -• _-Yb-ff• A• 


where AK, •K, rK •e local unknown constants and the 
reference order of approximation p• is taken from the 
stress field interpolation. 


We assume that the actual error 


[[](•er•or, U•rror, pe•ror)[[[ K in Equation (8) is available to 
su•cient accuracy through an a poste•ori error estimator. 


4.2 A posteriori error estimation 


We use an error residual method developed in [11, 13, 1, 2]. 
We generalize here this approach for viscoelastic flows. 


The global a posterJori error estimate Oi for a given mesh 
7•i is defined as follows 


Oi 0 2 


where Oi.•: is the local error estimator computed on each 
element ft•:. •Ve have ß 


Oi.K = Ill(•r• t, u• t, P•t)IIIK 
where , •K , • SK x V• x QK is such that 


(9) • •.•t. s•cdx= 


(10) 


(11) 


2•¾D(•') ' D(•K)• = 


f• np np D(vK)dx ): 


/• f 'vKdx K 


p•t qK dx-- 


f.o. q•: V . u? dx K 


V SK • SK, V VK • VK, V qK • QK, i _• K •_ N •. 


where SK, VK and QK are the restrictions of S, V and 
o. est (,•hp hp hp Q to element f•K and (nK ß WK, UK, PK )) is a flux 


term appearing in the local problem, as the continuity con- 
straints have been relaxed at the interelement boundaries. 


Remark 2 Note that _½•t and p•t '• K are obtained straight- 
forwardly from Equations (9) and (11), while a small 
Poisson problem is required to find u• t. 


4.3 Adaptive strategy 


Let us start with an initial mesh •Pi (i - 0), where we 
solve an hp-discrete problem and we compute the a pos- 
teriori error estimator Oi,• on each element f•c. A new 
mesh •Pi+x is obtained by means of local h-refinements or 
p-enrichments in order to reach a given level of accuracy 
Otgt. Such modifications of both mesh size distribution and 


polynomial degree distribution are derived by taking ad- 
vantage of the a priori and the calculated a posteriori error 
estimates. If pure h-refinements are applied, the number 
nK of new subelements inside each element of •Pi has to 
satisfy 


(12) nK --' Nih+l 
J 


(13) N•n+• = 
K-----1 


A description of the pure p-refinements needed to reach 
a prescribed level 9t•t is obtained from the following ex- 
pression. 


(14) Pi+l,K -- [Ni h (Oi'K)2 
Remark 3 Several numerical experiments have shown 


that abrupt increase of the order of approximation 
between two neighbouring elements can be detrimen- 
tal for the accuracy of the solution. We will therefore 
prevent these jumps in the p-distribution by adding 
extra-elements to the list given by Equation (14). 


We now apply our method to two model problems: the 
flow around a sphere falling in a cylinder and the flow in 
an axisymmetric contraction. 


5 Numerical results 


The first implementation of hp-finite element methods was 
developed at TICAM by Demkowicz and Oden over a 7- 
year period [8, 11, 15]. In order to generalize such an 
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approach to viscoelastic flows, a new software has been 
developed here, with new and more efficient data struc- 
tures. 


5.1 Sphere problem 


For the first problem, we use the Maxwell-B fluid and we 
impose no-slip conditions along the sphere, failing at a con- 
stant velocity V. The radius of the sphere is half the radius 
of the cylinder and our calculation domain extends from 
-15R to 30R, with the sphere centered at the origin. The 
drag correction factor is defined by the ratio between the 
drag D exerted on the sphere and the drag D O exerted by 
a creeping NewtonJan flow on a sphere in an infinite space, 
given by D O = 67rrlvVR. 


5.8 C•assical 4X4 Finite Element Method ¸, P-Finite Element Method 


5.6 I •x•-Adaptive Finite Element Method 
5. 


4.6 


ß 


4.4 
4.2 ' ' ' ' ' ' 


0 0.2 0.4 0.6 0.8 1 1.2 1.4 


Figure 1: Sphere problem (Re=O), Maxwell-B fluid. Drag 
correction factor vs We number. 


We compare the drag correction factors obtained at in- 
creasing We with several low- and high-order finite ele- 
ments. These results are reported on Figure 1. With a 
classical low-order method (taken from [7]), numerical in- 
accuracies developed during the calculations prevent the 
continuation scheme to reach We numbers larger than 0.8. 
The stresses are interpolated with 4 x 4 linear subelements, 
while velocities and pressure are, respectively, biquadratic 
and bilinear. A very fine mesh is used with 510 elements 
and 38644 degrees of freedom. 


A p-finite element method with 3 times less degrees of 
freedom, allow us to reach We = 0.9. The order of ap- 
proximation for stresses, velocities and pressure are set, 
respectively, to 6,5 and 4 throughout the mesh. 


Using a purely p-adaptive finite element method, local 
enrichments of the stress field up to order 7 bring the crit- 
ical 157e number to 1.1. Note that less than 5% extra 


degrees of freedom were needed for this computation, if 
compared with the p-method. 


In this smooth case, it is not optimal to apply local h- 
refinements. Global or local p-enrichements lead to im- 
pressive reductions of the number of degrees of freedom 
and to an increased robustness of the algorithm. 


0.06 


Estimated error ¸ 
Drag based error -[--- 


0.006 
3500 6000 


Figure 2: Sphere problem (Re=O), Maxwell-B fluid. Error 
index vs Number of degrees of freedom. 


Using the estimation technique described above, we com- 
pute the a posterJori error estimates obtained during a pure 
p-adaptive process. Although no analytical proof is avail- 
able for this estimator, comparisons can be made with a 
reference solution to validate the proposed procedure. It 
can be pointed out that the error estimator provides a 
similar evolution with mesh enrichments, as obtained if we 
compare the calculated drag with a reference value (given 
in [7]). The two curves are plotted on Figure 2. Such 
drag based error estimator is in fact unavailable in practi- 
cal problems, where we do not have any reference. 


5.2 Axisymmetric contraction problem 


The second problem considered is the steady motion of a 
viscoelastic fluid through an abrupt 4:1 contraction. We 
impose v = /• and 'rv = •'v on c9f•r,•ftow, assuming 
that these fields are fully developed. We suppose that the 
fluid sticks to the wall and we impose zero normal veloc- 
ity and zero tangential force along the axis of symmetry. 
Only velocities are imposed at the exit section, which is 
taken long enough to insure a fully developed profile. This 
profile is chosen to achieve global mass conservation in f•. 
The lengths of the entry and exit sections are equal to 20 
downstream radii. 


In the particular case of an Oldroyd-B fluid (F = 0, 
rlV/(ON +T]V) = 0.875), the particular form of Equation (2) 
may lead to non-integrable extra-stresses at the reentrant 
corner. We compare several adaptive strategies in order to 
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monitor the behaviour of 


singularits'. 


i i 


the solution in the presence of a 


I 2 3 4 5 6 7 8 


Figure 3: Abrupt 4:1 contraction (Re=0,We=2), Oldroyd- 
B fluid. Closeup view of the meshes. 


Pure h-refinements As in classical finite element meth- 


ods. convergence is obtained by splitting elements into 
smaller one. These refinements occur mainly at the 
vicinity of the singularity (see Figure 3), which lead 
to the convergence curve plotted in Figure 6. 


Figure 4:4:1 Contraction (Re=0,We=2), Oldroyd-B fluid. 
Closeup view of the meshes. 


Pure p-enrichments We know from approximation the- 
ory that p-enrichments only reduce the error with an 
algebraic rate of convergence in presence of a singu- 


larity. This is well observed for this viscoelastic prob- 
lem and the convergence rate of this p-finite element 
method is the same as the rate obtained with the clas- 


sical h-method (see Figure 6). The three successive 
meshes used are shown in Figure 4, where shaded el- 
ements reflect a non-uniform p-distribution. 


I 2 3 4 5 6 7 8 


Figure 5:4:1 Contraction (Re=0AX•=2), Oldroyd-B fluid. 
Closeup view of the meshes. 


Mixed h- and p-refinements In our hp-adaptivity. the 
first step consists of pure h-refinements. This h-refined 
mesh is then modified by pure p-refinements, leading 
to a higher global convergence rate of the method (as 
shown in Figure 6). Figure 5 presents the different 
meshes used in this approach. 


0.13 


0.04 


HP-Refinement Q 
Pure h Refinements - ',•--- 


.•j ...... Pure p Refinements --• .... -.. 


2200 4000 


Figure 6:4:1 Contraction (Re=0,We=2), Oldroyd-B fluid. 
Error index vs Number of degrees of freedom. 


Now using a MUCM model, Equation (3) leads to a 
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Newtonian behaviour of the fluid in singularity areas. The 
stresses remain square integrable and pure p-refinements 
give the highest rate of convergence, as shown in Figure 7. 


0.13 


0.04 
2200 


HP-Refinement ¸ 
Pure h Refinements q--- 


.•Pure p Refinements --•--- 


5100 


Figure 7:4:1 contraction (Re=0,We=6), MUCM fluid. Er- 
ror index vs Number of degrees of freedom. 


6 Conclusions 


An hp-adaptive finite element method has been proposed 
to solve viscoelastic flow problems in complex geometries. 
An a posterJori error estimation procedure has been set 
up. generalizing rigorous results of Oden et al. for Stokes 
and Navier-Stokes equations. Earlier experiments which 
illustrated the validity of the estimator on the 4:1 contrac- 
tion have been confirmed on the sphere problem, taking 
the drag correction factor as relevant parameter. 


Numerical results obtained on both test problems show 
how the domain geometry and the form of the constituve 
equations affect the rate of convergence. This allows us 
to select well-suited adaptive strategies and to save many 
degrees of freedom. The CPU time required to achieve a 
target error is therefore significantly reduced. 
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Symmetric Hierarchical Polynomials 
and the Adaptive h-p-Version 


G. W. Zumbusch* 


Abstract 


The h-p-version of finite-elements delivers a sub- 
exponential convergence in the energy norm. A step to- 
wards a full adaptive implementation is taken in the con- 
text of unstructured meshes of simplices with variable or- 
der p in space. Both assumptions lead to desirable prop- 
erties of shape functions like symmetry, p-hierarchy and 
simple coupling of elements. 


In a first step, it is demonstrated that for standard poly- 
nomial vector spaces on simplices not all of these features 
can be obtained simultaneously. However, this is possible 
if these spaces are slightly extended or reduced. Thus a 
new class of polynomial shape functions is derived, which 
is especially well suited for three dimensional tetrahedra. 


The construction is completed by directly minimizing 
the condition numbers of the arising preconditioned local 
finite element matrices. The preconditioner is based on 
two-step domain decomposition techniques using a multi- 
grid solver for the global linear problem p = 1, and direct 
solvers for local higher order problems. 


Some numerical results concerning an adaptive (feed- 
back) version of h-p finite elements are presented. 


Key words: FEM, h-p-version, shape functions. 


AMS subject classifications: 65N30, 41A10. 


1 Introduction 


We choose the simplex as finite element for unstructured 
grids, which is a tetrahedron in three dimensions, and ap- 
proximate the solution by a polynomial on each element. 


* Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Heilbron- 
ner Str. 10, D-10711 Berlin, Germany. zumbusch{zib-barlixx.da, 
http://www. zib-berlin. de/-bzf zumbu 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. @1996 Houston 
Journal of Mathematics, University of Houston. 


We use conforming finite elements in a (self-) adaptive code 
with efficient iterative solvers, a posteriori error estimators, 
globally varying polynomial degrees and h-p-adaptation. 


On the interval, the one dimensional case, say [-1, 1], 
the classic orthogonal Legendre polynomials are leading to 
a kind of optimal set of shape functions for the p- and h-p- 
version (see [3]) of finite elements for the Laplace equation. 
In spite of differing suggestions [2, 6, 8, 18, 21, 22], there is 
no canonical set of polynomials in higher dimensions. For 
the simplex one has to give up some of the nice character- 
istics of the Legendre polynomials and a more complicated 
approach has to be used. 


An Analysis leads to some useful properties of shape- 
functions on the simplex. Only some properties are com- 
patible with each other. Each version of finite elements 
differs in exploiting these properties for an efficient imple- 
mentation. This is the first part of the present paper. In 
the second part we construct vector spaces containing sets 
of polynomials well-suited for the p- and the h-p-version of 
finite elements. In the third part we construct shape func- 
tions within these spaces which are optimal in the sense of 
an optimal condition number of the preconditioned linear 
system. Finally, we present some other ingredients of an 
adaptive or feedback finite element code in the sense of [10] 
like error estimation and grid refinement control. 


2 Properties of shape functions 


2.1 The problem 


We consider a linear second order elliptic symmetrical 
boundary value problem. A suitable set of conforming 
shape functions V)i • H•(•2) has to be chosen (displace- 
ment functions). These shape functions are formed by lo- 
cal shape functions ½i on each finite element. 


We introduce the barycentric coordinates (b0, b•,..., 
in a d dimensional space with respect to a d-simplex, some- 
times called area or volume coordinates or homogeneous 
coordinates. They may be characterized by an arline trans- 
form with coordinates (0,..., 0, 1, 0,..., 0) corresponding 
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to a vertex of the simplex. Hence, coordinate •(1,..., 1) 
is the centroid of the simplex. Using multi index notation 
we define the vector space 72• of polynomials of degree p 
in d variables by the linear span of 


U 


Sometimes shape functions are written in terms of (x, y, 1- 
x- y} on a reference triangle. This is equivalent to a 
function in {b•, b2, b0}. 


2.2 Hierarchy and orthogonal polynomials 


V•e introduce the concept of p-hierarchy or p-extension. 


Definition 2.1 If we have a basis Bp of shape functions 
spanning the function space ]2p and we want to reach the 
space ]2p+•, we simply can add some shape functions to 


r•ext get the enhanced basis •pq-1 


•2p+l = (•p+l) • (•p) • (•p+l • •p) 


P-hierarchy is an integral part of an approximation with 
varying order p in space. If we choose the order p• on one 
finite-element and a different p2 on a neighboring element, 
we can achieve global continuity by linear constraints like 
[8] or by handling the p-hierarchic excess in a special way 
(setting it to zero). 


An example for p-hierarchic polynomials are the pre- 
viously mentioned Legendre polynomials. The Legendre 
polynomials fp (x) are orthogonal with respect to the scalar 
product (...) on [-1, 1]. They are hierarchical in their poly- 
nomial degree p and symmetrical to the origin. The sym- 
metry behavior is alternately odd and even. To exploit the 
orthogonality in the case of a one dimensional problem for 
the Laplace operator one has to use integrated polynomials 
as shape functions: f fj(t)dt [21]. Then, the bilinear form 
a(zt, v) - (•u,--dr) operates on the same terms as the dx 


scalar product does in the previous case. The integrated 
polynomials are orthogonal with respect to the bilinear 
form. 


Definition 2.2 Here, we associate the term 'orthogonal' 
polynomials with a sequence of nested sets of polynomials 
Bx C B• C ... for a specific bilinear form. The polynomials 
have to be linearly independent. A polynomial f • Bi is 
orthogonal with respect to this bilinear form on the vector 
space generated by the basis Bi-1 (no condition for B1). 
The vector spaces generated by •i are usually the vector 
spaces of polynomials T?+l. The polynomials in 13i • 13i_• 
need not be orthogonal onto themselves. [] 


Orthogonal polynomials are hierarchical in p by defi- 
nition. Orthogonal polynomials do not necessarily lead 
to local matrices with condition numbers equal to one, 
nj(A •øc) -- 1, like the Legendre polynomials. However, 
a basis with this desirable property can be constructed. 


2.3 Coupling 


We call the assembly of local finite-element-matrices into 
a global one coupling, sometimes called 'global assembly'. 
One line of interpretation is the representation of global 
FEM ansatz functions, each connected with an degree of 
freedom, by linear combinations of local shape functions 
on an element. Coupling means this linear combination, 
which ideally is a one-to-one relation (local permutation 
matrix, called 'simple'). This would be the case for so- 
called compatible shape functions. Many FEM codes use 
this simple form of global matrix assembly, assuming that 
the local shape functions are suited for it. 


Another bottom-up interpretation is that we have to 
guarantee we are dealing with globally continuous shape 
functions {•i}, which are formed by properly connected 
local shape functions {•bi}. We introduce two new terms: 
simple and minimal coupling. 


Definition 2.3 We call the coupling of the shape func- 
tions of two connected elements minimal, if the number of 
shape functions involved is minimal. [] 


This number n(E, E*) equals twice the dimension of the 
polynomial vector space on the intersection E • E* of both 
elements E, E*. Coupling coefficients zero corresponding 
to vanishing shape functions on the intersection do not 
contribute to n. 


We can express the coupling by an under-determined 
system of linear equations. Taking a coupling matrix C 
and the sets of shape functions {½i} and {½?}, we can 
write the constraints as 


C.(qS;, ½2, ..., •b•, •b•, ...)T=0 on EQ 


By eliminating columns containing only zeros, eliminat- 
ing linearly dependent rows and permuting we arrive at a 
reduced matrix C • R •X • of rank n. 


We introduce a stronger term of coupling by a special 
kind of minimal coupling which we call simple. The under- 
determined system of linear equations with (reduced) ma- 
trix C should facilitate the conversion between the coef- 


ficients of the functions {(•i} and {•j}. We reduce the 
matrix C to a smaller matrix • by leaving out columns 
which are linearly dependent or zero. 
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Definition 2.4 We define a coupling of shape functions 
(0i} and ( O? }~simple, if there exists a reduced and per- 
muted matrix C of maximal rank which has block-diagonal 
form with 1 x 2 non-zero blocks. [] 


The reduced matrix looks like this: 


•= •2 '. with• •R xx2. 
ß 


Examples 2.1 We look at the simple coupling of two el- 
ements E and E* with 2 x 2 local matrices A and B 


and shape functions {½1,02} and {½•,½•}. Function ½2 
equals function ½• on E 71 E*. No other shape functions 
of E and E* are correlated. This leads to a matrix C = 
( 0 1 -1 0 ), a reduced matrix • = •1 - (1 - 1) 
and to 


( all a12 ) a12 a22 


coupled with 


adds up to 


bll b12 ) b12 b22 


all a12 0 ) a12 a22 +bll bl2 . 
0 b12 b22 


Simple coupling may also appear as blocks of •i = (1 1), 
in general as •i = (1 A), A • 0 or as small blocks simply 
im'ertible. 


The Lagrange polynomials are interpolation polynomials 
on a set of equidistant points called 'control points' xi. The 
polynomials are defined by the orthogonality relation 


= 


The polynomials of degree p are defined on a d-simplex by 
the equidistant distribution of (P•) control points on the 
simplex, spanning the space 72p •. The set of Lagrange poly- 
nomials implements the interpolation property of the lin- 
ear shape functions p - i often used for conforming finite 
elements. Global continuity can be achieved for a uniform 
polynomial degree p, identifying shape functions of all el- 
ements sharing one geometric control point (coupling of 
element matrices). Implementation of Dirichlet boundary 
conditions is easy, too. Shape functions are symmetric/ 
affine invariant due to symmetry/affine invariance of the 
control points. 


Remark 2.1 We conclude that there are shape functions 
with minimal and simple coupling. Some are symmetrical, 
too. 


There are some slight modifications, moving the posi- 
tion of the control points and using points of the numeri- 
cal integration formula. There are other proposals for un- 
symmetric modifications of edge shape functions in the in- 
ner of a triangle like [11, 7], which are difficult to generalize 
for tetrahedra [20]. 


2.4 Symmetry 


Definition 2.5 We denote the group of permutations of 
d elements with S• and the subset of the alternating group 
with S•. [] 


Definition 2.6 We define the action of a group S c 
on a set of polynomials B in d variables by the set of poly- 
nomials resulting from permuting the input variables (by 
the permutations of the group) in barycentric representa- 
tion. This covers the definition of the action on a single 
polynomial and on a whole vector space of polynomials. 


ss: LJ 
f•B,s•S 


Definition 2.7 We call a polynomial f, a set of polynomi- 
als B and a vector space 12 of polynomials "S-symmetrical", 
if it is invariant with respect to the action of S 


f=Sf, B=SB and 12=S12. 


It immediately follows that 


ß a set of S-symmetrical polynomials is an S- 
symmetrical set of polynomials and 


ß a vector space generated by an S-symmetrical set of 
polynomials is S-symmetrical itself. 


Additionally, we introduce point-symmetry which is not 
covered by the previous definitions. 


Definition 2.8 We define a set of polynomials B to be 
S•+x-symmetrical in d variables by 


Vs • Sa+• and Vf • B holds sf • 13 or - (s f) • 13. 
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Remark 2.2 Defining symmetry by Vs E Sd+l and Vf 
13 3A • R • {0} with h(sf) • 13 leads to h = -4-1, too. 


Lemma 2.1 An Sñ-symmetrical set B of polynomials is 
S +-symmetrical. 


Remark 2.3 We conclude that there are S•- and S•t- 
symmetrical shape functions. 


2.5 Symmetry and coupling 


Finite Element methods often use a simple set of shape 
functions defined on a reference element. In the case of 


simplices, each shape function is transferred to a real el- 
ement using an affine transformation. There are different 
possibilities for realizing this transformation. The trans- 
formation is unique only modulo permutation of the corner 
points. Hence, one has to be able to couple any face of one 
element with any face of another one; where faces can be 
points, edges, triangles and so on. 


One can think of a completely oriented tessellation where 
the coupling is restricted to only some distinguished com- 
binations of faces. But, in general, there is no such orien- 
tation. 


Hence, there is no way out of having a deeper look into 
symmetry and coupling properties. 


Theorem 2.1 


A set of shape functions for a general conforming tessella- 
tion of d-simplices will permit a simple coupling with blocks 
•i - (1 - 1) if, and only if, the shape functions per- 
mit minimal coupling and are Sj+l-symmetrical on each 
j-dimensional face of a simplex. 


\Ve can relax this condition a little by requiring only 
•i - ñV;• on the common boundary which leads to addi- 
tion and subtraction of local matrices. 


Corollary 2.1 
A set of shape functions for a general conforming tessella- 
tion of d-simplices will permit a simple coupling with blocks 
• - (1 ñ 1) if the shape functions permit minimal cou- 
pling and are S•:+l-symmetrical on each j-dimensional face 
of a simplex. 


Remark 2.4 S•+l-symmetry is correlated with simple 
coupling of (1 - 1) and S•+l-symmetry is correlated with 
simple coupling of (1 ñ 1). 


2.6 Symmetry and hierarchy 


We now want to derive the correlation of symmetry and 
p-hierarchy. The Legendre polynomials for example are p- 
hierarchic and S•-symmetrical, which simply means point 
and axial symmetry in one dimension. For d dimensions 
we get the following main result: 


Theorem 2.2 


There is no p-hierarchical S•++•-symmetrical polynomial ba- 
sis on the d-simplex for d • 1. 


Proof We look at the p-hierarchical step from polynomial 
degree j(d+l) to j(d+l) +1with j • No. Note that 
the dimension of symmetrizations of the set {b0 - bx, b• - 
b2,..., bd-1 - b•}(b0 ß bx"' ba)J is at least d •- 1, but the 
vector space is of dimension d. [] 


Corollary 2.2 
There is no p-hierarchical S•+•-symmetrical polynomial ba- 
sis on the d-simplex for d • 1. 


Theorem 2.3 


There is no p-hierarchical Sa+•-symmetrical polynomial ba- 
sis on the d-simplex for d _• 1. 


Corollary 2.3 


There are no Sa++x-symmetrical orthogonal polynomials on 
the d-simplex for d • 1. 


Remark 2.5 Symmetry and simple coupling on the one 
hand and p-hierarchy for •pa on the other hand exclude 
each other. 


3 Construction of polynomial 
Spaces 


We want to construct a family of p-hierarchical shape func- 
tions for the d-simplex. It has to facilitate a simple cou- 
pling which implies symmetry (chapter 2.5). It should be 
suitable for a p- and h-p-version of finite elements with 
variable order p which means p-hierarchy, in some sense. 
Both properties are not possible at the same time (chapter 
2.6). 


We have to cope with the limitations of theorem (2.2). 
We shall enlarge the polynomial vector spaces •Pp• slightly 
and construct new Sd+•-symmetrical vector spaces which 
avoid the irreducible subspaces of the proof. 
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3.1 Symmetry Sd 


$Ve recursively construct a basis for the new vector space 
9Dd,syrn •d,sym by the span of the vector space --1 one degree ß p 


lower and additional functions. These functions are in- 


ternal functions formed by the product of the "bubble" 
d 


function l-Ij=0 bj with functions of degree (p - d - 1) and 
boundary functions defined on the faces. The boundary 
functions are Sd+l-permutations (symmetrizations) of such 
(lower-) /-dimensional functions ( p--i--1' X-Ij----O bj), i < d. 
The only difference to the standard polynomial spaces 'pp• 
is the beginning of the recursion. We start with {b0} for 
/•0 ø which actually has degree 1. If we want to get the stan- 
dard polynomial spaces 'pp•, we should have taken {1}. We 
have enlarged the vector space. This enlargement spreads 
to the higher dimensions and the higher degrees. 


Definition 3.1 We recursively construct a basis for the 
new vector space in barycentric coordinates based on lower 
dimensions and lower degrees using the group of permuta- 
tions Sd: 


o •o ø = {bo} 


o Bpø=O. p>0 


i 'bo'bl ..b,), d> 1. O •pd = U/d__0 Sd+l(]•p_i_l . __ 


Sometimes shape functions are written in a form like 
{x, y. 1 - x - y} on a reference triangle. This is equivalent 
to {bt, b2, bo}. 


Remark 3.1 In the previous definition we can substitute 
the action of Sa+l by the combinations without repetition 
of i + 1 elements of the set {bo, bl,..., ba}. 


Definition 3.2 We now define the new polynomial vector 
spaces as the span of the basis functions in d dimensions: 
'ppd.sym P = <Ui----O r/d) [] 


Remark 3.2 The vector spaces • Od'sym are ß p 


Sa+•-symmetrical. Their bases •d,sym are p-hierarchical, --p 


facilitate minimal and simple coupling with blocks (1 -1) 
and are enlarged 'pp• C •d,syrn C d -- ß p - 'P•+ I . 


These polynomial spaces are well-suited for the coupling 
(1 - 1), but they have got a high dimension (-- too many 
shape functions). If we relax the coupling to (1 ñ 1), we 
can reduce this high dimension, but we have to consider 
the group S•+ t (chapter 2.5). 


3.2 Symmetry S• 
Definition 3.3 We recursively construct a basis for the 


new S•+l-symmetrical vector space, taking the same 0- 
dimensional space and the action of the alternating group 
S• + otherwise, modifying the one dimensional basis: 


o r• ,+ = {bo}, r• ,+ = 0, p > o 


o •01're--{b0, bl}, rl i'm =0, rp 1'+ = {(bl-bo)P}, p> 
1 


o •pd, -I- d i,+ = Ui----0 S•q-1 ' bo' bl (Bp_i_ 1 '"bi), d 1. 


Remark 3.3 In the previous definition we can substitute 
the action of S•++x by the even combinations without repe- 
tition of i + i elements of the set {bo, bl,..., bd}. Watch 
out for a systematical interpretation of "even"! 


Definition 3.4 We now define the new polynomial vector 
spaces as the span of the basis functions in d dimensions: 
•Opd, + P = <U•=o r•'+> [] 


Examples 3.1 In zero dimension we get the following se- 
quence of polynomials, which are only useful for the con- 
struction of higher dimensional ones: 


'poO,+ o + o,+ ---- 'Pl' ---- 'P2 ..... 
Starting with the one dimensional S•-symmetrical poly- 


nomials we get the following sequence: 
'Po 1'+ : 'Pl •'+ -- < { bo, bl } > 
'P•'+ = <'Pl 1'+ U {(bx - bo)2}> 
pt,+ _ <'p21.+ U ((bl - bo)3}> 3 -- 


ß 


The spaces 'ppl,+ are equal to the former spaces 'P• for 
p > O. Thus they are smaller than the spaces •l.syrn The --p 


one dimensional basis is not enlarged any more. Insert- 
ing this into the definition for two dimensions we get a 
sequence of S•-symmetrical polynomials: 


= 
-- <{bo, hi, 
U {(bl-bo) 2, (b2-bl) 2, 


(bo - b2)2}> 
U ((bl-bo) 3, (b2-bl) 3, 


(bo-b2) a} U {bo(bobxb2), 
bl(bob•b•), b2(bob•b•)}) 


U ((bl-bo) 4, (b2-bl) 4, 
(bo - b2)4}> 


On the triangle the polynomial sets for a degree p which 
is not divisible by 3 are identical to 'pp•, all other vector 
spaces are generated by 'pp• and 2 additional polynomials. 
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•L 


Figure 1: Enlargement of 7•p •'+' values of (dira•p •'+ - 
d i rn 7•p• ) / ( d i ra 7•pa+ x - d i ra •p a) 


Remark 3.4 The usual linear Lagrange polynomials are 
contained in both 13• and 13• '+. The associated hierarchical 
quadratic polynomials are contained in 132 d'+ too. 


Remark 3.5 The linear Lagrange polynomials can be in- 
terpreted as symmetrization of the canonical basis of 72•d: 
{1} u 


Remark 3.6 The bases 13p d,+ are S•+t-symmetrical , p- 
hierarchical and facilitate minimal and simple coupling 
with blocks (1 4- 1). The spanned vector spaces 72p d'+ are 
only slightly enlarged (7•p • _C 7•p •,ñ _C ppd,syra __• 'ppd+l ) and 
have got an even lower dimension than •Dp d'syra. 


3.3 The enlargement 


We saw that the enlarged polynomial spaces fulfill 


which limits the enlargement of 72p d'm (note 3.6). Actually, 
we can show that with p --, oc this enlargement vanishes 
in the following sense: 


dim•pd+l _ di--•p d _• O(p -1) for fixed d 
We prove this also giving the dependence on d by 


Lemma 3.1 


Proof dira72p • may also be written by the recursive equa- 
tion of dira72p d'+ obtained from definition of 72• . The 
difference obeys the same equation. It can be majorized 
by a recursion of d ß dira72p •-2. [] 


dim 72• 
6 


21 


56 


126 


252 


462 


dim 72• '+ dim 72•o 
6 11 


21 66 


56 286 


130 1001 


276 3003 


546 8008 


dim 72• + 
11 


66 


294 


1045 


3192 


8757 


Table 1: Dimensions of 72p d and 79p a'+ 


reduced 


S+ + Ssurf 


4 4 4 


4 10 10 


16 16 16 


28 34 35 


44 56 56 


68 80 80 


104 116 120 


140 164 165 


original 


4 


10 


2O 


35 


56 


84 


120 


165 


extended 


+ S+ Ssurf S 


4 4 4 


10 10 16 


28 28 28 


35 38 44 


56 56 68 


92 92 104 


120 128 140 


165 168 192 


Table 2: Dimensions of 72p 3 in R 3, of extended and reduced 
spaces, S-symmetric, S+-symmetric and S•urf-symmetric 
on the surface of the tetrahedron only 


With dira7>p d = (p.q-d] the proof of formula (1) is com- 
pleted. Figure (1) shows the actual values of the quotient. 
72p •,+ is not enlarged and 72p 2'+ is enlarged by 2 polynomi- 
als only for every third p. It indicates, in conjunction with 
the actual numbers in table 1, that the values decrease 
asymptotically with p-x. 


In table 2 we have added the dimensions for extended 


and reduced symmetric polynomial spaces obtained by the 
recursion. Reduction in this context results in incomplete 
polynomial spaces due to the symmetrization analog of 
the previous extension of spaces. The spaces of polynomi- 
als with symmetry on the boundary of the element only 
do not differ much from symmetry for all polynomials, in- 
cluding the inner functions. The S+-symmetric reduced 
polynomials are an attractive lower dimensional counter- 
part of the S+-symmetric full polynomials 72p d'+ and the 
S-symmetric reduced polynomials are connected with full 
S-symmetric polynomials 72p d. We also remark the drop- 
out of full symmetric reduced polynomials at degree p = 2 
and via recursion inherited minor drop-outs. In the future 


we will use the polynomials 72? ñ only. 
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4 Construction of shape functions 


4.1 Preconditioning 


In the context of the iterative solution of the linear systems 
another tool comes into play. It is the convergence rate of 
the iteration. It can be estimated for some classic itera- 
tions like conjugate gradients and Richardson-iteration in 
terms of the condition number. But, for the sake of effi- 
ciency linear systems are often preconditioned, so we have 
to consider the condition number of the preconditioned 
matrix instead. There are two similar approaches for pre- 
conditioning linear systems of p-version [13, 1] and [17, 16], 
both leading to estimates independent from h and with a 
rather mild increase in log 2 p. 


It is well known from domain decomposition, that any 
construction of a preconditioner as splitting into a linear 
or piecewise constant global function space and several 
higher order local spaces leads to such an h-independence 
under the condition of rainiraa! coupling. Coupling comes 
into play localizing the global higher order function spaces. 
Hence we construct our preconditioner as the splitting into 
the global linear space and additional local spaces. To 
keep them local, we have to separate spaces for each edge, 
triangle, tetrahedron etc..Now we can interpret this pre- 
conditioner B as a block-diagonal version of the stiffness- 
matrix A. Calculating the preconditioned condition num- 
ber •(B-1A), we can see that it is majorized by the max- 


rnax)• • imum of the local condition numbers • (min•0J of the 
generalized eigenvalue problem Blocx = AAlocx. • is cal- 
culated from the generalized eigenvalues orthogonal to the 
common eigenfunction of the eigenvalue 0. This means 
that we only have to optimize and calculate local con- 
dition numbers and the condition number is independent 
from h with the aid of a good preconditioner for the linear 
h-version problem. 


4.2 Condition numbers 


x, Ve want to construct the final version of our shape func- 
tions by using the polynomial vector spaces 79p •,sym and 
7•p a,+ of chapter (2.5). The set of functions should main- 
tain the symmetry and coupling properties of the original 
basis/3p a and/3p a'+. P-hierarchy is guaranteed by the nest- 
ing of the vector spaces. The only missing property is a 
low condition number of the preconditioned system. 


•Ve make a general approach to optimization of the lo- 
cal condition numbers. The optimal polynomials are in a 
linear vector space ]2 - (fl, f2,...>. Every optimized 


d ] p=2 p=3 p=4 p=5 p=6 2 6.00 19.2 20.8 45.6 54.5 
3 12.3 125. 127. 194. 361. 
4 21.1 336. 467. 882. 


p=7 p=8 
56.2 57.4 


Table 3: Condition numbers of the preconditioned stiffness 
matrix for •Pp•,+ 


polynomial vk has a representation of 


Vk :-- • qki f i , k ---- 1,... 
i----1 


We have to determine the coefficients qki that v• has the 
desired properties. We used some direct procedures for 
minimization of the condition numbers. 


All optimization procedures have in common the neces- 
sity of a correct management of the polynomials, their 
symmetry and their coupling properties. This includes the 
construction of the appropriate basis functions for each 
optimized shape function set. The optimized shape func- 
tions are a linear combination of the basis functions. The 


combination itself depends on the optimization. The ac- 
tual basis functions fi are in some cases (optimized) shape 
functions v• of previous optimization steps, and in some 
cases symmetrizations of them. 


We now compare the resulting local condition numbers. 
We choose the Laplace operator on the equilateral simplex. 
The condition numbers shown in table 3 are evaluated nu- 
merically. 


We were not able to prove a special kind of asymptotics 
in p but we simply present the actual numbers of interest. 
We think that a hard prove would not only be intricated 
because of the structure of the function spaces •Pp•,+, but 
also of less practical worth for real-problem p. 


Nevertheless, we obtain low local condition numbers; 
hence, an additional acceleration of an iterative solver 
would be obsolete. But, our main result still is the new 
polynomial spaces •p•ym and •P•, including their proper- 
ties. 


5 FEM framework 


5.1 Error estimation 


Putting this new shape functions into a framework of an 
adaptive or feedback finite element code, we have to con- 
sider some other details. We use an a posterJori error es- 
timator to indicate those elements and regions to refine in 
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Figure 8: Computed displacement on refined grid 


Figure 6: Initial coarse grid 


Figure 7: Adaptively refined grid, h-version 


5.2 Feedback grid control 


The refinement decision uses a maximum criterion of ele- 


ment errors with a minimum percentage guaranteed [10]. 
Elements for refinement are marked. The3' are refined in 
adaptive h version and p version. For h-p version after- 
wards a decision for each element is made whether to re- 


fine in h-direction (subdivide element) or in p-direction 
(increase polynomial degree). This decision depends on 
the ratio of h-error/p-error which is compared to a thresh- 
old. The threshold is sometimes fixed for the whole com- 


putation or chosen as a fixed percentage of the maximum 
ratio. Some experiments with history of estimated errors 
(usually short) or measures of computational work spend 
for each decision were not convincing enough to justify 
the additional complexity of implementation and behav- 
ior. For other considerations about h-p grid generation see 
[12, 14, 191 . 


We present some numerical experiments concerning the 
performance of different finite element versions. Depicted 
is the error measured in energy norm versus the number of 
unknowns in the linear system of equations. The examples 
show that the uniform p-version is faster than the uniform 
h-version; different behavior of the adaptive versions and 
performance of the h-p adaption for some threshold pa- 
rameters is shown. For a detailed explanation see [3]. 


The first example is a nearly quadratic one. 


a(x) = 1, e [-1.1] 
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Figure 9: Adaptive FEM iteration counts for diagonal scal- 
ing, multigrid preconditioner and domain decomposition 
preconditioner (different final precision). 


with homogeneous Dirichlet boundary conditions. The re- 
suits are in figures 2 and 3 (computational domain only 
1/8). Figure 2 shows a comparison of h-versions with dif- 
ferent order p. For linear elements p = 1 adaptivity does 
not pay off whereas adaptivity is preferable for higher p. 
The solution is very well approximated by quadratic ele- 
ments and every linear approximation remains poor. Next, 
figure 3 shows the performance of the related h-p versions. 
The biggest part of p refined elements compared to h re- 
fined delivers best performance, approaching original p ver- 
sion. 


The next example is an analytic one, also preferring 
higher order approximations: 


/ktt(3?) = COS37 1COS372COS3•3, X • [--71'/2,71'/2] 3 


with homogeneous Dirichlet boundary conditions. The re- 
suits are contained in figure 4 (computational domain only 
1/8, different scaling). Different h-p versions are compared 
to an adaptive h-version and an adaptive p-version. The .8 
threshold h-p version performs best, whereas h-p versions 
with higher or lower hip ratio are better in a middle phase. 


5.3 Iterative solvers 


}Ve already have presented an iterative two-level domain 
decomposition solver while constructing an optimal set of 
shape functions similar to [13, 1]. We now compare it 
with another approach due to [9] only exploiting the his- 
tory of refined grids called ccg. Optimal convergence has 
been proven for linear elements in [4]. We choose a multi- 
grid 1/2,2 solver ;vith 3 x 3 block symmetric Gauss-Seidel 


smoother for the global system arising in domain decom- 
position and present some iteration counts and residuum 
reduction rates. The ccg algorithm is originally equipped 
with a diagonal scaling. 


The last example is from linear elasto mechanics. The 
Lam• equations are solved with a three dimensional dis- 
placement approach. A Poisson ratio of .29 is used. There 
are no interior forces and most of the surface is free. Only 
three outer squares have a prescribed displacement point- 
ing from the center to the outside. The elastic body and 
its initial grid are shown in figures 5 and 6. Figure 7 shows 
a h refined grid during computation and figure 8, finally, 
shows the deformed body. 


Figure 9 shows the behavior of both solvers for an adap- 
tive h-p version. For diagonal scaling it shows the typical 
behavior a of decreasing number of iterations after a high 
peak at a low number of unknowns. The total work adds 
up to a small constant depending on asymptotical behav- 
ior. Preconditioning leads to constant lower numbers of 
iterations, but each iteration itself is more expensive. Pure 
multigrid Gauss-Seidel, in conjunction with our optimized 
shape functions, seems to be faster than more additional 
domain decomposition with multigrid. 


6 Conclusion 


We have presented a framework for adaptive h-p finite ele- 
ment methods for second order boundary value problems. 
Aiming an efficient computational code with fully auto- 
matic control, we have chosen the h-p version of finite ele- 
ments ensuring (sub-) exponential convergence in contrast 
to the standard algebraic one. To generate the full con- 
vergence order, well-adapted grids had to be generated by 
the code. 


The demands for efficiency in conjunction with unstruc- 
tured grids (because of geometry constraints and adapta- 
tion), varying polynomial degrees (in space and in adap- 
tation history) and some concerns on robustness required 
new shape functions. The different polynomial degrees call 
for the concept of p-hierarchy of the shape functions. The 
easy assembly of the global stiffness matrix and the load 
vector on unstructured grids of simplices clearly lead to 
the requirements of symmetry of the shape functions on 
the boundary of each individual element. Finally, inde- 
pendence of orientation demands symmetry of the shape 
functions on the whole element. 


However, it was proved that no families of shape func- 
tions in dimensions higher than d = i could have both 
properties, p-hierarchy and symmetry, at once for stan- 
dard polynomial spaces. Hence, the spaces of polynomi- 







Symmetric Polynomials And The h-p- Version 539 


als spanned by the shape functions were slightly modified 
and p-hierarchic and symmetric shape functions were con- 
structed. 


Therefore, a domain decomposition preconditioner for h- 
p grids based on a standard multilevel iterative solver for h 
grids was developed. This construction implied an orthog- 
onalization of shape functions by means of optimization of 
the resulting condition numbers of the preconditioner. The 
optimization procedure delivered the uniqueness (modulo 
symmetry) of the shape functions. 


With suitable error estimators and refinement strategies 
some numerical experiments were performed, demonstrat- 
ing the superior convergence properties of pre-asymptotic 
p-version and the global convergence of h-p-version finite 
elements, which agrees with the theory. This was shown 
both for the characteristic 3D singularities of the Laplacian 
and for some 3D examples of linear elasto mechanics. 
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Figure on reverse: 
An example of consistent recursive grids with contours 
of the solution superimposed. The solution represents 
the temperature distribution of • premixed fi•me prop- 
•g•ting in • she•r flow field. The grid results from • 
dynamic •d•pt•t. ion process where the grid changes •s 
the solution develops from •n initial estimate to the 
state shown in the picture. (From "High-order m•tch- 
ing finite elements on recursive grids" by G. Kozlovsky, 
page 567) 








Multigrid Tau-Extrapolation 
for Nonlinear Partial Differential Equations 
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Abstract 


Multigrid methods are among the fastest solvers for partial 
differential equations. Using the tamextrapolation princi- 
ple of Brandt, the multilevel structure can be used addi- 
tionally to obtain higher order approximations. 


In this paper we examine three different approaches with 
special emphasis on nonlinear partial differential equa- 
tions. In all cases, higher order is achieved by implicitly 
using the extrapolation principle, that is by exploiting the 
information between the grids with different discretization 
parameters. 


Key words: finite differences, finite elements, extrapola- 
tion. multigrid, Navier-Stokes equations. 


AMS subject classifications: 35Q30, 65B99, 65N06, 
65N55, 76D05. 


I Introduction 


High accuracy solutions of differential equations can only 
be obtained efficiently when the smoothness of the solution 
is exploited by high order discretization. High order meth- 
ods may provide sufficient accuracy with a much smaller 
discrete system. On the other hand, in practical applica- 
tions, the discrete systems are often still large, and good 
overall efficiency requires fast solvers. For problems in two 
or three spatial dimensions multilevel and multigrid tech- 
niques are often used. Since these algorithms use a hierar- 
chy of successively refined meshes, it is obvious that meth- 
ods using such a mesh structure for both constructing a 
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fast solver and a high order discretization are particularly 
attractive. In this paper we will study three different but 
related approaches to such algorithms. 


The starting point of our consideration is a hierarchy of 
meshes, on each of which the differential equation 


(1) Au= f 


is discretized by a basic low order discretization. In the 
first part of the paper we will consider finite difference tech- 
niques; however, as shown later, the basic principle also 
applies to finite element discretizations. In the simplest 
case, we study just two mesh levels and denote the corre- 
sponding discrete systems by Aaua = fa and AHUH = fH, 
respectively. On uniform meshes, typically H - 2h, and 
thus ua involves about four times as many unknowns as 
u• in a 2D example. 


A multigrid algorithm uses the H-grid approximation to 
accelerate the convergence of iterative methods for the h- 
grid problem by using coarse grid corrections to a current 
fine grid iterate ua of the form 


(2) 


(a) 
(4) 


Solve 


The algorithm (2 - 4) is the core of a so-called multigrid 
full approximation scheme (FAS) (see Brandt [2]). The 
operators •H, RnH are restrictions from the fine to the 
coarse grid and P• is a prolongation (interpolation) from 
the coarse to the fine grid. The r-term can be interpreted 
as a correction to the level H equation to make its solution 
coincide with the equation on level h. 


r-extrapolation now uses this basic algorithm with a 
slight modification. In (2), r•(u•) is multiplied by an 
extrapolation parameter u• to become •rff(uh), thus the 
name r-extrapolation. In a finite difference setting, this 
modification is justified, when r•(u•) has a suitable 
asymptotic expansion. 
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With this assumption and the trivial modification, a 
straightforward multigrid algorithm can be shown to con- 
verge to a higher order approximation of the solution (see 
[4]), provided the components of the algorithm satisfy cer- 
tain compatibility conditions. These conditions will be 
explained in section 2 of this paper, where a number of 
experiments for finite difference discretizations will also be 
presented. 


In section 3 and 4 we will then study alternative ap- 
proaches to •--extrapolation. The method of section 3 is 
derived from the formulation of a differential equation as a 
minimization problem. The resulting algorithm turns out 
to be a special case of the algorithms in section 2; how- 
ever, the new derivation allows an extension to more gen- 
eral mesh structures, in particular to unstructured finite 
element meshes. This is similar to the approach developed 
in section 4, where the starting point is the observation 
that •--extrapolation can be interpreted as an implicit way 
to construct higher order finite element stiffness matrices. 
These two interpretations permit an application of the •-- 
extrapolation principle to a much wider class of problems; 
including those where sufficient smoothness is only present 
locally, and where a higher order discretization must be 
augmented xvith adaptive techniques to resolve local sin- 
gularities. 


In all these cases the •--extrapolation algorithm main- 
tains its structural simplicity. Higher order is obtained 
implicitly, without ever constructing complicated differ- 
ence stencils or high order finite elements. •--extrapola- 
tion is also naturally combined with the multigrid princi- 
ple so that it automatically provides a very efficient solver 
for the discrete systems. The combination of these fea- 
tures potentially makes •--extrapolation one of the most 
efficient approaches to the high accuracy solution of differ- 
ential equations. 


2 Classical --extrapolation 


In this section we will study the classical •--extrapolation 
algorithm introduced by Brandt [2]. Our presentation is 
based on the multigrid terminology and assumes a basic 
knowledge of multigrid principles. For a more detailed 
presentation see [1]. 


2.1 The basic idea for linear problems 


Let RH be a restriction operator projecting the right-hand 
side f of the differential equation (1) into the image space 


of the discretized operator AH, i.e. 


(5) fu -- -Ruf. 


The truncation error of the discrete problem is given by 
inserting a projection •uu* of the exact solution in the 
discrete equation: 


(6) wit(u*) -- AitkHU* -- fit: AHkitu* -- RHAu*. 
Operators Rt• and •t may coincide, if preimage and im- 
age of A coincide. 
The approximation order p of a discrete problem is defined 
by the relation 


•-H(U) : AHkitU-- RHAu = O(H p) for u ß C ø+p , 
where o is the order of the differential operator A. 
An approximation of ru(u*) up to order a > p can be used 
to improve the accuracy of the original discrete problem to 
order c•. 


Lemma 2.1 For the right hand side of Asu• = f• 
let fH = fH + •-H(U*) + O(H a) with c• > p 
and suppose (5), (6) and IIAHll -x • M, M = coast., 
Then it follows that IluH - •Hu*]l = O(H•) . 


Proof The difference of A•u• - 
and AHt•IH u* -- fH + rH(U*) 
gives AH(UH -- t•lHU *) -- O(H •) 
i.e. 


A direct application of Lemma2.1. presupposes 
I]•HU*--IHU*[I • O(H•), where IH is an injection. This 
can be fulfilled most easily by •H : IH. A correction of 
the right hand side fH, which estimates r•(u*) with an 
error of order a > p, improves the accuracy of the solution 
of AHUH = fH to the same order. 


In the full approximation scheme (FAS, see also (2 - 4)) 
the coarse grid problems can be written in the form 


(7) AHuH=fH+•(ua), 
The correction term on the right-hand side can be consid- 
ered as an estimate of the approximation error b•ed on 
the solution on the finer grid. If 


(8) 
one can show that the accuracy of the solution us on the 
coarse grid is the same as that of ua on the fine grid (see 
[1]). However, a higher order of accuracy can not be ob- 
tained in this way. Taking into consideration Lemma2.1. 
we need a correction term which is a better approximation 
to w• (u*). Such an approximation is given by 
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Lemma 2.2 Assume (7), H = 2h, and 


(At) •h = kh(u* + •), • = O(Hq), • • 
(A2) r•(u) = o(•tp) for u • c(o+•) 
(AS) n•r•(u*) = •(•*) + 0(•), • > p. 
Then it follows 


2 p 2•-• rff (ah) = rH(U*)+O(H •) with a = min(p+q,•). 


Proof Based on 


r#(k•*) : A.k•k•u*- n•Ah•u* 


1 TH(U* ) + O(H• ) = •(•*) - •(•*) = :u•*) - • 
_ 2'-•:u(•. ) + O(H •) 2p 


we obtain 


2P--1 / . : • •.• ) + o(s•) + o(s•+•). 


Lemma 2.1. and Lemma 2.2. together lead to the following 
improved formulation of the problem for the coarse grid 


(9) AHUH -- fH + 2p2•_P lr•H(•h) . 
Equation (9) gives a higher order approximation on the 
grid with the discretization parameter H = 2h: 


UH = I•HU* + O(H •) xvith a > p. 


Using the usual formulation (7) of the problems for coarser 
grids, the improved accuracy can be carried over up to the 
coarsest grid. 


In the correction step the solution on grid H can be 
transfered to grid h in such a way that the order a for the 
low-frequency part remains unchanged. 


Equation (9) implemented in a multigrid method is the 
classical form of ......... '•';^- ,-•*•*•i•*•,*•*'. It can be completed by 
a post-smoothing correction, and by a fine grid correction 
for the first smoothing step on a new finest grid in the full 
approximation scheme. 
These corrections, however, are not essential for the higher 
convergence order and can be omitted. 


Remark For the sake of simplicity, the idea of r-extra- 
polation was explained for linear problems only. The very 
same algorithm is applicable for nonlinear problems too, 
however. 


2.2 Conditions for the grid transfer oper- 
ators with respect to r-extrapolation 


A successful application of v-extrapolation requires a care- 
ful tuning of all multigrid components. Special attention 
must be paid to the grid transfer operators in the v-extra- 
polation step of the multigrid algorithm. 


2.2.1 Prolongation 


In the FMG-algorithm a prolongation is needed in two dif- 
ferent situations. In the correction step of the multigrid 
iteration the correction of a fine grid solution u• must be 
interpolated from the coarse grid, and the initial guess for 
the iteration on a new finest grid must be interpolated with 
a possibly different operator (FMG~prolongation). In both 
situations it is necessary to preserve the accuracy reached 
on the coarser grid and to avoid introducing large high- 
frequency errors on the finer grid. 


First, we consider the correction step (4). If the restric- 
tion operator is not an injection operator (//i• H • Ih H ), i.e. 
(1• H - Iff )uh = O(H s) the term //i•Huh causes an error; 
which, after the correction step, can be found in the low- 
frequency part of the error of u•. Operator Pp/ primarily 
produces high-frequency errors. These errors depend on 
the order of magnitude of the function to be interpolated 
and on the interpolation formula. The interpolation error 
of a smooth function by an interpolation polynomial of or- 
der (n- 1) is of order O(H r•) (the proof is given in [20]). 
Table I summarizes the order of prolongation errors and 
conditions for s and n which must be fulfilled. 


Multigrid- Low-frequency error of High-frequency 
method /•ffu•, Restriction by error of 


Averaging I Injection P•(u,-l•l•uh) (•<•) (•=•) ,, 
without p + s •c p + n 
r-extrapolation 
Conditions - - n •> o 


with p + s •c p + n 
r-extrapolation 
Conditions s •> a-p - n •> o 


Parameters: p - approximation order of the discrete operator, 
c• - order of accuracy of the MG-method with r-extrapolation 
s - order of accuracy of •n H, n - order of the error for polyno- 
mial prolongation with degree (n-l), o - order of the differential 
equation to be solved 


Table 1: Order of errors caused by prolongation and con- 
ditions for s and n 
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The FMG-prolongation Pff produces the initial solution 
for a MG-cycle on a new grid. The quality of this interpo- 
lation has a great influence on the accuracy of the whole 
method. An essential difference to the prolongation P• 
is that we have to interpolate the solution, i.e. a function 
with an order of magnitude O(1), and not a correction to 
the solution. 


If o is the order of the differential operator, the errors 
caused by the interpolation of the solution uh should be 
at least o orders smaller than the defects. This can be ob- 


tained by 


n-o>•p, i.e. n>•p+o 


in the case of the FMG-algorithm, with- 
out r-extrapolation; and in the case of r-extrapolation, 
without fine grid correction 


andby n - o >• a, i.e. n >• a + o 


in the case of r-extrapolation, with post-smoothing- and 
fine-grid correction. The conditions do not guarantee 
smooth defects after prolongation; but oscillations decrease 
with the same order as the defects, if the grids become in- 
creasingly finer. 


With the usual number of pre-smoothing steps oscillations 
in the defects can not be smoothed completely. If the 
restriction Ahuh in (7) is performed with an averaging 
operator the remaining wiggles can be tolerated because 
R•,4•uh operates like a filter which removes them. How- 
ever. if Rff is an injection operator, the conditions n >• p+o 
and n •> c• + o can be insufficient. In this case the inter- 


polation should be taken one or two orders higher. 


2.2.2 Combination of the restriction operators/•ff 
and Rff in the context of r-extrapolation 


In the MG-algorithm without r-extrapolation the two re- 
striction operators /•H and R• H can be chosen indepen- 
dently. For the restriction of u•, injection /• - Iff is 
sufficient, because u• is a smooth function. For the restric- 
tion of A•u•, however, an averaging operator is a better 
choice, because the defects are often less smooth. 
In the case of r-extrapolation the two restriction operators 
have an effect on the estimation of the truncation error (cf. 
Lemma 2.2). An inappropriate choice of/•H and R•H may 
destroy any effect of r-extrapolation. 
In the literature, the great majority of the articles use in- 
jection operators both for /•H and •H in the r-extrapo- 
lation step. Only in [17], [2], and [10] are some hints at 
other possibilities given. In the case of staggered grids, 
injection for •H and •H is excluded, for points of the 
courser grid are not collocated with points of the finer 


Case of restriction Conditions for 


•>•p-q-1 •>•p-1-2 c•>•4 if p--2 
A: (Injection-Injection) q >• 2 q >• 2 
•H = i ff , R• H = f ff r >• p + 2 r >• 4 
B: (Injection-Averaging) q >• 2 q >• 2 
• = Iff,R• =_3lift s•>p+l r >• p+ 2 r •> 4 


s>•p+2 s>•4 


q>•2 q>•2 
iff(s) •0: r >• p + 2 r >• 4 


s>•2 s>•2 


C: (Equal averaging) q •> 2,n >• 2 q >• 2, n >• 2 


t•I•H = M ff , R•H = M ff t >• p r >• p + 2 r >• 4 
linear Problems: s >• 2 s >• 2 


tCp+2 t ½4 


nonlinear Problems: see case B, upper part 


D: (Non-equal averaging) . 


lel• -- l•ff, R• = Mff •n general as case B, upper part 
Parameters: 


c• - approximation order of the multigrid method with r-ex- 
trapolation, q - approximation order of uh before application 
of r-extrapolation, p - approximation order of the discrete op- 
erator Ah, r - order of the second term of the approximation 
error rH(•) = c(x)H p +O(hr), n - order of accuracy of prolon- 
gation with a polynomial of degree (n-l), s - order of accuracy 
of the restriction operator R• = MH or minimal order if two 
different restriction operators are used, t - order of the second 
error term of the restriction, (MH--IH)(•) ---- d(x)H • q- O(H t) 


Table 2: Conditions in coherence with restriction and 


r-extrapolation 


grid. In this situation it is necessary to work with aver- 
aging operators. Such operators can also be favorable for 
non-staggered grids because they have a stabilizing effect 
on the r-extrapolation. 


Table 2 contains four combinations for the two restric- 


tion operators. The given conditions result from a careful 
analysis of assumption (A3) of Lemma 2.2, see [1]. 


The first choice for the restriction operators (case A) can 
be used for both linear and nonlinear problems without 
essential restraints. If the possible order of accuracy for 
the solution is not reached, the cause may be non-smooth 
defects in the r-extrapolation step. A higher order of the 
FMG-prolongation, or a higher number of smoothing steps, 
will give better results in this situation. 


Because of the averaging Mff in the restriction of A•u•, 







-extrapolation $4? 


Type R• is averaging operator Ra H is injection operator 


Multigrid algorithm of Pa H linear Pa • cubic Pa H linear I Pa• cubic Cycle (n - o) (n - o) 


MG-algori'thm V(1, 1) p -- 0.31 p = 0.10 p - 0.30 p - 0.10 
without v-extrapolation V(2, 2) p - 0.11 p -- 0.04 p -- 0.11 p - 0.04 


FMG-algorithm V(1, 1) 0.56E- 09 0.41E- 11 0.58E-09 0.28E- 10 
with •--extrapolation V(2,2) 0.73E-11 0.59E-11 0.16E-11 0.37E-11 


F(1, 1) 0.36E-11 0.34E-11 0.27E-10 0.27E-10 
F(2, 2) 0.59E- 11 0.59E- 11 0.16E- 11 0.32E- 11 


Table 3: Convergence rates and accuracy in dependence on restriction and prolongation 


•--extrapolation combined with the second choice of restric- 
tion operators (case B) is less sensible to the quality of 
smoothing and FMG-prolongation. 
The increased order of accuracy of the restriction Ra H 
(s •> p+ 1 or s •> p+2) in the case f(s) • 0 leads to 
some additional work. 


Restriction operators, according to case C for linear 
problems, give the advantage of case B without an in- 
creased accuracy of the restriction operators R• and/•. 
For nonlinear problems, higher order restriction operators 
are needed. 


Case D is the most obvious generalization of case A. The 
restriction operators are chosen independently as averaging 
operators with high accuracy (close to injection operators). 


2.3 One-dimensional test calculations 


Many properties of the multigrid method are independent 
of the dimension of the problem to be solved. Therefore, 
one-dimensional test problems are a useful tool to check 
theoretical results about multigrid algorithms; even though 
multigrid is usually used for higher dimensional problems. 
In [11 many tests are documented. At this place only a 
small selection can be given. 


We consider the linear boundary value problem 


(10) - u" = f(x): •.2 cos(•-x), u(-1) = u(1) -- 0 


with the solution u(x) = cosx 


and the nonlinear Burger's equation 


(11) uux-•uzz=O,u(-1)=tanh(•), u(1)=- tanh(•) 


with the solution u(x) = -tanh(•) for •--0.1, 0.005. 


The two problems axe discretized by standard central dif- 
ferences of second order. We use a sequence of non- 
staggered, equally spaced grids. 


Test I Influence of restriction and prolongation 


Table 3 refers to the linear problem with 1025 points on 
the finest grid. It shows convergence rates p for the nor- 
mal MG-algorithm with eight grids and the largest errors 
for the FMG-method. In the notation T(i,j) for the type 


V, V-cycle of the cycle we have T = F, F-cycle ; i,j are the 
numbers of pre- and post-smoothing iterations. To avoid 
any negative influence on the FMG-results, quintic FMG- 
prolongation was used. 


Remark: For the FMG-algorithm the headline "Rff is in- 
jection operator" in Table 3 is meant for the current finest 
grid only. On coarser grids the defects were restricted, 
as usual, by an averaging operator. To perform the •-- 
extrapolation, the restriction operator/•ff on the current 
finest level was chosen in agreement with Ra H (see Table 2, 
cases A and C). On coarser grids, and in the MG-algorithm 
without •'-extrapolation,/•a H = Ia H was used. 


The numbers in Table 3 can be explained in the following 
way: 


1. Taking into account that the discretization error of 
the original second order scheme on the finest grid is 
0.31E-05 all results with •--extrapolation in the table 
are much better than second order. Indeed, it can be 
shown that most of them are equal or close to fourth 
order. 


2. Table 3 shows that the condition n •> o (see Table 1) 
for the minimal accuracy of prolongation is correct. In 
fact, linear prolongation in the case o = 2 is possible; 
but in some situations the potential of the numerical 
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. 


algorithms is not treated fully in this way. The con- 
vergence rates of the MG-algorithm with cubic prolon- 
gation are better. In the case of v-extrapolation for 
the 1/(1, 1)-cycle the fourth order of accuracy occurs 
only on the first grids; on finer grids the order reduces 
to a value between two and three. However, this ef- 
fect can easily be removed by increasing the number 
of smoothing steps. 


For the accuracy of the FMG-algorithm with r- 
extrapolation, Table 3 shows the following behavior: 
If the amount for smoothing is small, restriction with 
averaging operators gives the better results. In the 
case of more smoothing iterations, restriction by injec- 
tion leads to more accurate solutions. An explanation 
of the observed effect can be given by the accuracy of 
the error estimation and by the low-frequency error, 
which is proceeded from a restriction with s = a -p 
(see Table 1). 


Test 2 r-extrapolation for nonlinear problems 


Apart from the fact that a combination of restriction op- 
erators according to case C is not favorable, the FMG- 
algorithm with •--extrapolation works in the nonlinear case 
too. The only problem is to find out the optimal structure 
of the multigrid cycle. 
For our test problem we have to pay attention to some spe- 
cialties: With t/>> 1 the transition from the left boundary 
value u(-1) m 1 to the right boundary value u(1) m -1 
takes place in a very narrow region. This excludes grids, 
which do not have enough grid-points in this region. As 
an orientation we can take the stability constraint for the 
difference scheme _Rea = -• < 2. For the number of grid- 
points this means n > b '-1, i.e. n,•i•, - 17 for t/-- 0.1 
and nmir• = 257 for •, = 0.005. 


Results for t/ -- 0.1 The numbers in Table 4 are the quo- 
tients of consecutive maximal errors. A 1/(1, 1)-cycle in the 
case of 6 grids (from 33 to 1025 points) has fourth order of 
convergence. If a 7th grid with 17 points is added, the or- 
der of convergence is not much larger than two. Even with 
a 1/(3, 3)-cycle the order of convergence is below three. A 
F(1, 1)-cycle is clearly superior for nonlinear problems. In 
the case of seven grids, it gives fourth order of convergence 
beginning with the third grid (65 points). If eight grids 
are used (the coarsest has 9 points only), fourth order is 
reached on the last four grids. 


Results for t/ -- 0.005 Table 5 presents results for some 
variants of the FMG-algorithm. Even in the case of the 
1/(3, 3)-cycle some additional MG-cycles on the finest grid 
reduced the error to a value of about 0.5E-5. However, 
the nonlinearity of a problem should be treated already on 


Number Type of MG-algorithm 


of grid- 1/(1,1) 1/(1,1) 1/(3,3) F(1,1) F(1,1) 
points 6 grids 7 grids 7 grids 7 grids 8 grids 


9 - 
17 - - - 1.5 
33 - 5.2 7.6 5.1 6.7 
65 19.8 4.8 6.0 26.4 7.3 


129 16.1 5.1 7.0 333.5 14.8 
257 20.5 5.0 6.8 5.1 22.6 
513 15.1 5.1 7.0 16.2 37.0 


1025 19.3 5.1 7.0 49.6 52.0 


Error 0.74E-8 0.40E-5 0.62E-6 0.37E-9 0.79E-8 


Table 4: Convergence of the FMG-method for different 
cycles 


coarser grids. This can be tried by using the F-cycle and 
by the modification described in remark 2 below, as the 
last two calculations show. 


Remarks on Table 5: 


1. Taking into consideration the structure of the solu- 
tion, three pre- and post-smoothing iterations were 
performed only in the small range, where the solution 
actually changes. Outside of this region, one iteration 
was sufficient. A better investigated variant of such a 
strategy can be found in [9]. 


2. If nonlinearity and/or the use of relative coarse grids 
cause a noticeable change of the solution from one grid 
to the next, then it is advantageous to perform ? > 1 
MG-cycles on each grid level of the FMG-method. On 
the last two grids, however, it was possible to work 
with 3' = 1 without loss of accuracy. 
Moreover, it is possible to perform the first MG-cycle 
on a new grid without r-extrapolation (see [19]). Ob- 
viously in the second MG-cycle the error can be es- 
timated more precisely than immediately after FMG- 
prolongation and pre-smoothing. During the two last 
calculations on grid2 and grid 3, the r-extrapolation 
was done only in the second F-cycle. 


2.4 Solution of Navier-Stokes equations 
with r-extrapolation 


The change from one-dimensional test problems to the case 
of the two-dimensional Navier-Stokes equations includes 
the increase of the space dimension and the change from 
one equation to a system of equations. 
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Maximal error on 


FMG-method grid 1 I grid 2 grid 3 grid 4 I grid 5, 2049 points 
F(3, 3)-cycle 


without 0.62E+0 0.67E-1 (9,2) 0.37E-1 (1.8) 0.49E-2 (7.6) 0.14E-2 (3.5) 
r-extrapolation 


V(3,3)-cycle 0.62E+0 0.24E+0 (2.5) 0.18E-1 (13.6) 0.17E-2 (10.7) 0.28E-3 (5.9) 
F(a,a)-cycle 0.62E+0 0.24E+0 (2.5) 0.43E-1 (5.7) 0.17E-2 (25.2) 0.33E-4 (51.6) 


F(3, 3)-cycle, ? > 1 MG-cycles on grids 2 - 4 
7=2inFMG: 0.62E+0 0.22E+0 (2.7) 0.12E-1 (19.2) o.16•3 (74.4) 0.63E-5 (24.6) 
v=3inFMG: 0.62E+0 0.53E-1 (11.5) 0.54E-2 (9.8) 0.13E-3 (42.O) 0.22E-5 (58.2) 
7 -- 2 in FMG, 
see remark2: 0.62E+0 0.11E+0 (5.5) 0.35E-2 (31.7) 0.22E-3 (16.5) 0.16E-5 (132.1) 


Table 5: Convergence of the FMG-method for Burgers equation with v - 0.005 


Examples of the use of r-extrapolation for scalar equations 
on multidimensional domains can be found in [18] for the 
Poisson equation over the unit square; or in [22] for the 
same equation on a three-dimensional domain, which is 
defined by three overlapping cylindrical grids. 
Besides the use for scalar equations (Poisson equation, non- 
linear potential equation - with special respect to Neu- 
mann boundary conditions) in [19], r-extrapolation is ap- 
plied to the solution of the shell problem for the calculation 
of stresses and deformations in weakly curved thin elastic 
shells. This problem leads to a system of four Poisson-like 
equations with nonlinear coupling. 
In most cases it was possible to improve the convergence 
order from two to four, or to a value close to four, by im- 
plementing the r-extrapolation. For smooth solutions this 
should be attainable for the Navier-Stokes equations too. 


2.4.1 Implementation of the r-extrapolation 


The Navier-Stokes equations are considered in the form 


(12) 


V'.uu-vAu+Vp = f in 
V'. u = 0 in 


u = up on 


over a rectangular domain fl. In these equations u stands 
for the velocity with components u and v, p denotes the 
pressure, v is the kinematic viscosity and f is an exter- 
nal force with components f• and fv' Equation (12) is 
discretized by a second order difference approximation on 
staggered grids. 
A detailed presentation of the MG-method, which was 


used for the Navier-Stokes equations is not intended at 
this place. Only components, which are related to the r- 
extrapolation are discussed in the following. At first we 
consider the calculation of the r-extrapolation terms. The 
system of discretized equations can be written in the form 


Ah(uh)uh +GRADhp• = f• 


DIVt, ua = g• 


where the first equation is a vector equation with two com- 
ponents. Right hand sides g• y• 0 are introduced by the 
MG-method. On the finest grid we have gh = O. Using 
r-extrapolation the problem on a coarser grid is 


AH(uar)uar + GRADs PH 


DIV• uH 


with 


rff (u•, p•) 


4 H = R• Hf•+•rh (u•,p•) 
H 4 H 


= R• g• + •ah (u•) 


AH(k•Hu•)k•uh + GRADH•Hpa 
-Rff Ah (u•)ua- R• H GRAD• pa 


2.4.2 Remarks on restriction and prolongation 


Outside the r-extrapolation step, linear restriction opera- 
tors can be used. In connection with the r-extrapolation 
the situation is more complicated: Because of the stag- 
gered grids for the velocity components only choices C and 
D from Table 2 are possible. 
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FMG - method with tauextrapolation without tau- 


Grid F(1, 1)-cycle - two times - three times extrapolation 
8 ß 8 0.28E-02 0.28E-02 0.28E-02 0.28E-02 


16.16 0.81E-02 0.34 0.83E-03 3.35 0.97E-03 2.68 0.97E-03 2.68 


32,32 0.17E-03 48.06 0.19E-04 44.36 0.74E-05 131.29 0.27E-03 3.62 


64,64 0.15E-04 11.35 0.11E-05 16.69 0.84E-06 8.79 0.68E-04 3.96 


128,128 0.40E-05 3.70 0.33E-06 3.43 0.51E-07 16.42 0.17E-04 3.99 


256,256 0.41E-06 9.68 0.13E-07 24.68 0.19E-08 26.48 0.42E-05 4.00 


additional 0.12E-06 33.71 0.46E-08 70.72 0.18E-08 28.31 


single cycles 0.28E-07 143.33 0.15E-08 216.93 


Table 6: Convergence for different FMG-cycles for the Navier-Stokes equations 


The restriction of uh and Ahu• for the momentum equa- 
tion can be performed by the same averaging operator 
/• =/{• with fourth order accuracy. 


For the pressure, again a fourth order restriction opera- 
tor (that means a bicubic interpolation) is needed; because 
the two restriction operators 7•ff and/{ff are not defined 
on the same grid. 


In the case of the continuity equation, linear restriction 
for DIV•u• is possible (operator Rail), independently from 
the cubic restriction of u. Taking into account the re- 
striction of the right hand side of the discrete continuity 
equation it must be warned of any "better" interpolation 
for DIVu. The components of g• have to fulfill a solvabil- 
ity condition (their sum must be zero) and this relation 
must be conserved by the restriction. This is done by lin- 
ear restriction, because the values from the finer grid are 
summed up in groups only. 
As in case B this linear restriction causes no errors, because 
the right hand side of the original problem vanishes. The 
cubic restriction for u leads to a fourth order error, if we 
compare it with injection. This has no influence on the 
•--extrapolation. 


The errors of prolongation in the MG-algorithm should 
be no larger than that of second order for the velocity 
components (n •> o, o = 2), and that of first order for the 
pressure (o = 1). With linear prolongation for u and p 
these conditions are fulfilled. 


In the case of FMG-prolongation according to 2.2.1 (con- 
dition n •> p + o), fourth order for the velocity (p = 2, o = 
2) and third order for pressure (p = 2, o = 1) is needed. 
This means cubic FMG-prolongation for u and quadratic 
or cubic prolongation for the pressure too. 


Unsymmetrical interpolation formulae at the boundaries 
cause laxger interpolation errors than symmetrical formu- 
lae of the same order in the interior. For this reason, near 
the boundary, interpolation of an order higher than three 
was used. 


2.4.3 Test calculations 


We consider a rotating flow 


u(x,y) = sin•rx cos7ry, v(x,y) = - cos•rxsin7ry 


in the square [0, 1] x [0, 1] with u = 0.01. 
Setting this solution in (12) we get the right hand side 


LO:,y) = sin=x (cosx + cosy) 
L(x, y) = = sin =y (cos W - cos 


At the boundary the normal components of the velocity 
are zero, while the tangential components are functions of 
x or y. 


Results On a sequence of grids with 8 ß 8 to 256 * 256 
meshes on each grid, one to three F-cycles with one pre- 
and one post-smoothing iteration were performed. On the 
current finest level, one additional pre-smoothing iteration 
was done; on the finest grid the post-smoothing step was 
suppressed. Table6 shows the maximal error for the v- 
component of the solution. The first use of z-extrapola- 
tion was done on the third grid, which caused a remarkable 
decrease of the error. A single F-cycle, however, can not 
exploit the possible increase of accuracy. To do this by 
additional cycles on the finest grid is inefficient; the better 
way is to use a larger number of F-cycles on the coarser 
grids. The solution on the 64 ß 64-grid, in this case, is 
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more accurate than a solution without r-extrapolation on 
a 256 ß 256-grid. 


2.5 Experience with classical --extrapola- 
tion 


The authors experience with classical r-extrapolation can 
be summarized as follows: 


1. The most reliable way to implement the r-extrapola- 
tion algorithm is to make use of injective restriction 
operators in the r-extrapolation step combined with 
an increased number of smoothing steps and a high 
order FMG-prolongation. 


2. The application of r-extrapolation combined with re- 
striction operators (which are averaging operators) is 
more complicated. This is caused by the fact that 
not all combinations of restriction operators are ap- 
plicable. However, with averaging operators the im- 
proved accuracy can be obtained with lower compu- 
tational work because no special requirements for the 
MG-algorithm must be fulfilled. 


3. In the case of nonlinear problems it is important to 
solve the problem on the coarsest grid with sufficient 
accuracy. The coarsest grid must not be too coarse. 


4. To exhaust the full potential of the r-extrapolation 
algorithm, it can be necessary to perform •y > 1 MG- 
cycles on each grid level. Before setting 'to a value 
of two or three, all other possibilities for a failure of 
the r-extrapolation should be excluded. Even in cases 
where • > 1 is convenient for the coarser grids, on the 
finer grids one MG-cycle can be sufficient. 


5. Besides a study of the behavior of the solution, an ex- 
perimental analysis of the r-extrapolation algorithm 
should include a study of the defects. Only a look at 
the behavior of the defects permits a deeper under- 
standing of some properties of the method. 


6. Staggered grids do not exclude the application of r- 
extrapolation. However, they make it's application 
more complicated and require the use of the most ex- 
pensive variant for the restriction operators in the r- 
extrapolation step. 


3 Energy extrapolation 


In the previous section, r-extrapolation for finite differ- 
ence approximations has been discussed. The theory there 


is based on a one term asymptotic expansion of the trun- 
cation error (r-term) of the form (AS.) in Lemma'•2.2. 


In this section we will study a different approach to ex- 
trapolation methods, which is based on the formulation 
of (symmetric) equations as minimization problems of the 
form 


(13) E(u) ---- min! 
u•V 


To focus ideas, we will explain the basic principle for 
one dimensional boundary value problems. Consider the 
simplest test case (10). This problem can be written in the 
form (13) with 


E(u) = ((u'(x)) 2- 2f(x)u(x)) dx for u • V, 
1 


where V = H01(-1, 1) denotes the Sobolev space of order 1 
on the interval (-1, 1) satisfying homogeneous boundary 
conditions. We introduce an equidistant grid xi = -l+ih, 
i = 0, 1, 2,..., N, with mesh width h = 2/N. The function 
u is represented by the N + 1 discrete values of the vector 
uh -- (uo, u•,u2,...,uN) T. The energy (13) can now be 
discretized directly by combining numerical differentiation 
and integration rules. For example, an approximation to 
E(u) may be chosen as 


Eh(Uh) = h • ui - ui-1 - fiui q- fi-lUi-1 h 2 ' 
i=1 


Note that here the first term involves central differences to 


approximate the derivatives of u on a shifted grid. These 
derivatives are then integrated by a midpoint quadrature 
rule. The second term is directly integrated by a trape- 
zoidal rule applied to the product u(x)f(x). 


When the normal equations for the quadratic minimiza- 
tion problem 


Eh(u•) = lu•A•u• - f•u• = min• 2 Uh•Vh' 


are constructed, where Vh is the finite dimensional vector 
space of grid functions, we recover the conventional dis- 
cretization of u" -- f by central differences 


ui-1 -- 2ui -]- Ui+l 
h2 =fi for i = 1,2,...,N- 1. 


The numerical approximation of the energy En(m,) can 
now be expressed in an asymptotic expansion of the form 


(14) Eh(Uh ) --' E(•) + h2e2 q- h4e4 q- ..., 
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where the coefficient functions e2, e4, ... are independent 
of h. For expansion (14) to be valid, we, of course; need 
sufficient regularity for u. However, the expansion does 
not depend on the uniformity of the mesh, and it can be 
generalized to higher dimensions. For the one-dimensional 
case the reader is referred to a classical paper by Lyness 
[8]. Two dimensional results for triangles first appeared in 
Rfide [12], and the general two-dimensional case is treated 
in Lyness and Riide [13]. 


Expansion (14) is the basis to consider extrapolatedfunc- 
tionals, like 


ih(uh) = 4/3Eh(u)- 


Note that here E•/ is applied to ua, which means that 
only every second value of ua is considered. Clearly, •;h 
also defines a quadratic functional, and a further analysis 
shows that the corresponding normal equations take the 
form 


(15) (4/3Aa- 1/3(l•u) TAI-zI•H)ua = fa 
where lff is the injection operator, and f• is constructed 
by the analogous extrapolation using fh and f•/. 


In principle it is possible to compute the system ma- 
trix in (15) explicitly, however; to construct more efficient 
solvers, we note that by introducing the z-term r•(ua) of 
(7). this equation can be written in the defect correction 
form (9). Therefore (15) can be solved iteratively by the 
the multigrid z-extrapolation algorithm, and our deriva- 
tion has led to a special case of the algorithms considered 
in the previous section. 


However, we have not only recovered a special case of 
z-extrapolation, but have also found a method to derive 
v-extrapolation algorithms on unstructured and possibly 
adaptively generated meshes. This has been discussed in 
Rfide [9] and several more variants of this method are ex- 
plored in Rfide [11]. 


In the further analysis of the energy extrapolation 
method (see [12]) the above analysis is applied in a finite 
element framework. In this context the above expansion 
is applied to u, being a finite element function which is 
smooth in construction. In consequence, the expansion 
and extrapolation technique can be used even when the 
original problem lacks sufficient regularity. Of course the 
final success of z-extrapolation is still dependent on how 
well higher order finite element functions can approximate 
the given problem, however; the analysis of the extrapola- 
tion method remains independent of regularity constraints 
from the differential equation. 


In the remainder of this section, we will study the appli- 
cation to a nonlinear problem. Since the approach is based 


on the formulation as a minimization problem, it cannot 
be applied directly to equations with convection terms; like 
the Burger's equation (11). (However, generalizations in 
this direction are presently under study and results will be 
published elsewhere). Here we will consider another prob- 
lem, a stationary reaction-diffusion equation in one spatial 
dimension 


(16) 2z.,2u" + (u a - u) = 0 in (-1, 1), 


with boundary conditions as in eq. (11) 


u(- 1) = - tanh(1/2v), u(1) = tanh(1/2v). 


The solution is u(x) = tanh(x/2v), just as for (11). Writ- 
ten as a minimization problem (16) becomes 


E(u)= •(u'(x)) 2- --•-u 2 dx. 1 


Fig. i shows the energy surface E(u,x) = u •- u4/2 and 


2 


Figure 1:-u4/2 + u 2 and trajectory u(x) 


visualizes an optimal u(x) trajectory on this surface. If y is 
small, the transition develops to an interior layer, the con- 
ditioning of the boundary value problem becomes worse, 
and higher order methods become increasingly important 
in locating the transition region correctly. 


In Fig. 2 we plot the L2-error of three extrapolation 
schemes (with respect to the correct solution) versus the 
number of grid points in a log-log scale. The different 
graphs correspond to the original discretization with cen- 
tral differences; one extrapolation step according to (15), 
and the method obtained by applying two extrapolation 
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Figure 2: Error for energy extrapolation with order 2,4,6 


steps to the energy, respectively. The latter approach cor- 
responds to solving 


64 


rain (•-•Eh(uh)- 20E •5 E4h (u•)) + . 


Each methods needs a minimal number of mesh points, 
before the transition is correctly resolved. From then on, 
the asymptotic behavior of the method develops and can be 
read off the slope of the error graph. Clearly, the higher or- 
der methods provide superior accuracy for the same num- 
ber of nodes. 


While the fourth order behavior is clearly visible in these 
results. the method constructed with extrapolation to sixth 
order does not show the expected accuracy fully, though 
it is clearly converging much faster than the fourth or- 
der method. This is caused by stability problems. While 
the consistency order of the discrete system is raised to 
sixth order, the solution tends to have small oscillations, 
which start to pollute the solution for very high accuracy 
computations. This can be compensated by introducing 
stabilizing terms as introduced in [3] or [11]. 


In general, the energy extrapolation approach is an inter- 
esting alternative derivation of v-extrapolation algorithms, 
because it naturally defines the different algorithmic com- 
ponents in a compatible form. Furthermore, it permits 
generalization to nonuniform meshes and adaptive tech- 
niques, and it shows how to generalize ,--extrapolation to 
a still higher order. 


4 Finite element methods and ex- 


trapolation 


4.1 Finite element discretizations of the 


boundary value problem 


In this section, we consider two-dimensional second order 
elliptic boundary value problems of the form 


(17) Find ueVo such that a(u, v) - (F, v) for all veVo 


holds, where V0 c Ht(•2), 


(18) 


and 


(19) 


a(u, v) = vv) 


(F,v) = jf•fvdx + fr g2vds. .¾ 


K(x) is a symmetric, positive definite (2 x 2)-matrix, 


(20) Vx--( o O) •' 021 022 ' 
as well as (., .) denotes the Euclidean scalar product in the 
space •2. 


Let us first describe some finite element discretizations of 


problem (17). The starting point of our investigations are 
two triangular finite element meshes Tsr and Tn, where we 
get the mesh Tn by dividing all triangles of the mesh 
into four congruent sub-triangles. Later we will suppose 
that the mesh Tsr is the finest mesh of a sequence of nested 
triangular meshes. 


Corresponding to the triangulations Tsr and T• we define 
the finite element subspaces 


(21) V]_/=span(p(/_? ' i= 1,2,...,NH} C Vo, 
and 


(22) V• = span{p? i= 1,2, Nh} C Vo, 


where the trial functions _(i) k - H, h, are piecewise lin- Pk , 


ear functions p(k ¸ which are linear in all triangles of 
continuous, and satisfy the relations p(k ¸ (x?), x? )) = 1 for 


•(i) [•.(j) x•j) ) N k. Here i=J,•k w• , =Ofori•-j,i,j= l,2,..., 
(x?),x• j)) denotes the coordinates of the node P(J) and 
Nk is the number of nodes belonging to •2 U FN, where FN 
is the part of the boundary 0•2 on which natural boundary 


conditions are given. The functions p(k ¸ i = 1,2, N• 
are called the nodal basis of piecewise linear functions. 
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Furthermore, we introduce piecewise quadratic func- 


tions q•). These functions are polynomials of degree 2 
in all triangles of TH, continuous, and satis• the relations 


4 = i = 4 = 0 i 
i,j = 1, 2,..., N h. Using these functions we define the 
finite element subspace 


(23) V• = span{q• ) i = 1,2, Nh}. 
with the quadratic nodal basis. 


By means of the finite element subspaces (21), (22), and 
(23) we get the finite element schemes: 


Find uk • Vk such that 


(24) a(uk,vk) = (F, vk) for all v• G V•, 


where Vk stands for V/•, V•, or V•, respectively. 


The determination of the unknown function uk is equiv- 
alent to the solution of the systems of the algebraic finite 
element equations 


(25) • z z • • = fq = Ahu h , q q A/_/•/_/ fH, = f• and Anu n n, 


respectively. 


The stiffness matrices A• and A• have a block structure 


Ah,vv Ah,vm ) Ah,mv Ah,mm ' 


where A6,•,• corresponds to the nodes of the triangulation 
Tn. Ah,,,,• corresponds to the new nodes in the triangu- 
lation T6, and Ah,,,:, Ah.•,• are the coupling blocks. 


Next we formulate an interesting relation between the 
matrices A•, A•, and A•, which is useful for the investiga- 
tion of the convergence properties of a multigrid algorithm 
with extrapolation. 


Lemma 4.1 Let A•4 , A•, and A• be defined by the bilin- 
ear form (18) using the finite element subspaces V]q, V•, 
and l/if, respectively. We suppose that the entries of the 
matrix K(x) in the bilinear form (18) are constant in each 
triangle 5? • 7-1_ 1. Then the relation 


3 H 


holds, where •n= ( A•4 O) 0 0 ' 


In Lemma 4.2 we formulate the corresponding property 
for the right-hand side. 


Lemma 4.2 Let ft•, fta, and f• be defined by the relation 
(19) using the finite element subspaces V}, V•, and V[, 
respectively. We suppose that f is a piecewise constant 


function, i.e. constant over all triangles 5? • T•, and g2 
a piecewise constant function, i.e. constant over OtS• ) •Of•. 
Then the following relation holds 


(27) 


A consequence of Lemma 4.1 and Lemma 4.2 is the fol- 
lowing Theorem. 


Theorem 4.1 Under the assumptions of Lemma 4.1 and 
Lemma J.2 the FE systems of algebraic equations 


(28) (4 • _ 1 ~ 1 
and 


(29) A•uh = f• 
have the same solution. 


The proofs of Lemma 4.1, Lemma 4.2, and Theorem 4.1 
are given in [6]. 


In [6] an analogous theorem is proved for finite element 
systems based on a two-level h-hierarchical and a two-level 
p-hierarchical basis. 


4.2 Multigrid algorithm with extrapola- 
tion 


In the following, we discuss a multigrid algorithm using 
FE discretizations with piecewise linear functions and an 
implicit extrapolation step. The iterates of this algorithm 
converge to the solution which we get by a FE discretiza- 
tion of problem (17) with piecewise quadratic functions. 


The smoothing procedures in our multigrid algorithm 
are defined in the following way: 


ß pre-smoothing ,•v, (J) A • flu): C•h (,•th , h, 


Let the initial guess u? ) • © u © •' be given. • [Uh,v' h,mJ 


Set u 0+1) - © and compute an approximate solution h,v • '•h,v 


•a,m of the system 


(30) A[mmznm , , 







r- extrap ola tion 5 5 5 


by means of an iterative method, starting with the zero- 
vector. 


- T Set U(h j+l) /it (j+l) • © q- Zh,rn ) --- k h,v ' 'tth,rrt ' 


We suppose that the error transmission operator of the 
method is of the type 


h,rn m • h,mrn ] ß 


post-smoothing GN (u ©, A[ , ft h\ h h): 


We use the same algorithm, however; we suppose that 
the error transmission operator of the iterative method 
for solving the system (30) is of the type Mh, m = (I•, m- 


-T l 
Ba.•Ah.,••), so that the overall multigrid iteration 
operator becomes symmetric. 


The step 


-- _ .c,_.h t• h ), 


i.e.. the computation of the defect in a usual multigrid, we 
replace with the following extrapolation step 


_ •l (k,•) 
3 


1 t at [Hu(k,1)• 


Here, the operator Rff denotes the restriction operator 
(which is the transposed to the operator of the linear in- 
terpolation), and Iff stands for the injection operator. 


The coarse grid system 


(31) a' • (k) = d•) •H•H 


we solve by means of/x iterations steps of a usual multi- 
grid algorithm without extrapolation, which starts with 
the zero-vector (see, e.g. [4]). 


Because of the equivalence of the matrices and right- 
hand sides in the systems of algebraic equations (28) and 
(29) as well as of the definition of the smoothing procedures 
we can interpret the multigrid algorithm with an extrapo- 
lation step as a multigrid algorithm without extrapolation 
for solving the system (29). Using a convergence theorem 
of Schieweck [14] for such a multigrid algorithm we get the 
following convergence theorem for our multigrid algorithm 
with extrapolation. 


Theorem 4.2 Let the smoothing procedures, the restric- 
tion, and the interpolation operators be defined as they are 
at the beginning of this Section and let the assumptions of 
Lemma J. 1 and Lemma J.2 be fulfilled. Then 


The iterates of the multigrid algorithm with an ex- 
trapolation step converge to the solution which we get 
by a FE discretization of problem (17) with piecewise 
quadratic functions. 


(ii) The convergence estimate 


holds, where I1.11, - .) and is the 
solution of the system of algebraic FE equations 


The convergence rate r] depends on the number of 
iteration steps for solving the systems (30), on the 
convergence rate of the multigrid algorithm used for 
solving the coarse-grid system (31), and on the con- 
stant in the strengthened Cauchy inequality 


la(vh, wH)l XIIv11 IIwHIt 


for all va • Ta - span{q• ) , i- NH + 1,...,N•}, 
for all w s • V}. 


The proof of this theorem is given in [6] 


4.3 Numerical results 


Now we want to demonstrate the iterates of the multigrid 
algorithm with extrapolation converge to the FE solution 
which we would obtain by a discretization of problem (17) 
with piecewise quadratic functions. 


Let us consider the problem: 


Find u • H0• (fl) such that 


(32) /n(KV:•u, V:•v) dx = • fv dx 
for all v • H0•(f•) holds, 


where 12 = (0,1)x (0,1) K = (4 4 ) and f = ' 4 5 ' 


•r2(9 sin 7rx sin •ry - 8 cos 7rx cos •ry). The exact solution of 
this problem is u = sin •rx sin •ry. 


We compare the discretization errors Ilu- u111 and 
Ilu- u111 in the SX-norm. Here denotes the FE so- 
lution obtained by means of the multigrid algorithm with 
extrapolation, and u• the FE solution by a discretization 
with piecewise quadratic functions. We remark that in our 
example the right-hand side f is not constant on triangles 







556 ICOSAHOM 95 


57, which we had assumed in Theorem 4.1. Therefore, in 
our example the right-hand sides (4 I i ~ ) xfh -- gf H andf•are 
not identical. But the discretization errors are almost the 


same. 


Level/ [lu-u[][• Ilu-u[ll 
3 0.1306 0.1426 
4 0.3347-01 0.3481-01 


5 0.8426-02 0.8539-02 


6 0.2110-02 0.2118-02 


7 0.5278-03 0.5283-03 


Table 7: Comparison of the discretization errors 


Table 7 shows that the solution u• has a discretization 
error of the order O(h 2) in Ht(•2), which is typical for 
finite element solutions resulting from a discretization with 
piecewise quadratic functions. 


5 Conclusions 


Multigrid and multilevel techniques are generally consid- 
ered as fast solvers for a given discretization of a differen- 
tial equation. In this paper we have presented another as- 
pect of the multilevel principle. Using extrapolation in the 
natural hierarchical mesh structure of a multigrid solver, 
higher order approximations can be obtained simply and 
efficiently by r-extrapolation. 


In contrast to classical extrapolation for differential 
equations, this approach is implicit. Extrapolation is not 
applied to different approximations of the solution but to 
quantities like the truncation error, the energy, or the stiff- 
ness matrix in finite element computations. The higher or- 
der approximation is then obtained by an iteration similar 
to defect correction, which is integrated with the multilevel 
iteration. This algorithm avoids the explicit construction 
of higher order operators and can be derived easily from 
basic (low order) multilevel algorithms. Computationally, 
the modification from basic to higher order is simply a mul- 
tiplication of the r-correction by a suitable extrapolation 
factor. 


The method also avoids one of the main disadvantages 
of conventional extrapolation methods. The mathematical 
foundation is not the existence of global error expansions 
which depend on the global regularity of the solution. The 
implicit nature of the algorithm permits a local analysis 


and, therefore; justifies the local application of r-extrapo- 
lation - and even the combination of r-extrapolation with 
adaptive mesh structures. 


For all our algorithms, the basic multilevel structure au- 
tomatically provides an iterative solver with the typical 
multigrid convergence rates. Therefore, the higher order 
solution can be computed at a cost which is equivalent to a 
few relaxation sweeps for the basic low order discretization 
on the finest mesh. As is typical for multigrid, this relation 
is independent of the size of the problem. 


The paper has presented three different approaches to 
r-extrapolation like algorithms, giving some theoretical 
background and numerical examples for each of them. Any 
of these three different interpretations of the r-extrapola- 
tion principle may be useful in a particular application and 
together they provide a deeper understanding of the algo- 
rithm and its features. 


Our results clearly show the potential of r-extrapola- 
tion for many practical computations, including nonlinear 
ones, whenever the efficient treatment of the problem re- 
quires both a high order discretization and a fast algebraic 
solver. 
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Defect Correction for Convection Dominated Flow 


Wilhelm Heinrichs* 


Abstract 


A defect correction scheme with the first order upwind pre- 
conditioner is considered. By Fourier analysis the precon- 
ditioning properties for the second order upwind scheme, 
the central scheme and spectral methods are examined. 
Since the eigenvalues of the preconditioned operator are 
complex the GMRES iteration is used for the iterative so- 
lution. This procedure is applied to the Boussinesq flow 
problem in vorticity-streamfunction formulation. Numeri- 
cal results are presented for increasing Rayleigh numbers. 


Key words: defect correction, spectral, multigrid. 


AMS subject classifications: 65N35. 


1 Introduction 


Here we consider convection-diffusion problems which can 
in its most general form be written as 


(1) --eAu + cu•: + duy = f in • = (-1, 1) 2, 
(2) u 


where e > 0 denotes a constant, c, d, f are functions defined 
in •, and g is defined on 0•. Such problems arise after 
a linearization of the Navier-Stokes equations (or Boussi- 
nesq flow problem). Here e correspondts to •7' The part 
--eAu denotes the diffusive part and cu• +duy denotes the 
convective part of the above equation. Here we axe mainly 
interested in convection dominated flows where e << h. 


Here h denotes the step size of the finite difference (FD) 
scheme. For the FD approximation of convection-diffusion 
problems one observes instability. For small e standard 
discretizations lead to a solution of the discrete problem 
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which has nothing to do with the solution of the original 
problem. For instance, the discretization of 


-eu" - 2u' = 0 in [0, c•), 
u(0): 1, u(c•): 0 


with central differences yields a discrete solution: 


uE,h(ih) = e- h i 


This is an O(h 2) discretization. For ih fixed and -• -• 0 
we obtain: 


with C independent of i, h and e. But the solution of the 
reduced equation is: 


Uo,•(ih) = lim u•.•(ih) = (-1) • 
e•O 


which means that for e << h the solution of the FD prob- 
lem has nothing to do with the exact solution 


u(x) =e 


For this special problem we further observe a boundary 
layer where the first derivative behaves as O(e -•) for e -• 0. 
One possibility to avoid the phenomenon of instability is 
to use upstream discretization for u'. Cleaxly, an obvious 
disadvantage of this scheme lies in the fact that the method 
now becomes only first order accurate. Hence it makes 
sense to use the first order upstream scheme only as a 
preconditioner for a higher order scheme. We analyze the 
preconditioning properties of this method for the following 
higher order schemes: 


ß second order upstream scheme 


ß central finite difference scheme 


ß Chebyshev pseudospectral scheme. 


559 







560 ICOSAHOM 95 


In the spectral scheme (see [5]) the solution is approxi- 
mated by Chebyshev polynomials of degree _< N. This 
space is denoted by P:v. By a Fourier analysis it can be 
shown that the eigenvalues of the preconditioned opera- 
tor are bounded but complex. Hence one has to employ 
a nonsymmetric matrix iteration for the solution. Here 
we recommend the GMRES iteration which belongs to the 
residual minimization methods. Clearly, for the general 
convection-diffusion problem (1), (2) the first derivatives 
us and u s have to be approximated according to the sign of 
the coefficients c and d, respectively. Therefore for the iter- 
ative solution we recommend flow directed schemes. Since 


the Chebyshev nodes are dense near the boundary it is 
necessary to use line Gauss-Seidel relaxation (in an alter- 
nating manner). Finally this iterative solver is applied to 
the Boussinesq flow problem in vorticity-streamfunction 
formulation. We obtained numerical results for increasing 
Rayleigh numbers up to Ra = 10 5. 


2 Preconditioning by the 
upstream scheme 


From the one-dimensional •nodel problem it can be seen 
that for e • 0 wb first have to find a good preconditioner 
for the derivative operator 


du 


Here we employ the first order upstream scheme (L•up) for 
preconditioning, i.e., 


or 


__ _._ 


dx 
a(x•+•)- u(xi) if xi+• < xi 


&'i+ 1 -- Xi 


du u(xi) - u(xi_i) if xi-t < xi. _ 
In the spectral discretization we have collocation points 
X i -- COS 0 z, 0 i = •, so that xi+• < xi, where• in the 
finite difference case we have grid points xi = ih, h = •, 
so that xi-• < xi for i = 1,...,N- 1. Now we were 
interested in the preconditioning properties of L•p for the 
following three higher order methods: 


ß second order upstream scheme: 
• (•(•_•)- 2•(•_•) + •(•)) L•pu : • 


ß second order central scheme: 


ß peuospeai ½ee 


Hence we are interested in the eigenvalues of the discrete 
operators: 


up, , 


Eigenvalue bounds are obtained by a Fourier analysis. It is 
well known (see [5]) that the Fourier analysis also yields a 
good prediction for the eigenvalues in the Chebyshev case. 


For (Llup)-I 2 the absolute values of the eigenvalues are Lup 
given by 


IA•Pl = 4-3cos 2•-• , p=l,...,N-1. 


For (L•up) -• L• they are given by: 
p•r 


[X;•l = cos•-•, p=l,...,N-1. 
Since cos • 6 (0, 1) we obtain 2N 


I),•Pl e (1,2) and I),;•1 e (0,1). 


Because zero is the lower bound for the eigenvalues of the 
preconditioned central scheme it is already clear that this 
method is not good. For the second order upstream scheme 
we observed that the imaginary parts are small compared 
to the real parts. Hence a simple Richardson iteration can 
be applied. By choosing one relaxation parameter we ob- 


• Clearly, the convergence rain a convergence factor of X. 
speed can be accellerated by using more parameters (non- 
stationary Richardson relaxation [14]). As shown in [14] 
the convergence factor pk for k relaxations is here given by 


p• -Ir•(3)l-%, 


where T• denotes the kth Chebyshev polynomial. In table 
I we present p• for k: 1,...,4. We recommend to use 
k = 3 since the improvement for increasing k is no more 
significant. For more informations on high order upstream 
schemes (/•-schemes) we refer to our paper [22]. Here also 
the 2D case and multigrid solvers are explicitely discussed. 


k pk 
1 O.3333 


2 0.2425 


3 0.2162 


4 0.2040 


Table I. p• for k = 1,...,4 
For the spectral Fourier operator (see [5, 5.2.2]) the eigen- 
values of the preconditioned spectral operator are 


X• p p•r/N -i• N N sin(p•r/N) 'P 2 ''"' 2 
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and hence 


p•r / N N N 
I'X•Pl - sin(p•r/X)'p - 2'"-•" 


This implies that 


I•;Pl • [1, •] • [1, 1.57]. 
Therefore the eigenvalues are bounded but complex. The 
iterative solver must be able to handle complex eigenval- 
ues. Here we recommend the GMRES iteration (see [a0], 
jail) which belongs to the residual minimization methods. 
Consider the general linear system 


By ---- g, 


where B is a large nonsymmetric matrix. If v0 is an initial 
approximation to the solution and ro- g - Bvo, we define 
the ruth Krylov subspace 


Km= span{ro, Bro, B2ro,...,Bm-lro}. 


Then the GMRES approximation v,• with 


(3) vm vo+K. 


is determined such that the ruth residual r,• fulfills 


(4) ll..,ll2 = minimum. 


An equivalent statement is the orthogonality condition 


(5) r,• 2_ BK,,. 


The GMRES iteration. is a robust implementation of (3)- 
(5) by means of an Arnoldi construction of an orthonormal 
basis for the Krylov space, which leads to an (m + 1) x m 
Hessenberg least-squares solution [31]. 


3 Stabilization techniques and it- 
erative solver 


Here we consider convection-diffusion problems which are 
in its most general form given by (1), (2). It is well known 
that these problems lead to instabilities for e << h in the 
FD case (see [9], [10], [13]) and for e << N -2 in the spec- 
tral case (see [3], [19]). Canuto [3] has shown that the 
spectral approximations are affected by spurious oscilla- 
tions which deteriorate the spectral accuracy. For instance, 
for the one-dimensional model problem 


(6) -eu" +u' = 0 in (-1,1), 
(7) u(-1) = 0, 1 


the exact solution is given by 


(8) u(x) = 
e; -1 


Hence the boundary layer exhibited near x = 1 when e -* 0 
has a width of order O(e). 


The pseudo spectral approximation uN • PN of (6), (7) 
is now defined by 


=0, = 


i• denote the Chebyshev collocation points. where xi = cos 
In [3] the spectral approximation is explicitly calculated 
and finally one obtains for 


,-• I 1 
oddN: u•v = .,+sTy, 


even N: UN ----- •to + •t.¾TN, I01 • O(eN2) -• 


as e --, 0, e << N -2. Here T• denotes the Nth Cheby- 
shev polynomial. 
Therefore in both cases UN is strongly oscillating but for a 
given e the oscillations created by the boundary layer are 
less pronounced if N is chosen to be odd. This shows that 
attention should be paid to the parity of the degree of poly- 
nomials to be used in a spectral approximation of bound- 
ary layer problems. This example further demonstrates 
the instability of the convection dominated problem. In 
particular, for even N we can read from the coefficients fro 
and ft.¾ that the approximation error is perturbed by an 
instability rate of O(eN2) -• 


The problem of instability is also well known for finite 
difference (or finite element) discretizations if central finite 
differences are used (see, e.g., [12]). Here also spurious 
oscillations are introduced by the discretization scheme. 
This problem is avoided by applying an upstream scheme 
where the first derivative is approximated by a one-sided 
finite difference star. Another possibility is to add an ar- 
tificial diffusion (or viscosity) term of the form -N-•Au 
to the convection-diffusion equation. Now these methods 
are stable and produce non-oscillating solutions but are 
only first-order accurate being based on solving a modified 
problem. Clearly such techniques are of no interest for 
spectral approximations since the high spectral accuracy 
is completely lost. 


Therefore we thought of other techniques of stabiliza- 
tion which maintain the high accuracy of spectral meth- 
ods. Together with Eisen [10] we obtained a stable scheme 
by adding one additional equation of collocation to the 
original system. Hence we obtain an overdetermined sys- 
tem of equations and the instability caused by the highest 
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mode is avoided. This is a certain kind of penalty method. 
We proved stability independent of e and present the nu- 
merically calculated condition numbers for several types 
of collocation points (Chebyshev Gauss or Gauss-Lobatto 
nodes). A drawback of this approach is that the method 
is not flow directed and therefore in our model problem 
for e • 0, e << N -2 the spectral solution approximates 
the straight line us(x) = 0.5(x + 1) (see [10, Figure 2]) 
instead of the boundary layer solution (8). Another draw- 
back is that for overdetermined systems no efficient itera- 
tive solvers like multigrid methods are available. For these 
reasons this is probably not the best way to go. 


A flow directed method is the streamline diffusion 
method which was introduced by Hughes and Brooks [24], 
[25] for a finite element discretization. This method is 
stable and no accuracy is lost. It is a Petrov-Galerkin 
modification of the standard Galerkin method where arti- 


ficial diffusion in the streamline direction is introduced by 
modifying the test functions from v to 


v + 6xcvx + 5•dvy, 


where 5x = 5• -- O(h) and h denotes the step size of the 
finite element scheme. Clearly, for the spectral method 
with Chebyshev Gauss-Lobatto points one has to choose a 
point dependent viscosity given by 6• = 5:•(x), 5• -- 6•(y), 
where 


5•(x•) = C• sin(--•)sin(/•r ß . •), i= 1,...,N- 1, 


= = 1 
with suitable constants C•, Cy. These formulas result from 
the finite difference discretization with central differences 


(see [14]). The constams C•, Cy can be chosen such that 
the resulting finite difference matrix yields an M-matrix 
(see [12]), i.e., its inverse has only nonnegative entries. For 
the practically more efficient pseudo spectral method the 
stabilization is achieved by adding the viscosity term to 
the right hand side f. Here f is replaced by 


and the corresponding differential operator is modified 
such that the new problem is equivalent to the original 
system (1), (2). In [19] we investigated this method in 
connection with a multi domain approach for the above 
boundary layer problem. Stability is shown and suitable 
multigrid components for the efficient solution of the sta- 
bilized problem are presented. Clearly, a drawback of this 
approach is that high order derivatives have to be com- 
puted which makes it quite expensive. 


For preconditioning of the original spectral system we 


recommend an upwind FD method, for which each of the 
first derivatives u• and uy is differenced according to the 
sign of the coefficients c and d, respectively. The Laplace 
operator is discretized by standard central finite differ- 
ences and the first derivatives u• and uy in (xi, yj), i, j = 
1,..., N- i are approximated as follows: 


C(Xi,yj) _> O' Ux(Xi,yj) •-- u(xi+l,Yj)--u(xi, yj), 
xi+ 1 -- x i 


c(xi,Yj) < O ' •x(Xi,Yj) • U(Xi,yj) -- U(Xi-l,Yj), 
xi -- xi- 1 


d(xi,yj)_>O' Uy(Xi,yj) •- u(xi,Yj+•)-u(xi, Yj), 
Yj+• -- yj 


u(x, u(x, 
< 0. 


Yj -- Yj- 1 


For the iterative solution we recommend flow directed 


schemes. Since the Chebyshev nodes are dense near the 
boundary it is necessary to use line Gauss-Seidel relax- 
ation. For smoothing it is recommended to use alternate 
iterations of FDHI (Flow Directed Horizontal Iterations) 
and FDVI (Flow Directed Vertical Iterations). In the liter- 
ature this combination is called FDHVI (see [9], [13]). The 
iterative scheme FDHI is a variant of line Gauss-Seidel re- 


laxation. Let Pi denote the mesh points on the vertical 
line x = xi. We divide Pi into two subsets: 


Pi,z := {(i,j) ' c(xi,yj) _> O}, 
Pi,w :: {(i,j) ' c(xi,Yj) <0}. 


The FDHI partitioning and ordering of the unknowns con- 
sists of the subsets Pi,• arranged in order of increasing 
i, followed by the subsets Pi,w, arranged in order of de- 
creasing i. The difference equations on each of the subsets 
P•,e or Pi,w are a collection of tridiagonal systems. By 
considering the mesh points P• on a horizontal line y - yj 
and dividing Pj into subsets Pj,•v, Pj,s we may construct 
the iterative scheme FDVI. Finally one alternates between 
FDHI and FDVI, resulting in FDHVI. For a more detailed 
description including numerical results we refer to [9] and 
[13]. Han et al. [13] describe a procedure based on directed 
graphs to partition and order the unknowns of the Gauss- 
Seidel process. This is performed by inspection of the co- 
efficient matrix. Nevertheless, this algorithm is expensive 
for non-linear problems, like those coming from the Navier- 
Stokes or Boussinesq equations, when the coefficients are 
solution dependent and require the reconstruction of the 
directed graph several times. The penalty for such a choice 
is proportional to the number of mesh points. In Section 4 
the FDHVI scheme is applied to the Boussinesq flow prob- 
lem. 
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4 The Boussinesq flow problem 


The problem specifically considered here is that of the two- 
dimensional flow of a Boussinesq fluid of Prandtl number 
Pr -- 0.71 (i.e., air) in an upright square cavity (see Ill, 
[7]). The walls are non-slip and impermeable. The hori- 
zontal walls are adiabatic and the vertical sides are at fixed 


temperatures. In addition to the Navier-Stokes equations 
we have one further equation for the temperature T. By 
Ra we denote the Rayleigh number. The Boussinesq flow 
problem in vorticity-streamfunction formulation reads as 
follows: 


As usual (v•, v2) t denotes the velocity. The scalar factors 
2 and 4 are due to the fact that we here define the problem 
in (-1.1) 2 instead of the original square cavity (0, 1) 2. 0 
fulfills homogeneous Dirichlet boundary conditions, i.e., 


o0 
0 -- -- 0 on 0f2 


and T fulfills mixed Dirichlet/Neumann boundary condi- 
tions 


T(-1,y)=l, T(1, y)=0 fory•(-1,1), 


aT (x,-1)= aT O--• •yy(X, 1) = 0 for x • [-1, 1]. 
The homogenous Neumann boundary conditions corre- 
spond to the fact that the horizontal walls are adiabatic. 


Now the equations are linearized by a Quasi-Newton 
method (see [21]), where the velocity from the previous it- 
eration is employed. Hence we have to solve a linear prob- 
lem. The linearized system is now approximately solved 
by a spectral multigrid (SMG) method (see [15], [16]). We 
first describe the pseudospectral discretization of the sys- 
tem. The functions 0 and co are spectrally approximated 
by polynomials ux+2 • PN+2, VN • PN. T is approxi- 
mated by a polynomial WN • PN. Hence vl, v2 are ap- 
proximated by the polynomials VLN , V2,N • PN+2, where 


O• N + 2 09'•N+2 
U1,N -- OF , V2,N -- OX ' 


and •,¾+2 • PN+2 corresponds to the polynomial uN+2 
from the previous iteration. Now the pseudospectral prob- 
lem reads as follows: 


Find u2v+2 • Px+2, VN • P•v, wN 6 PN such that 


[4Aux+• + v•](zi, y•) = 0 


for i,j = 0,...,N and 


0 0 


[-2PrAvN + •x (m,;vv;v) + •y (v2,•¾v;v)l(xi, y•) = 
r, ,• OWN 


= ttat'r--b--•x(Xi,Yj) , 


0 0 


[--2AWN q- •xx (Vl,NWN) q- •(V2,NWN)](Xi,•Ij) -- 0 
for i,j = 1,... ,N- 1. Since u has to fulfill two types of 
boundary conditions we choose UN+2 • PN+2 fulfilling the 
homogeneous Dirichlet boundary conditions. For VN there 
are no boundary conditions. The pseudospectral boundary 
conditions for WN • PN are given by 


w•(-1, y;)=l, w•v(1, y•)=0 forj=l,...,N-1, 


Ow:½ (xi,-1) = Ow•¾ {x,, Oy •-y, . 1)=0 fori=0,...,N. 
This system uniquely determines the spectral approxi- 
mations uN+2, vN, wN. In the linearized version the 
systems for determining u•;+2, VN and Wx can be han- 
dled separately. First, one solves the system for WN by 
a SMG method, then one calculates o•.,-;xi Ox • ,yj), i,j = 
1,..., N - 1, and finally one solves the last system by the 
SMG method introduced in [18] ,[20]. Here we employed 6 
V-cycles of SMG in order to get a nearly exact solution of 
the linear systems. 


Now we turn to a more precise description of the SMG 
method. We use the same components as already intro- 
duced in Section 3. A somewhat different treatment re- 


sults from the fact that the diffusive part is now perturbed 
by the first order derivatives o o For an increasing 
Rayleigh number the convective part becomes dominant. 
Hence in the defect correction step one has to use a FD 
approximation which remains stable also for an increas- 
ing Rayleigh number. Furthermore the FD problem has 
to be solved approximately by a suitable iterative method 
which also works for convection dominated flows. Here we 


employed the FDHVI iteration for preconditioning of the 
spectral system. In order to handle the complex eigen- 
values of the preconditioned spectral operator we employ 
nonsymmetric matrix iterations. Here we choose the GM- 
RES iteration. For a more detailed description of these 
components we refer to Section 3. 


By using these components we numerically calculated 
for various Rayleigh numbers and mesh sizes the following 
quantities: 


10[.•ia: absolute value of the streamfunction at the mid- 
point of the cavity, 
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maximum absolute value of the streamfunction. 


The local heat flux in a horizontal direction at any point 
in the cavity is given by 


OT 


Q = v•T - 20x. 
Let us further introduce the following Nusselt numbers: 


• f_• f_• Q(x,y)dxdy' average Nusselt number 
throughout the cavity, 


• f_• Q(0, y)dy' average Nusselt number on the Nuz = 5 • 2 


vertical mid-plane, 
- • f_• Q(-1, y)dy: average Nusselt number on Nuo - 5 • 


the vertical boundary. 


The above integrals in the definition of Nu, Nu« and Nuo 
are evaluated by the Clenshaw-Curtis quadrature (see [6, 
p. 68]). In the tables II - IV we present the numerical 
results for different Rayleigh numbers and N = 8, 16, 24. 
The numerical results are in good accordance with the re- 
suits obtained in [7]. However, for a larger Rayleigh num- 
ber or increasing N the above SMG method is no more 
convergent. The reason is that upstream preconditioning 
is not good enough. Here one has to find some better ways 
of preconditioning. At the moment we try to find improved 
preconditioners where the finite difference discretization is 
performed on staggered grids. 


N l•Imid tOlmax Nu Nu_• Nuo 
2 


8 1.1747 1.1747 1.1178 1.1173 1.1174 


16 1.1746 1.1746 1.1178 1.1178 1.1178 


24 1.1746 1.1746 1.1178 1.1178 1.1178 


Table II. Results for Ra = 10 a. 


N IOImax Nu Nu• Nuo 
8 5.0713 5.0713 2.2474 2.1946 2.1870 


16 5.0736 5.0736 2.2448 2.1946 2.1870 


24 5.0981 5.0980 2.2340 2.2350 2.2420 


Table III. Results for Ra = 10 4. 


N Ilmd 101max Nu Num N•o 
8 14.3409 18.8519 4.4140 4.7345 4.7590 


16 11.3720 12.3330 4.5030 4.5061 4.5313 


24 9.1600 9.6530 4.5100 4.5120 4.5231 


Table IV. Results for Ra = lO s. 


Extension to 3D problems and 
parallel computers 


As already noticed in [14], [15] and [16] the close spacing of 
the collocation points near the boundaries of the domain 
introduces a locally changing anisotropy into the prob- 
lem. Since the mesh point aspect ratios are large, multi- 
grid methods based on point relaxation are ineffective. In 
the two-dimensional (2D) case certain (alternating) line 
relaxation techniques are necessary for a good smoothing. 
In the three-dimensional (3D) case (alternating) plane re- 
laxation becomes necessary. These block-relaxation tech- 
niques are carried out in a suitable way, e.g., line relaxation 
using special direct solvers for the arising tridiagonal sys- 
tems, and plane relaxation using appropriate 2D multigrid 
methods. The tridiagonal systems can be efficiently solved 
on parallel machines by a variety of substructuring algo- 
rithms, which include Cyclic Reduction or Cyclic Elimina- 
tion. Johnson, Saad and Schultz [26] discuss the solution 
of tridiagonal systems on the hypercube architecture in the 
context of the ADI method. Often, it is advisable to invert 
the tridiagonal matrix once for all in a preprocessing stage 
and then solve the linear systems simply by a matrix-vector 
multiplication. In this case, the Nearest Neighbor Network 
[23], [28] provides the optimal communication scheme. For 
a more detailed information about suitable interconnection 


networks we refer to classical books on parallel computers 
such as [23], or to review papers such as [2], [4] or [28]. 


By using the standard Richardson iteration precondi- 
tioned by plane relaxation sweeps for the 3D FD system 
we obtain a method with a complexity of 


O(N a lnN) arithmetic operations 


if FFTs are used. The Perfect Shuffle interconnection net- 


work [23], [28] is the optimal communication scheme for 
this class of transforms. For a more precise description of 
the 3D SMG method we refer to [17]. Here also different 
kinds of boundary conditions in the different directions are 
discussed. Numerical results are presented which show the 
efficiency of our treatment. 


For parallel computers it is useful to employ plane re- 
laxation sweeps not in all three coordinate directions but 
only in one direction. The latter are known as "semi- 
coarsenlug" algorithms, since the grid is coarsened in only 
one coordinate direction (z-direction). That is, if the fine 
grid is an N x N x N grid, the next coarser grid will be an 
N x N x N/2 grid, the next coarser will be an N x N x N/4 
grid, and so on. Clearly, semi-coarsened algorithms are 
cheaper than plane relaxation algorithms with relaxation 
in all three coordinate directions, since plane relaxation is 
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needed in only one direction. They are very robust against 
anisotropies and grid stretchings (see [8]). The smoothing 
properties for the Chebyshev mesh were investigated by 
Overman and Rosendale [29]. Besides these numerical ad- 
vantages they are attractive for parallel computing, since 
the z-distribution allows the plane relaxations to be car- 
ried out with relatively little interprocessor communica- 
tions. However, an obvious disadvantage of this approach 
lies in the fact that the planes do not decrease as one goes 
to coarser grids, leading to very poor efficiency. In [11] this 
problem was solved by using concurrent iterations in which 
all grid levels are simultaneously relaxed. Combining con- 
current relaxation multigrid algorithms in the z-direction, 
with a standard semi-coarsening line relaxation algorithm 
in the xy-planes led to a robust and effective algorithm 
which is highly parallel and maps easily to distributed 
memory machines. This type of 3D SMG method was 
parallelized and implemented by Overman and Rosendale 
[29] on a 32 node iPSC/860 hypercube, for a 32 x 32 x 32 
Chebyshev grid. By using the semi-coarsening multigrid 
algorithm, and by relaxing all multigrid levels concurrently, 
relatively high efficiency of the processors were achieved. 
Typically, they obtained an efficiency of 60% on moderate 
sized problems. Hence spectral methods remain attractive 
on the current generation of distributed memory architec- 
tures. 


However, to achieve high efficiency on machines having 
thousands of processors will require several improvements 
in the algorithm. The semi-coarsening approach of dis- 
tributing the data in only the z-direction exacerbates the 
multigrid "idle processor" problem on coarse grids and in- 
creases total communication. Thus it may be better to 
use hybrid decompositions, in which some grid levels are 
decomposed in one way and others in other ways. Fur- 
thermore other new variants of multigrid (see [27]), based 
on the use of multiple coarse grids, yield satisfactory re- 
sults. They completely avoid the need of line and plane re- 
laxation, allowing much higher levels of parallelism. This 
algorithm combines the contributions from the multiple 
coarse grids via a local "switch", based on the strenght 
of the discrete operator in each coordinate direction. It 
is shown in [27] that the V-cycle convergence rate is uni- 
formly bounded away from one, on model anisotropic prob- 
lems. The new algorithm can be combined with the idea of 
concurrent iteration on all multigrid levels to yield a highly 
parallel algorithm for strongly anisotropic problems. We 
think that this is probably the most fruitful direction for 
future research in this area. 
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High-Order Matching Finite Elements 
on Recursive Grids 


G. Kozlovsky* 


Abstract 


Uniform rectangular grids, which are used mainly in the 
academic environment, permit very simple high-degree el- 
ements and are the easiest grids to implement, but are lim- 
ited as far as local adaptation and approximation of bound- 
aries is concerned. Despite of the difficulty of matching 
triangular high-order elements, triangular unstructured 
grids dominate the world of engineering computing on the 
strength of their ability to approximate curved boundaries 
and to provide variable local resolution. However, the un- 
favorable rate of convergence of low-degree methods is a 
major drawback, especially in high-precision computing. 


Hierarchical recursire grids require more complex data 
structures but are attractive for use in dynamic adaptive 
algorithms. Recently, in his paper [6] the author inves- 
tigated properties of a subclass of recursire grids called 
"consistent" grids, which can be viewed in certain sense as 
an intermediate type between the two previous grid types, 
and developed a version of the finite element method suited 
for treatment of the interfaces between computational cells 
of different sizes. In our current presentation we propose 
an extension of this method to high-degree Hermite finite 
elements and discuss ways to treat curved boundaries when 
using recursire grids. In addition to their matching prop- 
erties. Hermite elements are uniquely suitable for creating 
general-purpose software, being uniformly extensible for 
any order and any number of space dimensions. 


In light of all their proved and potential advantages dis- 
cussed above, it appears that the main reason recursire 
grids are not widely used is the complexity of their im- 
plementation. This problem can be overcome by creating 
grid-handling program libraries and specialized develop- 
ment and visualization environments [5]. 
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1 Introduction 


The choice of grid type is one of the most crucial choices 
in numerical solution of partial differential equations. An 
eloquent, if perhaps slightly unfair towards approximation 
and solution methods, description of the importance of grid 
choice was presented by J.F. Thomson [10]: 


"The ultimate answer to numerical solution 


of partial differential equations may well be 
dynamically-adaptive grids, rather than more 
elaborate difference representations and solution 
methods. It has been noted by several authors 
that when the grid is right, most numerical solu- 
tion methods work well. Oscillations associated 


with cell Reynolds number and with shocks in 
fluid mechanics computations have been shown 
to be eliminated with adaptive grids. Even the 
numerical viscosity introduced by upwind differ- 
encing is reduced as the grid adapts to regions of 
large solution variation." 


Since the early days of the finite element method the 
two competing methods of choice were uniform rectangular 
grids and triangular non-structured grids. Gilbert Strang 
wrote in his classical book [9] 


"... it is not clear at this writing whether it is 
more efficient to subdivide the region into trian- 
gles or into quadrilaterals. Triangles are obvi- 
ously better at approximating a curved boundary, 
but there are advantages to quadrilaterals (and 
especially to rectangles) in the interior: there are 
fewer of them, and they permit very simple ele- 
ments of high degree." 


Uniform rectangular grids are widely used in the aca- 
demic world, probably because, in addition to the advan- 
tages described by $trang, they are easy to program using 
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Figure 1: An example of consistent recursive grid •vith contours of the solution superimposed. The solution represents 
the temperature distribution of a premixed flame propagating in a shear flow field. The grid results from a dynanfic 
adaptation process where the grid changes as the solution develops from an initial estimate to the state shown in the 
picture. 


the simplest data structure -- a Fortran array. In many 
acadenfic applications. be it testing of new numerical meth- 
ods. or using numerical solutions to investigate scientific 
phenomena. the computational domain is rectangular and 
local adaptivity is not crucial. By transforming the compu- 
tational domain it is possible to adapt a logically uniform 
rectangular grid to a non-rectangular computational do- 
main and to provide variable local resolution. However, 
this transformation requires a solution of a global prob- 
lem. for many particular geometrical configurations of the 
area to be refined, the resulting economy is small or non- 
existent (consider. for example. in two dimensions, a thin 
ring area to be refined, with diameter close to the diame- 
ter of the computational domain), and the numerical error 
caused by a large condition number of the transformation 
can be considerable. 


Unstructured triangular • (sometimes mixed with 
quadrilaterals) grids have unquestionably won the engi- 
neering world on the strength of their ability to approx- 
imate curved boundaries and, not less important, their 
ability to provide variable local resolution. Paradoxically, 
unstructured grids, when not dynamically modified dur- 


1Although we use two-dimensional case in our discussion here, it 
is relevant to three-dimensional case too. 


ing the computation process, fit almost as well into simple 
data structures, because their elements are uniformly re- 
lated to each other (they don't form a hierarchy). A no- 
table problem with these grids is the difficulty of matching 
high-order finite elements. Because the local geometry of 
the grid may differ at every node. each row of the stiffness 
matrix has to be computed separately, so the calculation of 
the stiffness matrix is generally more expensive compared 
with the rectangular grids. Geometrical searches on un- 
structured grids are more computationally expensive too, 
compared with the structured grids. 


Unlike the two classes of grids discussed above, hierar- 
chical recursive grids (see Figure 1) require more complex 
data structures [8] which are not straightforward to pro- 
gram in Fortran, and this retarded their use until the early 
'80s. The main reason for the interest in recursire grids was 
their use in adaptive algorithms. Recently, in his paper [6], 
the author investigated properties of a subclass of recur- 
sive grids called "consistent" grids and showed that they 
can be viewed as semi-structured grids, in the sense that 
the number of possible local geometrical configurations of 
the grid is limited (as compared to one configuration for 
uniform rectangular grids and infinity for non-structured 
grids). 
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The treatment of the interface between computational 
cells of different sizes is a major problem in using com- 
posite grids. For recursive grids, the standard nodal for- 
mulation of the finite element method can lead to an un- 


desirable unlimited increase in the number of nodes in the 


discretization stencil. This problem does not arise for finite 
element formulation with element-based parameters, how- 
ever the number of unknowns in this case is much greater 
than for the nodal formulation. To solve the problem of the 
discretization stencil increase, we developed a special ver- 
sion of the finite element method for consistent recursive 


grids. Our version uses discontinuous piecewise bilinear 
basis functions to simplify matrix generation on interfaces 
of computational cells of different sizes. The solution re- 
mains continuous due to additional constraints imposed on 
the unknowns. With our method, the number of possible 
discretization stencils is fixed and the stiffness matrix for 


constant coefficient operators can be preassembled. 
Returning to comparison of the main grid types, the 


major advantage of uniform rectangular grids was their 
ability to support high-degree finite elements. This abil- 
ity is of major importance for computing high-precision 
solutions, because an O(h) method in three dimensions re- 
suits in about O(e -3) unknowns, where e is the required 
accuracy of the solution. Given that the solution of im- 
plicit equations can rarely be accomplished in linear time, 
the real rate of growth in computational work versus ac- 
curacy is likely to be much higher than the rate quoted 
above. "High-performance" computing applied to meth- 
ods with such an unfavorable rate of convergence will not 
take us far. for •vith a 1000-fold increase in the computing 
power we can gain at most 10-fold increase in precision. 
This 10-fold increase in precision will require also 1000- 
fold increase in data volume with the associated increase 


in memory requirements. 
Another important criterion for grid comparison is their 


suitability for creating general purpose software. Undoubt- 
edly, for every grid type there are problems for which this 
particular type is the most efficient. Although it is dif- 
ficult to formalize, it is clear that some grid types are 
less suitable for use in general-purpose solvers, often be- 
cause of the global dependencies they introduce. Recursive 
grids possess a very important property of locality, mean- 
ing that local changes in the required resolution lead to 
local changes in the grid. This property greatly simplifies 
adaptive methods and, eventually, adaptive software. The 
locality property is especially important for dynamic grids, 
which change frequently as the solution develops. 


Composite or nested grids [31 are closely related to re- 
cursire grids. Recursire grids can be considered a limiting 
case of composite grids in which every higher level patch 


covers one cell of the lower level grid and contains exactly 
four cells. To the extent that they differ from recursive 
grids (as patches grow in size), composite grids lose the 
locality property that distinguishes recursive grids. The 
non-local nature of composite grids leads to the need for a 
pattern recognition algorithms to cluster refinement areas 
into large patches of fine grid [4]. While composite grids 
are superior for vectorization, it is not clear at present 
which type of grid is preferable on MIMD distributed mem- 
ory computers. We believe that the problem of discretiza- 
tion on the interface between coarse and fine grids has not 
been sufficiently addressed in the literature on composite 
grids. Many authors avoid this problem by solving their 
problem on the coarse grid and using the resulting solu- 
tion as the boundary condition for the fine grid. While 
this approach can work for demonstrating adaptive grid 
efficiency or for some selected problems, it is not suitable 
in the general case. A coarse grid solution obtained with- 
out taking into account the influence of the refined area 
may contain a large error, or make no physical sense at 
all. For example, in combustion problems [7] the flame 
front can "fall" between the grid nodes on the coarse grid 
and become "extinguished," leading to a completely wrong 
solution. 


In this paper we restrict our attention to building an ap- 
proximation space with any desired degree of local smooth- 
ness and its computer implementation. For discussion of 
grid refinement criteria and the choice of the local degree 
for the trial functions see [1, ?]. The approach we describe 
here for the two-dimensional case is trivially extensible to 
any number of dimensions. 


2 Dynamic recursive grids 


A dynamic recursive grid is based on a rectangular uniform 
grid (base grid) covering the computational domain. The 
grid cells can be refined by dividing them into four equal 
subcells with lines parallel to the lines of the base grid. 
This refinement process can be repeated recursively for 
any of the newly created subcells. The refinement of a cell 
can later be reversed provided none of its four subcells is 
currently refined. As can be seen in Figure 1, some of the 
nodes are surrounded by four cells, possibly of different 
size, and some by three cells, so that the node lies in the 
middle of a cell side. We will call the former r-nodes (r 
from regular) and the latter t-nodes (as suggested by the 
shape of the adjacent lines). The nodes on the ends of the 
cell side in the middle of which a t-node is located will be 


called controlling nodes for the t-node. 
We impose consistency requirement on the grid, that is, 
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Figure 2: Nontrivial local geometrical configurations 
around a grid node. The remaining configurations can be 
obtained by rotation. 


any two adjacent (including cells having a common ver- 
tex) nonrefined cells differ at most by a factor of two in 
their linear size. This requirement leads to some non- 
local dependencies in the grid. However, as we will see 
below, these non-local dependencies can be treated in a 
completely automatic way with negligible amount of com- 
putational work. In exchange, the consistency requirement 
brings an important advantage -- semi-regularity of the 
grid. meaning that the grid has only a limited number of 
local geometrical configurations around a grid node (see 
Figure 2). It is shown in [6] that for an internal terminal 
r-node in two dimensions this number is fifteen (sixty-three 
for a three-dimensional grid). 


Grid adaptation is done in steps that may be inter- 
spersed •vith numerical computations. One step of grid 
adaptation is a solution to the following problem. 


Definition 2.1 Grid adaptation problem. 
Given a grid G, a set of its cells • to be refined, and a 
set of its cells b/ which are allowed to be unrefined, find 
a minimal consistent grid in which all the cells of T4 are 
refined and all the cells not belonging to b/are preserved. 
A minimal grid is a grid from which no cells can be deleted 
without violating one of the above conditions. [] 


It is easy to see that because of the consistency require- 
ment and because a cell can be unrefined only if all of its 
four subcells are marked for deletion, the minimal grid may 
contain some cells of b/marked for deletion, and some cells 
not belonging to T4 will be refined. 


In [6] we prove that the minimal grid is unique and pro- 
vide a grid adaptation algorithm to construct it. The al- 
gorithm is optimal in the sense that no cell refined at its 
intermediate stage is later unrefined. The algorithm is im- 
plemented as part of the grid-handling library. We would 
like to stress that in our implementation grid adaptation is 
completely independent from the refinement/unrefinement 
criteria used by a user of the grid-handling library. The 
user only communicates the sets T4 and b/to the grid adap- 
tation routines. 


3 Finite element space 


We consider here the construction of a finite element ap- 
proximation (trial) space on consistent recursive grids. 
The trial space has variable local degree of approximation 
and smoothness. Such a space together with the dynamic 
recursive grid machinery described in the previous section 
can be used not only to solve partial differential equations 
by the h-p version of the finite element method, but also to 
solve problems in many other areas such as image process- 
ing and numerical integration, to name a few. A general- 
purpose computer implementation of this functional space 
would free people wishing to use adaptive approximation 
frown drudgery involved in working with adaptive grids for 
loftier tasks in their chosen fields of interest. 


A trial function over a recursive grid is taken to be a 
polynomial over each grid cell. Each polynomial depends 
on a number of parameters. These parameters may be 
coefficients of the polynomial, nodal values of the polyno- 
mial and its derivatives, or something else. If varying the 
parameters can produce the whole space of polynomials 
of degree m, we will say that the local degree of approx- 
imation over the corresponding cell is m. To be precise, 
by a polynomial of degree m of two variables we mean a 
polynomial in which the sum of the powers of both vari- 
ables in every monomial is less than or equal to m. In 
the two-dimensional case the number of dimensions (equal 
to the number of polynomial coefficients) of the space of 
polynomials of degree m is (m + 2)(m + 1)/2. 


3.1 Element matching problem 


A trial function defined above does not satisfy any smooth- 
ness requirements on the inter-element boundaries. Con- 
straining the parameter space in such a way that the trial 
function has continuous derivatives up to a certain order 
(the function itself is considered the 0-th order derivative) 
over inter-element boundaries is called matching the ele- 
ments. Problems of matching different kinds of elements 
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are discussed in [9]. Matching may be required by the na- 
ture of the problem to be solved, or it may be desirable 
because it reduces the number of unknowns under a nodal 


formulation, without diminishing the degree of approxima- 
ti,m. Following [9] we denote C q the class of functions with 
co•tinuous derivatives through order q. 


The nodal approach to the finite element formulation 
leads to substantial savings. For example, while for a 
uniform rectangular grid the number of elements is ap- 
proximately equal to the number of nodes, a bilinear finite 
element formulation with cell-based parameters requires 
keeping four parameters per element, but only one param- 
eter per node is required for node-based formulation. 


A convenient way to investigate matching of elements is 
to take as parameters nodal values of the polynomial and 
its derivatives. Then, matching the value and derivatives 
through order q at nodes is a necessary condition for the 
elements to match up to order q. However, this condi- 
tion is not sufficient in the general case. Strang [9] quotes 
the following (unpublished) result of Zenisek concerning 
the matching of triangular elements: To achieve piecewise 
polynomials of class cq on an arbitrary triangulation, the 
nodal parameters must include all derivatives at the ver- 
tices of order less than or equal to 2q. It is conjectured 
that the minimum possible degree of such an element in 
n dimensions is 2'•q + 1. On the other hand, matching 
Hermite elements on a uniform rectangular grid with the 
gridlines along the coordinate axis is very easy. It is suffi- 
cient to match the value and the derivatives up to order q 
at the nodes to have the polynomials match up to the same 
order along the whole inter-element boundary connecting 
the nodes. 


3.2 Choosing trial function support 


Nodal formulation on uniform rectangular grids has the 
following important properties: 


ß Under condition that a basis function is a single poly- 
nomial inside every element, its support is the smallest 
possible -- four elements surrounding the node. 


ß Inside every element only the basis functions based on 
its own vertices are non-zero. 


ß The discretization stencil includes only nodes of the 
elements adjacent to the central node. 


ß The smoothness of the trial space does not exceed the 
smoothness of the basis functions. 


An attempt to extend nodal formulation from uniform 
rectangular grids to consistent recursive grids leads to sev- 
eral possibilities to consider. 


() 


) ,• 


Figure 3: Discretization stencil example for the minimum 
rectangle basis function support. The central node is 
marked by a black disk, remaining nodes of the discretiza- 
tion stencil are marked by circles. Note that in this case 
the discretization stencil may spread outside of the rect- 
angular area on the picture. 


The simplest way is to take the smallest possible rect- 
angular area around an r-node as the support of a basis 
function (see Figure 3). There are no basis functions at 
t-nodes. Basis functions belonging to the class C q can be 
built exactly like for uniform grids. However, if we use the 
Galerkin formulation with the weight functions identical 
to the basis functions, the discretization stencil can grow 
unbounded, depending on the refinement pattern. The 
number of non-zero basis functions inside an element also 
becomes unbounded. 


The next approach is to reduce the support of a basis 
function to the smallest number of cells which allow the 


building of Cq basis functions that are piecewise polynomi- 
als inside every cell (we will show how to construct these 
functions later). Such basis functions are defined in r-nodes 
(see Figure 4). There still can be non-zero basis functions 
inside an element that are based at an outside node, but 
the number of such functions is limited. The discretization 


stencil can not grow unlimited, but there is an undesirable 
dependency on the refinement pattern outside of the im- 
mediate vicinity of the central node (see Figure 4). 


Finally, extending the approach described in [6] to ar- 
bitrary degree discontinuous Hermite finite elements, we 
reduce the support of the basis functions at r-nodes to the 
four cells adjacent to the node. Basis functions at t-nodes 
have their support at the two cells sharing vertices at the 
node (see Figure 6). The trial function inside every cell 
is then a linear combination of only the basis functions at 
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Figure 4: The minimal support of continuous basis func- 
tions for the principal geometrical configurations of the 
grid. The central nodes are marked by black disks. 


i 


() •--'-- i 


i 


Figure 5: An example of discretization stencil non-local 
dependence for continuous basis functions with minimal 
support. If the refinement shown by dashed lines is per- 
formed, the nodes marked by ¸ belong to the discretization 
stencil while the node marked by x does not. If the said 
refinement is undone, the node marked by x enters the 
discretization stencil and the nodes marked by ¸ leave it. 


the nodes of the cell. In the next subsection we develop 
this approach in detail and show how the smoothness of 
the trial function can be guaranteed despite the disconti- 
nuity of the basis functions. We also show that with proper 
choice of weight functions for the Galerkin formulation the 
propagation of the discretization stencil is prevented. 


3.3 Discontinuous trial functions with the 


minimal support 


Given local nodal degree of smoothness qr at every r-node 
r we shall seek an unknown function in the following form 


(1) ½ __ • ij - ij (•ij •.ij .... aq.rCq.r q- • q-a ), 
i,j,r i,j,t 


where indexes r and t run through the r-nodes and t-nodes, 
respectively; q•- = qt- and qt + = qt+ for a t-node t with the 
controlling r-nodes t- and t+; indexes i and j assume inde- 
pendently all the non-negative values less than or equal to 


.. 


the corresponding value of q; and •b• are piecewise poly- 
nomial basis functions which assume the following values 
on the grid nodes Pk = (xk, ye) 


•i' +j' .,qij { . (2) 
Ox i' Oyj' 0 otherwise 


Inside every grid cell of its support, the basis function ½iqj k is 
defined as the product of two one-dimensional polynomials 
i and j of degree 2q q- 1 Uqk Vqk 


i j (3) 


i is determined by the where, for example, polynomial 
following conditions specified for 0 _< i • _< q and k 
with fox being the node on the opposite side of the grid cell 
in question from the node k, along the x coordinate 


•i' i { i • k' (4) v Uqk (x•,) = 1 i= ,k= Ox i' 0 otherwise 


It is easy to verify that a basis function thus defined has 
q continuous derivatives everywhere, except at the sides of 
elements belonging to its support that start at the central 
node and pass through a t-node. 


As in [6] the required smoothness of the solution is as- 
sured by imposing additional conditions at the t-nodes. At 
every inter-element boundary, these matching conditions 
assure the continuity of qmin derivatives of the solution 
½, where qmin is the minimum of nodal continuity at all 
the nodes at the corners of the elements adjacent to the 
boundary 


where the nodes k- and k + are the controlling nodes of a 
t-node k. 


After a series of simple transformations using (3) and 
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mentioned in the previous section, the number of possi- 
ble local geometrical configurations for a two-dimensional 
grid is fifteen. This property allows to precompute rows of 
stiffness matrices for differential operators with constant 
coefficients. It should also simplify writing software for 
computing the stiffness matrix in more complicated cases. 


Figure 6: The support of discontinuous basis functions for 
the principal geometrical configurations of the grid. The 
central nodes are marked by black disks, the nodes of the 
discretization stencil for Galerkin formulation with min- 


imal support continuous weight functions are marked by 
circles. 


(4) we obtain a form suitable for computing 


i t i t 
O u 


i t i t where the coefficients 0 u_ (x•)/Ox i' and 
% k- 


oi'•t i' (Xk)/OX i' are constants that can easily be com- q•:•- 
puted at the moment the size of the base grid is known. 


Incidentally, taking the above basis function at an r-node 
and adding to it the basis functions at all the adjacent t- 
nodes with the coefficients defined by the matching con- 
ditions (7)-(8) we obtain the C q basis function with the 
minimal support (shown at Figure 4) discussed earlier. 


The above continuous basis functions can serve as weight 
functions for the Galerkin formulation using the minimal 
support discontinuous basis functions. After the matching 
conditions (7)-(8) are applied, the resulting solution will be 
equivalent to the solution obtained using continuous basis 
functions. The advantage of using the discontinuous basis 
functions is that the discretization stencil is reduced to the 


nodes marked by circles on Figure 6 (it has from 9 to 17 
nodes) and it is dependent only on the local geometrical 
configuration of the grid around the central node. As was 


4 Conclusions 


In this paper we have shown how to implement efficiently 
high-order finite elements on recursive grids, which opens 
a way to developing efficient and highly accurate adaptive 
finite element software. 


However, no matter how accurate a method is, it can 
not be successful in the engineering world if it does not 
treat curved boundaries as triangular grids do. It is fairly 
easy to see that a domain with curved boundaries can be 
covered by a rectangular grid and the boundary approxi- 
mated by means of special elements in the computational 
cells intersecting with the boundary. For uniform rect- 
angular grids this approach is wasteful, for the grid cells 
which fall outside of the computational domain are not 
used. The latter consideration is much less important for 
recursive grids, there a simple remedy is to keep the out- 
side cells unrefined and, therefore, few in number. The 
approach outlined above has been successfully used in [11] 
with trilinear finite elements. Its extension to high-order 
finite elements will allow to develop engineering finite ele- 
ment packages based entirely on the recursive technology. 


This recursive technology can be made viable only by 
developing software tools that will hide its complexity 
from the end user. These tools will include grid-handling 
program libraries, finite element libraries, and special- 
ized development and visualization environments. Object- 
oriented programming paradigm can be expected to be 
particularly helpful in treating the great variety of finite 
elements that will be required, especially for treating the 
boundary conditions. In [5] we present an interactive 
programming environment for developing adaptive grid 
solvers that can serve as a prototype for future software 
development in this area. 
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On the Multigrid Method for 
3D Mixed Macro-Elements 


Shangyou Zhang * 


Abstract 


A natural mixed finite element method for the Stokes prob- 
lem in the velocity-pressure formulation is used to approx- 
imate the velocity by continuous piecewise polynomials of 
degree (k + 1), and to approximate the pressure by discon- 
tinuous piecewise polynomials of degree k. This paper is 
devoted to proving constant rates of convergence for two 
nonnested multigrid methods when applied to solving some 
3D stable 7•k+•-Pk (k _> 2) mixed-element equations where 
the underlying tetrahedral meshes have a macro-element 
structure. A numerical test is presented. 


Key words: multigrid method, Stokes equations, mixed 
element. macro-element, tetrahedral mesh. 
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1 Introduction 


In the variation form of velocity-pressure formulation of 
the Stokes equations, the velocity and pressure are in 
the Sobolev spaces Hl(fi) • and L•(fi), respectively. The 
mixed element approximation spaces can be chosen to 
be the corresponding subspaces. A most natural ap- 
proximation scheme would be, then, to choose continuous 
piecewise-polynomials of degree (k + 1) for the velocity 
and discontinuous piecewise-polynomials of degree k for 
the pressure. Such mixed element solutions satisfy the in- 
compressibility condition. Scott and Vogelius [8] showed 
that the Babu•ka-Brezzi inequality holds for such 72k+1-Pk 
triangular mixed-elements in 2D if the polynomial degree 
k is 3 or a higher, and if the meshes are singular-vertex 
free. This result is partially extended to 3D in [15]. It 
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Figure 1' A macro-element consists of 4 tetrahedra. 


is shown that, when defined on tetrahedral meshes of a 
macro-element type, the above 72k+1-Pk elements are sta- 
ble if the polynomial degree for velocity is 3 or higher. In 
the method, starting with any quasi-uniform tetrahedral 
mesh, the mesh for computation is generated by subdivid- 
ing each initial tetrahedron into 4 subtetrahedra by con- 
necting the bary-center with 4 vertices (see Figure 1). The 
72k+1-Pk mixed elements are defined on this new mesh. 
The velocity in the mixed-element solution is divergence- 
free pointwise. 


The multigrid method is an effective iteration method 
for solving linear systems of equations arising from dis- 
cretizing partial differential equations. It is an optimal 
order algorithm in various cases ([1], [2]) and references 
therein. Verf'drth has introduced two multigrid methods 
([12] and [13]) for solving mixed element equations for 
Stokes problems and proved that the iterations converge 
with constant rates (independent of the number of un- 
knowns in the linear system of equations). But the stan- 
dard (nested) multigrid algorithm will not work for 3D 
72k+1-Pk tetrahedral mixed-elements. This is because the 
stability condition (see (2) below) will not hold any more 
at the multigrid refinement as the new interior edge of each 
tetrahedron is singular when the tetrahedron is subdivided 
into 8 half-sized tetrahedra (cf. [15]). Now, to get rid of 
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singularity, if we cut each of the 8 subtetrahedra further 
(into 4) as depicted in Figure 1, then this process would 
lead to degenerate meshes which contain sharp and long 
tetrahedra. Given an initial tetrahedral grid, the correct 
way to build multilevel grids is to first refine the initial 


grid nestedly to the highest level. Then we can subdi- (2) 
vide all tetrahedra on all levels to get the macro-element 
meshes. However, the multilevel grids created this way 
are not nested and the resulting mixed element spaces are 
not nested either. Some treatments are needed in defining 
the intergrid transfer operator, which is necessary in the 
multigrid method to transfer functions from a lower level 
to higher one (cf. [3] and [17]). A multigrid method for 
2D. biharmonic, C 1 elements is studied in [16], where the 
meshes have the same macro-element structure. 


In this note, •ve apply the two multigrid methods of 
Verfiirth to solve the new mixed-element equations and 
prove that the two methods retain their constant-rate of 
convergence and, consequently, their optimal order of com- 
putation. Section 2 provides some basics on the mixed el- 
ement approximation of the stationary Stokes equations. 
•Ve define a multigrid method for the mixed-element equa- 
tions in Section 3, and prove its constant rate of conver- 
gence in Section 4. In Section 5, a combined conjugate 
gradient - multigrid method is defined, which also con- (4) 
verges with a constant rate. A numerical test is presented 
in Section 6. 


2 Preliminaries 


We consider the stationary Stokes problem: Find functions 
(the fluid velocity) and p (the pressure) on a 3D domain 
such that 


-vAu + gradp = f in f•, 
divu = 0 in f•, 


u = 0 on c9f•, 


where f is the body force and v is the kinematic viscosity. 
Given an initial quasi-uniform (cf. [4]) tetrahedral mesh 


•0 = {M} with mesh size ho on f•, we can refine each 
tetrahedron M into 8 subtetrahedra (cf. [18]), nestedly, to 
generate multilevel meshes {.Mj}•= o where hi-1 = 2hi. 
We let • = {T} denote the corresponding macro-element 
mesh where each tetrahedron M of A4j is cut into 4 by 
connecting the bury-center with 4 vertices, as depicted in 
Figure 1. Let •Pk,% and Pk,% denote the piecewise con- 
tinuous and discontinuous polynomials of degree k on the 


o H•(Q) and mesh •., respectively. Let P•,•. = P•,• • 
P•,% = Pk,% • Lg(•), i.e., P•,% = {p 6 Pk,% I f• P = 0}. 
To shorten the notation, we let • o )3 po = (•+•,% x •,%. and 


we will mention the dependence on the polynomial degree 
when needed. It is shown in [15] that Vj satisfies the 


Babu•ka-Brezzi stability condition: there exists a constant 
> 0 (independent of j, but depending on k) such that 


sup (diw, p) _> Cllpllo Vp 
vV:O 


which ensures the best order of convergence for the mixed 
elements solutions {[u•.,p•]} defined below in (3). •n this 
paper, we use the standard notation for Sobolev spaces 
and their norms, and we use C as a generic constant. 


The mixed elements approximation to (1) in weak for- 
mulation is: Find [uj,pj] G Vj, such that 


(3) L([uj,pj],[v,q]) = (f,v) V[v,q] 6 Vj, 


where L([u,p], [v, q]) := a(u,v) + b(v,p) + b(u,q), 
a(u,v) := •,(Vu, Vv) and b(v,p):= -(divv, p). We as- 
sume the boundary of f• is regular enough such that if 
f • L2(f•)in (1), then the solution [u,p] • H2(f•)a xH•(f•) 
(cf. [5], [6] and [11])and 


Ilul12 + IIpll 


The analysis here can be extended to cover some domains 
with a curved boundary where (4) is known to hold. By 
examining (2) and (4), it follows that ([5, 4]) 


3 A multigrid algorithm 


In this section we introduce a multigrid algorithm for 
solving the mixed-element equations (3). The algorithm 
is based on the general multigrid algorithm defined by 
Verffirth in [12]. We need to solve (3) on the highest level. 
Problems on all lower levels are auxiliary ones. We rewrite 
(3) in a more general form 


(6) L([uj,pj], [v, q]) = Gj(v, q) V(v, q) • Vj. 


Gj is a linear functional on Vj. In particular on the finest 
level, G• = (f, v). Problem (6) can be written in matrix- 
vector form as Ajx -- b with a symmetric, indefinite matrix 
Aj. In the fine level smoothing of the multigrid method 
defined below, m steps of a Jacobi-like relaxation are ap- 
plied to the squared system A•x = A.•b. The relaxation 
parameter •j, below, has to be less than or equal to the 
reciprocal of the spectral radius of Aj (cf. [1, 12]). 
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As the multilevel spaces { Vj } are not nested, it is neces- 
sary to introduce an intergrid transfer operator Ij: Vj-1 -• 
Vj. For simplicity in analysis and in implementation (other 
intergrid transfer operators would lead to working algo- 
rithms too), we define 


(7) Ij = H z x P%, Ij[u,p] = [rI•u,P%p] • Vj 


for any u 6 C(f•) 3 and p 6 L2(f•). Here, in (7), we 
used the common notations rI• and Px5 as the nodal 
value interpolation operator and the L 2 (f•) projection op- 
erator, respectively. We note that the computation of 


P• : P•.T•_• -• P•.T• is done element-wise since the pres- 
sure functions are discontinued. Because the grids {T•.} 
are constructed on {Adj}, we can see that 


(8) Vj•U+i 0 )3 0 : (Pk+i,A4j X P/•,A4j -': •7j, 
the space of piecewise continuous and discontinuous poly- 
nomials on grid Adj. 


Definition 3.1 (Algorithm 3.1 in [12].) 
1. Smoothing. Let [u•,p•] • Vj be a given guess to the 
solution of Problem (6). For 1 = 1, 2,..., m, compute the 
solutions of 


2 l 


(9) (w},v) + hj(rj,q) = 
ø - [uj , q]) } 


and 


V[v, q] 6 Vj 


(10) 
2 I I--1 


(ulj _ l-• v) + hj(pj -pj ,q)-- Uj , 


L([w}, r}], Iv, q]) V[v, q] • Vj. 


2. Correction. Let [uj_•,pj_•] • Vj_ 1 be the exact solu- 
tion of Problem (6) with 


(11) Gj_•(v,q) := 
G;(Ij[v,q]) - L([ j ,pj ],Ij[v,q]) V[v,q] e Vj. 


If j = O, put [fij-l,•Sj-•] := [U;_l,P;_l]. 
If j > O, compute an approximation [fij-1,/5•_1] by apply- 
ing a(_> 2) iterations of the (j- 1)-level scheme to (6) with 
starting value zero. Put 


(12) Eu?+X,p? +x]: [uy•,p?] + Ij[•lj_l,ll•j_l]. 


In real computation the L 2 inner products in (9)-(10) are 
replaced by equivalent discrete L 2 inner products. This 
does not affect the analysis (cf. [1]). 


4 Convergence analysis 


In this section, we prove the constant rate of convergence 
for the multigrid algorithm defined in Definition 3.1. Let 
{[0i 0 jl•aim(v•) be the complete set of eigenfunctions for ' I IJl=l 


the symmetric bilinear functional L(.,.): 


2 j (13) = 


We can assume the.eigenfunctions are normalized and that ß 


_ /V 0 < [,X•l < ... <[ aim(V•)[' Given [uj,pj] = Y•4 c•[0•,0/] e 
Vj, we define the Ill' Ill• norm by 


/ di•_5.? ) } 1/2 (14) 111[u/,P]111 :-- cIX]I 


We note that II1' Ill0 is defined for all functions in Hl(["•)3 x 
L2(f•), while the other norms Ill' IIl are defined only in Vj. 


Let [uj,pj] e v•. denote the solution of Problem (6) and 
• * -p}] be the error of the Ith iterate, [e}, 4.1 := [u; - 


0 < 1 < m + 1. The following fine-level smoothing property 
is shown in [12] under the conditions (4) and (2). 


(15) IIl[e?,C]111 = • Chf2m-1/2lll[u•,p•]lllo. 


Lemma 4.1 Let [uj,pj] • Vj be L 2 orthogonal to •j-1 in 
the sense that 


2 (16) (uj,v)+hj(pj,q)=O V[v,q] •._•. 
Then 


(17) 


Proof This lemma is almost identical to Lemma 4.2 in 


[12]. We note that the space •'-1 has the same order 
~ 


of approximation as that for Vj-1 and that Vj_• c Vj. 
Therefore, the proof there remains the same. [] 


Theorem 4.1 Let 5j,m be the convergence rate measured 
the Ill' III0-or oi o•e iteration of multigrid algorithm 


defined in Definition 3.1 at level j with m relaxations. For 
every n • (0,4 -•/(a-•)) there is a number m•, which de- 
pends on k and n, but not on j, such that 


(18) < Vj, m _> 


Proof Following the frameworks of Verf'tirth [12] and 
Bank-Dupont [1], we need to prove the case of two-level 
multigrid algorithm, i.e., [fij_•,/Sj-1] := [u•_•,pj_•] in 
(12). Let [wj_•, rj-1] be the orthogonal projection of the 
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iterative error [e]•,e•] in •j_• Since •1_• C •._•, by (4), 
it follows by a duality argument (cf. [12] and [1]) that 


lille?, e?] - [uj_•,pj_•]lllo 
_< Chj inf {lie? - vll• + lie? -qllo} 


<_ c•j{lle? - wj-•llx + II•? - rj-•llo} 


where in the last step we used an inverse inequality (cf. 
[4]). Because of the nonnestedness of spaces, the ra + 1-st 
iterative error is actually 


where in the last step we used the L 2 stability of nodal- 
value interpolation operator when restricted on Vj_• (see 
[10] for a proof, where the averaging interpolation operator 
can be designed to be identical to HT• when restricted to 
V•_•). Combining above two estimates we obtain 


(19) !!][e?+•,e?+•]lll o _< ClllEe?,•?]- 
Now, applying Lemma 4.1 and (15) we can get (cf. [12]) 
that 


2 


IIIrd? •?] - [w•_•, •w-•]111o 
<_ qllEe?, •?]111=111Ee?, •?] - [•'-•, 


_< •111[e•, •]111=111Ee?, •?] - [•-•, 
Therefore, the proof is completed by choose •,• large 
enough as 


Ill[e? +1, e?+11111o < ---• III [e;ø., •;ø'] IIIo, 


5 A combined conjugate gradient 
- multigrid algorithm 


In this section we define the second algorithm which is also 
based on an algorithm of Verffirth [13]. We show that the 


algorithm retains the constant rate of convergence. Even 
the multilevel spaces are nonnested in the present case. 
First, we define an operator L: P•,Tj -• P•,•-j as follows. 


0 0 )3 0 Given p • P},Tj let Up • (•l•k+l,Tj and Lp • P},Tj be the 
unique solutions of the equations 


o 3 
(20) a(Up,V) = b(v,p) Vv • (•P•+x,Tj) , 
(21) (Lp, q) 
We remark that solving two linear systems is required for 
each evaluation of L. The first system consists of three 
discrete Laplace equations for continuous piecewise poly- 
nomials, where we apply the multigrid method. The sec- 
ond linear system is a discrete mass equation which is un- 
coupled on each tetrahedron. This system can be solved 
locally with a cost proportional to the number of unknowns 


o 


t'•0 53 and g • P•,T, be the (k fixed). Next, let uf •; •+i,Tj: 
unique solutions of the equations 


o 3 
(22) a(uf,v) = (f,v) ¾v e (;v•+•,cr•) , 
(23) (g,q) = b(uf, q) Vq 
It is shown in [13] that the pair [u,p] • Vj is the solution 
of (3) on the top level if, and only if, 


(24) Lp-g, 


o where a(u,v) = (f,v)-b(v,p), for all v • (P•+•,•-j . •Ve 
can write the method (20-24) in operator forms: 


(25) L = BA-XB *, g - BA-•PTjf, 
where the operators are defined by a(Aj-•u,v) := (u,v) 
(recall the notation Aj = A), (Bu, q) := b(u,q) and 
(B*p,v) :- b(v,p), for all [v,q] • Vj. For simplicity, we 
drop the index j, if j - J; and, if there is no confusion. 
Here, PTj is also used to denote the L 2 orthogonal projec- 
tion operator on the space o )3. (7>•+•,T• We let wj denote 
the reciprocal of the spectral radius of Aj. We now define 
a sequence of symmetric operators to approximate A -x by 
the multigrid method (cf. [3]). 


Definition 5.1 


Set Kom = A• -•, n - 1, 2,--.. 
Assume that Kj_Ln has been defined; define Kj,•z for z 


o )3 (•P•+x,• as follows: 
1. Setw ø-0ande ø=0. 


2. Define w t for I = 1,..., ra by 


(26) wt= w/-1 Jr- 0Jj (•, -- Ajw/-1). 
3. Define w "+• = w'•+H%e •, c• > 2, where e t for 
I = 1,...,c• is defined by 


(27) e • = e t-• 
+Kj-i,i{PT•_• (z- Ajw TM) -- Aj-le/-1} ß 
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4. Define w l for 1 = m + 2,..., 2m + 1 by (26). 
5. Set Kj.lZ ---- W 2m+1. 
Finally, Kj,nZ is defined by doing n cycles of the above 
iterations: 


(25) K;,nz = Kj,n-lz + K;,•(z - A•Kj,•_•z) 


Theorem 5.1 Let (d) hold. For any 0 < 5 < 1, there is 
an integer m independent of j, but depending upon a and 
k, such that 


(29) II(A; 1 - Sj,n)Zll I • •nllzll 1 VZ • (•E)2+l,•) 3. 
Proof This theorem is a corollary of Theorem 4.1 in [9], 
which proves the convergence of W-cycle nonnested multi- 
grid methods. [] 


We remark that the multilevel spaces 


(30) 0 )3 0 )3 3 (Pkq-l,• 


are used in our algorithm. This results in a nonnested 
multigrid method. One could use the following multilevel 
spaces 


(31) o 3 0 3 (Pk+I.,•AO) C ''' C (P•+i,•4j) 3 C 


to compute A• • approximately. The advantage of the lat- 
ter is that one gets better convergence rate and less compu- 
tational work inside each iteration (the convergence theory 
in this case is standard and covered by [1]). The disadvan- 
tage is that one has to set up two data structures to handle 
two different families of multilevel finite element spaces. 


We now define a conjugate gradient algorithm for solving 
Problem (24), which is an equivalent problem of the Stokes 
equations (3). When we solve (24), we approximate Lp for 
pC P•.T• by 


L,•p := BK•,,•B*p. 


Definition 5.• (Algorithm 5.1 in [13]) 


1. Pre-processing: Compute 


g* := BKj,,•P•r•f. 


o 


2. Start: Given an initial guess pO • P•,T; for the pres- 
sure p; solving (3). Compute 


and put 


qO = L,•pO 


r o = qO _ g., d o = _r o. 


Set i = 0, and e to a small positive tolerance. 


3. Iteration step: If Ilrllo e go to step 4. Otherwise 
compute 


qi+• = Lnd i 


and set 


(ri, d i) 
(qi+•,di) ' 


pi+l _-- pi + o•i+•di ' 
ri+l __ ri q- o•i+lq i+l, 


(ri+l, r i+l) •i+1 
(r', r') ' 


di+l -_ _ri+l q-/3i+ldi. 


Replace i by i + 1 and return to the beginning of the 
this step. 


4. Post-processing: Compute 


u i := Kj,,•(P•-•f - B*p i) 


and take [Ui,p i] • Vj as the final approximation to 
the solution of (3). 


Theorem 5.2 Let [ui,p i] be defined in Definition 5.2 and 
[ua,pa] the solution of (3). Then 


Ilu - q- IIpr -pillo 
1 


where e is defined in Definition 5.2 and 5 is defined in 
Theorem 5.1. 


Proof This is Proposition 5.1 in [13]. 


6 A numerical test 


We test the combined conjugate gradient-multigrid 
method defined in Definition 5.1 in solving a model 2D 
Stokes problem on a unit right triangle (mesh for .A•o). 
We use 2D mixed elements on macro-element meshes where 


each triangle of A•j is subdivided into three triangles when 
generating T/, similarly to the 3D case depicted by Fig- 
ure 1. For k = i and k = 2, such mixed elements have been 
shown stable in [7]. The analysis for the multigrid methods 
provided in this manuscript remains the same for the 2D 
case. But, we should point out that for high degree (k > 2) 
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degree onto on T• 
k+l CG C(BA-•B *) CG C(BA-•B *) 


2 8 14.4559 27 17.7363 


3 14 14.1227 25 15.6759 


4 21 15.3867 26 16.2885 


5 23 15.8065 28 16.7038 


6 25 16.4055 29 17.0055 


7 15 16.5612 29 17.2318 


8 28 16.9165 32 17.4086 


Table 1: Iteration numbers and condition numbers. 


degree On T• 
k+ i CG C(BKj,•B*) 


2 22 17.9957 


3 25 22.3300 


4 32 48.3480 


5 32 119.6085 


6 45 323.0922 
7 96 889.0082 


8 175 2541.4468 


Table 2: Iteration numbers and condition numbers. 


polynomials, such macro-element meshes have no advan- 
tage as the regular meshes would provide stable mixed el- 
ements ([8]). The table I lists the numbers of the outer 
conjugate iterations when applying the algorithm of Defini- 
tion 5.2 where Kj.n -- A -1. Also, the condition numbers of 
operator BA-•B * in the L 2 inner product are listed in Ta- 
ble 1. •Ve remark that in the conjugate iteration, we have 
to use the L 2 mass matrix for pressure functions as a pre- 
conditioner. One can find such a preconditioned conjugate 
iteration in [14]. One can see from the numerical data that 
the operator BA-•B * is well conditioned, independently of 
the polynomial degree k. Numerical data also indicate that 
BA-•B * remains well conditioned when we refine meshes. 


For example, for k = 1, C(BA-•B*)= 18.8885 and 19.3166 
on To_ and T3, respectively. 


However, when A -x is replaced by the multigrid approx- 
imation Kj.•, the number of conjugate iterations and the 
condition number of BK•,•B* both increase with the poly- 
nomial degree k and the mesh level J. This can be ob- 
served by the data listed in the table 2. Here, we apply 
the t•vo-level nonnested multigrid method defined in Def- 
inition 5.1 xvhere m = 4 (doing 4 pre-smoothings and 4 
post-smoothings), and n = 4 (doing 4 cycles of multigrid 
iterations). When we increase m, or n, or both to get 
better approximation K•,• for A -•, the data in Table 2 
•vill approach those listed in Table 1. Unlike the case of 
BA-•B *, if we fix the polynomial degree and refine the 
mesh, the condition number of BKs,•B* would become 
•vorse (for example, using quadratic polynomials for the 
velocity, C(BKs,•B*)= 25.7506 and 70.7792 on T2 and 
respectively). 
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Figure on reverse: 
Contour plots of vorticity for the numerical simulation 
of decaying turbulence in the periodic box at t = 20. 
(Front "Parallel Spectral Fourier Algorithm for Fluid 
Dynamics Problems" by L. Vozovoi, M. Israeli and A. 
Averbuch, page 605) 








Iterative Solutions of the 


3D Transient Navier-$tokes Equations 
on Parallel Computers 
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Abstract 


The three-dimensional, incompressible, unsteady Navier- 
Stokes equations are discretized by the spectral element 
method based on Legendre polynomials. High-order pro- 
jection methods and a subcycling method are constructed 
in such a way that third-order advancement in time can 
be obtained. The preconditioning of the pressure oper- 
ator is briefly discussed. The resulting iterative spectral 
element solver is implemented on the Cray T3D and on 
the Intel Paragon. Some issues related to parallelization 
are addressed. Finally, we will give some results for the 
numerical simulation of the three-dimensional backward- 


facing-step flow on the Cray T3D. 


Key words: Navier-Stokes equations, spectral element 
discretization, projection methods, iterative methods, 
parallelization. 


AMS subject classifications: 76D05, 65M70, 65F10, 
65Y05. 


1 Introduction 


Over the last decade, computer codes based on spectral el- 
ement discretizations (see e.g. Patera [16] and Maday and 
Patera [13]) have become an efficient tool for the numeri- 
cal simulation of fluid-flow problems (Fischer and R•nquist 
[6], Karniadakis et al. [9]). Numerous important develop- 
ments on the theoretical, algorithmical and computational 
level have made that the application of spectral methods 
is no longer limited to regular problems in simple geome- 
tries, but is extended to complex "real-life" flow problems. 
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The popularity of the spectral element method is due to 
the fact that it combines the practical advantages of the 
well-established finite element method with the "spectral" 
ability to reduce the number of degrees of freedom to ob- 
tain a prescribed level of accuracy. Another argument in 
favour of this method is that it is a domain decomposi- 
tion method, yielding a natural implementation on parallel 
computers. 


In this paper we will be concerned with the simulation 
of unsteady, incompressible fluid flows in three dimensions 
(described by the Navier-Stokes equations) on the current 
generation of parallel, distributed-memory computers. As 
an example, we will investigate the three-dimensional flow 
over a backward-facing step. The main numerical difficul- 
ties of such a flow lie in the computation of the recircu- 
lation zones just behind the step and the representation 
of the boundary layers at the sidewalls (see Figure 3 for a 
schematic representation of the problem). The spectral el- 
ement discretization technique is very suited for this kind 
of fluid-flow problems. Mesh refinement at places where 
accurate results are essential (in the boundary layers and 
behind the step) is obtained by taking many, small spec- 
tral elements. Larger elements can be used at the outflow 
and close to the plane of symmetry. The flow is steady 
in the range of Reynolds number that we have simulated 
(Re • 350 for the present paper, Re • 648 to be obtained 
soon), so time-accurate solutions are not essential. Never- 
theless, in order to be capable to simulate unsteady flows, 
high-order time-integration schemes are an issue. We will 
propose an implicit scheme that is third-order accurate 
in time. To avoid the solution of unsymmetric, indefi- 
nite systems, the nonlinear terms are discretized by an 
explicit scheme, based on the operator-integeration-factor 
splitting, proposed by Maday et al. [14]. This technique 
can also be interpreted as a subcycling method and in- 
troduces a time-splitting error that is also of order three. 
The favourable stability characteristics of this scheme are 
investigated for different ratios of convection to diffusion. 


The spectral element solver is based on the decoupling 
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of the pressure from the velocity field. In order to avoid 
additional boundary conditions for the pressure, this de- 
coupling is performed on the space- and time-discrete equa- 
tions, by either the pressure-correction method [19], or a 
high-order projection method, as proposed by Blair Perot 
[2]. The advantage of the latter method is that the re- 
sulting pressure operator is consistent and relatively cheap 
to evaluate. Furthermore, this projection method is third- 
order accurate in time. 


The resulting discrete systems are symmetric, (semi-) 
positive definite and are solved by the conjugate gradi- 
ent method. Since the operators are ill-conditioned (espe- 
cially the pressure operator associated with problems at 
high Reynolds numbers / small time steps), efficient pre- 
conditioners are essential. According to [4], we construct a 
preconditioner based on the local, elemental pressure op- 
erators. This block diagonal matrix is inverted indepen- 
dently on each element by fast diagonalization techniques 
[11]. This preconditioner applies to pressure operators re- 
suiting from the pressure-correction and high-order projec- 
tion methods. 


In order to perform large-scale simulations at a reason- 
able cost, the use of parallel, distributed-memory comput- 
ers can not be avoided. The performance of this gener- 
ation computers has overtaken that of the fastest single- 
processor machines. The spectral element code has been 
implemented on two of the leading machines: the Cray 
T3D at the EPF Lausanne and the Intel Paragon at the 
ETH Ziirich. The inter-processor communication is accom- 
plished by the PVM paradigm (T3D and Paragon) and by 
the NX communication library (Paragon). Some algorith- 
mical improvements, like a "parallel" conjugate gradient 
method (CGM) (see Meurant [15]) lead to a reduction of 
the amount of communication. It is important to study the 
relation between the cpu time spent in computation and in 
communication. The ratio of these quantities determines 
the parallel efficiency. 


2 Discretization in space 


The spectral element method (SEM) allows either to look 
for very accurate solutions, or, if precision is less important 
or unrealistic to obtain, to reduce the number of gridpoints 
in comparison with more classical discretization methods. 
Exponentional convergence with respect to the degree of 
the polynomial expansions is obtained, provided that the 
solution is smooth enough. This explains that spectral 
methods are especially suited for problems in which high 
regularity is common. Another argument to use this type 
of methods is that numerical dissipation and dispersion 


errors are almost absent. The fact that the spectral grid 
points are clustered at the boundaries can be considered 
as another advantage when trying to solve flows that are 
dominated by boundary-layer dynamics. 


The SEM is based on the decomposition of the com- 
putational domain fl in a number, say K, of nonover- 
lapping subdomains •2k (spectral elements). On each of 
these elements the solution is expanded in tensor-product 
b•ed polynomials of high degree, say N, with typically 
4 < N < 15. This decomposition allows for local re- 
finements at places where the solution is (expected to be) 
rapidly changing. The variational formulation provides au- 
tomatically continuity of the solution at the interfaces be- 
tween adjacent elements and deformed geometries can be 
handled without difficulties. All these factors make the 


SEM highly flexible with respect to geometry, accuracy 
and parallelization. 


The Navier-Stokes equations are given on a three- 
dimensional domain •2 with boundary 0• by 


Ou 
-- 


(1) Ot Re- •Au + u. Vu + Vp = _b, 
(2) -divu = 0 


and are subjected to appropriate initial and boundary con- 
ditions. Let us consider homogeneous Dirichlet boundary 
conditions, u = 0 on 0•. Here, u is the velocity, p is 
the pressure and b is a body force. The Reynolds num- 
ber Re = UL/•, is based on a characteristic velocity U, a 
characteristic length L and the kinematic viscosity •,. The 
spectral element method (see Patera [16], Maday and Pa- 
tera [13], Maday et al. [12], and ROnquist [17] for more 
details) leads to the following space-discrete formulation: 


(3) B Ou Ot + Re-lA-u- DTp + C(u)u = Bb 
(4) -Du - 0. 


Here, B is the diagonal mass matrix, A is the discrete 
Laplace operator, D is the discrete divergence operator, 
and C(_u) the nonlinear convection operator. The velocities 
and pressure, (u_, p), are sought in XN x Ms, defined by 


(5) X N -- 'ol (') PN, K 3 
(6) = r0(a) n 


with PN,•: = {½ • œ2(•2); ½l•k is a polynomial of degree 
less than or equal to N} and ?-/0x(•2) is the space of all 
square integrable functions vanishing at 0•2 with integrable 
first-order derivatives. œ2 (•2) is the space of all square inte- 
grable functions over •2 and œ• of all the functions in œ2 (f•) 
with zero average. In fact, in each spatial direction and 
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on each spectral element, the velocities are discretized on 
an (N+l)-point Gauss-Lobatto-Legendre (GLL) grid and 
the pressure on an (N-1)-point Gauss-Legendre (GL) grid. 
Consequently, the operator D does not only take a deriva- 
tive, but also an interpolation from the GLL to the GL 
grid into account. 


3 Time discretization 


It is our goal to construct a spectral element solver that 
is third-order accurate in time. Because of considerations 


based on the condition number of the operators (see e.g. 
Ronquist [17]) and on the fact that we want to avoid in- 
definite, nonsymmetric matrices, all terms of the Navier- 
Stokes equations are discretized in time by an implicit 
scheme. except for the nonlinear convection terms. This 
implicit/explicit splitting can be performed in several ways 
and should not degenerate the order of the time scheme. 
Furthermore, the explicit treatment of the nonlinear terms 
leads to a stability condition on the time step. Karniadakis 
et al. [9] proposed to extrapolate the nonlinear terms in 
time. This approach leads to a zero splitting error, but the 
region of absolute stability is rather small (see Couzy [3]). 
We have adopted the operator-integration-factor splitting 
(see Maday et al. [14]) because of its favourable stabil- 
ity characteristics. Timmermans [18] has also used this 
method in the context of spectral element discretizations. 
Equation (3) is written in terms of an integrating factor 


O ((t*.t) ) •(t"t)(-Re-lAu + OTp+ B_b) (7) Qc - , 
which is defined by 


(8) = , 
with I the identity matrix and t* an arbitrary •ed time. 
The convection operator is linearized, with [ = [(t), 
determined by extrapolation of previous approximations 
u • u •-• u TM for some q. The operator-integration- 
factor splitting proceeds by discretizing (7) by an appro- 
priate time scheme. Here, we will apply a backw•d dif- 
ferentiation formula of order s (BDFs), s • 4, with coef- 
ficients ,30, ..,•,, see e.g. Gear [8]. Consequently, we set 
q = s - 1. A BDFs is an A-stable method, implying that 
there is no stability condition on the linear (Stokes) part 
of the Navier-Stokes equations . Equation (7) is then dis- 
cretized as 


• •tn* 1 tn•l-ix , . ß •E + •-i c - - 
i=1 


At 


(9) -- R--•Au'•+• + AtDTp '•+• + AtBb '•+• 
and the continuity equation (2) as -D_u '•+• = 0. The 
next step consists of the evaluation of the terms involving 
the operator-integration factor, which is never constructed 
explicitly. Instead, we define 


n4-1 n4-1--i ß 


(10) (t ,t ) • •+•-• = B•+• Qc B• -i , i = l, .., s, 


where •+• is obtained by solving the following initial 
value problem: 


(11) B O•i = C(U)5i, t •+x-i < t < t •+• 


with initial condition •i(t •+x-i) = 3•+1-i. Problem (11) 
is solved with a stepsize As = At/M; M is the number 
of subcycles and has an important impact on the stability 
of the scheme. In this way, the stepsize for the expensive 
implicit part is decoupled from the cheap explicit part. 
Roughly speaking, the stability condition for the convec- 
tive part is on As and not on At. 


It is important to solve the initial value problem (11) 
by a time-integration scheme with a large stability re- 
gion along the imaginary axis. The fourth-order, explicit 
Runge-Kuta method is such a scheme. Combined with a 
BDFs method, we obtain the BDFs/RK4 scheme, the or- 
der of which is minimum{4, s}. The splitting error does 
not vanish when the problem is steady. 


The stability of the operator-integration-factor-splitting 
method can be investigated by applying the scalar test 
equation 


(12) d• = AlY + A2Y, 
dt 


where Ax and A2 represent the eigenvalues spectra of the 
diffusion and convection operators, respectively. Accord- 
ing to Ronquist [17], we give the following asymptotic es- 
timates for the parameters •1 and A2: 


(13) Ax • -Re-XK•N 4 
.(14) A2 • KxN2i, 


with K• the number of spectral elements in a typical 
space direction. In Figure 1, the maximum allowed time 
step is determined for BDF3/RK4 with As -- At and 
As -- At/2. The parameters •1 and ,k2 are chosen cor- 
responding to K• -- N = 5. The third-order extrapolation 
scheme combined with the BDF3 (see Karniadakis et al. 
[9]) is denoted by BDF3/EX3). It is clear that, at least 
for large Reynolds numbers, the stability condition is on 
As. The operator-integration-factor-splitting schemes are 
more stable than the one based on extrapolation. For small 
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Figure 1: Log-log plot of the maximum allowed time step 
as a function of the Reynolds number; A• = -3125Re -• 
and A2 = 125i, corresponding to K• = 5 and N = 5. 


Reynolds numbers the influence of the implicit BDF causes 
the BDF3/EX3 scheme to become unconditionally stable. 
The effect of performing two subcycles on the stability be- 
comes also less important. The results of this analysis have 
been confirmed by several numerical tests. More details 
can be found in Couzy [3]. 


Construction and precondition- 
ing of the pressure operator 


For reasons of convenience, we write the discrete Navier- 
Stokes equations in the following form 


(15) Hu '•+• - DTp '•+• = Bf '•+•, 
(16) -D_u '•+• -- 0, 


with 


(17) u= At + Re-•A' 
H is the Helmholtz operator and all the explicit terms 
have been included in the new right-hand-side vector f. 
V•% propose two methods to decouple the pressure from 
the velocity field. First, we give the pressure-correction 
method (see Van Kan [19]): 


(18) Hu_* = B f "+• + DTp n 
-- 


(19) $pcSP = -D•* 


(20) •+• = •* + •B-•DTSp. 


Here, u* is an intermediate velocity field that is not neces- 
sarily divergence-free, and 5p is defined by 5p --- pn+l _ pn. 
The pressure operator $pc is given by 


(21) Spc = •tDB-•DT. 
The third step (20) can be seen as the projection of the 
non divergence-free u* on the divergence-free field u n+•. 
The decoupling operation introduces an error in time that 
reduces the order of the scheme to minimum{2, s}. 


Second, we propose a high-order projection method that 
is based on a recent paper by Blair Perot [2], following 


Hu* = Bf •+• 


SbpP n+l -- -D_u* 
_u n+•' = _u* + FDTp n+•, 


(22) 


(23) 
(24) 
with 


(25) 
and 


S•p = DFD z 


(26)F = At B_x ( At (At AB_X).•) • I- •R•AB-X + •Re ' 
Note that neither the evaluation of the pressure operator 
$p•, nor $bp requires expensive inversions (we recall that B 
is a diagonal matrix), as would be the case for the Uzawa 
method. Note also that the decoupling has been applied 
to the space-discrete operators, where boundary conditions 
have already been implemented. This avoids problems re- 
lated to additional boundary conditions for the pressure 
[2]: The pressure operator is consistent. The pressure- 
correction method has a decoupling error proportional 
to Re-•(At) 2 and the projection method to (Re-•At) •, 
which makes these methods only suited for problems with 
moderate to large Reynolds numbers and / or small time 
steps. 


The Helmholtz operator H and the pressure operators 
Sp• and S•p are (semi-)positive definite and symmetric. 
The corresponding problems are therefore solved by a pre- 
conditioned conjugate gradient method (PCGM). As a pre- 
conditioner for the Helmholtz problem, we used the diag- 
onal of H. The preconditioning of the pressure operator is 
more complex. First, we remark that for Re-•At (( 1, the 
matrices Sp• and S•p are almost identical. Their respec- 
tive preconditioners can therefore be built along the same 
lines. We have adopted the strategy of Couzy and Deville 
[4], which consists of the construction of the local pressure 
operator on each spectral element. This elemental matrix 
is "identical" to the original matrix, except that it takes 
neither the interelemental coupling, nor the deformation 
into account, and can be inverted by a fast diagonalization 
technique (see Lynch et al. [11]). 
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5 Parallelization 


The spectral element solver based on the aforementioned 
features has been implemeted on the Cray T3D. The T3D 
is a massively parallel processor machine (MPP). This im- 
plies that the architecture is based on a high number of 
processors, each one of them having its own CPU, mem- 
ory and cache. In the case of the T3D in Lausanne, these 
processors are 256 DEC chips 21064 (better known as DEC 
Alpha chips) with a peak performance of 150 Mfiops each. 
They are connected by a fast, bidirectional 3D torus system 
interconnect network. Interprocessor communication can 
be managed by three so-called programming models. For 
our application we have chosen PVM (parallel virtual ma- 
chine), because it is well-established and portable to other 
machines. The latter is only true to a certain extent: most 
MPP's, like the T3D, support a PVM "dialect", leading to 
non-negligible difficulties when porting a code to another 
computer. 


Basically, parallelizing a spectral element code is the 
same as parallelizing a PCGM for the Helmholtz and pres- 
sure equations. When each spectral element is allocated to 
a processor. communication occurs only at two places (see 
e.g. Fischer and Patera [5]): the computation of scalar 
products (inherent in a PCGM) and the assembly phase 
(also called "direct stiffness", inherent in spectral element 
discretizations) that follows every operator-vector multi- 
plication and takes care of the interface variables. 


Several tests on the T3D showed that the cascade sum 


algorithm (see e.g. Hockney and Jesshope [7]) is the fastest 
way to compute scalar products: Each processor computes 
its own part of the product and after 2 log(P) communi- 
cation steps the global value is known on every processor. 
Two scalar products have to be computed at every itera- 
tion of the PCGM. The value of the first one is (implicitly) 
needed for the second one, so we speak of two synchro- 
nization points. Meurant [15] has proposed to modify the 
PCGM in such a way that three, instead of two, scalar 
products are required. They can, however, be computed 
at the same time. Hence, the number of synchronization 
points is reduced to one and better parallel efficiency can 
be obtained. In most practical situations, the modified 
PCGM shows the same convergence behaviour as the clas- 
sical PCGM and is stable. In some cases, however, we 
encountered divergence. As an example, we mention the 
iterative solution of the Uzawa pressure operator [12] by 
two nested modified PCGM's. Classical PCGM converges 
correctly. 


The parallel efficiency of the assembly phase depends 
highly on its implementation. Without going into the de- 
tails, we confine ourselves to saying that the fastest corn- 


N=7 
N=10 -•-- 
N=13 


.-4.' 
+ 


.................... • ............................ O 


Number of processors = number of spectral elements 


Figure 2: The percentage of cpu time spent in commu- 
nication as a function of the number of spectral elements 
16 _< K-- P_< 128, for N = 7, N = 10, and N- 13. 
Navier-Stokes flow (Re • 30) with analytical solution. 
Pressure correction and subcycling, BDF1/RK4, M - 3. 


munication algorithms are obtained by avoiding blocking 
receives and by following the basic rules of "parallel com- 
mon sense". 


The parallel efficiency is investigated by comparing the 
cpu time spent in communication to the total cpu time. 
To this end, we have solved a Navier-Stokes flow (Re • 
30 / with an analytical solution by the pressure-correction 
method and subcycling (BDF1/RK4, •I - 3) for different 
values of K - P and N. The results are depicted in Fig- 
ure 2. We see that the efficiency increases with N. This 
is not surprising since the number of operations on each 
spectral element (processor) scales like N 4. For N - 10 
and N = 13, the percentage of cpu time for communication 
grows slightly with K. This is mainly due to an increasing 
ratio between the number of interfaces (equals the number 
of messages during the assembly phase) and the number of 
spectral elements, and only partially to a degrading paral- 
lel performance. This drives us to the conclusion that we 
have almost obtained parallel scalability. We investigated 
in more detail the results for N = 10, K = 128: Only 5.6 
percent of the total cpu time has been used for commu- 
nicating the scalar products around the processors; 22.5 
percent was taken by the assembly phase, which can be 
subdivided in 7.5 percent for the corners, 9.1 percent for 
the edges and 5.9 percent for the faces. 


Besides fast communication procedures, single-processor 
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optimization is another issue. It is a well-known problem 
on modern MPP's to get high single-node performances. 
We have tried to solve this problem by writing all the cpu- 
intensive operations in BLAS, a highly optimized package 
of basic linear algebra subroutines. In this way, we have 
obtained a sustained performance (Navier-Stokes compu- 
tations, K = P -- 128) of 1.2 Gfiops (N = ?), 2.6 Gfiops 
(N = 10), up to 6 Gfiops for the (unrealistic) value of 
N = 20. 


The same program has also been tested on the Intel 
Paragon. }Ve took the same test case that led to the re- 
suits of Figure 2 and compared the performances of the 
two MPP's. First, we remarked that PVM on the Paragon 
produces disastrous results. At the time of the tests, PVM 
was implemented as an intermediate layer between the For- 
tran program and the Intel communication routines. The 
function calls to and fro the different layers slow down 
the performance of the program and lead to unacceptable 
cpu times. Therefore, we have resorted to NX, the Intel 
library of communication routines. The results are repre- 
sented in Table 1. We conclude that the single-processor 


Cray T3D Intel Paragon 
N=7, K=16 25s; 35.4% 53s; 21.3% 
N=10, K=16 66s; 18.4% 169s; 9.84% 
N=13, K-16 148s; 10.1% 390s; 6.00% 
N=7, K=32 29s; 41.1% 69s; 25.4% 
N=10, K=32 85s; 21.3% 234s; 12.0% 
N=13, K=32 215s; 12.6% 590s; ?.65% 
N=7, K=64 33s; 49.2% 74s; 29.8% 
N=10. K=64 88s; 26.6% 233s; 14.7% 
N=13, K=64 207s; 15.9% 563s; 9.39% 


Table 1: Cpu time in seconds (per processor), for a problem 
that ran on/• = P processors and percentage of cpu spent 
in communication. Ten time steps At: 0.01 of a Navier- 
Stokes flow Re • 30. Tolerance for convergence is set to 
10 -•ø for the velocities and 10 -s for the pressure. Pressure 
correction method with subcycling, BDF1/RK4, M = 3. 


performance of the T3D is considerably higher than the 
Paragon. The communication seems to be faster on the 
Paragon, but is in fact slightly slower when we take the 
relatively low single-node speed into account. 


6 Simulation of a 3D backward- 


facing-step flow 


The 3D flow over a backward-facing step is a good test 
case for various reasons. First, it exhibits several physical 
phenomena that are not easy to simulate, like recircula- 
tion zones just behind the step and thin boundary layers 
(see Figure 3 for a sketch of the basic flow properties). 
Another factor that complicates the numerical simulation 
is the large aspect ratio of the geometry (1:36). Second, 
experimental data by Armaly et al. [1] is available for a 
1:1.94 expansion ratio. The Reynolds number is based on a 
characteristic velocity defined as the average inlet velocity, 
a characteristic length of two times the height of the inlet 
channel (2-0.5149) and the kinematic viscosity v. Armaly 
et al. predict that the flow is symmetric for all Reynolds 
numbers Re < 8000. Furthermore, away from the two 
sidewalls, the flow is two-dimensional for Re < 400 and 
Re > 6600. For 400 < Re < 6600 three-dimensional effects 


have been observed. Each value of the Reynolds number is 
characterized by a certain length of the recirculation zone. 
In fact, there are three of them; The first one is located 
at the bottom half, directly downstream of the step. The 
second one was measured at the upper wall downstream of 
the expansion for 400 _< Re _< 6600. A third recirculation 
zone occurs at the bottom wall, just downstream of the 
first one, for 1200 _< Re <_ 2300. 


It is our final goal to simulate the backward-facing step 
flow at Re = 648. This situation is well documented in 


[1]. Here, we restrict ourselves to intermediate results at 
Re = 172 and Re = 343. The simulations have been per- 
formed by the BDF1/RK4 subcycling method with M = 3 
and pressure correction for the first part of the transient. 
The discretization consists of 128 spectral elements of de- 
gree 9 x 9 x 9. Once the solution becomes more or less 
stationary, we have changed to the third-order Blair-Perot 
projection method combined with BDF3/RK4 subcycling 
(M = 3). The results for Re = 172 are represented in 
Figures 4 and 5. In Figure 4 the velocity component in the 
flow direction is displayed together with a part of the spec- 
tral element grid. The aspect ratio of the plot has been 
modified to indicate more clearly the flow characteristics. 
Just behind the step we observe a zone with a negative 
velocity component; the recirculation zone. The length of 
this zone corresponds to the value obtained by the exper- 
iments of Armaly et al. [1], and to the two-dimensional 
computations of Kim and Moin [10], see Figure 6. In the 
corner we see a very small eddy, the existence of which is 
not addressed in the aforementioned paper. In Figure 5, 
we display the spanwise velocity component in the plane 
x - 1. We see clearly that three-dimensional phenomena 
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Figure 3: The geometry of the backward-facing step with 
a 1:1.94 expansion ratio. The inflow profile is given as the 
tensor product of a parabola, which is zero at the walls 
and one at the center. and a Blasius boundary-layer profile 
characterized bv 5.99 = 0.50. The size of the geometry 
behind the step is 19. which is large enough to ensure fully 
developed outflow. For the range of Reynolds numbers 
that we consider. two recirculation zones are of interest. 


Their locations are indicated in the plane of symmetry. 
ß 


Figure 4: Contour lines of the streamwise velocity (sym- 
metry plane). The spectral element grid is superimposed. 
The dashed lines just downstream of the step correspond 
to negative velocities. The axis in the vertical direction 
has been blown up by a factor 5. Re = 172. 


Figure 5: Spanwise velocity component in a spanwise 
(transversal) cut plane. x = 1, half-way the recirculation 
zone. The black zones represent negative values of the ve- 
locity: the consecutive shades of gray indicate a velocity 
increase of 0.02 each. The axis in the vertical direction 


has been blown up. Re = 172. 
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Figure 6: Comparison of the length of the first recirculation 
zone as a function of the Reynolds number. 
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Figure 7: Streamwise velocity component. Two cross sec- 
tions: At 5/18 (z = 5) and 9/18 (z = 9, plane of sym- 
metry) of the backward-facing-step geometry. The black 
zones represent negative values of the velocity: the con- 
secutive shades of gray indicate a velocity increase of 0.2 
each. Re = 343. 


are present. despite the predicted two-dimensionality by 
Armalv et al. 


The second simulation took place at Re = 343. From 
Figure 6 we learn that the length of the separation zone still 
corresponds to the experimentally observed value. Figure 
7 suggests that the flow remains two-dimensional: There is 
ahuost no difference between the results at the symmetry 
plane and the cross section at 5/18 of the geometry. We 
also notice that a second recirculation zone is about to 


appear at the upper wall. However. like for the Re = 
172 case. three-dimensional effect are observed. They are 
present in almost the entire flow, but are relatively high 
near the boundary layer and in the recirculation zone. The 
three-dimensionality remains present after grid-refinement, 
by taking a longer inflow channel, and by changing the 
boundary-layer thickness. 


7 Conclusions 


A solution method for the three-dimensional, incompress- 
ible, unsteady Navier-Stokes has been proposed relying on 
a spectral element discretization in space. The time dis- 
cretization and decoupling method for the pressure are 
such that third-order accuracy in time can be obtained. 
The stability has been investigated. Good parallel effi- 


ciency has been demonstrated. A comparison between the 
Cray T3D and the Intel Paragon showed better perfor- 
mance for the former machine. The parallel solver has 
been applied to a three-dimensional flow over a backward- 
facing step. At Re = 172 and at Re = 343, good agreement 
has been obtained with experimental data. although three- 
dimensional phenomena have been observed. The length of 
the recirculation zone corresponds to the results of Armaly 
et al. [1]. The flow remains steady. The numerical simula- 
tions are currently extended to higher Reynolds numbers 
and to complex. unsteady flows. 
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Abstract 


Efficient solution of the Navier-Stokes equations in com- 
plex domains is dependent upon the availability of fast 
solvers for sparse linear systems. For unsteady incompress- 
ible flows, the pressure operator is the leading contributor 
to stiffness. as the characteristic propagation speed is in- 
finite. In the context of operator splitting formulations, 
it is the pressure solve which is the most computationally 
challenging, despite its elliptic origins. We seek to improve 
existing spectral element iterative methods for the pressure 
solve in order to overcome the slow convergence frequently 
observed in the presence of highly refined grids or high- 
aspect ratio elements. The new algorithm incorporates an 
enriched coarse-grid operator which admits anisotropic res- 
olution within elements, and a new parallel solution tech- 
nique which mitigates the additional overhead of the en- 
larged coarse-grid system. 


Key words: spectral element methods, domain decompo- 
sition, sparse matrices, parallel algorithms. 


AMS subject classifications: 65M70, 65Y05, 65M55. 


1 Introduction 


We consider the problems encountered in large-scale spec- 
tral element simulations of unsteady incompressible flows. 
Accurate simulation of even two-dimensional flows can 


require hundreds of thousands of grid points when the 
Reynolds number is on the order of 104. In the spectral el- 
ement method, this elevated resolution can be attained by 
either increasing K, the number of elements, or increas- 
ing N, the order of approximation within each element. 


*Present address: Division of Applied Mathematics, Brown Uni- 
versity, Providence, RI 02912, USA. E-maih pff@cfm. brown.edu 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. (•)1996 Houston 
Journal of Mathematics, University of Houston. 


In practice, it is common to keep the order at a moder- 
ate level, i.e., in the range N = 5 to 15, and increase the 
number of elements to capture increasing physical and ge- 
ometrical complexity. 


We have followed this approach in a number of recent 
high-Reynolds number simulations of start-up flow past a 
cylinder. Fig. la shows an example of the mesh used to 
compute the early evolution of wake vortices at ReD = 
UocD/p = 9500. Fig. lb shows the vortex structure at 
a non-dimensional time of r = tUoc/D = 3.1. The drag 
history, shown in (c), agrees well with the results of [7] 
which were based upon an adaptive vortex method using 
up to 106 elements. The present calculation used a total of 
K = 6112 spectral elements, with the order varying from 
N = 4 at early times to N = 9 at later times. 


At elevated resolutions, the linear system which imposes 
the pressure/divergence-free constraint at each time step 
can become very ill-conditioned and require hundreds to 
thousands of iterations to re'ach convergence. For un- 
steady problems, this computational burden can typically 
be halved by the projection techniques described in [3]. 
However further reductions must come through improve- 
ments to the iterative solver. We focus here upon devel- 
opment of the two-level deflation based iteration scheme 
which was proposed by R0nquist in [16]. For highly refined 
or high-aspect ratio meshes, the convergence rate of this 
preconditioned/deflated conjugate gradient scheme can be 
improved by enriching the coarse-grid space to incorporate 
piecewise (discontinuous) linear or higher-order bases, al- 
beit at a increase in the cost of the repeated coarse-grid 
solves. We show that the coarse-grid solve cost can be mit- 
igated by a new parallel algorithm for repeated solution of 
sparse linear systems. 


The outline of the paper is as follows. In Section 2, we 
review the derivation of the system governing the pressure. 
In Section 3, we reconsider the deflation-based iterative 
scheme used to solve the pressure system, and show the 
advantages of an enriched coarse-grid operator. In Section 
4, we present a parallel algorithm for the coarse-grid solve 
with achieves the minimum possible communication com- 
plexity and has a computational complexity comparable to 
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Figure 1: (a) close-up of K - 6112 spectral element 
mesh for computation of start-up flow past a cylinder at 
Re - 9500 (b) vorticity contours at a convective time of 
t = 3.10 (c) drag coefficient CD vs. non-dimensional time 
(Computation by G.W. Kruse). 


standard œU factorizations. 


2 Navier-Stokes implementation 


We consider spectral-element solution of the incompress- 
ible Navier-Stokes equations: 


0u 


(1) 
V -u = 0 in f•, 


where u is the velocity vector, p the pressure, and Re = 
the Reynolds number based on a characteristic velocity, 
length scale, and kinematic viscosity. 


Spatial discretization is based upon decomposition of the 
computational domain into K spectral elements which are 
locally mapped to [-1, 1] a in IR a. Within each element, 
the geometry, solution. and data are expanded in terms 
of high-order tensor-product polynomial bases in each co- 
ordinate direction. Variational projection operators are 
used to discretize the elliptic equations arising from a semi- 
implicit treatment of (1) and a consistent variational for- 
mulation is used for the pressure/divergence treatment. 
The velocity is represented by Nth-order Lagrange polyno- 
mials on the Gauss-Lobatto-Legendre quadrature points, 
with C o continuity enforced at element interfaces. The 
pressure is represented bv polynomials of degree N- 2 
based upon the Gauss-Legendre quadrature points: inter- 
element continuity of pressure is not enforced. Tempo- 
ral discretization is based upon an operator splitting in 
which the nonlinear convective terms are treated explicitly 
via a characteristic/sub-cycling scheme, and the viscous 
and divergence operators are treated implicitly. The dis- 
cretization leads to the following linear Stokes problem to 
be solved at each time step: 


(2) Htt i - Dir p_ = B f i, i= 1 ..... d 
Di •i -- 0 


Here, H is the discrete equivalent of the Helmholtz opera- 
1 •7 2 1 . tor,{ --•e + •7 }' B is the mass matrix associated with 


the velocity mesh; D = (D•, ..., Da) is the discrete gradi- 
ent operator; and underscore refers to basis coefficients. 
Further details of spectral element discretizations for the 
Navier-Stokes equations may be found in [8]. 


The solution of (2) is simplified by a Stokes oper- 
ator splitting which alecouples the viscous and pres- 
sure/divergence constraint [9]. This splitting leads to the 
solution of a standard Hehnholtz equation for each velocity 
component, while the resulting system for the pressure is 


1 


similar to (2) save that H is replaced by •B. The result- 
ing system can be efficiently treated by formally carrying 
out block Gaussian elimination (Uzawa alecoupling) for p, 


-- 


leading to: 


(3) •:p = g, 
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where 


d 


(4) E = - •OiB-•O•, 
i=l 


and g is the inhomogeneity resulting from the time-split 
treatment of (1). E corresponds to a consistent Poisson 
operator for the pressure and, though symmetric-positive 
definite, is less well conditioned than the Helmholtz prob- 
lems for the velocity components. Consequently, solution 
of (3) dominates the Navier-Stokes solution time. The ad- 
vantage of the Stokes splitting is that no system solves are 
required when applying E, as B is diagonal. 


3 Deflation 


The consistent Poisson problem (3) is solved via a two- 
level iteration scheme developed by R0nquist [16] in which 
a coarse-grid operator is folded into a global conjugate- 
gradient iteration through deflation [11, 121. The coarse 
(subscript c) and fine (subscript f) decomposition is ef- 
fected through a subdomain-motivated prolongation oper- 
ator J E IR mx•, where m = K(N- 1) d is the number of 
pressure degrees-of-freedom, and n is the dimension of the 
coarse-grid approximation space. The column space of the 
prolongation operator J is intended to approximate the 
span of the low eigenmodes of the E system. The pressure 


is then expressed as p = JPc + Pi' leading to an algebraic 
reformulation of the original problem as solvable fine and 
coarse subproblems, 


(5) Efp_f -- g- JE•-ljTg, 
(6) E• = jrg _ jrEpf , 
respectively. Here E I = E - E JE•-Ij•'E, and Ec = 
jTE J. Each application of the fine grid operator requires 
the solution of the relatively small (n x n) system, E•. The 
fine system (5) is solved by conjugate-gradient iteration 
restricted to the complement of span{J}, where span{} 
denotes the column space of the argument. Once pi is es- 
tablished, the coarse-grid problem is solved (directly) for 
p_•., and the procedure is complete. With appropriate ap- 
plication of a local, element-based preconditioner to Ei, 
the condition number of the fine system is significantly re- 
duced relative to the originating E matrix. 


In [16] J was chosen to map n = K element-piecewise- 
constant functions to the m nodes of the underlying spec- 
tral element discretization, with • therefore representing 
the average pressure within each element. It was shown 
that for a one-dimensional spectral element discretization, 


the resultant fine system has a condition number of unity 
when coupled with a local (block Jacobi) spectral precon- 
ditioner, Ej. In addition, it was observed that the it- 
eration count to solve (5) is linearly dependent upon A r 
and independent of K for highly regular two-dimensional 
discretizations. However, Couzy [2] observed that there is 
some K dependence of the convergence rate, particularly in 
conjunction with non-unit aspect ratio elements. We have 
also observed convergence rate degradation in the presence 
of extreme refinement or high-aspect ratio elements. 


It was suggested in [2, 16] that the source of the diffi- 
culty lies with the use of block-Jacobi preconditioning. It 
is well known (e.g., [17]) that the preconditioner should 
have some subdomain overlap in order to obtain order- 
independent convergence and block-Jacobi does not pro- 
vide this. Unfortunately, the/2 2 pressure operator (4) does 
not readily admit construction of a preconditioner with 
overlap in the spectral element case. Couzy [2] suggests to 
improve upon the current formulation by imposing Neu- 
mann velocity boundary conditions at the element inter- 
faces when generating the local preconditioner rather than 
zero-Dirichlet as described in [16]. An alternative, which 
we pursue here, and which is not exclusive of the Neumann- 
derived boundary conditions (or overlapping methods), is 
to increase inter-element coupling by increasing the num- 
ber of modes which are computed as part of the coarse- 
grid solution. This of course increases the coarse-grid solve 
costs, but these can be mitigated with appropriate sparse 
matrix techniques. We develop a fast parallel direct solver 
for the coarse problem in the next section. 


The coarse-grid space is enriched by enlarging the col- 
umn space of the prolongation operator, J, to include 
piecewise linear or higher-order functions within each spec- 
tral element. In our variational formulation of the Stokes 


problem, inter-element continuity of the pressure is not 
strictly enforced. Therefore, it is admissible to use any 
element-piecewise discontinuous bases for prolongation, re- 
suiting in a block diagonal structure for J: 


J1 
J2 


J = 


JK 


x 1 block associated with el- Here, each Jk is an (N- 1) a 
ement k, and l is the number of modes represented within 
each element. Presently, we take the basis to be a tensor 
product of the first •/• polynomial modes in each spatial 
direction. Note that the relaxation of strict continuity im- 
plies that we need not have the same coarse-grid approx- 
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imation within each element. It is also possible to choose 
an anisotropic basis, e.g., for elements having high-aspect 
ratios. We have built this flexibility into our code and will 
investigate its potential the future. Here we only consider 
a uniformly enriched coarse-grid space. 


As noted in [10, 12, 16] effective implementation of de- 
fiation requires suppression of spurious modes in the null 
space of E i during the conjugate gradient iteration. This 
is particularly true if the preconditioner does not share the 
same null space as Ei [10]. In [4], we demonstrated the 
advantages of replacing E7 with a block preconditioner, 
E5, based upon finite element solution of a local Poisson 
problem within each of the spectral elements. Whereas 
it is relatively easy to construct a (spectral based) block- 
Jacobi preconditioner, ET, sharing the same null space as 
El. the same is not true for EF, as it is based upon a 
different discretization. However, the necessary symmetry 
and null space conditions can be satisfied by defining a 
new preconditioner, E• • _= PE•P T, where P = pT is 
the orthogonal projection matrix given by 


(7) p = /•.•_ j(jTj)-•jT 


and I,• is the m x m identity matrix. Null space control in 
the preconditioned conjugate gradient algorithm is thereby 
assured through the application of E• • to the residual vec- 
tor in the preconditioning step. Note that the block struc- 
ture of J ensures that multiplication of a vector by P is 
a strictly local operation. The application of P is further 
simplified if the columns of J are orthonormalized such 
that jT j = L•. 


Results for the Enriched Coarse-Grid Space: 


We demonstrate the effectiveness of the enriched coarse- 


grid for two model problems: unsteady Stokes flow in a 
square box, and start-up flow past a cylinder. 


The first problem is identical to the unsteady Stokes 
flow problem considered in [16], save that the present im- 
plementation employs finite element preconditioning as de- 
scribed in [4]. The two-dimensional problem is specified on 
f• - [-1, 1] 2 with homogeneous velocity boundary condi- 
tions. viscosity p = 0.1, and a body force f = (-0.6y, 0) T. 
The discretization consists of K square elements, each of 
order N = 7, and a time step At -- 0.1. 


Table 1 shows the number of preconditioned conjugate 
gradient steps required for the first time step for several 
values of I and K. The corresponding dimension of the 
original system, E, and the coarse-grid system, Ec, are 
also given. The heading E indicates the number of itera- 
tions required to reduce the initial residual of (3) by 10•; 
the heading Ei indicates the number of iterations required 


! K EI E dim{E} dim(E½} 
1 4 20 20 144 4 


1 16 30 32 576 16 


1 64 32 37 2304 64 


1 256 32 40 9216 256 


1 1024 32 42 36864 1024 


4 4 18 '18 144 16 
4 16 26 26 576 64 


4 64 28 29 2304 256 


4 256 28 30 9216 1024 


4 1024 27 29 36864 4096 


9 4 15 15 144 36 


9 16 22 22 576 144 


9 64 25 25 2304 576 


9 256 26 24 9216 2304 


9 1024 26 22 36864 9216 


Table 1: Iteration count for unsteady Stokes flow 


to reduce the initial residual of (5) by the same magni- 
tude. Note that, while order independent convergence is 
obtained when for the E i system when 1 = 1, the same is 
not true for the original E system. Although the norm of 
the initial residual, (_gTB-l_g)«, is the same for all cases, 
the norm for the right-hand side of (5) actually increases 
with K for the case 1 - 1. 


We next consider solution of the Navier-Stokes equa- 
tions for flow past a cylinder in the half-domain • = 
[-10,28] x [0, 15]. A cylinder of diameter D - 1 is centered 
at the origin. The Reynolds number is Re -- DU/• -- 80, 
where (U, 0) is the free-stream velocity taken as the ini- 
tial condition and inflow boundary condition at x = -10. 
Symmetry boundary conditions are imposed at y - 0 and 
y = 15 with Neumann-velocity (outflow) boundary condi- 
tions at x = 28. The free stream velocity is U = 1 and 
the time step is At ---- .025. The base mesh (K = 93) is 
shown in Fig. 2. The K = 372 and K = 1488 meshes are 
obtained through successive quarterings of the elements in 
the base configuration. 


Table 2 shows the number of iterations required to re- 
duce the residual of the E i and E systems by five orders of 
magnitude for the first time step. Again, the norm of the 
initial residual of the E system (3) is independent of K. 
In this case, K-independence convergence rates are not ob- 
tained for any choice of l, though the reduction in iteration 
count for the K - 1488, 1 = 4, case is clearly significant. 
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K Ef E dim(E} dim(Ec} 
93 115 107 3348 93 


372 185 184 13392 372 


1488 265 279 53568 1488 


93 82 69 3348 372 


372 116 102 13392 1488 


1488 150 138 53568 5952 


93 63 51 3348 837 


372 84 73 13392 3348 


1488 108 89 53568 13392 


Table 2: Iteration count for cylinder flow 


4 Parallel coarse-grid solve 


We focus here on fast solvers for the coarse-grid problem. 
In practice, the coarse-grid system derived from piecewise 
constant prolongation operators is sufficiently small so that 
direct inversion of the system leads to an efficient parallel 
solution strategy based upon matrix-vector multiplication 
(e.g., [4]). However, the enriched coarse-grid space out- 
lined above leads to significantly larger system and direct 
inversion is no longer viable. To circumvent this, we have 
developed a new solution approach which retains the par- 
allelism of matrix-vector products, yet avoids the O(n 2) 
costs of inversion. In the following, our primary emphasis 
will be on system solution rather than factorization, as the 
latter is amortized over many time steps and iterations. 
For notational convenience, we take the coarse grid oper- 
ator to be the n x n symmetric positive definite matrix 
denoted by A, and consider the problem of solving Ax_: b 
on a p-processor distributed memory computer using a sin- 
gle program, multiple data (SPMD) programming model 
with message-passing. 


To understand the relevant software design parameters, 
it is important to recognize that the coarse-grid problem is 
relatively fine-grained, i.e., the dimension of the problem, 
n, often scales as a small multiple ofp. Interprocessor mes- 
sages are therefore typically small, implying that startup 


Figure 2: Spectral element mesh (K - 93) for Problem 2 


(or latency) costs may dominate the communication times. 
Consequently, a potentially important design metric is the 
required number of messages, rather than the operation 
count or total amount of inter-processor data traffic (band- 
width). If the contention-free time to communicate a mes- 
sage of length w words is given by tc(w) - a +/3w, we can 
characterize a message as "short" whenever w _< w2, where 
w2 -= a/• is the message length corresponding to a trans- 
mission time of twice the lowest possible value. Typically, 
w2 -• 100 - 500, for 32-bit words. 


It is important to note that the elliptic nature of the 
originating problem implies that each component of the 
right-hand side will have a non-trivial impact on the solu- 
tion. If the right-hand side vector is distributed, a lower 
bound on the number of message cycles to invoke each solve 
is therefore log 2 p. Algorithms achieving this bound can be 
considered optimal in the fine-grained, short message limit. 


For the development of the parallel solution scheme, we 
assume that vectors and matrix columns are distributed in 


the same fashion as spectral elements, i.e., for each entry in 
a column vector, there is a corresponding spectral element. 
We further assume that A is sparse; each non-zero in a 
given row is associated with an element adjacent to the 
element corresponding to that row. This holds only for the 
piecewise constant prolongation operator (l = 1, n = K) of 
the previous section. The strategy for higher-order coarse 
grid operators (l > 1) is the same - each degree-of-freedom 
in the following discussion is simply replaced by a clique 
of/fully coupled degrees-of-freedom. 


It is well known (e.g., [6]) that parallel solution of the 
coarse grid problem is hampered by the inherent sequen- 
tiality of the forward and backward substitution phases 
of standard LU (or LL •') factorizations. If n (and conse- 
quently, p) is sufficiently small, it is feasible to store, factor, 
and solve the system redundantly on each processor. This 
often practiced approach has the advantage that it is easy 
to implement and requires a per-solve communication time 
of only (a log 2 p + •n) to gather a copy of _b onto each pro- 
cessor. If the local direct solution strategy is based upon 
standard banded solvers, the computational complexity is 
4ns operations per solve, for a matrix of bandwidth s. 


For large numbers of processors and relatively small sys- 
tems (e.g., p > 128, n < 5000), we have shown that com- 
puting the full inverse of A can be far more effective than 
solving the system redundantly [4]. By distributing each 
column of A-1 in the same manner as x_ and b_, the solution 
can be computed as a parallel matrix-vector product, 


(8) x = A-•b , 


once b has been gathered onto each processor. The com- 
munication complexity is identical to the previous case. 
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However, the complexity for the computation of the inner- 
products of the rows of A -1 with b is now 2n2/p; paral- 
lelism has been introduced to this phase of the solution. 
Whenever p > n/2s, the full inverse approach will be su- 
perior to redundant banded factorization. 


Unfortunately, memory limitations restrict the above 
techniques to matrices of order n less than a few thou- 
sand. Ideally, one would like a solution scheme which re- 
tains the low O(logp) communication cost of the previ- 
ous approaches, has the full parallelism of matrix-vector 
products, yet has the sparsity of LU factorization. The 
following construction attains all of these goals. 


Let X - (x I xo- ... x n) be a square matrix with columns 
satisfying 


(9) dAj = eij , 


where 50 is the Kronecker delta. Then XXTAx = XXTb 
is the A-orthogonal projection of x onto IR n, and XX T 
constitutes a factorization of A -1. If each x i is distributed 
in the same manner as b, the two-step computation of 


(10) x = xXT_b 


has the desired communication complexity. In the first 
step. the vector c - XTb is computed by locally form- 
ing n partial inner-products on each processor, followed 
by a logo_ p gather-scatter of an n-vector to sum and redis- 
tribute the entries of c. Assuming that X is a full matrix, 
the computational complexity for this step is 2n2/p. If 
an interleaved sum-and-redistribute operation is used, the 
communication complexity is (a logo- p +/•n log 2 p) to gen- 
erate an entire copy of c on each processor. In the second 
step, the computation of x = Xc requires 2no-/p operations 
and no communication. 


The overall complexity can be significantly reduced if we 
can choose a (quasi-) sparse basis for the columns of X. 
By quasi-sparse, we imply that X will have O(n*) entries, 
with 1 < '• < 2, as opposed to strictly O(n) entries as is 
generally associated with the definition of a sparse matrix. 
We will nonetheless refer to X as being simply "sparse." 
The following geometric arguments show that it is always 
possible to generate a sparse factor X if A is sparse. 


Let &-i and &__j be the ith and jth column of of the identity 
matrix, I,,, and Af/, the neighborhood of i, be the set of 
indices corresponding to columns with non-zero entries in 
row i of A. Then, 


(11) &_•'A&_ i = 0 V j ½ .Afi 


Geometrically, this corresponds to the situation shown in 
Fig. 3a. It is clear that at least n/max(#Af/) of the unit 


vectors are A-conjugate to one another, where #Af/ de- 
notes the cardinality of Af/. The generation of a sparse ba- 
sis for X starts with finding a maximal (or near-maximal) 
set of kl A-conjugate unit vectors and normalizing them 
appropriately. The first kl columns of X will have only 
one non-zero entry. 


Additional entries in X are generated by Gram-Schmidt 
orthogonalization. Let X• = (X•_ix•) denote the 
n x k matrix with columns (xi xo-...x•), and let V 
(vlvo-...vn) be an appropriate permutation of the iden- 
tity matrix. Then the procedure: 


for i -- 1,...,n: 


W :-- V i -- X i_ 1 Xi T- 1 Avi 


Xi :-- (Xi-1 •i) 
end for 


ensures that X is the desired factor of A -•. For i < k• the 
projection Xi_ixiT_•AEi will be void and --•i will simply be 
a multiple ofvi. As k increases beyond kl, Xk will begin to 


(a) 


(b) 


Figure 3: (a) Geometric support (shaded) of orthogonal 
vectors _&j and A_& i (b) Support of spectral element sepa- 
rator set. 
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fill in. At the cost of additional communication overhead, 
a more stable modified Gram-Schmidt procedure may re- 
place the projection step, w__ := vi - Xi-iX•_iA_• i, given 
above. 


Following, e.g., [5, 15], an efficient procedure for se- 
lecting the permutation matrix, V, can be developed by 
defining separators which recursively divide the domain (or 
graph) associated with A into nearly equal subdomains. 
The first such separator is shown in Fig. 3b. Since the 
stencil for A does not cross the separator, it is clear that 
every unit vector ii associated with the left half of the 
domain in Fig. 3b is A-conjugate to every unit vector •_j 
associated with the right half. If V is arranged such that 
vectors associated with the left half of the domain are or- 


dered first, vectors associated with the right half second, 
and vectors associated with separator last, then the above 
Gram-Schmidt procedure will generate a matrix X with 
worst-case fill depicted by Fig. 4a. (X is shown here with 
the rows reordered according to the permutation used for 
the columns of V.) The procedure can be repeated to or- 
der the vectors within each subdomain, giving rise to the 
structure shown in Fig. 4b. Repeating the procedure re- 
cursively will lead to a total storage bounded by 3nV/-• for 
a • x • array of spectral elements. 


From (10), it is clear that the computational complex- 
ity of each solve is proportional to the amount of fill 
in the factor X. Depending on the spectral element- 
to-processor distribution, we can expect a computational 
complexity of O(n-•/p) for the domain shown in Fig. 3b 
- a clear gain over the O(n2/p) cost incurred by the ma- 
trix inverse approach (8). Moreover, the communication 
cost can be shown to be only (alog2p + O(v/-•)•log2p). 
Similar arguments in three-dimensions lead to computa- 
tional and communication complexities of O(nõ/p) and 
( a log 2 p+O ( n '} ) • log 2 p ), respectively. Note t hat for a typ- 
ical value of a/• 2 100, communication bandwidth does 
not play a role in the two-dimensional case until n _• 104; 
the communication cost in the solution of smaller systems 
is dominated by latency. 


For more complex two- or three-dimensional meshes, 
separator sets can be found with standard graph-splitting 
techniques, e.g., recurslye coordinate bisection, or one of 
the many variants of recursive spectral bisection (RSB). 
In this application, the cost of finding a good separator is 
amortized over numerous solves and the per-solve cost is a 
super-linear function of the size of the separators. Conse- 
quently, high-quality bisection algorithms are of interest. 


We have implemented a parallel version of RSB [15] to 
order the separator sets and, ultimately, the columns of V. 
In RSB, the initial partition is derived from the second low- 
est eigenmode (the Fiedler vector) of the graph-Laplacian 


X • 


X • 


(b) 


Figure 4: (a) zero/fill structure for X resulting from or- 
dering suggested by Fig. ab. (b) zero/fill structure after 
second round of recursion. 


of A. The graph-Laplacian is defined as the matrix œ which 
has the same sparsity pattern as A, with each off-diagonal 
entry in œ having value -1 and each diagonal entry equal 
to the number of off-diagonal entries. The domain is par- 
titioned according to values above and below the median 
entry in the Fiedler vector. Once this partition is estab- 
lished, the procedure is repeated on each subdomain. 


To effect a tripartite decomposition of the domain into a 
separator and two disjoint subdomains, it is useful to base 
RSB on the dual of the coarse-grid operator, i.e., the graph- 
Laplacian of the spectral element vertices rather than the 
element centroids. A spectral element is then deemed to 
be in the separator set if the Fiedler vector entries corre- 
sponding to the element's vertices straddle the median. 


The graph-Laplacian satisfies a zero row-sum condition 
and is symmetric semi-positive definite. Computation of 
the low eigenmodes of œ is accomplished via standard 
Lanczos/conjugate-gradients techniques (e.g., [131), and 
hence requires only sparse matrix-vector product software 
(e.g., [14]). After each separator set is found, œ can be 
updated by zeroing matrix entries which correspond to 
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deleted entries in the original graph. and adjusting the 
diagonal entries accordingly. Consequently. the parallel 
gather-scatter index sets required for matrix-vector prod- 
ucts need not be changed with each round of recursion. 
We typically recur until the minimum number of elements 
in a subdomain is equal to four. and then use a greedy 
algorithm to color the remaining entries. 


The approach outlined above for generation of sparse 
factorizations of A -• is strongly linked to nested-dissection 
factorizations of sparse matrices [5] and to the minimal 
factor algorithms suggested by [1]. It can readily be 
shown that there exists a row permutation matrix R such 
that RX is lower triangular. Then, (RX)(XrR T) is the 
Cholesky factorization of RA- • R T. Strikingly. this implies 
that while A -• is full. there exists a symmetric permuta- 
tion of A -• for which its Cholesky factorization is (quasi-) 
sparse. assuming that A was sparse initially. A trivial ex- 
ample of this can be seen for a symmetric-positive def- 
inite tridiagonal matrix. T. The Cholesky factorization 
of T = LL • is sparse. but the inverse of L is full lower- 
triangular. However, if one first permutes T with a nested 
dissection ordering. the Cholesky factor of the permuted 
matrix will have an inverse having only n log 2 n non-zeros. 


Results for the Sparse Factorization: 


We have implemented the RSB routine in parallel and 
used it to generate separator sets for several two- and three- 
dimensional meshes. A close-up of a separator set gener- 
ated after four rounds of RSB is shown in Fig. 5. With 
piecewise-constant prolongation (l = 1). the coarse grid di- 
mension for this problem is n = K = 1692. The number of 
non-zeros in X is 118921. which is of the same order as the 


predicted bound of 3n • = 208796. For larger values of l... 
the storage and per-solve operation count scales as/2, while 
the comnmnication bandwidth cost scales as 1. It is clear 


that as I increases. less compute-intensive algorithms such 
as Choleski factorizations based on nested-dissection order- 


ings (e.g.. [1]) will be of interest. since the operation count 
will begin to dominate the communication costs. However, 
we have found that even the full n 2 algorithm, (8), is of 
interest for n on the order of a few thousand and p on the 
order of a few hundred. We therefore expect the n • algo- 
rithm presented here to provide significant gains for larger 
II. 


Preliminary results show the merits and potential limi- 
tations of the XX T factorization in conjunction with the 
enriched coarse grid operator. We compute start-up flow 
past a cylinder at Re = 5000 using the mesh depicted in 
Fig. 5. The cylinder diameter and free-stream velocity 
are both unity, and the time step is At = 0.001. Fig. 6a 
.,bows the number of iterations required for the E l system 


(5) for piece,vise constant, linear. and quadratic coarse grid 
spaces. While there is a clear reduction as 1 increases. the 
CPU time on a single-processor SGI Onyx decreases only 
up to 1 = 4 for this problem, as can be seen in Fig. 6b. 


5 Conclusions 


We have developed a flexible deflation based iterative al- 
gorithm to compute the pressure for large two- and three- 
dimensional spectral element discretizations of the incom- 
pressible Navier-Stokes equations. The method provides 
significant reduction in iteration count for certain classes 
of problems, and admits the possibility of tailoring the 
portion of the solution to be computed directly in order 
to improve the overall efficiencv of the solver. A critical 
component to the solution of this problem. and many other 
similar multi-level solvers, is a fast direct method for solv- 


ing systems of equations in parallel. The approach devel- 
oped here achieves the minimum possible time complexity 
in the message-latency dominated limit. 
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Parallel Spectral Fourier Algorkhm for Fluid Dynamics Problems 


L. Vozovoi* M. Israeli* A. Averbuch t 


Abstract 


We present a high-order parallel algorithm which requires 
only the minimum inter-processor communication dictated 
by the physical nature of the problem at hand. This algo- 
rithm is applied to the incompressible Navier-Stokes equa- 
tions. The parallelization is achieved by domain decompo- 
sition. 


A novel feature of the present approach is that the spa- 
tial discretization in subdomains is performed using the 
Fourier method. To avoid the Gibbs phenomenon, the 
global functions are decomposed into smooth local pieces. 
Then the Fourier method is applied on extended local sub- 
domains •vith spectral accuracy. 


The continuity conditions on the interfaces are enforced 
by adding the homogeneous solutions. Such solutions often 
have fast decay properties which can be utilized to min- 
imize interprocessor communication. In effect, an over- 
whelming part of the computation is performed indepen- 
dently in subdomains (processors) or using only local com- 
munication. 


The present method allows the treatment of problems in 
various complex geometries by the mapping of curvilinear 
domains into simpler (rectangular or circular) regions. The 
operator with non constant coefficients, obtained in the 
transformed domain, is preconditioned by a (piece-wise) 
constant coefficient operator, easily inverted in the trans- 
formed domain. The problem is then solved with spectral 
accuracy by (a rapidly convergent) conjugate gradient it- 
eration. The capability of this algorithm is illustrated with 
results from two problems: a direct numerical simulation 
of turbulence in a two-dimensional periodic domain and 
a computation of convective motion in a vertical channel 
with wavy boundaries. 


Key words: Local Fourier Basis, spectral preconditioner, 


*Faculty of Computer Science, Technion, Haifa 32000, Israel 
tSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 


69978, Israel 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. ¸1996 Houston 
Journal of Mathematics, University of Houston. 


complex geometries, turbulence simulation. 


AMS subject classifications: 65P05, 35P05, 35K25. 


1 Introduction 


Direct numerical simulation of turbulent flows at high Rey- 
nolds number Re • 10 6 - 10 9 requires considerable compu- 
tational resources due to the extreme space and time res- 
olution (the computational requirements scales like Re3). 
High order methods, in particular spectral methods, are 
preferred for turbulence computation since they converge 
rapidly as the number of degrees of freedom grows. As 
a consequence, for moderate to high accuracy a smaller 
number of degrees of freedom may be needed, especially 
in multi-dimensional problems. It has been also proven 
that high order methods are beneficial for the long term 
integration necessary to attain the asymptotic turbulent 
regime. 


Efficient large scale scientific computing can be realized 
only on massively parallel computers. However, the global 
nature of spectral methods makes these methods difficult 
to parallelize. Current parallel spectral algorithms require 
massive data transfers (for example shuffle based transpose 
in parallel Fourier algorithms) and global communication 
with the concomitant communication and synchronization 
bottlenecks. 


In [1, 2, 3] a low communication multi-domain approach 
is developed which uses the Fourier method for the space 
discretization in subdomains. Since the truncated Fourier 


series of a non-periodic function exhibits O(1) spurious os- 
cillations near the boundaries and converges slowly inside 
the region (the Gibbs phenomenon), the direct application 
of this method to non-periodic local problems would result 
in a low order algorithm. To avoid the Gibbs phenomenon, 
the decomposition of functions into smooth local pieces is 
performed using a collection of overlapping window func- 
tions. 


The particular local solutions, being constructed inde- 
pendently (with some "convenient" boundary conditions) 
have jumps on the interfaces. In the correction step these 
jumps are removed with the aid of properly weighted ho- 
mogeneous solutions. The "localization" property of the 
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elliptic operator dictates that these solutions decay rapidly 
away from the interfaces. This permits the matching of the 
local solutions at each interface independently of jumps on 
the other interfaces. In effect the local communication be- 


tween the neighboring processors (subdomains) is mostly 
required. 


The above Multidomain Local Fourier (MDLF) method 
was applied efficiently to problems in periodic rectangular 
domains decomposed into strips or cells. In these cases the 
solution of a two-dimensional problem is reduced to the so- 
lution a collection of uncoupled one-dimensional problems 
for the Fourier coefficients with the local matching on the 
interfaces. The computational algorithm is outlined in sec- 
tion 2. In this paper we present new results obtained by 
the MDLF method for the computation of two-dimensional 
turbulence in periodic rectangular domains (section 3). 


We also develop the previous MDLF approach for treat- 
ing irregular geometries (section 4). In the generalized 
algorithm the irregular region is transformed first into the 
rectangle. Then the resultant differential equations with 
non-constant coefficients are solved by a preconditioned 
iteration method. The piece-wise constant coefficient op- 
erator is used in the capacity of the preconditioner. The 
solution of the corresponding constant coefficient problems 
in each subdomain is performed using the MDLF method. 
The method is illustrated by solving the problem of natural 
convection in a vertical channel with sinusoidal boundaries, 
heated from the side (section 5). 


Multidomain local Fourier algo- 
rithm 


ß Formulation of the problem 


An important application of the present Multidomain 
Local Fourier (MDLF) method is the solution of the 
incompressible Navier-Stokes equations. 


Governing Equations: 


Ov 


(1) • = Re-•V'2v + N(v) - VII + F in fl. 
Here fi C R d, d = 2, a, v(x, t) = (u, v, w) is the veloc- 
ity. subject to the incompressibility constraint 


(2) V. v=0 in •, 


H is the total pressure, F is the forcing term, and Re is 
the Reynolds number. The nonlinear term is written 
in the rotational form 


N(v) = v x (v x v). 


Computational Domain and Boundary Conditions We 
consider first the rectangular domain 9 = {0 _< x < 
2•r, 0 _< y < 2•r} with periodic boundary conditions in 
both directions. The case of irregular domains with 
Dirichlet boundary conditions is addressed below. 


The numerical solution of the problem (1)-(3) with 
specified boundary conditions requires discretization 
in both time and space. 


ß Discretization in time 


The discretization in time is performed via the 3d- 
order splitting algorithm of [4]: 


2 2 
•' -- Zq=00•q vn--q 


(4) At = Y] JqN(v•-q)' 
q----O 


(5) V -- -- . 


At ' At 


^ 


(6) ^zo v"+• - •z = Re_•V•.vn+• ' 
At 


It consists of an explicit advection step (4), a global 
pressure adjustment for incompressibility (5) and an 
implicit viscous step (6). 
Semi-implicit schemes of this type are associated with 
much less severe restriction on the time step, O(N-•), 
than fully explicit schemes, O(N-•'), where 2•r/N is 
the mesh size. 


As a result of the splitting procedure, a time- 
dependent problem is reduced to the solution (for each 
time step) of a sequence of two types canonical elliptic 
equations: 
the modified Helmholtz equation 


(7) V•'u - •u = f(•, y), 


and of the Poisson equation 


(8) V•'• = g(•, y), 


The parameter h in (7) is related to the time-stepping 
increment, h 


Domain decomposition. Discretization in space. 


First we describe briefly the algorithm as applied to 
Eq.(7) in l-D, then we show the extension onto 2-D 
case. The detailed description can be found in [1, 2, 3]. 
Algorithm in 1-D 







Parallel Spectral Fourier Algorithm 607' 


1. Divide the computational interval [0, L] into P 
subdomains, I = L/P, and discretize the local 
problems on uniform grids of collocation points 
(with different resolution in each subdomain, if 
desired). 


2. Decompose the source function f(x) into smooth 
local pieces f(n) (x) using a collection of overlap- 
ping window functions. Each of these functions 
is equal to one inside a corresponding subdomain 
and smoothly decay outwards over the distance 
2e from both sides. 


3. Integrate the local problems on extended intervals 
l + 2e with smooth source functions in the right 
hand side. The values of the computed partic- 
ular solutions U(p © will have jumps through the 
interfaces. 


4. Correct solutions in each subdomain in order to en- 


force the continuity of u(x) and u • (x) at the inter- 
faces (then the higher derivatives will be matched 
automatically due to Eq. (7) It can be done by 
adding the properly weighted homogeneous solu- 
tions 


P 


(9) u -- U 


These solutions are two exponential functions 


h © = e -•x h? ) = e -•(•n-x), 0 < x < ln, 
which decay into a subdomain. Since A >> i for 
small enough time step, the influence of remote 
interfaces on the coeffcients An, Bn for each par- 
ticular n is negligible. Therefore, these coeff- 
cients can be found in terms of jumps at one 
corresponding interface. This requires only the 
local communication between neighboring sub- 
domains. 


The error caused by the use of an approximate lo- 
cal matching instead of the exact global matching 
is z = O(e-•), independent of the resolution N. 
For example, for P - 4, 1 = 2•r/P • 1.6, Re = 1 
and At = 0.04 we have A •, 10. The error will 


be then e • 10 -7 which is quite satisfactory in 
most applications. Note that the above restric- 
tion on the size At due to the local matching 
might be less severe than that imposed by the use 
of an explicit scheme in time. In the last case the 
stability constraint depends on the grid size like 
AtRe -• _• h2/2 where h = 2•r/N. For a realis- 
tic resolution, e.g. N = 128, and the Reynolds 


number Re = 1 we have h = 2•r/N • 0.05, 
At < 0.0013. In such a case the use of a semi- 


implicit scheme, combined with the local match- 
ing procedure, is still advantageous over explicit 
schemes. 


Algorithm in 2-D. Decomposition into Strips 


1. Decompose the computational rectangular region 
into parallel strips: • Un•l•n . 


2. Apply the FFT in the periodic direction y (along 
the strips) to obtain a collection of uncoupled 1-D 
ODEs for the Fourier coefficients •(x): 


d• n) ,• ̂ (n)= (10) dx • •u• (x) in •., 
where k = -• • 2 = A2 k2 2 ,'"', 2 , A• + for the 
modified Helmholtz equation and A• = k 2 for the 
Poisson equation. 


3. Solve the problems (10) by the previo• 1-D al- 
gorithm. The modified Helmholtz equation is 
solved using the local matching procedure on the 
interfaces. In the c•e of the Poisson equation, 
A = 0, A• = k 2, the global matching is required 
only for the long waves, k • k., whereas the 
short waves, k • k., can be treated by using lo- 
cal matching on the interfaces. The cut-off wave 
number k. should be chosen in accordance with 
the prescribed accuracy. 
In order to access the potential of this approach 
we present the following numerical t•ts. We 
solve the 2-D Poisson equation with the source 
function f(x,y) corresponding to the solution 


M 


= + where 
the ph•es •m are chosen randomly. Table 1 
gives the maximum relative error z• = •u- 
U•x•max/Umax for several numbers of globally 
matched harmonics, k (the error of the "full" 
global matching in this c•e is appro•mately 
z • 10-x•). 


5.4(-3) 5.7(-4) 6.0(-5) 6.3(-6) 


Table 1. The maximum numerical error when us- 


ing the global matching for the first k harmonics; 
P =8, N• =64 x P, Ny =64 


•Ve can see that using the global matching, for 
example, only for the first 9 long waves, while 
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treating locally the rest 21 shorter waves, we 
guarantee the accuracy ek •_ 10 -5. The rela- 
tive amount of globally matched waves, 2k*/Ny, 
becomes smaller as the resolution in the peri- 
odic direction increases. Note that the accuracy 
of the local matching relies on the localization 
properties of the boundary Green's functions of 
the Helmholtz operator. Therefore, the results 
in Table 1 depend only slightly on the particular 
form of the source function f(x, y). 
Decomposition into Cells. 


The algorithm in this case is more complicated 
than the previous one. For details see [3]. 


Parallel test . 


The parallel test is performed on a collection 
of Digital Alpha workstations (Alpha-farm), 128 
MB/unit. with Giga-switch and PVM software 
package. The computational domain is a 3-D pe- 
riodic box, decomposed into "slabs" (P -- 2-10). 
For the resolution 1283 the effect of using the 
local-global matching, when solving the Poisson 
equation, results in 2-3 times reduction of the ex- 
ecutable time as compared to the "fully" global 
matching. 
When solving the complete Navier-Stokes Eqs. 
(1)-(3) the implicit viscous step is always com- 
puted using the local matching. The use of the 
global-local matching in the pressure step gives 
about 15 - 20% saving in the CPU time as com- 
pared to the global matching. This effect is ex- 
pected to be even more pronounced for a larger 
number of processors. Detailed discussion of the 
parallel performance is given in [9]. 


Test of accuracy . 


The following example testifies the accuracy of 
the MDLF algorithm. We consider the exact so- 
lution of Eqs. (1)-(a) 


--- • Vy -- • v• Oy Ox 


y)= 


with Re = 10 •,• = 5, c = 0.075 and the forc- 
ing function f(x, y, t) computed accordingly (this 
solution was suggested in [5] to demonstrate the 
capability of the multilevel Nonlinear Galerkin 
method for the long-time numerical integration). 


The evolution of the maximum relative error in 


time is shown in Fig. 1; dt - 5- 10 -3 and .10 -4, 
the strip decomposition with P - 4 is applied, 
the space resolution is 64 x 64 . The error re- 
mains small on a large time scale and it decreases 
as the size of the time step At becomes smaller 
(the spatial error for this example is O(10 -11 ) 
can be found with g(t) - const (t)). 
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Figure 1: Evolution of the relative maximum error in time 
for At = 5. 10 -3 (upper plot) and At = 5 ß 10 -4 (lower 
plot). 


3 Parallel simulation of 2-D tur- 


bulence 


In this section we present new results on numerical sim- 
ulation of decaying turbulence (without forcing term) in 
the periodic box using the above algorithm. The initial 
velocity field in the Fourier domain is chosen as in [6]: 







Parallel Spectral Fourier Algorithm 609 


90 


c • , , , •'o ' ' '•'o' ' '6'o' ' '•'o .... •o .... ,•o' ' 


Figure 2. Contour plots of vorticity at t = 20 
(upper plot) and t - 100 (lower plot). 


= I&(:)leiS(k) 


c Ikl < 20.5 o, Ikl > 2o.5 
where •p is the stream function defined by 


The ph•e O(k) is chosen randomly on the interval [0, 2•]. 
The enstrophy spectra are plotted in Fig. 3 for t = 20 


and 100. Naturally, the small scales dissipate faster than 
the large scales. 


The computed solution (the contour plot of vorticity 
• = -A•) is shown in Fig. 2 at t = 20 and t = 100; 
•t • 0.01, •e • 104, the resolution 128 x 128, the num- 
ber of processors P = 4. Practically the same pictures •e 
obtained using the resolution 256 x 256 and the time steps 
in the range At = 10 -4 - 10 -•. 


These plots are very similar (regarding the flow struc- 
ture, the sizes of the eddies) to those obtained in [6] using 
a pseudospectral Fourier method in a single domain (they 
are not expected to be identical since the phase O(k) is ran- 
dom field). Unfortunately, the above cited paper does not 
contain the energy spectrum plots to compare with. At 
le•t one conclusion can be made at this point: the MDLF 
algorithm allows a stable time integration at high Reynolds 
nmbers with adequate resolution of small features in the 
flow. The accuracy of this algorithm w• illustrated inde- 
pendently by the example in the previous section. 


-4 _•___. I i .•____ ' t=100 ' -- 
'-.. ß t=20 .... 
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-22 I I I I 
0 0.5 1 1.5 2 2.5 


10g k 


Figure 3. The enstrophy spectra at t -- 20 and t -- 100; 
the resolution is 256 x 256, P = 4. 
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4 Problems in irregular geome- 
tries 


Our approach for treating irregular domains has much in 
common with that of [7]. The idea is to map a complex ge- 
ometry onto a simpler one and then solve the resultant non- 
constant coefficient equations by a preconditioned iteration 
method. Usually a low order (finite-difference or finite- 
element) approximation is chosen as a preconditioner. We 
propose to use in the capacity of the preconditioner a con- 
stant coefficient operator which has the same structure as 
the original one. These constant coefficients can be com- 
puted as the mean values of the corresponding variable 
coefficients. Then the above spectral MDLF method is ap- 
plied on each iteration step to solve constant coefficient 
problems in a simple geometry. We shall call this constant 
coefficient operator a spectral preconditioner. 


The spectral preconditioner gives a better approxima- 
tion to a noraconstant coefficient operator than any low 
order approximation provided that the variance is small. If 
the coefficients vary in a large range, then such an approx- 
imation is not satisfactory and thus the iteration method 
would converge slowly. However, in combination with the 
domain decomposition strategy the spectral preconditioner 
becomes very efficient. Since the computation in subdo- 
mains is performed independently, we can use a step-wise 
approximation to variable coefficients by taking different 
mean values in each subdomain. On each patch of the do- 
main this approximation will be accurate if the number of 
subdomains is large enough. 


We illustrate this approach by the following simplest ex- 
ample: 


(11) C(r)u = u" -+- a(x)u' - •2u -- f(x), x • [0, 1] 


(12) u(0) =u(1)=0, 


where a(x) = 10 (1 + tan 20(x- 0.5)). Function a(x) 
changes rapidly from 0 to 20 on a small interval Ax -• 1/20 
near the point x = 0.5. The forcing function has the form 
f(x) = 2 - a + (2a + •2)x - •2x • which corresponds to the 
exact solution u•.•(x) = x(x- 1). 


Instead of solving the problem (11), (12) directly we 
rather solve it iteratively using a preconditioned iteration 
method. The most simple Richardson scheme reads: 


(13) Hu n+l - f- (œ- H)u n. 


(more sophisticated iteration schemes, such as conjugate 
gradient types method, can be used as well). If the oper- 
ator œ is approximated in a spectral basis, upon conver- 
gence of iterations (13) a spectrally accurate solution is 


obtained. The rate of convergence depends on the choice 
of a preconditioner H. 


Following our approach, we divide the computa- 
tional interval x • [0, 1] into a number of subintervals 
[xn-1, xn], n = 1, ..., P and define a set of constant co- 
efficient operators Hn as follows: 


(14) Hn = u" + •nu' - A•u, x • [Xn--•,Xn], 


where 


an = 
J;n -- 37n-1 n-• 


Fig. 4 shows the coefficient a(x) on the interval x • [0, 1] 
and its step-wise approximation •n for P = 15. 


, , 


' a_n, dom. decomp, ?=15 .... 


02 0.4 0.6 0.8 


Figure 4. Step-wise approximation of the variable coef- 
ficient a(x) -- 10 (1 + tan 20(x - 0.5)). 


The convergence history of the preconditioned conjugate 
gradient iterations with the spectral preconditioner (14) 
is given in Fig.5 for several domain decompositions (pa- 
rameter A = 1). When the number of subdomains is not 
large enough, P = 9, the convergence is rather slow. How- 
ever, the convergence rate improves substantially for larger 
P as the local deviations [a(x)- an[ within the intervals 
[xn-x, xn] become smaller. 


Note that the computation of inner products, needed 
when using conjugate-gradient type methods, leads to ad- 
ditional global communications which degrade somewhat 
the parallel performance. 
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Figure 5. Acceleration of convergence by splitting the 
computational region into an increasing number of subdo- 
mains P. 


5 Natural convection in channels 


with wavy boundaries 


As a 2-D example we consider the problem of natural con- 
vection in a vertical channel with sinusoidal boundaries: 


(15) yz(y) =-(1+5cos kwx), Y2(Y)= l +Scos kwx. 


(this problem was investigated earlier in [8] using a finite- 
difference method). The computational domain fi = {0 < 
x < L, y• < y < y•.}. where L = 2•r/k,, k, = 1.4. 


The governing equations are written in the • - & formu- 
lation: 


(16) 00 0t• 00 0,• 0• _ •72• + Gr OT Ot + Ox Oy Ox Oy Oy' 


(17) V• = -•b 


i.- - Pr-•AT. (18) Ot Ox Oy Ox Oy 
Here C,, ̧, T are correspondingly stream function, vortic- 
ity and temperature; Gr, Pr are the Grashof and Prandtl 
numbers. 


Functions • and T are subject to the following boundary 
conditions: 


(19) y = yx,2, • = tk• = 0, T = •:1, 


(20) = = 


where • denotes the normal derivative of • on the bound- 
aries. 


By using a simple stretching transformation 


(21) •- x, r/= y•(x)- y• (x) 
we map a curvilinear region fi onto the rectangle • = {0 _< 


The discretization in time is performed via an implicit 
stiffly stable scheme (4)- (6) A preconditioned conjugate 
method with the spectral preconditioner is employed for 
the solution of the system (7), (8) as described in previous 
sections. 


The computed solution (contour plot of the stream 
function) on the asymptotic stage is shown in Fig.6 for 
Gr = 400, Pr = 0, 5 = 0.1 and kw = k,. This wave number 
corresponds to the most unstable periodic motion (critical 
eigenmode) in the plain vertical layer. Therefore, the per- 
turbation on the boundaries with this wavenumber leads 


to the resonant amplification of the critical eigenmode. 


/// 


Figure 6. Contour plot of the stream function for k• = 
k,; Gr = 400, Pr = O. 
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The steady solution with kw : 2k, ("even" mode) is [4] 
plotted in Fig.7; Gr = 300, Pr = 0, 6 = 0.1. The external 
forcing has the spatial frequency twice as high as the crit- 
ical number k,. In this case some resonance phenomenon 
of the parametric resonance type can be observed, such as [5] 
the competition between "even" and "odd" eigenmodes, 
the reduction of the stability threshold and more. 


Figure 7. Contour plot of the stream function for/cw -- 
2k.' Gr = 300, Pr = O. 
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Preface 


ICOSAHOM'95 was the third International Conference On Spectral And High 
Order Methods. The first two meetings were held in 1989 in Como, Italy and in 1992 
in Montpellier, France. ICOSAHOM'95 was held in Houston, Texas, in June, 1995. 


These proceedings of ICOSAHOM'95 represent almost all of the talks presented 
at the meeting. All of the papers being published here (and many more that were 
submitted but not accepted) were subjected to a rigorous refereeing process which 
has resulted in a uniformly high standard. This refereeing process was a principle 
responsibility of the Scientific Committee, which consisted of Ivo Babu•k,% Christine 
Bernardi, Claudio Canuto, Michel Deville, Roland Glowinski, David Gottlieb, Heinz 
Kreiss, Yvon Maday, J. Tinsley Oden, Anthony Patera, Alfio Quarteroni and Ridgway 
Scott. The high quality of these proceedings is a direct consequence of the hard work 
of the Scientific Committee. 


With a frequency of three years, ICOSAHOM has played the role of an inter- 
national "congress" in the field of spectral and high order methods. Researchers 
save their best work for presentation at the meeting, and the resulting proceedings 
are essential reading for people ranging from casual users of spectral and high order 
methods to researchers active in developing new algorithms or theoretical analyses 
for spectral and high order methods. 


To provide some guidance to the readers, we have organized the papers into eight 
separate areas: Spectral Methods, Finite Elements, Spectral Elements, Finite Differ- 
ences, Domain Decomposition, h-p Methods, Multigrid Methods, and Parallel Com- 
putations. However, such boundaries are often artificial, as one paper could easily be 
put in two or even three different groupings. This reflects the synergism among the 
different aspects of the field. 


Among several noteworthy events at the meeting, one demands special mention. 
In recognition of the award of the third Giovanni Sacci Landriani prize to Professor 
Anthony Patera of MIT, a mini-symposium on Parallel Computations was organized 
by Professor Patera. The talks in this mini-symposium are all represented by the 
papers in the final section of the proceedings. 


Giovanni Sacchi Landriani was a brilliant young researcher specializing in numer- 
ical methods for partial differential equations. He worked at the University of Pavia 
until he was killed in a traffic accident at the tragically young age of 31 in 1989. Sac- 
chi Landriani had been a very fertile researcher with about fifteen published papers. 
His most significant contributions concerned the design and analysis of algorithms 
for the solution of the Navier-Stokes equations, with an emphasis on spectral meth- 
ods and domain decomposition methods. The Giovanni Sacchi Landriani prize was 
established in his memory. 


ICOSAHOM'95 had an active program in the evenings to refresh the participants 
and to introduce them to a small bit of the Texas way of life. These events included 
trips to Space Center Houston (the recently opened facility for visitors to the NASA 
Johnson Center, command post for all the U.S. space flights), to the Astrodome 


vii 







(to study the intricacies of the Great American Sport, baseball) and to the Post 
Oak Ranch (to study country dancing, including the famous Texas Two Step - the 
conference presentation by Oden introduced an apparent generalization, the Texas 
Three Step). 


The participants were hosted in grand style by the historic Warwick Hotel, with 
meeting rooms on the top floor overlooking all of Houston. Lunch was served each 
day outdoors on the spacious patio by the lovely swimming pool. A dip in the 
pool provided instant rejuvenation for many of the participants each day. This was 
also the site of the conference "pool party" which featured a banquet of Mexican 
fajitas served pool-side. Dress was casual for this central social event of the meeting. 
Many were appropriately attired to participate fully in this typically Texan form of 
entertainment. 


The local Organizing Committee for the meeting included Cristina Draghicescu 
and Garrett Etgen (in addition to the Editors), and we note that the efforts of this 
committee were key to the success of the meeting. They received assistance from 
Babak Bagheri and Mircea Draghicescu regarding the intricacies of TEX. However, 
most of the real work was done by the conference manager. Initially this was Leigh 
Ann Jacks, but the majority of the time it was Susan Owens, who tended to all the 
complexities of the meeting and acted as tour guide for the various extra-curricular 
events made available to the meeting participants. Susan was ably assisted by Den- 
nisse De Armas before, during and after the meeting. 


Susan Owens also acted as production editor for these proceedings. As everyone 
at the meeting was fully aware, the meeting and the resulting proceedings would not 
have happened without her! 


The meeting was generously supported by the National Science Foundation via 
grant DMS-9423049, by the University of Houston and the Texas Center for Advanced 
Molecular Computation. We especially acknowledge the role of Dean John Bear of 
the College of Natural Sciences and Mathematics at the University of Houston who 
was instrumental in obtaining support for the meeting and also opened the meeting 
with his welcoming remarks. We would also like to express our appreciation to the 
Houston Journal of Mathematics for publishing these Proceedings. 
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Figure on reverse: 
Magnetic field lines in the (r,/•)-plane for the star con- 
figuration (left) and electric isopotentiefi lines (right). 
The thick line indicates the star surface. (From "Spec- 
tral methods in general relativity- toward the simula- 
tion of 3D-gre•vite•tional collapse of neutron stars" by S. 
Bonazzola, J. Frieben, E. Gourgoulhon and J. A. Marck, 
page 3) 








Spectral methods in general relativity- toward the simulation of 
3D-gravitational collapse of neutron stars 


S. Bonazzola J. Frieben* E. Gourgoulhon J.A. Marck 


Abstract 


Several applications of spectral methods to problems re- 
lated to the relativistic astrophysics of compact objects 
are presented. Based on a proper definition of the analyti- 
cal properties of regular tensorial functions we have devel- 
oped a spectral method in a general spherical-like coordi- 
nate system. The applications include the investigation of 
spherically symmetric neutron star collapse as well as the 
solution of the coupled 2D-Einstein-Maxwell equations for 
magnetized, rapidly rotating neutron stars. In both cases 
the resulting codes are efficient and give results typically 
several orders Of magnitude more accurate than equivalent 
codes based on finite difference schemes. We further report 
the current status of a 3D-code aiming at the simulation 
of non-axisymmetric neutron star collapse where we have 
chosen a tensor based numerical scheme. 


Key words: spectral methods, numerical relativity, neu- 
tron stars, black holes, gravitational collapse. 


AMS subject classifications: 65M70, 65N35, 83-08. 


I Introduction 


Compact objects in astrophysics such as neutron stars and 
black holes are subjected to the strong field regime of grav- 
itation and have hence to be treated within the framework 


of general relativity. The growing interest in the numerical 
solution of the Einstein equations for astrophysically rele- 
vant systems has given rise to a new branch of computa- 
tional physics - numerical relativity [1, 2, 3]. This develop- 
ment is due to the increasingly powerful computational re- 
sources which make these problems accessible to a numeri- 
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ca! investigation. It is further stimulated by the prospects 
of gravitational wave astronomy which will turn into an 
observational science toward the end of this decade thanks 


to gravitational wave observatories like LIGO, VIRGO and 
GEO600 that are now under construction [4, 5, 6]. 


We use the (3+1)-formalism of general relativity [7] 
which consists in foliating spacetime into a sequence of 
space-like hypersurfaces which represent curved 3-space at 
a fixed coordinate time t. The fabric of spacetime is then 
determined by the 3-metric hij and four additional quan- 
tities, the lapse function N and the shift vector N i which 
fix the propagation of the space-like hypersurfaces in time 
and the change of the spatial coordinate system between 
adjacent hypersurfaces. This Hamilton type approach to 
general relativity results in a temporal first order evolution 
scheme for the dynamical variables which is completed by 
some constraint equations which ensure the consistency of 
gravitational and matter fields. Furthermore N and N i 
have to be determined by the choice of appropriate gauge 
conditions which typically lead to elliptic equations that 
have to be solved at each time step. For stationary con- 
figurations all time derivatives vanish and one obtains a 
system of coupled elliptic equations for the gravitational 
fields. The efficient solution of elliptic equations is hence 
of central interest for us. 


Let us consider a covariant Poisson equation Nlili- $ 
in a conformally flat axisymmetric space where the line 
element reads 


(1) dl 2 -A4(r,O) (dr2+r 2 dO2+r 2 sin20 d•b2). 


The former equation can be rewritten to yield a Poisson- 
like equation for N where we have isolated the flat space 
Laplacian A! and contributed the curvature terms to the 
source. Here a denotes In A. 


1 


(2) AIN =$ with $=A45-2(OraOrN+•OoaOoN). 
This equation has to be solved by iteration. The solution 
of AIN--- • at each iteration has hence to be accomplished 
sufficiently fast in order to keep the total computation cost 
at a reasonable level. 
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After outlining the basic features of our spectral method 
[8, 9], we will proceed in a first step to the investigation 
of black hole formation due to spherically symmetric neu- 
tron star collapse which has proved the high aptitude of 
spectral methods in this field [10, 11, 12]. The second 
part is devoted to the study of axisymmetric stationary 
rotating bodies which has been applied to model rapidly 
rotating neutron stars [13, 14]. This work has been ex- 
tended recently to include strong magnetic fields for the 
first time into neutron star models [15]. Special emphasis 
in all cases has been put on the extensive use of external 
and intrinsic tests [16, 17, 18] of the self-consistency and 
the attained accuracy of the numerical results. The result- 
ing neutron star models provide us with the required initial 
value models for the investigation of 3D-gravitational col- 
lapse of neutron stars which will reveal the whole range 
of gravitational wave emission associated with this phe- 
nomenon. We give an overview about the inset of spectral 
methods in this project which is currently in work. Here 
a new method for the efficient inversion of a generalized 
3D-vector Poisson equation is a first major result. 


2 Spectral methods in general rel- 
ativity 


2.1 Coordinates and regularity conditions 


The space-like hypersurfaces stemming from the former 
choice of the (3+1)-formalism are conceived to describe 
some asymptotically flat space, containing a compact, 
mostly starlike object. The natural choice is thus a sphe- 
ricallike coordinate system (r, 0, 4'). 


The pseudo-singularities which appear in this case can 
be overcome by a proper definition of regularity conditions 
of tensorial quantities. A consequent application of parity 
rules derived from these conditions allows further to opti- 
mize code efficiency and precision. 


We consider the related Cartesian type coordinate sys- 
tem (x, y, z) = (r sin 8 cos 4', r sin 8 sin 4', r cos 8). We define 
a tensorial quantity Ti• ...iN in spherical coordinates (r, 8, 4') 
to be regular, if its components fi•...iN with respect to 
Cartesian coordinates (x, y, z) are regular in the sense that 
they can be expanded into a polynomial sum of the type 


N 


(3) 
i,j,k=O 


which can be written in terms of (r, 8, 4') as 
N 


(4) 
i,j,k----O 


x sini+J8 cos•8 cosi4' sin•4'. 


Having specified the tensor components fi•...iN with re- 
spect to the Cartesian frame we derive the components 
related to the local orthonormal frame of spherical coordi- 
nates by a non-singular coordinate transformation. 


In order to infer the analytical properties of a scalar 
function it is useful to rearrange the sum in (4). We first 
collect all the terms referring to cos m4' and sin m4' respec- 
tively. We write 


M 


(5) f(r, 8,4') = • (a,,(r, 8) cosrn4'+ b,•(r, 8) sinm4') 
rn•-O 


where am(r, 8) and bin(r, 8) behave identically in the fur- 
ther procedure. We opt for cos 18 and sin 18 as basis func- 
tions in 8 which allows the application of FFT-techniques 
for this transformation. An immediate conclusion from 


(4) and the case i-t-j even is that the coefficients a2,•(r, 8) 
and b2,• (r, 8) have to be expanded in terms of cos 18 while 
from the odd case that the expansion of a2,•+• (r, 8) and 
b2,•+i (r, 8) has to be done on the set sin 18. We therefore 
specify 


L 


((3) = coslO, 
l•. O 


L 


(?) a2m+l(r, 8) = • &•,•,•+•(r) sin18. 
l=0 


Note that due to the well defined parity of a2,• and 
these coefficients - a priori only defined for 0 < 8 < 7r - can 
be continued analytically to periodic functions of 8 on the 
interval I-w, 


In the same manner as before we find from (4) that the 
polynomials &l(r) are symmetric with respect to the inver- 
sion r -* -r for I even and antisymmetric for I odd] As 
basis function set in r we decide for Chebyshev polynomi- 
als due to their superior properties in finite approximation 
schemes of non-periodic functions and the availability of 
fast Chebyshev transforms. Simplifications of the expan- 
sion scheme in the presence of additional symmetries are 
preeised in the following paragraphs. 


Any regular function admits an expansion of this kind, 
but regularity furthermore implies additional constraints 
on the different coefficients. Having set up regular initial 
data •eeording to (3), regularity of the involved quantities 
is maintained during a calculation by the application of 
regular operators - we here ignore the influence of numer- 
ical effects due to aliasing or roundoff errors. 


Let us eousider the eovariant derivative of a vector in 


spherical coordinates. For the scalar potential U(r, 8, 4')- 
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r sin • cos 


(s) 
we have 


(9) (Ur, Us, U•)'- (sin 0 cos •b, cos Ocos •b,- sin •b). 


The covariant derivative Usl• which reads 


1 1 


(10) U01• = rsinO O• Us U• rtan• 


can be rewritten to yield 


1 


(11) UOlO ---- rsin• (O• Uo - cosO U•) ß 
A numerical evaluation according to (8) and (11) reveals 
a perfectly regular behavior. 


2.2 Supersymmetric case 


Additional spatial symmetries of physical systems involve 
continuous symmetry operations like rotation about a dis- 
tinct axis with an associated Killing vector field or discrete 
transformations like inversion at the equatorial plane z = 0, 
leading to distinct parity properties of the different tensor 
components. 


We define supersymmetry [19] by the following behavior 
of a scalar function: f is invariant with respect to inver- 
sion at the z-axis, hence f(-x,-y,z)= f(x,y, z), while f 
is [anti-] symmetric with respect to reflection at the equa- 
torial plane z = 0, hence f(•, y, -z) = :El(z, y, z). Conse- 
quently f can be expanded into a sum of the type 


L 2l M 


l-'O k--O m----O 


L 21 M 


(13) f_(x,y,z) -' E E E ck•"•x2•-•Y•z2"•+• odd case 
1=0 k•O m=O 


which defines subsets of the general scalar functions intro- 
duced in Sec. 2.1. A write-up in terms of (r, 0, •b) gives 


(14) 


(15) 


L 21 M 


= E E E 
l----O k----O m----O 


x sin2•O cos2'nO cos2•-k•b sink•b, 
L 21 M 


/_(,-, o,,)= E E 
1----0 k----O m----O 


x sin2• cos2m+•o cos:•-k$ 


which can be modified, replacing sin20 by (1-cos20). 


(16) 


(17) 


L 21 M 


/+(,., EE E 
!•0 k----O m----O 


x (1-cos20) t cos:"•O cos 2t-k•b sin k 
L 21 M 


!--0 k----O m--O 


x ( 1 - cos: 0)• cos:"* + • • cos 2• -k •b sin k 


According to Sec. 2.1 we conclude for the decomposition 
of a supersymmetric function: 


1. f is •r-periodic in the angular variable •b, 


2. a2,• (r, O) has to be expanded into a sum of cos lO where 
I is even in the symmetric case and odd in the anti- 
symmetric one, 


3. 5t (r) is an even polynomial in r for f symmetric and 
an odd polynomial for f antisymmetric. 


Physical problems which imply the use of supersymmetric 
functions allow to restrict the computational domain to 
[0,•r] in •b and to [0, •r/2] in 0 which leads to an overall 
reduction of the effective grid size by a factor four. 


For the components of a vector field associated with the 
case of even supersymmetry we conclude: U• can be ex- 
panded into a sum of cos 21 0, Uo into a sum of sin 210 
and U• into a sum of sin(2/+ 1)0 which means that Uo 
undergoes a change of sign by reflection at the equatorial 
plane while Ur and U• remain unchanged. The expansion 
of the radial part is done in terms of odd powers of r for 
all components. 


2.3 Axisymmetric case 


Axisymmetry restricts the set of scalar functions under 
consideration to functions according to Sec. 2.1 where the 
only remaining term in (5) is ao(r, 0). Thus f can be writ- 
ten as 


L 


(18) f(r, 0) = E ai,o(r) cos/0 
l----0 


where •l,o(r) is an even function in r for I even and an odd 
function for I odd. 


For the components Ur and Uo of a vector field compat- 
ible .with the assumption of axisymmetry we conclude: Ur 
has to be expanded in terms of cos lO where the radial part 
is even for I odd and odd for I even. Uo has to be expanded 
in terms of sin lO where we also have a parity change in r. 
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The properties of the lacking component U• which we 
need to handle N• in the models of rotating neutron stars 
can be derived from the Killing equation linked to axisym- 
merry. A short examination reveals that U• has to be 
expanded in terms of sin lO with a parity change in r - it 
behaves identically as Us. 


2.4 Spherically symmetric case 


For sake of completeness we add the spherically symmetric 
case. As a further restriction of the axisymmetric case we 
keep from (18) only a0,0(r). f(r) therefore reads 


K 


(19) f(r) = • ask r sk 


which is an ordinary even polynomial in r while U• is rep- 
resented by an odd polynomial in r. 


3 Spherically symmetric neutron 
star collapse 


3.1 Basic equations 


The investigation of neutron star equilibrium configura- 
tions in spherical symmetry was the first problem in the 
fully general relativistic regime being solved by us by 
means of the (3+1)-formalism of general relativity and a 
spectral method [10, 8, 9]. A favorable choice of the line el- 
ement ds s = 9,• dx• dx• in the case of spherical symmetry 
is given by RGPS (Radial Gauge-Polar Slicing) coordi- 
nates [20] and reads 


(20) ds s = -NSdt s + ASdr s + r s (dOS+ sinS0de. bs). 


We stress the particular nature of this problem where the 
field variable A is not really a dynamical quantity. In fact it 
is uniquely determined at any moment as well as the lapse 
function N by the matter fields which have to be evolved by 
means of the hydrodynamical equations. Since the solution 
outside the star is known in advance to coincide with the 


static Schwarzschild solution of a point mass of the same 
size according to the Birkhoff theorem, we benefit from a 
double simplification. First the whole time evolution is yet 
determined by propagating the hydrodynamical variables 
and further the calculation can be restricted to the stellar 


interior. The interior solution for the gravitational field 
has then to be matched to the analytical exterior one. We 
further note that due to the static character of the exterior 


solution no gravitational waves - which otherwise would be 
an observable of most importance - are emitted. 


Concerning the hydrodynamical part we employ a set 
of particular variables which lead to equations ressembling 
very closely their Newtonian counterparts including a gen- 
eral relativistic generalization of the classical Euler equa- 
tion. We note the privileged role of the Eulerian or local 
rest observer O0 in this formulation. The hydrodynamical 
equations read 


1 


(21) Otœ q- •'• O• (rS(e+p)V •) -- O, 


(22) O, Uq-V•O•U - I (N œ+p •O•p+ uotp 


Fs q- 4•rrp , 
1 


(2a) O,D + ;• O•(rSDW) = 0, 
(24) Otsr + V•O•sr = 0 


where we have introduced the energy density • and the 
fluid velocity U measured by O0, the coordinate baryon 
density D and the entropy per baryon ss while V r de- 
notes the fluid coordinate velocity. The Lorentz factor F 
is defined as F= (1 - US)-«. In addition one has to solve 


(25) Om(r,t) = s œ(r,t), 


(26) Orff9(r,t)= As (m(r't) U s ) r• q- 4 7r r [ p q- ( e q- P ) ] 
where A(r, t) is related to m(r, t) through 


(27) A(r,t) - (1 2ra(r't) ) -« 
The neutron star matter is modeled as a perfect fluid, 
adopting a realistic dense matter equation of state. 


3.2 Numerical method 


The initial value model for the dynamical calculations 
is provided by solving the Tolman-Oppenheimer-Volkoff 
equations describing a spherically symmetric static star 
where each model is determined by the central value of 
the pseudo-enthalpy Hc. A first solution is obtained by in- 
tegration of this system of ordinary differential equations 
while an overall numerical accuracy of the order of 10 -•4, 
adapted to the subsequent use of a spectral method, is 
achieved by iteration of the approximate solution. 


The computational domain is identical with the stellar 
interior during the whole calculation, thanks to a comoving 
grid whose outer boundary coincides with the star surface. 
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Figure 1: Relative variation of the stellar radius with elaps- 
ing time for a stable equilibrium model with nB< n• rit and 
[AM/Mmax [ = -5 x 10 -5. The hydrodynamical timescale 
is indicated on the lower left. 


Figure 2: Profiles of the lapse function N for t ranging from 
0 to 7.296 ms. The location of the Schwarzschild radius Rs 
is indicated by a vertical bar. Direction of increasing time 
is downward. 


This maintains a constant spatial resolution during the col- 
lapse and a fine sampling of the steepening gradients near 
the star surface thanks to the accumulation of the Gaufi- 


Lobatto points in this region. It furthermore minimizes 
the advective terms, hence improving the numerical accu- 
racy. All quantities are expanded in terms of Chebyshev 
polynomials in r mapping the interval [0, R,(t)] onto [0, 1] 
taking into account their analytical properties according to 
Sec. 2.4. The 2 nd order semi-implicit time integration en- 
sures the stability of the code which allows us to perform 
simulations of a duration of many dynamical timescales. 
This ability is very important when studying the effects 
of perturbations on equilibrium configurations. This task 
is also favored by the fact that we integrate the original 
system of equations without any artificial viscosity to sta- 
bilize the code while in addition the intrinsic viscosity of 
spectral methods is negligible. The ingoing characteristic 
of the hydrodynamical system at r--R, gives rise to one 
boundary condition which is chosen to fix the baryon den- 
sity at the star boundary. It is imposed by means of a 
•-Lanczos procedure [21] on the system as a whole which 
is the well posed mathematical procedure. 


3.3 Results 


Among the various tests we have imposed on our code one 
describes the collapse of a homogeneous dust sphere whose 
solution was given by Oppenheimer and Snyder [22]. From 


the beginning of the collapse until the moment where the 
whole configuration is highly relativistic and practically 
frozen we observed the different variables to reproduce the 
analytical values within an error of better than 10 -5 [10], 
while the errors related to previous studies based on finite 
difference methods are of the order of 10 -5 [23]. 


Neutron star models near the maximum mass config- 
uration - Mmax - 1.924Mo and R -- 10.678 km for the 
employed EOS - are interesting with respect to their sta- 
bility against radial perturbations. Configurations with a 
central baryon density approaching the critical one exhibit 
an oscillatory behavior which is dominated by the funda- 
mental mode of oscillation of increasing period length. It 
represents a uniform growing and shrinking of the entire 
star which is modulated by less important harmonics of 
higher order. Fig. 1 shows this temporal variation for a 
stable configuration. We stress that these oscillations are 
entirely driven by roundoff and discretization errors of a 
total order of 10 -•ø - no external force has been applied 
to trigger this variability. Increasing the central baryon 
density beyond the critical value one enters the branch of 
unstable configurations. This time the fundamental mode 
starts a contraction of the star which results in an unlim- 


ited collapse. Though the actual coordinate choice is not 
capable to properly capture the formation of an appar- 
ent horizon which would clearly reveal the formation of a 
black hole the evolution of metric potentials and matter 
variables gives a distinct indication of this event. Take for 
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Figure 3: Relative variation of the total baryon number 
during the collapse. 


instance Fig. 2 which shows the time development of the 
lapse function N, measuring the elapsed proper time of 
the local Eulerian observer Oo. Inside the Schwarzschild 
radius it tends toward zero for increasing coordinate time t. 
This behavior - called the 'lapse of the lapse' - is related to 
the singularity avoidance property of the chosen coordinate 
gauge which keeps the spatial hypersurfaces from propa- 
gating into a forming singularity. The dynamical timescale 
of the collapse is the time elapsed from the beginning of 
the collapse until the moment where the evolution appears 
to be frozen to a distant observer and has the value t = 7.4 


ms for the considered configuration. Fig. 3 illustrates the 
relative error committed on the total baryon number which 
is a conserved global quantity. In the early phase it is con- 
served with a relative accuracy of 2x10 -s and with 4x10 -6 
during the violent stages of the collapse. The deviation 
increases up to 5 x 10 -5 in the final phase where sharp 
gradients form near the horizon. The proper working of 
the code in the perturbative regime has been recently con- 
firreed by direct comparison with a linear adiabatic code 
[12]. The calculations have shown a very good agreement 
of the frequencies of the fundamental modes for the two 
opposite approaches. The original version of our code has 
been extended later on to include the processes of neutrino 
production and transport during neutron star collapse in 
order to compute the observable neutrino emission for a 
distant observer [11]. A multi-domain extension of this 
code is in use in order to simulate type II supernovae in 
spherical symmetry. It is particularly well suited to prop- 
erly capture the high contrast up to _• 106 of the mean 


densities in the individual subdomains which appears dur- 
ing the collapse. Four to five zones are typically needed 
to cover the dense central core forming the new born neu- 
tron star and the outer layers of much lower density with 
the desired resolution. In contrast with the original code 
boundary conditions are imposed in this case by means of 
a modified •--Lanczos scheme applied in coefficient space. 


4 Axisymmetric rotating relativi- 
stic bodies 


4.1 Basic equations 


In order to study rapidly rotating neutron stars we have 
made the assumptions of spacetime being axisymmetric, 
stationary and asymptotically .flat. We have further sup- 
posed spacetime to be circular, thus the absence of merid- 
ional currents in the sources of the gravitational field. In 
this case spacetime can be described by MSQI (Maximal 
Slicing-Quasi Isotropic) coordinates [13] which have a line 
element ds 2 = g• dx• dx • of the form: 


(28) ds • = -N•dt • + A4B -• (drY+ r2dO •) 
+A4B2r • sin20 (d4• - N•dt) •. 


Spacetime is hence fully determined by the four metric po- 
tentials N, N •, A and B. MSQI-coordinates are global 
coordinates and lead to elliptic operators which admit a 
consistent treatment of boundary conditions and an effi- 
cient solution by spectral methods. The matter fields are 
chosen to model a perfect fluid where first a polytropic, 
hence analytical, equation of state was used. The assump- 
tion of a perfect fluid reduces the equations of motion to 
an algebraic equation for the heat function H. From the 
Einstein equations one derives four elliptic equations for 
the variables v = In N, N • and 


(29) G(r,O)-- N(r,O)A2(r,O)B(r,O), 


(30) ½(r, 0) = v(r, + 2(r, - 
whose final form reads 


A 4 


(31) As y -- •-•[4•r(E-FSii)-F2(k•-Fk•)]-O•O(•-F2a+•), 


(32) •3•--167rBN--- 7 J• -rsint•ON•O(6e•-F3•-•), r sin 


_ NA • 


(33) 
A 4 


(34) 
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where we have introduced •=ln A, •=ln B and 


(35) •(r, O) = r sinO(•(r,O), 


(36) J•r•(r,O) = rsin0 N•(r,O) 
as well as the abridged notation 


1 


(37) = + ao. 
Further employed quantities are the total energy density 
E, the stress tensor Sij, the momentum density Ji and k•, 
ks which are related to the extrinsic curvature tensor K•j. 
A2, As and as denote scalar Laplacians in two and three 
dimensions and a vector Laplacian in three dimensions re- 
spectively. 


Existence and uniqueness of the solution of these elliptic 
equations are ensured for physically relevant cases [24, 25, 
20]. 


Note that (33) and (34) can be continued analytically 
to yield genuine 2D-Poisson equations in the entire (r, 0)- 
plane. One infers immediately that • exhibits a logarith- 
mic divergence for r • o• unless the total integral over 
the source of (34) vanishes identically whereas we require 
•[ r=• = 0. This 2D-virial theorem of general relativity 
{GHV2) [16] is in some sense related to the classical New- 
tonian virial theorem and furnishes a consistency condition 
for any solution of the Einstein equations which is compat- 
ible with our basic assumptions. It has to be taken into 
account during the calculation and provides a strong con- 
sistency check of the numerical solution. 


4.2 Numerical method 


The mathematical problem involves (31)-(34) and an al- 
gebraic first integral equation for the matter fields. Our 
numerical solutions are exact in the sense that the gov- 
erning equations are derived from the full theory of gen- 
eral relativity without any analytical approximation while 
the numerical code solves these equations in all space ex- 
tending the numerical integration to spatial infinity which 
allows to impose the exact boundary conditions of asymp- 
totical flatness on the gravitational fields as well as the 
proper calculation of the source terms of (31)-(34) which 
fill all space. 


This is accomplished by the use of two grids, where the 
first one covers the stellar interior using the radial variable 
r in the interval [0, R], while the outer space is compactified 
thanks to the variable transform u = r -• and in this way 
mapping [R, o•] onto the finite interval [R -•, 0]. While in 
the O-variable a Fourier expansion according to Sec. 2.1 
is used, the radial part is expanded in terms of Chebyshev 


polynomials. The inner zone is mapped onto half the def- 
inition interval [0, 1] which allows to take into account the 
parity properties of regular functions with respect to the 
origin according to Sec. 2.3. In the compactified zone the 
expansion has been done in the usual manner on the whole 
definition interval [-1, 1] of Chebyshev polynomials. 


The effective scheme which is based on a relaxation 


method works as follows. We consider rigidly rotating neu- 
tron stars with a polytropic equation of state. A particular 
configuration is hence determined by fixing the value H• 
of the heat function at the centre of the star and its angu- 
lar velocity •. We start from very crude initial conditions 
where all the metric quantities are set to their flat space 
values (c,, •, •, ½ and N • = 0; G = 1) and the matter 
distribution is determined by a first approximate guess. 


While the GRV2 identity related to (34) holds for an 
exact solution of the Einstein equations we have to enforce 
this consistency relation at each iteration step in order 
to avoid a logarithmic divergence of the approximate one. 
This can be accomplished by modifying (34) according to 


(38) A2 
A 4 


(39) cr• = 8•rBA---• S•'•,, o'• = •--•.[3(k•-.Fk•)]- ((:%,)2. 
At each iteration step A is chosen in such a way that the 
total source integral vanishes. The final solution has to 
satisfy (34) exactly which is equivalent to A = 1. The de- 
viation of A from unity during the iteration measures the 
violation of self-consistency of the approximate solution 
and can be used to monitor convergence. 


The sources of (31)-(34) exhibit some terms involving 
simple operators like r, sinS, 0•, etc. which are accurately 
computed in coefficient space before evaluating the entire 
expressions in configuration space. Expansion of the total 
sources in terms of the angular eigenfunctions of the differ- 
ent Laplacians (P•ø (cos 0), P• (sin 0) and (cos 18, sin • 8) for 
As, as, and A• respectively) leads to a system of ODEs in 
the radial variable. The unique global solution is obtained 
by appropriate linear combinations of the corresponding 
particular and homogeneous solutions in order to match 
the piecewise solutions at the grid interface and to satisfy- 
the boundary conditions at r-o•. The new values of the 
gravitational field variables are then used to update the 
matter distribution by means of the first integral equation 
and the iteration can go on. 


4.3 Tests 


We have subjected our code to two different kinds of tests 
which ensure the reliability of the numerical results. 
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Figure 4: Comparison between numerical and analytical 
solution for the Schwarzschild interior and exterior incom- 


pressible solution. The location of the star surface is indi- 
cated by an asterisk. The plotted quantities are the relative 
error in the pressure with respect to the central pressure 
inside the star and the absolute error in N (solid line) and 
A s (dashed line) outside the star. 


External tests consist in the comparison with previ- 
ous solutions, either analytical or numerical ones. Such 
a test of the code has been performed for an analytically 
known Schwarzschild type solution of a non-rotating ho- 
mogeneous sphere with the corresponding numerical one. 
Relative errors committed on global quantities such as to- 
tal gravitational mass and circumferential radius are of the 
order of 10 -14 . This accuracy holds also for local quanti- 
ties as shown in Fig. 4 for the pressure p inside the star and 
the metric coefficients outside the star - none of the errors 


exceeding 10 -14. A recent project of systematic calibra- 
tion and comparison of the numerical results of different 
groups working in this field has yielded an agreement of 
characteristic quantities of realistic neutron star models at 
a level of about 10 -3. 


Internal tests represent the second important class of 
tests and are derived from some relations of global or local 
character which are related to the Einstein equations but 
not automatically enforced during the calculation. These 
tests are very powerful, since they do not only verify the 
proper working of the numerical scheme for some simple - 
usually degenerate - test problem, but apply to any cal- 
culation and supply an intrinsic estimate of the numeri- 
cal error involved. In the following neutron star matter 
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Figure 5: Level contour E(r, 8) in the case of a polytropic 
EOS with -• = 2 for fi = 


20 40 "60 


Number of iterations 


Figure 6: Convergence of the error indicator ]1-,•] during 
the iteration process for f = 0. 


was modeled by a perfect fluid with a '• = 2 polytropic 
EOS. The angular velocity has been varied between f = 0 
for the static case and f = fie for the maximum rotat- 
ing case where for a further increase of f mass shedding 
along the equator occurs. Fig. 5 shows the flattened shape 
of a neutron star rotating at fiE. A simple test makes 
use of the known analytical expansion of B according to 
B = l+r 2 sin28 f. It showed B to coincide with the ana- 
lyrical value 1 on the polar axis within 10 -6 in the most 
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Figure 7: Convergence of the error indicator I1-A[ during 
the iteration process for f• = fiK. The spike at N = 10 is 
due to switching on the rotation. 
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Figure 8: Internal error indicator as a function of Nr in the 
compressible spherically symmetric case (polytropic EOS). 


unfavorable case of maximal angular velocity. The princi- 
pal test is provided by the GRV2 identity. An examination 
of the Schwarzschild type solution has revealed that 
is very closely related to the global errors derived from 
the numerical solution for variable N•. This observation, 
though obtained for the static case, is supposed to hold in 
the rotating case as well. [1-A[ can thus be considered as 
an estimator of the global numerical accuracy. Figs. 6, 7 
show the convergence of [1-A[ during the iteration for f• = 0 
and fi =fiK. While in the first case the exponential decay 
of I1-AI continues until roundoff errors of 10 -14 mark a 
lower limit, the total error in the rotating case is about 
10 -6 . This difference is due to the deviation of the fiat- 
tened stellar shape from the spherical numerical grid which 
leads to a discontinuity in the derivatives across the step 
lar surface located inside the inner zone, where the diverse 
quantities hence are no more analytical functions. The 
attainable accuracy in dependence of the number of grid 
points is illustrated in Fig. 8. The exponential decrease, 
usually called evanescent error and characteristic for spec- 
tral methods, is clearly visible. This property is lost in the 
rotating case where we observe a power law decay of the 
committed error oc N• -4'5 as found from Fig. 9. This in- 
convenience will be overcome by the implementation of an 
adaptive ellipsoidal grid which aligns the domain boundary 
to the star surface. We finally conclude that we have com- 
puted neutron star models with an analytic EOS achieving 
a precision of 10-]4 in the static case to some 10 -6 in the 
maxim,,m rotation case which has to be compared with 
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Figure 9: Same as Fig. 8 but for maximal angular veloc- 
ity f•. Pay attention to the log- log scale; the spectral 
properties are lost here and one observes a power law con- 
vergence. 


previous results based on finite difference methods of the 
order of 10 -2 [27, 28, 29, 30]. 


It is further interesting to note that for typical values of 
N• = 32 and N• = 16 one iteration is performed in 480 ms 
on a VAX 4500. For an average number of 50 iterations per 
model the whole calculation is finished in about 24 s. The 


code efficiency has enabled us to carry out extensive studies 
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of neutron star samples under employment of numerous 
realistic EOS of neutron star matter [14]. 


4.4 Rotating neutron stars with magnetic 
field 


A further step toward a realistic description of rapidly ro- 
tating neutron stars has been recently achieved by the fully 
self-consistent inclusion of magnetic fields into our models 
[15]. These calculations represent the first numerical so- 
lutions of the coupled 2D-Einstein-Maxwell equations for 
rotating neutron stars which are hence fully relativistic, 
taking into account any kind of interaction of the electro- 
magnetic field with the star and the gravitational field. 


To complete the physical specification of our neutron 
star models as described in Sec. 4.2 we assume a perfect 
conductor behavior of neutron stax matter - the star inte- 


rior is thus free of electric fields - and add the electromag- 
netic field variables At, A,, the current variables jt and j, 
and a structure function f which determines the current 
distribution inside the star. The additional free parame- 
ter which fixes a unique neutron star configuration is the 
total electric charge Q. A derived global quantity is the 
magnetic dipole moment A4 which characterizes the mag- 
netic properties of the neutron star. The Maxwell equa- 
tions lead to a set of coupled elliptic partial differential 
equations which exhibits a similar structure as (31)-(34). 
They involve a scalar Poisson equation for At and a vector 
Poisson equation for A• which read 


A 4 


(4o) zxa At = (g.f + gtJ 
A4B 2 


- --N•r • sin s 0 x OAt 0N • 


- l+•(rsin0N•) 2 xOA•0N • 
-(OAt + 2N•OA•) 0(2a+/•-v) 


-2 -- OrA• + O•A• r rt--•'•O ' 


(41) 


where we define 


(42) 


-/zoA s (j•-N4j t) rsinO 
A4B :• 


+-•-•- r sin 0 ONe(OAt + N•OA•) 
1 


+ r s--i-n 0.% 


r sin 0' 


In this extended formulation the determination of At and 


Relative error on electric field 
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Figure 10: Comparison between the exact and the numer- 
ical solution in the case of a rotating conducting sphere 
with a magnetic point dipole at its centre. The asterisks 
indicate the sphere's surface. 


A• precedes the solution of the former set of equations. A 0 
is a smooth function in all space - we recall that/•r-• 1 for 
neutron star matter - and can therefore be uniquely solved 
by imposing the asymptotic boundary condition A• -• 0 for 
r-• oo. The treatment of At is slightly more complicated 
due to its non-smoothness across the stellar surface - a 


behavior caused by the surface charges which are charac- 
teristic for ideal conductors. Since At is linked to A• by a 
linear relation in the star interior, the exterior solution has 
to be matched to the latter one, respecting the condition 
At- 0 at infinity. We note that, once more, this is a task 
which is easily performed thanks to the use of a spectral 
method. After solution of the whole system we can update 
the electromagnetic contributions to the stress-energy ten- 
sor and proceed with the solution of the Einstein equations 
according to Sec. 4.2. 


Test calculations of the electromagnetic part have been 
performed for some simple cases, where analytical solutions 
are known, among these one involving a rotating magnetic 
dipole where an infinitesimal current loop at the origin is 
surrounded by some rotating perfectly conducting sphere. 
This testbed calculation mimics the configuration of a ro- 
tating neutron star with surface charges. Fig. 10 shows 
the relative error committed on the electric and the mag- 
netic field for a conducting sphere of 1 m radius rotating 
at ft = 3000 s -• with a central current loop of j0 = 10 • 
Am -2. Apart from the origin where the model current dif- 
fers from the theoretical 5-distribution the relative error is 
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Figure 11: Comparison between Ferraro's analytical so- 
lution and the numerical one in the case of a Newtonian 


incompressible fluid endowed with a magnetic field corre- 
sponding to a constant current function f(x) = to- The 
plotted quantity is the relative difference between the two 
values of A• as a function of the radial coordinate r for 
three values of 0. Asterisks indicate the star surface. 


very small: about 10 -5 at half the radius and reaching its 
minimal value of 10 -9 outside the sphere. An analytical 
solution for a Newtonian incompressible fluid [31] endowed 
with a particular current distribution under the - simpli- 
fying - assumption of spherical symmetry was adopted as 
a more sophisticated test. Also in this case the agreement 
was quite good with a relative error of better than 10 -3, 
shown in Fig. 11. The deterioration with respect to the 
dipole problem is due to some simplifying assumptions of 
the analytical model. 


The accuracy of solutions of the complete Einstein- 
Maxwell equations was estimated as in Sec. 4.2 by use of 
the virial identity GRV2 [17] as well as by a more general 
three dimensional integral identity valid for any station- 
ary and asymptotically fiat spacetime which we call GRV3 
[18]. It is the general relativistic generalization of the clas- 
sical NewtonJan virial theorem. The actual values of [1-A[ 
showed about 10 -5 for analytical EOS and some 10 -4 for 
the tabulated ones which agree with those of calculations 
without magnetic field. Throughout all the calculations 
we chose a grid resolution of 41 points in r and 21 points 
in (9. 


In the following we studied configurations of static neu- 
tron stars endowed with a magnetic field. The absence of 
kinematical effects allows an unambignous interpretation 
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Figure 12: Fluid proper density isocontours in the (r, (9)- 
plane for the M = 4.06M o maximum mass static magne- 
tized star built upon a polytropic EOS for '• = 2. The thick 
line indicates the star surface. 
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Figure 13: Magnetic field lines in the (r, (9)-plane for the 
maximum mass configuration corresponding to Fig. 12. 
The thick line indicates the star surface. The magnetic 
field amplitude amounts to Bc = 9 x 104 GT at the star's 
centre. 


of the effects of the magnetic field. In the static case the 
electric charge vanishes identically, leaving alone a mag- 
netic field. Since the stress-energy tensor is not isotropic, 
we observe a deformation of the star already in the static 
case. Fig. 12 shows a maximum field configuration and 
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Figure 14: a. Magnetic field lines in the (r, 0)-plane for the 
configuration specified in the text. The thick line indicates 
the star surface. b. Electric isopotential lines At=const. 


Fig. 13 the corresponding distribution of the magnetic 
field. In the rotatin9 case the magnetic field is accom- 
panied by an additional electric field. The both field dis- 
tributions for a Po12 M=3.37Mc• model at fi=3x103 rad 
s -I and a constant current function are given in Fig. 14. 
Note that the field lines of At and A• coincide in the star 
interior due to the perfect conductor assumption. The 
non-smoothness of At across the star boundary properly 
reflects the discontinuity of the electric field due to the 
existing surface charges. 


5 3D-gravitational neutron star 
collapse 


5.1 Basic equations 


The investigation of the 3D-gravitational collapse of rotat- 
ing neutron stars requires the solution of the general time- 
dependent field equations of general relativity. We stress 
that already in the Newtonian case a fully three dimen- 
sional simulation of stellar collapse is a highly demanding 
and non-trivial problem. Indeed up to this day there ex- 
ists only one corresponding investigation which aimed at 
the study of gravitational wave emission associated with 
type II supernovae [32]. While in the presence of symme- 
tries like stationarity or axisymmetry the field equations 
are greatly simplified when evaluated explicitly for some 
appropriate coordinates the situation is quite contrary for 
a three dimensional dynamical problem. It is therefore 
favorable to solve the Einstein equations in their original 
coordinate independent (covariant) form. This choice al- 
lows us to adopt elliptic equations for the gauge variables 
N and N • which have a direct geometrical signification. 
The maximal slicing-minimal distortion gauge [24, 7] is 


highly singularity avoiding and neatly captures the propa- 
gation of gravitational waves in the far field zone. This is 
a very important feature, since the study of gravitational 
wave emission is the principal goal of this investigation. 


The governing equations then have the following form: 


(43) 


(44) 


(45) 


(46) 


(47) 


(48) 


(49) 


(50) 


This system of coupled partial differential equations is 
characterized by the following properties: 


The system includes a time first order hyperbolic system 
(43) and (44) of the spatial metric tensor h O and its con- 
jugate momentum variable K 0 which reduces to a wave 
equation for h 0 in the far field zone. The evolution of the 
matter fields E and Ji is governed by the parabolic system 
(47) and (48). These equations constitute the dynamical 
part of our problem. N and N i are subjected to the Pois- 
son type equations (49) and (50) where the matter fields 
act as source terms. Further involved quantities are the 
stress tensor S 0 and the Ricci tensor R 0 where S = 
and R=Rii. The additional constraint equations (45) and 
(46) which establish some consistency relations between 
gravitational and matter fields are satisfied identically for 
the exact solution. They may be used to reduce the num- 
ber of the dynamical variables, an approach that would 
result in a constrained evolution scheme. Indeed this pro- 
cedure guarantees that the numerical solution represents 
at any moment some solution of the Einstein equations 
but not necessarily the correct one. We prefer an uncon- 
strained scheme where the constraint equations can serve 
to estimate the involved numerical errors. 


5.2 Numerical method 


In the spirit of the analytical approach of Sec. 5.1 we have 
opted for a numerical scheme which is based on a one-to- 
one adaptation of common tensor calculus, where elemen- 
tary operations like contraction and covariant derivation 
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are performed by specific subroutines acting on entire ten- 
sor q•_mntities. We further introduce a fiat background 
metric which enables us to separate the contributions re- 
lated to the curvature of space and to carry out the numer- 
ical operations with respect to fiat space spherical coordi- 
nates and the corresponding metric tensor f•j [33]. For a 
given three metric h•j we then have the following relations: 


We first introduce a tensor A•k defined as 


where [[ denotes covariant differentiation with respect to 
•at space spherical coordinates. The covariant derivative 


ß 


USlJ of a vector U • in curved three-space can then be re- 
expressed as 
(52) U•i• - U•iij + 
where the generalization to tensors of higher order is obvi- 
ous. We can further rewrite the Ricci tensor Rij in terms 
of the A•jk. 


The effective use of our scheme is clarified by inspection of 
the already familiar scalar Poisson equation. 


(54) /Vl•l• = S -', :- h•(Nil•11• - Z•m•Nil•) = S. 
Defining a new tensor field r as h •j = ?L•r •j we can isolate 
the (f•)-related covariant Laplacian and find the biomet- 
tic equivalent of the covariant scalar Poisson equation 


(55) /Vll•11• = S+ (?J+r 


In the case of a conformally fiat metric h• = A4f•j with 
f,j being the usual metric tensor of fiat space spherical 
coordinates we obtain r • = (A-4-1) ?J and the following 
equation where Ai represents the usual fiat space scalar 
Laplacian ((• denotes In A). 


1 


(50) din = S- 2A-4(OaON 
0N) - (A - ) A f N. -• r • sin • 0 


The linear contributions on the right can be eliminated, 
if we slightly change the definition of r to describe the 
deviation of the conformal metric • = -•-•/• from the fiat 
space metric 
we have r = 0 and 


1 


(57) •V 
1 


Though this result has been derived for a conformally fiat 
metric we conclude that for any three-space the separation 
of the conformal factor is a first improvement compared to 
the fiat space approximation. 


Following our reasoning in Sec. 2.1 we restrict ourselves 
to the exclusive use of pseudophysical components of tensor 
quantities related to the standard local orthonormal frame 
of flat space spherical coordinates in our numerical scheme. 
The subroutines which calculate the covariant derivatives 


of tensors of order zero to three appearing in our equa- 
tions show the typical relative errors of the order of 10 -14 
due to roundoff errors when using simple test functions. 
For a successive derivation of a scalar function down to 


a tensor of order four the relative error still does not ex- 


ceed 10 -•. While the computation of the lapse equation 
can be reduced to the iterative solution of a scalar Poisson- 


like equation as demonstrated in Sec. 4.2, there remain two 
other problems of higher demand. The first one concerns 
the solution of the general shift vector equation involving 
a linear vector operator which comprises a vector Lapla- 
cian and the gradient of a divergence applied to the shift 
vector N •. In Sec. 5.3 we present a decomposition scheme 
based on the Clebsch-Gordan theorem which leads to an 


equivalent system of three scalar Poisson equations that 
can be solved successively. The other one is related to the 
semi-implicit time integration of the evolution eq.uations 
of the metric potentials. Here P•j includes a tensor Lapla- 
cian Ah•j which has to be treated implicitly. An equivalent 
approach as in the vector case is in work. 


5.3 Vector Poisson equation 


The numerical inversion of a 3D-vector Poisson equation is 
necessary to solve the general shift vector equation which 
is an equation of the following type 


(58) •V + •V(V.V)= S 


where a is a constant. In order to facilitate the solution 


of (58) we decompose V and $ into its divergence-free 
and its irrotational part. We introduce vector fields V 
and • which we suppose to be divergence-free as well as 
two scalar potentials ß and •. We thus have a unique 
decomposition 


(59) V = •r + V• 
(60) s = + 


after specifying the appropriate boundary conditions for ß 
and •. In a first step we solve the Poisson equation for ß 
which we obtain by taking the divergence of (60). 


= V.S. 
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Rewriting (58) in terms of the new variables we infer the 
equivalent equation 


(62) •f" + V((I+,•) ,• - •) = ,•. 


Taking the divergence of (62) where we make use of the 
commutativity of differential operators in flat space, we 
find a Poisson equation linking A• to the already known 
potential •. 
(63) (1+,•) ,•,• = •,. 


The solution of (63) is a priori determined up to an addi- 
tional potential • with A•H- 0. We fix •H to be zero 
according to the boundary conditions and obtain a Poisson 
equation for •. 
(64) (1+,•) • =•'. 


We turn now to (62). Taking into account (64) we derive 
the final equation that governs the divergence-free fraction 
of V. 


(•5) •f• = •. 
We specify the components V• to be the physical comp• 
nents of the vector V related to the local orthonormal basis 


of spherical coordinates. We further drop the tildes on the 
vector quantities. The explicit write-up of (65) then reads 


(66) 
2 


r 2 sin 0 O•V• = 


(67) 
I 2 


r 2 sin2-• • V# + • aS Vr 
2 


r • sinetan • O•V• -- Ss, 


I 2 


(68) A[V• r2 si112• V• + r2 sin•-• •r 
2 


• r 2 sin 0 tan 00, Vs = S• 
where Ai denotes the ordinary scal• Laplacian 


I I 1 


(69) a f = • + 2 O• + r• Oe + O• + • Og. ; t• 0 • r 2 sin20 


We further recall the representation of the covariant diver- 
gence •7.$ in spherical coordinates 


_ I 1 (70) •7.$ = OrSr + 2 S• + - OoSs + rt•-'•n• So 
1 


We adopt the following notation where we introduce two 
auxiliary scalar potentials U and W in order to obtain a 
set of decoupled equations which is equivalent to (66)-(68). 


(71) = 1 r rsinO O•0W, 
1 I OaW+ O4•U. (72) V, =; r s--•n• 


From •7. V = 0 we get 


(73) • + 2 V, + 1 I •sU ; • • U + r2 tan• 
1 a•U = 0. • r2 sin2• 


Combining (73) with (66) leads us to a sc•ar Poisson equa- 
tion for V where we have defined •=rV•. 


(74) =r&. 


Proceeding in the same manner with (67) and (68) we 
derive the following line• combinations of the resulting 
equations with (73). 


(75) sinOOo(O•U-O•V•) - O• (AW- • O•W) 
= r sin 0 S•, 


I O•(O•U-OrVr)+O•(•W-20rW) 
= rS•. 


Derivation of (75) with respect to 0 and of (76) with respect 
to 4 and adding the both equations allows us to recover a 
sc• Poisson equation for (O•U-V•) which only involves 
the angular variables (0, •) where we have inte•ated over 
r •d set the implied inte•ation constant to zero to •sure 
a v•ishing behavior of the source terms at r = •. ' 


(w) = 


Here •, denotes the •ar fraction of AI multiplied by 
•2, 


At this point we c• determine U by me•s of V• which 
h• akeady been •ed by (74). In order to calculate the 
lacking potentiM W we t•e up (76). An ordin•y int• 
gation over 0 where we require vanishing behavior of the 
so•ce terms at i•nit• • for (O•U-V•) results in a scalar 
Poisson equation for W defined by W = r•, 


ifs) = - as. 
This scheme hence Mlows to compute the required poten- 
tials successively for a given source distribution starting 
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Figure 15: N • for a rapidly rotating Kerr black hole at 
aim = 0.99 where r• denotes the radius of the horizon. 
The different curves correspond to various values of • rang- 
ing from 0 ø to 90 ø. The asterisks indicate the subdomain 
boundaries. 
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Figure 16: Absolute error in N • corresponding to Fig. 15. 


from the ordinary Poisson equation for •, solving then the 
equation involving (Or U-V•) and thus fixing U while in 
a last step W can be determined as a quantity depending 
on V• and U. Note that $e does not appear in the source 
terms of the final equations. This is due to the constraint 
equation •.$ = 0 removing one degree of freedom. 


5.4 Tests 


The routines we have built based on this computation 
scheme and on our spectral method library enable us to 
solve a vector Poisson equation in a multidomain config- 
uration including an exterior compactified zone - if de- 
sired - which covers all space and thus allows to impose 
proper boundary conditions for asymptotically flat space 
where for the time being we restrict ourselves to the su- 
persymmetric case. Numerical tests have been performed 
on simple test functions and on problems where the ana- 
lytical solution was known in advance. For test functions 
we found once more the numerical error to be governed 
by the roundoff limit of the employed machine of the or- 
der of 10 -14 . As an advanced test problem we solved the 
shift vector equation in the Kerr metric of a rotating black 
hole. The presented configuration corresponds to a rapidly 
rotating Kerr hole - aim - 0.99 - close to maximum an- 
gular velocity where the relativistic effects involving the 
shift vector component N e are strongly pronounced. The 
entire space outside the black hole is covered by three zones 
where the outer compactified one extends to spatial infin- 
ity. The grid resolution is chosen to be Nr = 33 in each 
zone and N• = 9. Note the quite small number of nodes 
in •. Thanks to taking into account the even symmetry 
of the problem with respect to reflection at the equatorial 
plane according to Sec. 2.2 this corresponds to an effective 
value of 17 in the whole interval [0, •r]. Fig. 15 shows the 
course of N • in the vicinity of the black hole while Fig. 16 
illustrates the absolute error committed on the shift vec- 


tor component N •. The numerical error nowhere exceeds 
10 -lø. For a higher value of Nr it even goes down to about 
10 -13. As expected the numerical errors are most elevated 
at the boundaries of the different subdomains where the 


piecewise solutions of adjacent shells are matched. The 
GRV2 identity which had already proved its usefulness in 
the study of axisymmetric stationary neutron stars was 
applied to estimate the total error of the numerically com- 
puted Kerr spacetime. The error estimator I1- A{ turned 
out to be closely related to the numerical errors derived 
above from comparison with the analytical solution and 
confirmed in this highly relativistic problem to be a sensi- 
tive indicator of the global numerical accuracy. 


6 Conclusion 


We have presented the application of spectral methods 
to several problems of numerical relativity. In each case 
they proved to be a highly valuable tool which lead to 
results typically several orders of magnitude more accu- 
rate than corresponding codes based on finite difference 
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schemes. Especially in spherical-like coordinates the ad- [9] 
vantages of a spectral method which allows a rigorous 
treatment of the associated regularity conditions, while im- 
proving the efficiency of the code at the same time, are re- 
markable. Particularly important properties for our prob- [10] 
lems are the negligible numerical viscosity in temporal evo- 
lution schemes which enabled us to capture subtle details 
in the time-dependence of evolved variables as observed 


for equilibrium configurations of neutron stars in Sec. 3.3, [11] 
as well as the very natural treatment of boundary condi- 
tions aad the efficient solution of elliptic equations which 
is a frequently encountered task in our investigations. Our 
so far very positive experiences with spectral methods give [12] 
us confidence to dispose of the appropriate numerical tool 
to tackle the exciting problem of black hole formation by 
3D-gravitational collapse of neutron stars. 
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Integration preconditioners for differential operators in spectral r-methods 


E. A. Coutsias* T. Hagstrom* J.S. Hesthaven * D. Torresõ 
ß . 


Abstract 1 Introduction 


We present simple, banded preconditioners that transform 
linear ordinary differential operators with polynomial co- 
efficients into banded form. These are applicable to a wide 
class of Galerkin approximation problems, including ex- 
pansions in terms of all the classical orthogonal polynomi- 
als. The preconditioners are in fact the n-th order integra- 
tion operators for the polynomial families employed in the 
Galerkin approximation, with n the order of the differential 
operator. The resulting matrix problems are algorithmi- 
cally simpler, as well as better conditioned than the orig- 
inal forms. The good conditioning allows the extension of 
our ideas even to problems with arbitrary, nonsingular co- 
efficients as well as to certain quasilinear problems by the 
use of iterative methods. We also present extensions to 
partial differential operators with polynomial coefficients 
by considering preconditioners in the form of tensor prod- 
ucts of appropriate combinations of integration operators. 
The origin of the tridiagonal integration operators for arbi- 
trary classical orthogonal polynomial families is shown to 
lie with the Gauss contiguity relations for Hypergeometric 
functions. 
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The classical orthogonal polynomial bases most commonly 
used in Numerical Analysis originate as eigenfunctions of 
singular Sturm-Liouville problems. The derivatives of such 
polynomials form an orthogonal basis as well; in fact they 
are also classical orthogonal polynomials. As a result of the 
Gauss contiguity relations for Hypergeometric Functions 
[1], elements of the original basis have a simple expres- 
sion in terms of elements of the derivative basis, involving 
at most three terms of contiguous degrees. Consequently, 
although the matrices representing differentiation to vari- 
ous orders in terms of an orthogonal polynomial basis are 
almost full upper triangular matrices (only exception are 
the Hermite polynomials), those representing integration 
are banded, of bandwidth 2n + 1, with n the order of in- 
tegration. This, together with the fact that multiplication 
by a monomial is also a tridiagonal matrix leads to simple, 
banded preconditioners which simultaneously band classes 
of matrices of the form PD TM, with P the operator of mul- 
tiplication by a polynomial p(x) and D '• the operator of 
m-fold differentiation. This allows the formulation of ef- 


ficient algorithms for the solution of differential equations 
with polynomial coefficients in any of the classical poly- 
nomial bases. In Sec. 2 we establish the above facts and 


discuss how they can be used in the context of the Lanc- 
zos r-method to construct a spectrally accurate solution of 
a differential equation with general polynomial (and. ratio- 
nal) coefficients in O(M) operations with M the truncation 
order. The appeal of the method is due not only to the 
efficiency of solution, but also to the excellent conditioning 
of the resulting matrix problems [6]. This latter property, 
established under certain general assumptions in Sec. 3 
permits the extension to problems with arbitrary nonsin- 
gular coefficients as well as certain nonlinear problems by 
the use of iterative methods, and we present examples in 
Sec. 4. 


In Sec. 5 we show how the ideas can be extended 


to higher dimensional problems. The pre-conditioning 
scheme presented here has the advantage that it can be 
extended easily to treat problems in multidimensions. Ad- 
ditional dimensions are included in the banded matrix for- 


mulation through tensor products, which amounts to re- 
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placing entries in banded matrices by blocks which are 
themselves banded. A natural way of deriving such block- 
banded forms for the higher dimensional case is by inter- 
preting integration and differentiation as change of basis 
transformations among related polynomial families. Ef- 
fectively, then, we consider expansions in each variable in 
terms of a basis of derivative polynomials of order equal 
to the maximum order derivatives in that variable present 
in the given equation. The numerical solution of several 
simple test cases is presented. As an alternative to finite- 
difference based time stepping schemes for time dependent 
problems, we apply our method to problems in one space 
dimension plus time. Functions are expanded in a double 
spectral expansion, in both the space and time variables. 
The problems are solved by inversion of the block-banded 
matrix resulting from the application of integration pre- 
conditioners of appropriate order in each variable. The 
operation count for a problem discretized to a N x M res- 
olution is min(O(MSN), O(NSM)) for a single solution 
but it is lower if the same matrix is inverted several times, 
say as a result for solving with different forcing functions 
etc, in which case the cost is rnin(O(M2N),O(N2M)). 
These numbers reflect the alternatives available when de- 


riving the block-banded forms for the differential opera- 
tor. Analogous estimates also hold for higher dimensional 
problems. Finally, in Sec. 6 we present some concluding 
remarks and further connections with previous works. 


In a previous paper [6] we examined the use of the spec- 
tral integration operators as postconditioners for linear dif- 
ferential operators with polynomial coefficients in arbitrary 
bases of classical orthogonal polynomials. In that form, the 
method was a generalization of the method of treating a 
differential equation by expanding the highest derivative 
in terms of Chebyshev polynomials originally introduced 
by Clenshaw [4]. The integration preconditioner for the 
Chebyshev polynomials is also analyzed by Greengard [11], 
while the recurrence relation for the derivatives of the Ja- 


cobi polynomials has also appeared in a recent review by 
Fornberg [7]. 


2 The method 


Throughout, we assume that we are working with a family 
of polynomials {Qk }• which are orthogonal and complete 
over the interval (a, b) (here a and/or b can be infinite) with 
respect to the weight w(x). In the cases of interest, these 
are the eigenfunctions of a Sturm-Liouville (SL) problem, 


+ kw(x)Q = o, 


so that the Q[ form an orthogonal family as well, with 
weight p(x) which satisfies p{.x) • 0 as x • a, b. We 


will assume that the functions under consideration possess 
sufficient differentiability properties over (a, b) and can be 
expressed as a series involving the Q•. See [3] for a discus- 
sion of the convergence properties and the introduction of 
relevant function spaces. 


2.1 Integration operators and derivative 
bases 


We write (Q',Q.)w = f• Q.Q,w(x)dx = h.5,.•, with 
h,• the norming constants of the Q• [1]. We set Q,(x) = 
• Knox •. It is well known that all orthogonal poly- 
nomial fa•lies share a thruterm recu•ence of the form 


1 


(2) • Q&+ta&+l,& = xQ& , k = 0,1,... 


This follows since, if/ < k- 1, deg(xQt) = l+ 1 < k 
•d, by o•hogonality, {xQ•, Qt)• = {Q&,xQt)• = 0. By 
matching powers we e•ily s• that [14]: 


Kn-l,n-1 
an,n-1 - Kn,n ' an,n+l --- 


Kn.n_• Kn+•,n 
an,n Kn,n K,+•.•+• 


the second relationship following since 


= ½Q., = = 


In many important cases, including the classical orthogo- 
nal polynomials (i.e. Jacobi, Chebyshev, Legendre, Gegen- 
bauer, Hermite and Laguerre polynomials) there also holds 
a relation of the form 


1 


/4) E ' Q•,+tb&+t,k =Q• , k= 0,1,-.. 
/=-1 


Here, as well as in (2), we introduced Q_• = 0. In fact: 


Lemma 2.1 Suppose that the ei.qenfunctions of the SL 
problem (1) are polynomials. Then their derivatives, 
{ Q[ } •c also constitute an orthogonal family with respect to 
weight p(x) where it is assumed that p(x) > 0 for x • (a, b) 
and p(a) = p(b) = O. Moreover, the epression of 
(k > 1) in terms of the Q• involves at most only Ir¾ l'•klk-1• 


i.e. it has the form (J). 


Proof.' Integrating by parts we see 


Q•Q•p(x)dx ' • = Q•Q•p[,•- Qk(Q•p)'dx 


= A• Q•Q•wdx = )•h,5• 
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since p(x) vanishes at the end-points, and the orthogonal- 
ity of the Q• follows from that of the Qk. We introduce 
h' - •kh• for the norming constants of the Q• indexing k--I ' 


according to the degree of the corresponding polynomial, 
namely deg(Q•) = k- 1. Now, since the {Q•}•+• are 


•-•k+l independent, we have that QI• -- •,l Qlbl,l• and in or- 
der to establish (4) we must show that (QI•, Q•)p -- 0 for 
l -- 1,..., k - 2. Clearly 


t b •a b {Q•,Q•}p Q•Q•pz[a - (xQ•Q•p+ x ' ' 


= - (Q•,xQ•)p + A• (Q•,xQl)w = 0 
where the first integral vanishes due to the orthogonality 
of the Q• since deg(xQ•) = l <_ k- 2 < k- 1 = deg(Q•), 
while the second integral vanishes since deg(Qk) 
k- 1 _• l + 1 = deg(xQl). 
Note: for the classical orthogonal polynomials, the deriva- 
tives of arbitrary order are also classical orthogonal poly- 
nomials. This follows easily from general properties of the 
Hypergeometric functions F(a, b; c; z) [1]. For instance, for 
the Jacobi polynomials we have 


P?'fi)(1 - 2z) - (a+ 1).F(_n,n + a + fi + 1;a+ 1;z). 
Since 


(5) •zF(a, b; c; z) ? -•F(a.+ 1,b+ 1;c+ 1;z), 
it follows that 


(6) •d p_(mfi)(x ) _ n + dx " 2 ' n--1 \;•'} ' 


Similarly, for the Laguerre and Hermite polynomials we 
have 


dL(•')(x• r(ø+•) dx " ,---..._• (x) , H. - 2nH._•. 
In all cases, differentiation can be seen as a change of basis, 
always within the set of classical orthogonal polynomials. 
We let A, B be the coefficient matrices in (2,4) respectively. 
The relation between the two sets of coefficients is found 


from the following: 


Lemma 2.2 The coe•cients bm,n in (J) are found from 
those in (œ) as 


1 


bn+l,n -- -----•an+l,n , n+ 


bn-l,n - (1 (n - 1)An) n•n--1 an--l,n, 


and 


bn,n I I (• K1.0) -- -- al,l -- K1,'--• ' n+l an'n n(n + 1) \l----1 
Proof: Since the Q• are orthogonal, they must satisfy a 
relation of form (2): 


! 


(7) w•+•+• k+•,k = xQ•+• , k = 0,1,... 


, _ - + Since Q.+•(x) - Y]•=o t .• _ 
1)Kn+•,m+lX m, i.e. ' 1)Kn+•,m+•, K•,, = (rn + it follows 
from (3) that 


n+l t 


an+l, n -- __ n -• 2 an+2,n+l 


n 
t '-- -- )•--•n an+l ,n an-- l'n n • 1 


, n K.+L. n + 1 K.+z.+• 
a.,. --- n + 1 K.+•,.+• n -{- 2 Kn+2,n+2' 


Differentiating (2) and using (7) there results: 


and the claim follows after some algebra. 
Note: The computation of the bij from the above expres- 
sions is not very practical, and was only given to establish 
the connection to the a• d. A more direct calculation in 
the case of the Jacobi polynomials follows from their con- 
nection to the hypergeometric functions [14]. Indeed, dif- 
ferentiating (2) for the Jacobis, multiplying (6) by x and 
expressing the latter in terms of the •(ø+•'•+•) ß • using (2) 
we find 


n-F l,n -- -- • •"+•'" n+a+fi+2 ' - 


b(a,•) _ a(a,fi) _(a+l,fi+l) n,n n,n -- Un--l,n--1 , 


b(•,fi) _(•,fi) n + a + fi + 1 a(•+•.•+•) 
n--l,n = an--l,n -- n ..• t• ..• • n-2,n-1 


In Appen•x A we show that similar relations for the 
deri•tives resulting in a tridiagonM inte•ation operator 
(• well • a tridiagonM monomial multiplication) hold for 
•1 h•erg•metric •d confluent h•ergeometric functions 
• a result of the Gauss conti•ity relations, •d this can 
be used to •ve • alternative direct deri•tion of the r• 
cubenee coefficients aid and bid. 
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The nonzero elements of the matrices A, B for the clas- 
sical orthogonal polynomials are given in Table 1, together 
with other relevant quantities, using the standard notation 
[1]. The relations for the Gegenbaner polynomials C? ) can 
be constructed from those of the general Jacobis since 


= + 1)r(2 +. + 1) 
+. + 1)r(2a + 1) 


where a = •3 = v - 1/2. 


2.2 Reduction to banded form via integra- 
tion preconditioning 


Our main result can be stated as follows: 


Theorem 2.1 Consider the orthogonal polynomial family 
{Q,)• and assume that the Qk satisfy (J) for some matrix 
B = (hi j). Then, the matrix representing the differential 
operator 


(8) L = •-]pk(x)D k 
with deg(p• ) = •rk, the degree of the polynomial coefficient 
old •', becomes banded upon left multiplication by B[•] with 
bandwidth R = max•.(2•r• +2(n - k) + 1) where 0 _• k _• n. 


(In the sequel we use L both for the operator and for its 
matrix representation. Also, arrays are indexed from 0 to 
N, the maximum order of truncation. An array G whose 
first k rows have been replaced by zeroes is denoted by 
G[•]. Similarly f[i] will denote the vector f with its first i 
components set to zero.) 
Example: The following ordinary differential equation 
arises when one solves the 2-D Helmholtz equation on an 
annulus: 


u(x) - • D s+ . 1 D u(x) = - f 
x+a (x 


The inner radius of the annulus is a- 1 > 0 ,k is an integer 
(representing the Fourier mode), and the range of x is - 1 _• 
x _• 1. Multiplying through by the factor (x+a) • we arrive 
at an equation with polynomial coefficients which can be 
transformed to nine-diagonal form via left multiplication 
by the matrix B•] [5]. This example is further discussed 
in the next section, where conditioning is considered. 


Note: In conjunction with the Lanczos •--method [10], 
or alternatively by making use of proper subspaces where 
differentiation is invertible [6], the above idea can be in- 
corporated into the design of algorithms for the efficient 
and accurate solution of differential equations with poly- 
nomial coefficients. When the •--method is used, the first 


n rows which after left multiplication by B" are null, are 
replaced by row vectors associated with the •--constraints. 
These alter the matrix but do not affect the order of com- 


plexity of the solution algorithm, apart from an increase 
in the bandwidth which remains _< R + n. 


We establish the above result in a series of lemmas. We 


define the function evaluation functional at the point x, 
q,., as the row vector 


q,. = (Q0(x), 


Also we introduce 


q?) = (Q?)(x),Q?)(x),...), 
the operator of evaluating the k-th derivative. Clearly, the 
{Q?))• form an independent set of polynomials which, 
for the classical orthogonal polynomials, can be shown 
to be orthogonal with a weight related simply to w(x). 
If we write ](0) = ] = (]o,]•,"')T for the vector of 
the expansion coefficients of a function f(x) in the given 
basis and ](•) = (]o(•),]?),...) T for the vector of the 
expansion coefficients of the function f(•)(x) (denoting 
the k'th derivative of the funcion f(x)) we have that 
f(k)(x) = q?)](o) = q•](•). Then the relations (2), (4) 
can be written as 


(9) xq• = q•A and qz = q?)B = q(•)B[•] 


where A, B are the recursion coefficient matrices for (2), 
(4) respectively. 


The matrix B has the form 


(lO) B: 


b0,0 50.1 0 0 ... 
b•,0 b•,• b•,2 0 ... 
0 b2.• b2,• b2,s 0 


0 0 b•,• b•,• ". 
0 0 0 ". ". 


The very first row of B will always be set to zero. Thus 
the elements 50,0 and 50,• are irrelevant and will never be 
used. The basic recursion (4) remains unchanged regard- 
less of how the first row of B is defined since Q?(x) = 0 
for polynomial families. 


We have 


Lemma 2.3 The operator Pn of multiplication by a poly- 
nomial Pn (x) is expressed in the basis Qn by a banded ma- 
trix, of bandwidth 2•rn + 1. 
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Proof: Consider an expansion f(x) = qz] (ø). Multiply- 
ing by x, one obtains xf(x) = xqz] (ø) where xqz denotes 
xqz = (xQo(x),xQ•(x),...). Invoking (9) one can substi- 
tute for xqz to obtain xf(x) = qzA] (ø). Thus A is the ma- 
trix which transforms the vector of expansion coefficients 
for f(x) into the vector of expansion coefficients for xf(x). 
The matrix A is tridiagonal since the recurrence relation 
(2) is a three-term recurrence relationß Extending this ar- 
gument, it is evident that A n is the matrix that transforms 
the vector of expansion coefficients for f (x) into the vector 
of expansion coefficients for xnf(x). Since A was trialiago- 
hal A n is obviousIy banded with bandwidth 2n + 1. Thus 
multiplication by a polynomial Pn (x) becomes the opera- 
tion of multiplication by pn (A). 
Note: If the family has a simple convolution, as is the 
case for the Chebyshev polynomials for which 2TroT, = 
Tin+, + •,n-nl, then it is convenient to expand the poly- 
nomial p, (x) in terms of the basis thus simplifying the con- 
struction of the matrix Pn. Specifically, one first expands 


= •k=0 caTa. For purposes of implementation, let 
us consider a truncated Chebyshev expansion of order N, 
that is f(x) = T•] (ø) where T• is the row vector T• = 
(To(x),T•(x),...,TN(x)). The product is p,(x)f(x) = 


•-•;• caTaT&i(ø) where TkT• represents the vector TaT• = (Ta(x)To(x),Ta(x)T•(x),...,Ta(x)TN(x)). The 
vector TkT• can be expressed in the form (TaT•) = 
T•ATk (accurate up to the N+l'th coefficient) where ATk 
is the N + 1 by N + 1 matrix 


0 


0 


1 2 


AT• • 0 


0 


-.. 0 I 0 ...... O' 
ß . ß 


0 I 0 .. .. 


I 0 '. '. .. 
, . 


0 '. '. 0 
ß . 


I '. '. 1 
ß o 


ß o o 


...... 0 I 0 .-- O. 


where a•0 = 1, a0• = 1/2 etc, which follows from 
2TrnTn = Trn+, + Tim-, q. Note ATe reduces to the iden- 
tity matrix. As expected, ATk has a bandwidth of 2k + 1. 
Thus p,(x)f(x) •=" - •k=0 c•T•T•] (ø) can be written as 
pn(x)f(x) = Tff (•--• c•AT•) ](o) where •_-_-• c•AT• 
is sum of matrices AT• each with bandwidth less or equal 
to 2n + 1. This equation illustrates that multiplication by 
p, (x) translates into multiplication by a banded matrix for 
Chebyshev polynomials. 


We also have the related obvious consequence of Leib- 
nitz's rule: 


Lemma 2.4 The commutator of the operator D • with the 
operator P of multiplication by a polynomial p(x) is given 
by 


• ( k )Dk_mp(m). [P'D•] = PD• - DkP= Y•" (-1)m m 
k 


The properties of the B[•] are established in lemmas (2.5- 
2.6): 


Lemma 2.5 Let f•(x) = •]•)Q•(x); then B[•]] (•) = 
1[•) and the first element of ](0), ]o(o), is undeterrnined. 
Proof: We have that f(x)= q•](o)and f'(x)= q(•)](0)= 
qz](•). Also, by assumption, q?)B = q•. Combining we 
find 


Since the Q• •e independent and orthogonal, the relation 
claimed follows. Cle•ly, the first element of ] remains 
undeter•ned, since Q• • O. 


Corollary 2.1 A similar relationship holds for the n-th 
derivative coefficients of f(x). 


Recall that q?)B = q• from (9). Similarly, one has 
qz(i+a) r• q(•i) One can generate, using repeated appli- 
cations of ..(i+a) r• q? and recursive substitutions, 


where p _• n. Setting n = k and p = k, in (11) one obtains 
k k 


q•B = q•. Arguing as in Lemma 2.5 it is seen that 


using • • q•B = qz for the last equalityß Using the second 
and last expression in the above equation, one obtains 


and, again, this relation gives the coefficients of f(x) in 
terms of those of its k-th derivative, with the components 
]0 through ]•_• remaining undefined. Recall that the first 
k components of q?) are zero, since the k'th derivative 
annihilates the polynomials of order first through k - 1. 
We then have 


Lemma 2.6 If D is the matrix of differentiation in the 
family, then B[•]D -- I[1], the identity with its first row set 
to zero. 
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Proof: Indeed, by definition, D] (ø) = fO), so that 
q•](•) = qzD] (ø) from which •z [•] - 
0 nsing (9). hns = 0 or 
q?)(f•)- B[•]Df (ø)) = 0 by Lemma 2.5. One c• now 
•te (Ip] - Bp]D)] (ø) = 0 thus conclud•g the proof. 


It then follows that: 


Corollary 2.2 If D n is the matrix representing n-fold dif- 
Dl+ n r)n l ferentiation in the family Qn, then '"It+n]'" = B[l+n]' 


Proof: By the definition of the differentiation matrix D. 


(12) q?) ](o) __ q•D • ](o) 


Settingp = n in (11), one has q(•n)Bn = qz. Substituting 
this expression for q• into (12), one obtains 


(13) = 


Setting p - n- k _• 0 in (11), one has q?)B n-• - q?). 
Substituting this expression for q?) in (13), one obtains 


(14) 


Now the first n components of q(•") are zero. However, the 
remaining components of q?) are composed of orthogonal 
polynomials and are therefore independent. Thus, one has 
Bn-k] (ø) = BnD•] (ø) except for the first n components. 
Since f(o) is an arbitrary vector, one has B "-k -- BnD • 
except for the first n rows. This equation can be stated 
concisely in the form B n-• n • [.1 =B[.iD or lettingn=n+l 


l•l+ n F)n l and k = n, in the form •[t+-l• = By+•]. 
We now give the proof of our main assertion: 


Proof of theorem: Following lemma (2.4) we rewrite the 
differential operator L as 


L 


k----0 m=O 


r 
r=0 k----r 


= •-•.D •& 
r----O 


with deg(S•) = a• = max•<•<.(•rk - k + r). Then, since 
n r Bn-r by cor.(2.2) B[•]D = [•l ' 


n 


r•0 


and the bandwidth is obviously 


2 max ((n-r)+ar)+l=R. 
O_<r_<n 


Replacing the first n-rows (containing zeroes) by appropri- 
ate constraint coefficients, originating from the boundary, 
initial or other conditions imposed on the solution of the 
ODE Lu = f, will transform the matrix into a banded form 
with n additional (generally nonzero) rows. This matrix 
still factors similarly to a banded matrix, with bandwidth 
R+n. 


3 Conditioning and convergence 


It is well known that spectral differentiation operators suf- 
fer the dual defects of full upper triangular matrix repre- 
sentations with very poor conditioning. Above we have 
shown how integration preconditioners band spectral dif- 
ferentiation matrices. In this section we show that they 
produce well-conditioned linear systems, and exploit that 
fact to give good error estimates for general ordinary differ- 
ential equations. In the following section we will show that 
the favorable conditioning properties lead to the rapid con- 
vergence of iterative methods for spectral approximations 
to general variable coefficient and nonlinear equations. In 
particular we study the preconditioned, discrete system: 


(15) TN•'- b, 


(16) I[ n] q- Z n-j n - Bin I $j O---- 
j=0 


under the simplifying assumption that the lead coefficient 
is 1. Here TN9 '- Tv and the matrices Sj are Galerkin ap- 
proximations to multiplication by the polynomials, sj (x). 
Throughout we assume that the polynomial family is one 
of the symmetric Jacobi (Gegenbauer) families scaled so 
that: 


(17) sup• 
ß 


. 


We denote by A•v the coefficient matrix of this system 
and assume that P•v is computed by interpolation of f 
at the Gauss or Gauss-Lobatto points associated with the 
truncated orthogonal system. 


In '[6] a post-conditioning scheme based on the integra- 
tion operators is analyzed. The main difference here is the 
inclusion of the T-conditions in the matrix. As the T- 


conditions typically involve point evaluations of functions 
and their derivatives, we cannot expect T•v to be bounded 
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in 12. Therefore, we introduce the space hr of infinite vec- 
tors satisfying: 


(28) IIZlIL -- • IZt12( l + 1) 2r < o•. 


For finite truneations, the norm is simply defined by the 
truncated sum. It is associated with the inner product 
(¾,Z)h. = YTD•Z, where Dr is the diagonal matrix 
whose jth diagonal entry is jr. Oiven any matrix C we 
have: 


(19) IICllh• --IIDrCD7;II:. 
Note that for integer r _> 0, and Z the expansion coeffi- 
cients of a function, z, we have, for positive constants Go, 
G•, 


Co(:,(L + 1)r=) % IlZllL % c,(:,(L + 1)%) 
z 2 (20) < O;I 


where 12 = -DpD. (Here, (., .) is the unweighted L • in- 
ner product.) We now state our assumption on the 7'- 
conditions: 


Assumption $.1 There exists ro _> 0 and a constant, Ca', 
such that, for all N, r _> to, and N + I.vectors V, 


IzNvI _< CrllVllhr- 


Moreover, for some integer r _> to, r - n _< 1. 


We illustrate Assumption 3.1 with the standard exam- 
ples of Chebyshev approximations and Dirichlet or Neu- 
mann boundary conditions. In the former case, 


(21) TNV= E(-1)'•'I•, 


where r/t = I or ;It = 0, depending on the boundary. Choos- 
ing ro > 1/2 we have, for all r _> to: 


(22) {•Nv{ _< (z + 1) -2•o {{Vll•r. 


For Neumann conditions, 


(23) rNv = 
l 


Choosing ro > 5/2 we have, for all r _> to: 


(24) IZ•vVl _< (l q- 1) 4-2rø IlVlln. 
l--O 


We now state a number of results concerning the indi- 
vidual operators in (16). In many cases the proofs can be 
found in [6, Sec. 4] or constructed in obvious analogy with 
proofs given there, We will avoid repeating the details of 
the arguments in [6]. The primary additional facts we will 
use are: 


Lemma 3.1 For any r > 0 and integer k there exists a 
constant K(k, r) independent of N such that, for any N x 
N matrix, C, with bandwidth k, 


IlClln• _< g(•,r)11CIl•. 


Proof. We need only consider the matrix DrCD[ •. Its 
nonzero elements are multiplied by (i + 1)•(j + 1) -r with 
i- j _< k. Clearly this factor is uniformly bounded above 
by a function of k and r, completing the proof. 


Lemma 3.2 For any r _> O, s > r, Z • hs and ZN the 
infinite vector obtained by setting all but the first N + 1 
components of Z to O, we have: 


Proof. We have: 


k=N+l 
oc 


(25) _< (N+ 2) 2(•-•) y] (k + 1)2•lZ•l 2, 
k=N+l 


which implies the stated estimate. 
We note that by (20) we can replace the right-hand side 


by a multiple of the Hs,• norm of z. This inequality is, 
then, stronger than can be obtained for the H•,• norm of 
z = ZN. (See [3, Ch. 9].) However, we must generally 
use a larger r than Sobolev's inequality would require to 
bound T. The example of Neumann conditions illustrates 
this. 


Theorem 3.1 


a. For any r > 0 the operators Bin ] : hr -• hr, 1 = 
1,..., n, are compact and, for some constants, gt,r, 


IIBl. lUllh• < •t,rllUll•_,. 


b. For any r > 0, I1%11•, J = o,... ,.- 1 are uniformly 
bounded in N. 


Proof. The matrices BI, ] and S• are banded. Bounds on 
their 12 norms are given in [6] and, by Lemma 3.1, extend 
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to their hr norms. As the compactness is proved by al> 


proximating B•,] by its finite truncations, it can also be 
extended. We also have an estimate for the entries of 


(26) 
Therefore, 


from which the desired estimate follows. 


We are now in a position to prove: 


Theorem 3.2 Suppose that w = 0 is the only solution of 
the hommjeneous system, Lw = O, Tw = 0 and that T 
satisfies Assumption 3.1. Let r be an integer satisfying 
r _> ro andr-n < 1. Further suppose that, for some 
p >_ 1, f 6 CP((a,O)). Then: 


a. There exist constants, Co and C1, and an integer, No 
such that for any N > No and vector, y, with [lY[[r = 
1: 


Co _< IIANYlI, < 


b. The matrix A2• - I approaches a compact operator on 
hr. 


½. There ezists a constant, C, and an integer No, such 
that, for all N > No: 


((u v•x-),(œ + 1)"(u v2v)> _< CN -2u 2 - - IIfL.p, 


# = p- (1/2)max(O,r - n). 


Proof. The upper bound on AN and the compactness of 
A• -I follow directly from Theorem 3.1. The lower bound 
follows from the analysis in [6, Sec. 4], which we outline 
here for completeness. First, define the compact operator, 
•: h• -. h•, in the following way. Given Z 6 h• let 
Z -- •k ZkQk, SjZ -- •'•k 2(k j)Qk' Then 


{ (•'g)i- Zi, i = O,...,n- 1 (28)(RZ)• = tv '"-• •'•-52 (5)•. i > n. 
x•-,j=o ""In] ,'•' -- 


If, for some Z • 0, (I + •)Z = 0, it can be easily shown 
that a nontrivial solution of the homogeneous problem ex- 
ists, violating the hypot.heses of the theorem. By the Riesz- 
Schauder theory, il (I+K)-•11• is bounded. We next show 
that A•v - I approximates K. In particular, let 


{((A• - •)z•)•, i = 0,...,N, (29) (R•z)• = o, . i > N. 


Here, Z• is the N + 1-vector containing the first N + 1 
components of Z. Let • > 0 be given. Given any vector, Z, 
IIZlla• = 1, and positive integer M, let ZM now denote the 
infinite vector obtained by setting all but the first M + 1 
components of Z to zero. Now, for M = M(•) sufficiently 
large, we have, for all N, 


(30) IIR(Z- ZM)ll• < •, 
Moreover, if N > M + n + q: where q is the maximum 
degree of the polynomials, sj, KZM -- •'NZM. Therefore, 
for N > M(e) + n + q, 


Choosing ½ sufficiently small, and, hence, No sufficiently 
large, we conclude using the Banach lemma that (A2v) -• 
is uniformly bounded for N > No. 


Standard ode theory implies the existence of a solution, 
U • cp+n((a,b)). Set e = u- VN, EN = UN -- VN, 
AF = FN -- PN and UN the polynomial whose expansion 
coefficients are given by UN. We then have: 


(32) ANE• = RN, 


(33) T•UN - Tu ) RN = B•, •(AF) + W• ' [1, 


n--I 


(34) WN = - E(B•.•/NS• NUN - "-J , (Bi• 1 S•U)N). 


From our bounds on AN and A• • and Assumption 3.1 we 
conclude, 


I IInNIl•, (35) IIENIln• 


where in U - UN, UN denotes the infinite vector obtained 
by extending the finite vector by 0. By Lemma 3.2 and 
(20) we have: 


(37) [IU- 


Using (20) •d the properties of the inte•ation operators 
we obtain: 


(38) IIBt•I,•(AF)Ila• 
(39) l = max(O, r- n) _< 1. 


By the results of Bernardi and Marlay on interpolation 
error, [2], we have: 


(40) IIfN- fllm,• < 
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Truncation Poisson Helmholtz Helical 
8 12.6 1264 229 
16 20.6 3788 300 
32 31.9 9550 399 
64 ' 51.2 19580 537 
128 90.0 39320 737 
256 156. 78700 1020 


Table 1: ho Condition Numbers: Preconditioned 


Truncation Poisson' Helmholtz 'Helical 
8 11.4 1321 1110 
16 11.7 2777 1108 
32 11.9 3844 1108 
64 12.0 4084 1108 


128 12.1 4133 1108 


256 12.1 4154 1108 


Table 2: hi Condition Numbers: Preconditioned 


Therefore, since 


combining these inequalities and applying (20) yields the 
error estimate. This completes the proof. 


We note that these results fall short of those proved in 
[6] for the post-conditioning scheme, both in terms of the 
restrictive assumptions on the coefficients and in the con- 
vergence rates. We hope to improve these in future work. 
Numerical experiments show that the results on condition- 
ing hold for a number of important operators with variable 
lead coefficients. In the following tables we display the con- 
dition numbers in the norms h0, h• and ha, of truncated 
approximations to the Dirichlet problem for the cylindrical 
Poisson, cylindrical Helmholtz and helical Poisson opera- 
tors: 


Poisson Operator: 


r 2 + , 


Helmholtz Operator: 


- 


Helical Operator: 


(•2T4 q- T2) •2 q-(--•2T3 q-T)•-k2(1 q-2Q•2T 2 q- C•4T4). 
Here, k = 3, e = .001, a = 1.5, and 1 g r < 3. 


Clearly, the condition numbers grow with N in the ho 
norm but remain bounded in hi and ha. This is consistent 
with the analysis above. Finally, we display the growth of 
the condition numbers in these norms for the unprecon- 
ditioned systems, demonstrating dramatic effects of the 
preconditioning. 


Truncation Poisson Helmholtz Helical 
8 47.9 3,568 10,870 
16 47.9 7,678 10,700 
32 47.9 10,070 10,700 
64 47.9 10,570 10,700 
128 47.9 10,610 10,700 
256 47.9 10,620 10,700 


Table 3: ha Condition Numbers: Preconditioned 


Truncation Poisson Helmholtz Helical 


8 3.774 x 10 • 9'.584 5.886 X 104 
16 5.533 x 104 59.98 8.948 x 10 • 
32 8.427 x 10 • 922.4 '1.374 x 107 
64 1.314 x 107 14,400 2.148 x 10 s 
128 2.075 x 10 • 2.273 •'10 a 3.393 x 10 s 
256 3.298 x 10 s 3.613 x 10 • 5.393 x 10 TM 


Table 4:h0 Condition Numbers: Unpreconditioned 


'Truncation Poisson Helmholtz .... Helical 
8 .... 4.293"X 10 • 80.8! 9.098 x 10 • 
16 4.978 x 104 '66.20 - 1.102 x 10 • 


, ,, 


32 6.480 x 10 • 867.4 1.450 x 107 


64 9.225 x 10 • 12,400 2.070 x 10 • 
128 1.387 x 10 • '1.865 x 10 a 3.114 x l0 s 
256 2.150 x 10 • 2.891 x 10 • 4.827 x 10 TM 


Table 5: hi Condition Numbers: Unpreconditioned 
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Truncation ' Poisson Helmholtz Helical 
8 .... 6.409 x 10 • 2,269 2.335 x 10 • 
16 6.469 x 104 906.4 2.362 x 10 ø 


32" 7.802 x 10 • 3,887 2.885 x 107 
64 ..... 1.068 x 107 53,750 3.961 x 10 s 
128 1.575 x 10 • 7.931 x 10 • 5.844 x 10" 256 2.417 x 10 • 1.217 x 107 8.968 x 10 TM 


Table 6:h2 Condition Numbers: Unpreconditioned 


4 General variable coefficients 


A well-known difficulty with spectral methods is that mul- 
tiplication by arbitrary functions is represented by full ma- 
trices. Therefore, direct solution of the linear systems fol- 
lowing from the Galerkin approximation to general differ- 
ential equations may be expensive. Similar considerations 
apply to the solution of nonlinear equations. On the other 
hand, multiplication in point space may be accomplished in 
O(/•) operations, where .• is the number of points where 
the product is required. This fact is exploited by pseu- 
dospectral methods. In this section we show how to com- 
bine the integration preconditioners with pseudospectral 
approximations to multiplication by smooth functions to 
iteratively compute approximate solutions to variable co- 
efficient and nonlinear equations. For families with a fast 
interpolation algorithm, such as the Chebyshev family, the 
complexity of the algorithm will be O(Nln N), where N 
is spectral truncation order. 


We consider: 


(42) Lu-- D" + Z D3c3 (x) u= f, x e (a,b), 
j=0 


subject to the constraints, 


(43) Tu=d. 


Here, the functions c 3 are assumed to be smooth (C a for 
convenience). As before, we approximate u by a finite 
expansion, 


N 


(44) u 
i=0 


Multiplication by cj (x) is.approximated, in spectral space, 
by the following recipe: first, evaluate the expansion at 
some interpolation points, xk, k = 0,...,/•. Second, mul- 
tiply at the interpolation points by cj (xk). Finally, use the 
new data at the interpolation points to construct expan- 
sion coefficients. We denote by Cj,N the matrix represent- 
ing this process. Note that Cjdv is usually never formed. 


For our examples, its action is computed by fast trans- 
forms in O(• In/•) operations. We may choose/• • N to 
avoid aliasing errors, but always/• _• 7N for some fixed 
7 as N -• o•. Interpolation points will be at Gauss or 
Gauss-Lobatto points associated with the family. We as- 
sume the following result on the uniform boundedhess of 
the matrices, C•3v: 


Assumption 4.1 There exists a constant, G, and an in- 
teger r • to, r - n •_ 1, such that: 


j,N 


We expect that this assumption can be proven under ap- 
propriate assumptions on the functions cj and the choice 
of nodes. 


Our final specification of the discrete system is: 


(45) TN9 = d, 


(46) I[,] + • B[,•'iCi,• • = B[,]F•. 
j--0 


Let A• denote the coefficient matrix of the system above. 
Note that its first n rows contain approximations to the 
constraints and its final N + 1 - n rows contain the ap- 
proximation to the differential equation. Using Lemma 
4.1, we can prove the following result on conditioning and 
convergence. As the proof is essentially identical to the 
proof of Theorem 3.2, we omit it here. 


Theorem 4.1 Suppose that w = 0 is the only solution of 
the homogeneous system, Lw = O, Tw = 0 and that T 
satisfies Assumption 3.1. Let r be an integer satisfying 
r _• ro and r - n •_ I and suppose that Assumption •.1 
holds for this choice of r. Further suppose that, for some 
p _• 1, f e C p ((a, b)). Then: 


a. There exist constants, Co and C1, and an integer, No 
such that for any N • No and vector, y, with ]]y[]• - 
1: 


Co _< IIAyII,- _< 


b. The matrix AN -- I approaches a compact operator on 
hr. 


c. There exists a constant, C, and an integer No, such 
that, for all N > No: 


-2# 2 + < N IIfL,, 


lz - p - (1/2) max(O, r - n). 
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4.1 Solution by iteration 


Although Theorem 4.1 establishes the good conditioning 
of the discretization matrices and the rapid convergence 
of the approximations for smooth f, the matrix AN is full 
so its factorization requires O(N 3) operations. However, 
ff a fast transform is available, multiplication by AN can 
be carried out in O(N In N) operations. In this section we 
exploit this feature along with the conclusions of Theorem 
4.1 to develop an efficient iterative solution algorithm. 


Here we consider Broyden's method, due to its ease of 
implementation for both linear and nonlinear problems and 
to the availability of convergence results which are directly 
applicable to our problem [15]. For completeness we list 
the algorithm as we use it, which involves only storage of 
and computation with a small number of vectors of dimen- 
sion N + 1 [16]: 
Broyden's Method for the Linear System, AN0 = I>N: 


1. Initialize: 


2. Until X/'(r•, r•) < • do: 


•(1) rk = •'N -- AN•k, 'q•+l = r•, 


For j = 2,...,k do: 


z(J) = (I + •-1 sj • S•_l)Z(•+? k+l j-1 , 


•(•) 


Choose O•+l • (0,2) such that %-O•+lvk+• :• O, 


8k+l • •k -- Ok+lPk+l •k+l• 


•+• = • + s•+•. 


Here, (-, .) denotes some inner product and © is the outer 
product of vectors defined by the inner product. We choose 
0•+• -- 1 unless 'rk- ,•+• is small. Note that ifp iterations 
are needed the total work is O(pN In N + p2N). 


Hwang and Kelley [15] have shown that if an operator, 
A, is such that A - I is compact, then Broyden's method 
as described above produces a q-superlinearly convergent 
sequence of iterates. By part b of Theorem 4.1, this applies 
(uniformly in N) to our operators AN if we use the hr inner 
product with r _> r0. Therefore, for any • > 0, the number 
of iterations required to produce a residual with hr norm 
smaller than • is bounded independent of N. Hence, the 
system can be solved in O(N In N) operations. 


I 1V IJ No. of Its. Max. Error .. , 


64 33 1.1 x 10 • 
128 23 1.2 


256 23 2.5 x 10 -• 
5i2 23 1.0 x 10 -• 


Table 7: Linear Test Problem 


To illustrate this result we use Chebyshev expansions to 
solve: 


(47) D2u+sinx.u=f(x), x•(-1,1). 


The function f and the Dirichlet boundary conditions are 
chosen so that, 


(48) u = ----• e -(z-zø?/*, 
is an exact solution. No dealiasing was used. The results 
tabulated are for 5 = 5 x 10 -4 and x0 = 1/2 and, for 
N _> 128, • = 10 -14. (The solution for N = 64 was so 
large that an absolute residual of 10 -14 was unattainable. 
In that case only we use • = 5 x 10-•4.) 


Clearly, the number of iterations is independent of N 
while the error rapidly decreases. We note that the re- 
sults presented are for the 12 inner product. The conver- 
gence does not follow directly from the theory discussed 
above, because the T-conditions are unbounded in this 
norm. However, due to their low rank, this did not harm 
the convergence. Tests with the h• inner product show 
similar behavior. We expect that the properties of AN 
will lead to rapid convergence of other iterative schemes. 
For GMRES, this follows from [17]. 


4.2 Nonlinear problems 


The method may also be generalized to solve semilinear 
equations. In particular we consider: 


(49) D"u + F(u, Du,...,D"-•u,x) = O, x • (a,O), 


with nonlinear constraints: 


(50) 


The discrete equations are formulated in spectral space by 
a•pproximating F via the same recipe as above. That is, 
F(6) is computed by first evaluating v and its derivatives in 
point space, then evaluating F at these points, and finally 
interpolating the point values to obtain •. Similarly, TN 
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is computed by evaluating T(v). The discrete system after 
preconditioning is given by: 


(51) 


(52) l.1, + = 0. 
Broyden's method may be applied to the nonlinear dis- 


crete problem by simply defining the residuals, rk, using 
equations (51-52). Generally, a good initial approxima- 
tion, •o, is needed. Linearizing about a smooth solution, 
the discrete system has the same properties as for the lin- 
ear variable coefficient equations discussed above. There- 
fore, the results of Hwang and Kelley [15] imply local, q- 
superlinear convergence of the iterates with the number of 
iterations required to attain a given tolerance bounded in- 
dependent of N. That is, the nonlinear discrete problem 
can be solved in O(NlnN) operations for a sufficiently 
good initial approximation and assuming that I is a suf- 
ficiently good approximation to the Jacobian. (Of course, 
different initial approximations to the Jacobian, which are 
low rank perturbations to I, could also be used.) 


To illustrate these results we solve the well-known 


reaction-diffusion equation: 


(53) D:•u + he"'- O, xE(-1,1), u(-4-1)=0. 


For h < he two solutions exist. Here, .87 < he < .88. 
In our example we chose h = .87 and an initial guess of 
• = 0. The exact solution which we are approximating is 
•iven by: 


(54) u = In (A (1 - (tanh yf•x) 2) ), 
(55) A = 2.801710482773216533343 .... 
We solved the problem for N -- 16,32,64,128,256,512 
with • -- 10 -•4. Again, no dealiasing was employed. In 
all cases the iterates converged in 67 to 70 iterations, con- 
firming the N-independence of the iterative scheme. As 
the solution is smooth, the error was already 1.8 x 10 -9 
for N - 16 and on the order of 10 -•4 for finer discretiza- 
tions. 


5 Higher dimensional problems 


The complexity of the spectral differentiation operator has 
made the direct use of spectral methods in more than one 
dimension impractical. Standard treatments of commonly 
occuring problems, such as the Poisson [12] and Helmholtz 


[13] problems have been approached through diagonaliza- 
tion methods. These techniques perform well but have 
the disadvantage that an expensive matrix multiplication 
must be performed to transform from eigenvectors of the 
operators back to physical variables which is necessary, 
e.g. for the solution of nonlinear problems. Also, the 
treatment of time dependent problems is typically pursued 
through a finite-difference discretization in time, which in- 
rtoduces stability problems and limits the time-accuracy of 
the method. As an exeption to the latter we must mention 
the work of Tal-Ezer et al. [18] who employ a Chebyshev 
discretization of the time-evolution operator. As discussed 
in the monograph by Canuto et al. [3], the extension to 
multidimensions is open for several interesting problems in 
more than two space dimensions. 


The simplicity and generality of the integration precon- 
ditioner method can be exploited to produce block-banded 
forms and improve the conditioning of problems in higher 
dimensions treated by spectral •--methods. The straight- 
forward extension is based on the use of preconditioners 
constructed by tensor products of integration operators in 
each variable, and it allows for the use of different basis 
functions in each variable. We consider a problem in a rect- 
angle in R m. For simplicity we will only consider boundary 
conditions of Dirichlet type. We let x = (x•,... ,Xm) be a 
coordinate system such that the sides of the domain under 
consideration are parallel to coordinate planes. We will 
consider expansions of the form 


where the expansion basis is formed as a product of (pos- 
sibly different) rn orthogonal polynomial bases and i - 
(i•,..., C,,) is a multi-index, 


i(x) = 


We now let œ = •-•k œ• be a linear differential operator in 
the xi , i --- 1,...,m with polynomial coefficients in the 
independent variables. As before, rational function coef- 
ficients can also be allowed, provided no singularities are 
present in the domain and we reduce to polynomials by 
multiplying by the least common multiple of the denomi- 
nators. 


The œt have the form 


ffk ---- • Lki, 
i--1 


with the Lki a linear differential operator with polynomial 
coefficients in the variable xi, i.e. an operator of the form 
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assumed in Theorem (2.1). Let 


ni -- max order(Lki) . 
k 


Then the extension of theorem (2.1) to multidimensions 
can be stated as follows: 


Theorem 5.1 The Galerkin representation of the differ- 
ential operator œ in the basis Q is transformed into block- 
banded form via left multiplication by the operator 


m 


where B[•i,i /s the operator of integration .for the .family 
{Qki}•__o . The resullting operator has the form 


m 


k i=1 


The proof follows from repeated application of theorem 
(2.1). 


We illustrate the use of theorem (5.1) by some simple 
examples. We limit the discussion to two space dimen- 
sions or one space dimension plus time, as we are basically 
interested in demonstrating the tensor product technique. 
Questions of conditioning and efficient implementation by 
the use of sparse matrix solvers will be pursued elsewhere. 
In the following examples we use exclusively Chebyshev 
polynomial expansions, again for simplicity of exposition. 
Other bases could have been employed in principle, and the 
only added complication would have been the loss of the 
fast cosine transform. Thus, the preconditioners employed 
will be tensor products based on powers of the Chebyshev 
integration operator 


B[• l = 


Here Bill is a M x M matrix. 
Example 1: the uni-directional wave equation 


We consider the problem 


(56) Ou Ou [-1,17 , 


Truncation Abs error 
8 x 8 1.2 x 10 -z 


16 x 16 4.6 x 10 -• 


32 x 32 1.0 x 10 -•4 


Table 8: Wave equation - Exact solution: e (2(x-t))• 


where u = u(x, t) and the boundary conditions are given 


(57) = , t) = ,.,(t) . 


Here œ• -- L•,•L•,2 and œ2 = L2,1L2,2 assume the forms 
L•,• = I, L•,2 - Dr, L2,• = Dx, and L2,2 -- I. The 
integrator for œ is BIll (• B[•]. 


The matrix 15/] for the wave equation is 


0 0 0 0 ... 0 


I•a •.•? -Ilq 0 0 ] 2 '" 
--Ill] 0 ß . . 0 4 B[•] 4 


ß . . . ß 
. . . 


ß . . 


' 2i B[•] 
ß . ß 


ß ß ß 


0 ... 


Note that the entries are (N+I) x (N+I) blocks. The same 
will apply to the matrix operators given in both subsequent 
examples. 


The tau conditions are 


M 


•'](-1)iuij = 
i=0 


vj, j -- O,...,N, 


N 


Z(-1)Jui) -- hi , i -- 0,...,M, 
j=0 


with one redundant condition at the point (-1,-1). 
Table 5 lists the absolute error for the uni-direction wave 


equation for various truncations. In this, as in the two 
subsequent examples, a homogeneous solution is chosen, 
and the boundary conditions are constructed by evaluating 
that function at the appropriate boundaries. 


Example 2: the Laplace equation in a rectangle 
Consider now the problem 


O2u O2u 


(5s) + =0, [-1,17 , 
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where u = u(x,y), f = f(x,y) and the boundary condi- 
tions are given as 


(5o) = h(x) , u(ñl,y): v(y) . 


For Laplace's equation E 1 ---- L•,1L1,2 and œ2 -- L2,1L2,2 
become L1,1 = I, L1,2 = D•, L2,1 --::Dy 2, and L2,2 -- I and 
integrator is B[2] •)B[21. 


For Laplace's equation Bœ is the sum of the following 
two matrices 


0 0 0 0 0 -.. 
0 0 0 0 0 --- 


o o o o 
• o •'-• o -• o 4-6 6.8 


0 Z[•] 0 --Z[•] 0 '' •[•] 
(2i)(2i+2) 2(i)(i+2) 


0 0 '. 0 '. 0 


0 0 0 0 0 0 0 ... 
0 0 0 0 0 0 0 ..- 


0 0 B•_] 0 0 0 0 -.- 
0 0 0 B•_] 0 0 0 ..- 
0 0 0 0 B•2 ] 0 0 o 
0 0 0 0 0 B•2 ] o 0 
0 0 o 0 o 0 B•2 ] 0 


ß 


0 0 0 0 0 0 0 ' 


The tau conditions can now be inserted: 


n=N 


E urn.(-1)" = •, 
n----0 


n=N 


n=0 


rn=M 


Z Um"(-1)m -- 


m=M 


Z Brnn --' ̂ + I) n ß 


Again, the number of tau conditions exceeds the number 
of zero rows in Bœ. However, the tau conditions are not 
all independent, and four of them need to be discarded, 
corresponding to redundant specifications at the four cor- 
ners of the domain. This leaves 2(M + 1) + 2(N + 1) - 4 
conditions which matches the number of zero rows in BL. 


Table 5 lists the computed errors using this matrix for- 
mulation of Poisson's equation. 


Truncation Abs error (k = 2) Abs error (k = 8) 
8 x 8 3.2 x 10 -• 84.6 


16 x 16 5.8 x 10 -•4 8.5 x 10 -z 
32 x 32 4.3 x 10 -•4 1.8 x 10 -• 


Table 9: Laplace's equation - Exact solution: ei•sin(kx) 


Example 3: the advection-diffusion equation 
Finally we consider the problem 


Ou Ou 02u 


(60) O-•+C•xx=.Ox 2 , (x,t)•[-1,1] 2 , 
where u -- u(x,y), f = f(x,y) and the boundary condi- 
tions are given as 


(61) u(x,-1)- h(x) , u(ñl,t)- vñ(t) . 


For this equation œ• = Ll,lL1,2 and •2 --- L2,1L2,2 be- 
come L•,• = I, L•,2 = D•, L2,• - cD•:-yD•, and L2.2 - I 
and integrator is B[•] (•)B[2]. 


The composite matrix Bœ is the sum of the following 
three matrices 


0 0 0 0 0 0 0 ... 


0 0 0 0 0 0 0 ... 


0 cS?] 0 -•Bp] 0 0 0 .-- 4 


o o ?] o -71 o o ... 
0 0 0 cSp] 0 -cBIu 0 0 


8 8 


0 0 0 0 c•Pl 0 _ c•[q 0 
10 10 


ß , 


0 0 0 0 0 '. 0 '. 


, 


0 0 0 0 0 0 '. 0 


-p 


o o o o o o o o ... 
o o o o o 0 o o ... 


o o B[1] 0 0 o 0 o ... 
0 0 0 B[1] 0 0 0 0 ... 
0 0 0 0 B[U 0 0 0 ... 
0 0 0 0 0 B[•] 0 0 0 
0 0 0 0 0 0 B[U 0 0 
0 0 0 0 0 0 0 B[1 ] 0 


ß 


0 0 0 0 0 0 0 0 '. 


0 0 0 0 --- 0 
0 0 0 0 ... 0 


o o o o 
h.u. o •.•.• o •u o 4.6 6.8 


0 •'P] 0 -zp] 0 z[•] 
(2i) (2i+2) 2(i) (i+2) (2i+ 2) (2i+4) 


0 0 '- 0 '. 0 
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.cation (c = 2, v = 1.3) .(c = 5, v = .5) 
8 x 8 5.6 x 10 -• .12 
16 x 16 3.6 x 10 -• 2.7 x 10 -u 
32'x 32 1.5 x 10 -• 2.1 x 10 -• 


, 


Table 10: Advection-diffusion with x0 = -0.8, t0 -- -1.05 
___! Exact solution: •-•-- 4•(t-t0) )/(t - to)« 


The tau conditions that must be imposed are: 


n=N 


Z Um,(-1)" -- •m, 


rn= M 


Z Um"(-1)m = 6•, 
rn--0 


m--M 


m-'O 


and, again, there are two redundant tau conditions at the 
points x -- 4-1 , t -- -1. 


Table 5 gives the absolute errors computed for the 
advection-diffusion equation. 


6 Conclusions 


The methods discussed in this article are quite useful in 
deriving efficient, spectrally accurate algorithms for the 
treatment of initial-boundary value problems in simple ge- 
ometries with more than one nonperiodic directions. Sely 
aration of variables e.g. for the Laplace operator, leads 
to equations, which can be easily transformed to form (8). 
As one may require the repeated solution of such equations 
high accuracy and efficiency are clearly essential. The bad 
conditioning0f spectral differentiation operators is avoided 
by the integration preconditioning method, and this per- 
mits the treatment of problems at very high order of trun- 
cation that may otherwise be impractical. More complex 
geometries may be accessible as well: if a rational map 
to a rectangle is available, then the essential features of 
the method are preserved. Even if that is not feasible, the 
good conditioning of the resulting problems allows efficient 
iterative treatments to be applicable. 


We must remark, however, that the preconditioners dis- 
cussed in this note, although quite general, might prove 
inappropriate for certain problems with singular behav- 
ior. The specific structure of a given differential oper- 
ator might lead to simpler preconditioners and to more 


natural reduced forms for the system. An example is of- 
fered by the Laplace operator in disk geometry; indeed, 
in solving /•u = f in 0 _< r _< 2 , 0 _< O <_ 2•r, using 
a Fourier/Chebyshev expansion in the azimuthal and ra- 
dial directions respectively (with -1 _< x = r- 1 _< 1), 
we are led to the equation for the n-th Fourier mode 


[((x + 1)D) 2 - n 2] • = (x + •)2f,. The method discussed 
above would lead to a pentadiagonal, ill-conditioned oper- 
ator. However, closer examination of the matrix elements 
reveals that under left-multiplication by a certain tridiag- 
onal preconditioner [19] (see also [3]) we get a tridiago- 
hal system which can be solved quite naturally by using 
techniques developed for the study of 3-term recurrence 
relations [9], and difficulties relating to the coordinate sin- 
gularity at x = -1 are easily bypassed. 


We note that Tuckerman [19] gives a theorem on the 
transformation of matrices into banded form through left 
multiplication by preconditioners whose form depends on 
certain properties of the matrix elements. As is also men- 
tioned in [3], preconditioners that lead to banded form have 
not been readily available, and have had to be searched for 
in a case-by-case basis. The main appeal of the method 
presented here is its generality, achieved through the con- 
struction of the preconditioner from the basic recursions 
of a family, and its identification with integration opera- 
tors. Indeed, the preconditioner depends only on the basis 
used and the order of the differential operator L, not on its 
special explicit form, which can be quite complex. Also, 
if the coefficients (or the solution) exhibit rapid variation 
over small neighborhoods, a rational coordinate mapping 
can be introduced to handle the situation with no substan- 


tial increase in algorithmic complexity while avoiding the 
need for considering very high-order truncations. In [6] 
we employed a variant of the present method, using inte- 
gration postconditioning, to efficiently resolve shock-layer 
behavior through a low-order rational map. Naturally, as 
the Poisson equation in the disk suggests, problems with 
an underlying singularity may necessitate exploiting fur- 
ther properties of a given problem and special, tailor-made 
methods may need to be invented in place of the general- 
purpose technique presented here. 
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A Hypergeometric recurrence re- 
lations 


Hypergeometric functions satisfy the differential equation 


(62) z(1 - z) d2F • q- [c- (a q- bq- 1)z] dF •zz - ab F = 0 
where a, b, and c are parameters and F represents 
F(a,b;c; z). We show that the hypergeometric family 
[.Jk F(a q- k, b - k, c; z) satisfies the following recurrence 
relationships: 


(63) F(a,b;c;z) = aF'(aq-l,b-1;c;z) 
q-3F'(a,b;c;z) q- 'yF'(a- l, bq-1;c;z), 


[2(1 - z) - 1]F(a, b; c; z) = &F(a + 1, b - 1; c; z) 
(64) + •F(a, b; c; z) + •F(a- 1, b+ 1;c;z). 


Here F' dF and a, •, 7, &, •, and •, are all coefficients =•- 
that depend on a,b, and c. 


The properties of the hypergeometric function that we 
use are 


(65) zF<a,b;c;z) -- F<a+ 1, bq- 1;cq- 1;z) 
(b - a)(1 - z)r(a, b; c; z) - (c - a)F(a - 1, b; c; z) 


(66) + (c - b)r(a, b - 1; c; z) = 0 


and the Gauss contiguity relations 


(67) (c-a-1)F(a,b;c;z)+aF(a+ l,b;c;z) 
-(c- 1)F(a,b;c- 1;z) = 0 , 
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(68) (b-a)F(a,b;c;z)+aF(a+ 1, b;c;z) 
-bF(a, b + 1; c; z) = 0 


The following equations are required in the derivation of 
equation (63): Equation (68) evaluated the points (a, b, c), 
(a+ 1, b, c), and (a,b+ 1, c); Equation (65) evaluated at the 
points (a+ 1, b-l, c-l), (a,b,c-1), and (a-l, b+ 1, c-l); 
and Equation (67). After involved algebra, one obtains the 
first recurrence relation (63) with 


a(c-b) 
(b - 1)(b- a)(b - a - 1)' 


(a + b + 1) - 2c 
(b - a - 1)(b - a -4- 1)' 


b(c-a) 
3 - (a - 1)(b - a)(b - a q- 1)' 


The derivation of the second recurrence relation (64) 
requires the following equations: Equation (68) evaluated 
at the points (a-1,b,c) and (a,b-1, c) and Equation (66). 


After some involved algebra, one can generate the second 
recurrence relation (64) with 


2(c-b)a 
(b-a)(b-a-1)' 


(a -4- b - 1)(a q- b q- 1 - 2c) 
(b - a + 1)(b- a - 1) 


2(c-a)b 
5/- (b-a)(b-aq- 1)' 


B Confluent hypergeometric re- 
currence relations 


Confluent hypergeometric functions satisfy the differential 
equation 


dau du 


z•-• + (•- z)•-•. = 0 
We show that the confluent hypergeometric functions 


satisfy recurrence relations analogous to the recurrence re- 
lations for hypergeometric functions. There are two types 
of confluent hypergeometric functions. Each one is treated 
separately. 


We start with the first confluent hypergeometric func- 
tion. It satisfies the following equations: 


(69) dz 7;z)= •(a+l,7+l;z), 


(70) (• - a - •)•(a, •; z) + a•(• + •, 3; •) 
-(-y - 1)•(a,-y - 1; z) = 0 


Using Equation (70) evaluated at (a + 1,7 + 1), (a + 1,7), 
•d (a, 7), •d Equation (69), one can derive 


• -- • •t• Z). (7•) •(•,•;•) = •'(•,•;•)+ •• •- •,•; 
A simil• reckfence relation can be derived for con flu- 


em hypergeometric functions of the second kind. These 
•nctions sati• the following two equations 


(72) d• d•( a, 7; z) = -a•(a + 1, • + 1; z), 
(73) •(a, 7; z) - a•(a + 1,7; z) - •(a, 7 - 1; z) = 0. 


Using (73)e•uated at points (a+ 1,7+ 1) and (a+ 1, 7) 
•d Equation (72), one c• generate 


1 


(74) •(•,,;•) = • _ •'(•- •,,;,) + •'(•,,;•). 
!n addition to the recurrence equations developed above, 


both t•es of confluent hypergeometrics satisfy a recur- 
rence of the form 


•f(•,,;•) = c,f(•- 


+ c2f(a, 7, z)+c3f(a+ 1, q,z). 


The •st confluent hypergeometric functions satisfy 


(75) (, - •)•(• - •,,; •) + (2• -, + •)•(•, •; ,) 
-a•(a+ 1,7;z) = 0. 


This equation can be rearranged into the form 


(76) •(•,,; •) = (• - •)•(• - •, •; ,) + 
(• - 2a)•(a, 7; z) + a•(a + 1, •; z). 


The confluent h•ergeometric •ctions of the second kind 
satis• 


ß (•-•,,;•)- (2•-•+•)•(•,,;•) 
(77) + a(a-7+l)•(a+l,7;z)=0, 


w•ch c• be re•ged into the form 


(7s) •(•,a;•) = •(•-•,,;•)- 
(2• - ,)•(•,,; •) + •(• -, + •)•(• + •,,; •). 
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Faxnily Chebyshev T• Legendre P• Gegenbauer C(• ") Jacobi P(•'•) Hypergeometric F(a + k, b - k; c) 
Qo 1 1 1 1 - 


Q• = x 2•x •((• - *3) + (• + .3 + 2)x) - 
1 k k + 2p -- 1 2(k + a)(k + *3) 2(c - a - k)(b - k) 


m,-l,k • 2k + 1 2(k + •) (2k + a + .3 + 1)(2_k + a + *3) (b - a - 2k)(b - a - 2k + 1) 
ak,i 0 0 0 (a2 - .32) (a + b - 1)(a + b + 1 - 2c) 


(2k+ a +.3+ 2)(2k + a +.3) (b- a- 2k + 1)(b- a - 2k- 1) 
1 k + 1 k + 1 2(k + 1)(k + a +,3 + 1) 2(c- b+k)(a + k) 


ak+l,• • 2k+l 2(k+ •) (2k+a+t•+2)(2k+a+fl+l I (b-a-2k)(b-a-2k-1) 
1 1 -1 --ak_l,k --ak-l,k 


2(k- 1) 2k + 1 2(k +r,) k +a+ *3 k +a- 1 
--2a•,• -2a•,• 


b• • 0 0 0 
' a+*3 a+b-1 


1 1 1 a•+•,• a•+•,• 


b•.+•.• 2(k + 1) 2k + 1 2(k + v) k -I- 1 k + 1 - b 
w(•) (•- •)-•/• • (•- x•)"-« 0-•)•(1+•) • (• + •)•-•(• - •)•+•-• 
r(•) (• - •)•/• (• - •) (• - x•) •+« (• - x•)w( x) -(• + x)•( • - x) •+•-•+• 
(a,b) (-1,1) (-1, 1) (-1,1) (-1,1) (-1, 1) 


2 •r21-2VF(k + 2•) 2•+O+•F(k + a + 1)F(k + .3 + 1) 
hk •r/2(•r,k = 0) 2k+l k!(k+v)[r(v)? (2k+o+*3+ •)k!r(k+o+•+ •) - 
Ak k 2 k(k + 1) k(k + 2v) k(k + a + • + 1) (a + k)(b - k) 


Table 11: Recursions for polynomial families of Hypergeometric type (ao.k = O; for the Tk, a•,o = b•.o = 1) 


Family Hermite Hk Laguerre L(• •) Confluent (first) •(a, b) Confluent (second) q•(a, b) 
Qo 1 1 - 


Q• 2x 1 + a - x - 


a•-l.k k -(k + a) a- b+ k 1 


ak.• 0 2k + a + 1 b- 2a- 2k b- 2a - 2k 
1 


ak+•,k • --(k + 1) a + k (a + k)(a - b + k + 1) 
b--a--k 1 


b•_•,• 0 0 
a+k-1 1-a-k 


b•,• 0 1 1 1 
1 


bk+•,k 2(k + 1) -1 0 0 
W(X ) e --x2 xC• e -x xb-l e -x xb-- l e -x 
p(z) e -- x2 x c•+l e - x xb e --x xb e --x 
( a , b) ( - •x• , •x• ) (0, oo ) (0, •x• ) (0, 


h•, Vr•2kk! F(a + k + 1) . 
k• 


)'k 2k k -(a + k) -(a + k) 


Table 12: Recursions for Confluent Hypergeometric functions 
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Abstract 


We present a spectral tau method for the efficient solution 
of the incompressible Navier-Stokes equations in a planar 
channel geometry, with the Navier-Stokes equations ex- 
pressed in the vorticity-stream function formulation. The 
main innovations of the scheme are the incorporation of 
no-slip constraints in the semi-implicit time advancement 
of the vorticity field, and the efficient and accurate so- 
lution of the linear systems resulting from the numerical 
discretization Of the equations by well-conditioned integra- 
tion operators. The pressure field is calculated in a post- 
processing step by direct inversion of the gradient. The 
asymptotic stability of our scheme is analyzed, and a nu- 
merical solution of the Orr-Sommerfeld stability problem 
for plane Poiseuille flow is performed to offer a comparison 
of our method of enforcing the no-slip boundary condition 
with that of existing techniques. Results from represen- 
tative direct simulations are presented to demonstrate the 
accuracy of the scheme. 
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1 Introduction 


The dynamical generation of vorticity through boundary 
layer interactions near material walls is a fundamental 
problem in both scientific and applied fluid dynamics. 
Although many of the problems of practical interest at 
high Reynolds numbers require a full three-dimensional de- 
scription, there are important cases with moderately high 
Reynolds number in the range 100-10,000 in which a two 
dimensional assumption is justified. Experiments on com- 
plex boundary layer dynamics in which two-dimensionality 
of the flow has been emphasized have been conducted in 
stratified fluids [1, 2], rotating fluids [3] and in flows in 
which special care was taken in initially generating a two- 
dimensional disturbance [4, 5]. 


In this paper, we describe a spectral tau method for the 
solution of the incompressible Navier-Stokes equations in 
bounded geometries. Special attention is given to avoiding 
the serious accuracy degradation recently demonstrated [6] 
in high resolution polynomial approximations of high or- 
der spatial derivatives. The simplest geometry including 
rigid boundaries is the periodic channel, which will be used 
throughout. We note, however, that the method is not re- 
stricted to this geometry. We have implemented similar 
algorithms for the solution of flows in an annular geome- 
try [3, 7], and coordinate transformations based on rational 
functions may also be applied [8]. 


This paper is organized as follows: In Sec. 2, the ba- 
sic dynamical equations are introduced. We chose to solve 
the incompressible Navier-Stokes equations in the vorti- 
city-stream function (•v-•b) formulation. Compared to the 
primitive variable approach, the w-•b formulation reduces 
the number of momentum equations from two to one. It 
eliminates the pressure from the calculations, and satisfies 
the incompressibility condition, V-u = 0, by construction. 
Section 2.1 contains equations for the viscous evolution of 
the total energy and enstrophy in the flow. These equa- 
tions are used as accuracy checks of the code. 


The vorticity-stream function formulation of flows with 
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no-sIip boundary conditions leads to an overdetermined 
Poisson equation relating vorticity to the stream function. 
In Sec. 3, the solution of this problem (via the integral 
soNability constraint method by Coutsias and Lynov [9] is 
briefly discussed), and the accuracy of this method is inves- 
tigated by performing the solution of the Orr-Sommerfeld 
eigenvalue problem. 


Section 4 describes the implementation of the spectral 
scheme for dynamical equations. Special attention is given 
to the use of the invertible integration operator method [8] 
in the accurate and efficient solution of the Poisson and 


Helmholtz equations. A fully discrete stability analysis of 
the scheme concludes this section. 


The pressure does not enter the Navier-Stokes equations 
in the vorticity-stream function formulation, but an accu- 
rate determination of the pressure field is significant for the 
interpretation of the results. We have developed a method 
for determining the pressure field in a post-processing step 
based on the instantaneous vorticity field. This method, 
described in Sec. 5, avoids the traditional difficulties of 
overdeterminancy of the pressure Poisson problem and pre- 
serves the high accuracy obtained in the calculation of the 
vorticity. 


Section 6 contains two numerical tests of the code. The 


first test is an unstable Poiseuille flow with the same pa- 
rameters as in the Oft-Sommerfeld eigenvalue analysis, and 
the second test is a vortex sheet roll-up between moving 
no-slip walls at high Reynolds number used for investiga- 
tion of the overall error of the scheme. Finally, Section 7 
includes some concluding remarks. 


The Jacobian, [w, •], is defined as 


[w' •]- Ox Oy Ox Oy 
We note that the incompressibility condition is a priori 
satisfied in the vorticity-stream function formulation. 


The normalized dynamical equations are solved in a pe- 
riodic channel, •D, with no-slip walls located at y = :t:1 and 
a periodic x-dependence of length L•. At the impermeable 
walls we assume no-slip boundary conditions 


u(x,y = :t:l,t) = Uñ(t)• , 


where U ñ (t) signifies the time dependent horizontal veloc- 
ity of the walls. In the vorticity-stream function formula- 
tion, these conditions become 


(2) u(x, y = :kl,t) = 00 y=ñ• Uñ = , 
ensuring that the fluid follows the moving wall, and 


(3) (x,y = = rñ(O , 
where F ñ (t) are arbitrary functions of time. 


As may be observed from these boundary conditions, 
we end up with a problem of an overdetermined Poisson 
equation in Eq.(1) unless proper constraints are imposed 
on the vorticity. In Sec. 3 we will return to this problem 
and devise a method for deriving the appropriate no-slip 
solvability constraints for the vorticity. 


2 Basic equations 


For two-dimensional, incompressible flows it is convenient 
to express the Navier-Stokes equations in the vorticity- 
stream function formulation; 


V2•, = -w , 


where the scalar vorticity field, w, is given as 


VXU--Wi , 


and the stream function, % is related to the velocity field 
by 


u= xiy kay' 


2.1 Energy and enstrophy evolution 


In the absence of viscosity, the Navier-Stokes equations, or 
rather the Euler equations, possess an infinite number of 


ß 


conserved quantities 


lul 2ds, a(w) dS, 
where •D is a planar domain, simply or multiply connected, 
with the velocity tangential at the boundaries. Here E is 
the energy, and Ca[w] are Casimir functionals with G(w) 
being an arbitrary measure of the vorticity. For the special 
case G(w) = w 2 we write 


• =/v w2 dS, 
with • being the enstrophy. 


For finite viscosity the temporal evolution of the energy 
may be derived for the present problem, yielding 
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dE 
= -m + ,,L.(U-(t)•- - u+(t)• +) - df 


(4) 6p /• •b dS , 
where •v + is the vorticity along the moving walls at y = -4-1, 
respectively, and 5p signifies the pressure drop along one 
periodicity length of the channel. Using Eq.(1), we find 
the temporal evolution of the enstrophy 


(5) • -- • ). fi ds - 2v (Vw) 2 dS , 
where fi is an outward pointing normal to the boundary, 
fiD. We note that all terms originating from the interior 
of the flow are always negative. Thus, the only way the 
total energy and enstrophy may increase is by production 
at the boundary. These expressions are used as accuracy 
tests for the numerical approximations. In these tests, we 
compare the time derivatives obtained directly from the 
code, based on time centered differences of E and f• over 
three consecutive time steps, with the instantaneous values 
determined by evaluation of the right hand sides of (4) and 
(5) at the center time step. 


3 Vorticity boundary conditions 


As discussed in Sec. 2, enforcing no-slip boundary condi- 
tions on the Navier-Stokes equations in the w-• formula- 
tion leads to an overdetermined Poisson equation in Eq.(1). 
This problem has been addressed by several authors (see, 
e.g., [10, 11, 12]). Here, we will apply the method by Cout- 
sias and Lynov [9]. 


The two unknown fields are expanded in Fourier series 


e(z, y) '- Z •(y) exp z 
where subscript j indicates the Fourier mode-number. 


In this framework, the Neumann boundary conditions, 
Eq. (2), become 


(0) O•(y) I { U*(t) j=0 0y = 0 j40 ' 


For the Dirichlet boundary conditions, Eq.(3), we obtain 


F*(t) j=o (7) ½•(ñ•)= 0 i4o ' 
In the following, we will split the treatment into two cases 
for j • 0 and j -- 0. 


Introducing the Fourier expansion into the Poisson equa- 
tion (1) for j • 0 yields 


dy:• ' 
where we have defined the coefficient 


2•rj 
Aj = L• 


In Eq.(8) we have changed the y-derivative to an ordi- 
nary derivative, since time does not enter explicitly in the 
present discussion. 


Introducing the Dirichlet Green's function, Gj(yls), we 
may formally write the solution, •j(y), to Eq.(8) subject 
to the Dirichlet boundary conditions, Eq.(7), as 


/_, (9) •j(y) = &j(s)Gj(yls)ds . 
1 


The Neumann condition, Eq.(6), now requires 


<10> d½.• [ ' dGj(y[s> I ds = 0 
This provides necessary, as well as sufficient, conditions 
for solvability of Eq. (8) under the constraints imposed by 
Eqs.(6)-(7) for j • 0. (Note that uniqueness follows from 
the uniqueness of the Dirichlet problem.) 


Determination of the Dirichlet Green's function, 
Gi(yls), may be accomplished by numerical approxima- 
tions. Although not a complicated task, the results can 
easily be contaminated by significant numerical errors, not 
to mention the derivative of the approximation. These 
problems are further discussed in [9] and [Xa]. Here, we 
simply note that it is possible to derive solvability con- 
straints efficiently and with spectral accuracy. Expanding 
the Fourier coefficients, &j and ½•, in Chebyshev series 


(11, ('t•: )----•"( ?,:: )Ti(y, , i----0 


where Ti(y) - cos(i cos -1 y) is the i-th order Chebyshev 
polynomial of the first kind, the solvability constraints on 
the vorticity expansion coefficients tal/e the form 


o: rbz,: o. 
i---0 


The' coefficients B• are independent of time and viscosity, 
so they may be precalculated prior to a numerical simula- 
tion. In fact, the coefficients only depend on the geometry 
of the problem, i.e. L•, besides the actual truncation of 
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the expansions. Thus, one may, once and for all, calculate 
B• with a very high truncation. These coefficients may 
then be applied to all problems with lower resolution for a 
given L•. 


For the Fourier mode j = 0, we note that the vorticity 
must maintain a circulation, C, consistent with the veloc- 
ity of the walls, where 


c -- f• u-•=L.(U-(O-U+(O) 
(13) = •dS = Lx •o(y, 0 dy. 


1 


Given &o(y,t), Galilean invariance of the Naylet-Stokes 
equations allows both U+(t) and U-(t) to be shifted by 
properly choosing a frame of reference. In the following, 
the choice U- (t) = -U+(t) is made. 


By integrating the x-component of the moment equation 
in primitive variables along the walls at y = +1 one obtains 
the constraints 


(14) 0•ø I .•_15p I d Oy •=ñ• vLx --• ¸ 
where •p is the total pressure difference along a length 
of period of the channel. The two conditions in (14) are 
consistent with the circulation requirement (13), so any 
two of the three conditions can be used as constraints. We 


will return to this issue in Sec. 4.2.2. 


When solving the Poisson equation for • during the si- 
mulation, Dirichlet boundary conditions are used for j • 0 
and Neumann conditions for j = 0. This leaves us the 
freedom to choose 


•0o -- O. 


3.1 Solution of the Orr-Sommerfeld equa- 
tion 


In order to study the accuracy of the solvability constraints 
and ensure the consistency of the scheme, we now address 
the Oft-Sommerfeld equation in the vorticity-stream func- 
tion formulation. Assuming we may express that 


¾,(•,y,O = e(y) + •(x,y,O 


and 


•(x,y,t) = •(y) + z(x,y,t) , 


we obtain (by linearizing Eq.(1) around the solution) 


O•b=U(y) and vo=---=O uo = 0-• Ox ' 


the equations 


(15) 


(16) 


oz •- + U •xx + Ox = UV• ' 
V2• = -& . 


As boundary conditions we obtain 


(17) 0•[ =0 , = 
assuming that we consider only stream-wise perturbations 
with non-zero wave-numbers. Following the standard pro- 
cedure for temporal stability analysis we express the per- 
turbations as 


• = eXt[wC(y) cos(akx) + uS(y)sin(akx)] , 
• = eX•[•hC(y)cos(akx) + •S(y)sin(akx)] , 


where k 6 N + is the wave number along the channel, a = 
2•r/L• is the aspect ratio and A = A• + i A• 6 C expresses 
the complex frequency of the initial perturbation. For A• > 
0 we have temporal instability, and for A• < 0 we have 
temporal stability of the initial perturbation. 


Introducing these expressions into Eqs.(15)-(17) gives 
the Oft-Sommerfeld eigenvalue problem. By using this 
procedure the eigenvalue problem is expressed as two cou- 
pled second order differential equations. This form is dif- 
ferent from the single fourth-order equation obtained in 
the classical pure stream function formulation (see, e.g., 
[14]). Our formulation offers the opportunity to compare 
results obtained either by applying the four boundary con- 
ditions on the stream function (as in the usual approach), 
or by applying the Dirichlet boundary conditions on the 
stream function and applying the solvability constraints 
on the vorticity. 


In order to solve the Oft-Sommerfeld equation, we follow 
the pioneering work by Orszag [14]. Thus, we approximate 
all unknowns by truncated Chebyshev series as 


T,(y) . 


Due to the even-odd symmetry of the Orr-Sommerfeld 
equation it is sufficient to consider the even Chebyshev 
modes, only. However, for simplicity we have have chosen 
not to take advantage of this property. 


Introducing these expansions yields the following set of 
equations for each Chebyshev mode (i); 
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(18) 


where k is the stream-wise mode-number. For convenience, 
we have introduced the symbols 


M 


Ci ' 
p----*i+2 


pq-• eve• 


for the second order spectral differential operator, D 2, [16], 
and 


c,(], •0) = 
M 


m---M 


for the convolution operator [14]. Here ] ---- (]o,..., ]M)T, 
õ ---- (õ0,... ,õM) T, and co -- 2, ci = 0 for i < 0 and ci - 1 
for i > 0. 


In this context, the four boundary conditions (17) on 
the stream function become 


M M 


09) •(+•)',• = o i , =0, 
i--0 i•-0 


M M 


,+1.2 -c •(*1) , •, = o , (20) •-](*1) • •, = o , ,+1.• ', 
ira0 


Alternatively, we may enforce the vorticity constraints (7) 
and (12) as 


M M 


(21) i , =0, 
i=0 i--O 


M M 


02) • •? = 0, • • = 0. 
i=0 i=0 


De•ing the eigenvector of the problem 


x = (z•,...,•,•0, ,•, ., ... ** 


Eq.(18) may be rec•t • a generaliz• eigenv•ue problem; 


Ax= ABx , 


where A and B are 4 x 4 general block-matrices of order 
M + 1, given as 


4 q• o qs ] _Q• Q4 _Q3 0 
A = I 0 Q1 0 ' 


0 I 0 Q1 


-I 0 0 0] 0 -I 0 0 


(25) B = 0 0 0 0 
0 0 0 0 


Here I is the identity matrix and the block matrices are 
defined by row, i, as 


Q•: D• - (•k):I, Q•: •kC,(D•gr, .) 
Q,• = ,,kc,(O, .) Q,• = -•,Q,• 


The boundary conditions are applied as tau-conditions, in- 
cluded in the two bottom rows of the submatrices. 


Applying the boundary conditions on the stream func- 
tion only is done by putting the Neumann conditions, 
Eq.(20), in the bottom rows of submatrix A13 and A24. 
The Dirichlet conditions, Eq.(19), are applied in the sub- 
matrices Aa3 and A44. 


Alternatively, enforcing the vorticity constraints is per- 
formed. by applying the Dirichlet boundary conditions 
on the stream function, Eq.(21), in the submatrices Ass 
and A44, and the solvability constraints on the vorticity, 
Eq.(22), in the submatrices An and A22. 


The actual eigenvalue calculations are performed using 
the QZ-algorithm [15] on a SUN Sparc 2 in double precision 
and a floating point accuracy of 10 -•6. To select actual 
eigenvalues from spurious ones, the calculation is done for 
increasing number of modes in the expansions, and only 
eigenvalues which vary by a small amount, O(10-4), when 
increasing M are considered as being adequately resolved. 


For comparing the two different types of boundary con- 
ditions, we consider the standard test case of a Poiseuil]e 
flow with a velocity profile given as 


(24) U(y) = U0(1 - y2) . 
We set the channel length, Lx = 2•r (i.e. c• = 1.0), k = 1, 
Uo = 1.0 and Re = 1/y = 10000. For this case, it is well 
known that only one linearly unstable mode exists. Orszag 
[14] found the frequency and the growth rate of this mode 
to be 


0.23752649 A• = 0.00373967 , 


to within one part in l0 s. He approached the problem in a 
way similar to what is done here, but kept the fourth-order 
operator in the stream function formulation. 
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M A• A,. e 
28 0.2375725805 0.0037438270 2E,-03 
32 0.2375578883 0.0037060035 4E,-05 
36 0.2375268225 0.0037340707 4E,-05 
40 0.2375259476 0.0037391415 5E-06 
44 0.2375264073 0.0037396184 6E,-07 
48 0.2375264823 0.0037396728 9E,-08 
52 0.2375264879 0.0037396698 6E-09 
56 0.2375264888 0.0037396708 1E,-09 
60 0.2375264888 0.0037396706 1E-10 
64 0.2375264888 0.0037396706 3E,-11 
68 0.2375264888 0.0037396706 5E-10 
72 0.2375264888 0.0037396706 5E-10 
76 0.2375264888 0.0037396706 1E,-11 
80 0.2375264859 0.0037396727 4E,-09 
84 0.2375264882 0.0037396710 3E-09 
88 0.2375264905 0.0037396694 3E,-09 


_ 


28 0.2375702251 0.0037455732 2E,-03 
32 0.2375586386 0.0037057074 4E,-05 
36 0.2375267517 0.0037342618 4E,-05 
40 0.2375259549 0.0037390797 5F_,-06 
44 0.2375264096 0.0037396332 7E,-07 
48 0.2375264811 0.0037396693 8E-08 
52 0.2375264882 0.0037396706 7E,-09 
56 0.2375264888 0.0037396706 5E,-10 
60 0.2375264888 0.0037396706 2E,-11 
64 0.2375264888 0.0037396706 3E,-11 
68 0.2375264888 0.0037396706 7E,-11 
72 0.2375264888 0.0037396706 4E-11 
76 0.2375264888 0.0037396706 2E,-10 
80 0.2375264889 0.0037396706 3E,-10 
84 0.2375264888 0.0037396705 1E,-10 
88 0.2375264887 0.0037396706 1E,-10 


Table 1: Frequency, Ai, and growth rate, At, for the Orr- 
Sommerfeld problem at Re = 1Iv = 10000, k = 1, c• = 1.0 
and U0 = 1.0 As boundary conditions are used the four 
conditions on the stream function. e = IAM --AM_212 
shows the convergence of the eigenvalue corresponding to 
the first unstable mode for increasing M. 


In Table 1 we show the result of the eigenvalue calcula- 
tion with the boundary conditions given by Eqs.(19)-(20). 
We observe excellent agreement with the results reported 
in [14], but also note that for M > 76 the solution is con- 
taminated by round-off errors. 


In Table 2 we show the results of stability calculations 
with the boundary conditions enforced through the vor- 
ticity constraints. Again, we observe excellent agreement 
with previously published results. This clearly proves the 
consistency between the two types of boundary conditions. 
It seems that enforcing the solvability constraints leads to 
slightly more accurate results for large number of modes 
(M). This may be due to better conditioned matrices when 
the solvability constraints are applied as opposed to the 
Neumann-type boundary conditions, thereby reducing the 
effects of round-off errors. We are able to calculate the 


unstable eigenvalues with an accuracy of O(10-1ø). 


4 Implementation 


Having developed consistent solvability constraints for the 
vorticity, we proceed now by presenting a full implemen- 
tation of a spectral scheme for solving Navier-Stokes equa- 
tions in a two-dimensional channel. Additionally, we will 
address the issues of solution of implicit problems, the de- 
termination of the initial vorticity distribution, and the 
question of full discrete stability of the proposed scheme. 


Table 2: Frequency, Ai, and growth rate, At, for the Orr- 
Sommerfeld problem at Re = 1/v = 10000, k - 1, a = 1.0 
and Uo = 1.0. As boundary conditions are used the Dirich- 
let boundary conditions for the stream function and the 
solvability constraint for the vorticity. • = {AM -- AM-2{ • 
shows the convergence of the eigenvalue corresponding to 
the first unstable mode for increasing M. 


4.1 General description 


We approximate the two unknown variables, w and 8, by 
a truncated Fourier-Chebyshev expansion, i.e. 


) 
M N/2 


•=o •=o 'Pf• cos\ L• ,/+ 


where •i•, ,j, •i• •d • •e the expansion coefficients. 
In the rem•ning pm we wffi use, 6i} •d ½0 • symbols 


for both cosine •d sin•modes, • their treatment will be 
equivalent. Also, we will use • and ½ • symbols for the 
•1 matrices of •own exposion coefficients. 


T•s recurs Eq. (1) into 


V2• = -• , 


with boundary conditions given by Eqs. (6)-(7). The Ja- 
cobian, [., .], becomes a two-dimensional convolution in 
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m6de space. However, in order to avoid the significant 
computational load required to calculate the convolution, 
the derivatives are calculated in mode space; whereas the 
convolution is done in point-space, where it amounts to 
a pointwise multiplication. Immediately after trsm.•form- 
ing the Jacobian back to mode-space, it is fully de-aliased 
using the 2/3-rule. 


For time integration of the spectral equation, the pres- 
ence of a nonlinear convective term and a linear diffusive 


term offers itself to semi-implicit time integration. We 
have chosen to apply a fully corrected 3rd order predictor- 
corrector Adamn-Bashforth scheme for the convective term 
and a backward Euler for the diffusive term. This leads to 


a full scheme for advancing one time step, (n), as 


•7•n ._ _•,n 
(P): (1 - vary •) •* = 


At (9.3Fn _ 16Fn_x -I- 5F n-e) 
(26) v2• * = -•* 


(c): (• - •v •) •"+• = 


• (•r' + sr • - r •-') , 
where P and C denote the predictor and the corrector step, 
respectively; At is the time step and 


Fn=_[&n, •n] . 


In the next two sections we will address the problems 
of how to solve the two implicit equations and discuss the 
stability of the full discrete scheme. 


4.2 Solution of the implicit problems 


As seen in the previous section, our scheme requires a Pois- 
son and Helmholtz equation to be solved twice in every 
time step. This puts significant requirements on the effl- 
ciency and accuracy of the methods applied to solve these 
implicit equations. 


For the present scheme we have applied some recent re- 
suits by Coutsias et al. [8] by which both problems may be 
reduced to operations on well-conditioned tri-diagonal ma- 
trices. In order to understand the idea behind the schemes, 
we leave for a moment the full two-dimensional problems 
and consider the simple one-dimensional Poisson equation 


(27) 0x 2--/ , u(-I-1)=0 , 
where. = •(x), ! = f(x) and x • I-i, 1]. 


In constructing an approximate solution to this problem, 
using a Chebyshev tau method, we look for solutions to 


where 


LM2 = ] , 


i----0 


such that a = (a0,...,a.) T • Qo • _= •p•(T•)•o •.a 
] = (]o,...,]u) • 6 Q•-2. In this c•e Lu = D •, 
which is the second order differentiation matrix • •ven 
• e.g. [16]. This operator h•, in the absence of boundary 
conditions, a strict upper triangnl• form. Applying the 
bo•d• conditions • tau conditions in the lowest two 
r•s results in a non-sin• matr• problem. Solution of 
th• problem by dkect methods, e.g. Gaussi• elimination, 
req•res O(M a) operations. AdditionMly, for incre•ing 
resolution, M, this problem becomes ill-conditioned and, 
thus; •troduces si•ificant numerical egors, which may 
i•ibit dyn•ic• studies where the Poisson equation is 
solved repeatedly. 


For these re,ohs, we approach the problem differently. 
Following [8], we •sume that Q• = N(D •) • Q• where 
•(D 2) si•ifies the null-space of the operator, D 2. The 
appro•mate solution to Eq.(27) may be obtained as 


1 


(28) • = • + •.• • , 
k=0 


where •P • Q• is a p•ticul• solution, • = (&•,..., •)• 
•d span{&• }•=0 = •(D2) spas the null-space of the o• 
eratot, i.e. it is a b•is for the homogeneous solutions. 
We will later ret•n to the determination of the two con- 


stats, a•. By identi•ing these different spaces, we obtain 
that the operator, •2: Q• • Q•-2, is a 1-1 mapping 
in the restricted domain with a uniquely defined ii•verse, 
•-2: Q•-2 • Q•. We may conveniently term the in- 
-verse operator • integation operator. As shown by Cout- 
si• et M. [8], this operator c• be determined from the re- 
c•sion relations of the o•hogonM pol•omial family. For 
the Chebyshev b•, it h• the elements for Vi 6 [2,..., M] 


• •i--2 (29) b•,= -,• y=i 
4i• j = i+ 2 ' 
0 otherwise 


i.e. it is simply a tri-diagonM matra, with the •st two 
rows being zeros. Having identified the integation opera- 
tor •ows us to derive • •gorithm for solving the Poisson 
•uation • O(M) operations. 
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The particular solution in Eq.(28), may be found 
straightforwardly as 


(a0) ap = b-2! . 
In order to obtain the full solution, we need to identify the 
null-space of the operator. We assume that &k = •k + 0k, 
where •k E Q0 M, 0 k E Q2 M and •k signifies a vector of 
zeroes with the k'th position being one. This is simply the 
Chebyshev transform of Tk. Since &k is a null-vector to the 
operator, 1• 2, we obtain 


¾ke[0,1]: D2• k=D2(• k+0 k)=0 , 
or 


1• 20 k = 0 , 
since D2•k --= 0. In this simple example, this equation only 
has the trivial solution. Thus, we obtain the null-space of 
the operator as 


so =•o , p =p 


The complete solution may them be written, using Eq.(28), 


• = •P + ao• ø + a• 


Introducing the boundary conditions, we obtain the two 
unknown constants as the solution to a 2 x 2 system; 


M 


ß = -, : • •,•(-,)' + •0 - • = 0 
i----0 


M 


x=l : ui + a0 + a•=0 . 
i----0 


As we have seen, once the particular solution is found in 
0(34) operations using Eq.(30), the remaining part of the 
solution amounts to solving a 2 x 2 system. As shown in [8], 
the conditioning of the integration operator is very good, 
leading us to the conclusion that the full problem may be 
solved with very high accuracy even at high resolution. 


4.2.1 Poisson's equation 


Following the approach outlined in the previous part of the 
paper, we will now derive an algorithm, based on the inte- 
gration operators, for solving the two-dimensional Poisson 
equation in a channel geometry. 


Expanding the unknowns in a truncated Fourier(N)- 
Chebyshev(M) series yields the following problem for ¾j • 
[0,...,N/2] 


(31) [D 2 - (ja)2I] •: -&• , 
where a = 2•r/Lx is the aspect ratio, I is the identity 
matr• and • = ½0•,..., •)•, Z• = (Z0•,... ,Z.)•. 
Thus, all the Fourier modes decouple, and we have to solve 
N independent equations of the form given by Eq.(31). 
The boundary conditions were derived in Sec. 3 as 


M 


(32) j=0 : •00=0 , E(+l)i+xi2•i0=Uñ(t) 
M 


• • o : •(+•)• = o . 


We now introduce •i ~2 •p = D •b•, •j ½ Q0 M-2, leading to an 
approach for obtaining the particular solution as 


(33) [I- (ja)21]) -2] •: -•,• 
½•: f>-%. 


We note that all matrices are tri-diagonal matrices such 
that the problem may be solved efficiently by forward sub- 
stitution. The only remaining part is to identify the null- 
space of the operator. Similar to what was done for the 
one-dimensional Poisson problem, we assume, e• = 
such that 


Ak -- (34) [D 2-(ja)2I]e i: [D 2 (ja)2I](•+•):0 • 


Assuming • ~ 2 •a = D q• one obtains the scheme .. 


<35) [I - <ja)21•-2] • = (ja)2• 4 
=D •; 


-k •k e• = +qj 


Contrary to the simpler case of the one-dimensional Pois- 
son equation, we cannot obtain the null-vector by analyt- 
ical means. However, one should note that the null-vector 
may be calculated in a preprocessing stage. Since all op- 
erations only involve well-conditioned tri-diagonal banded 
matrices the eigenvectors spanning the null-space may be 
found with high accuracy. 


Introduction of the boundary conditions is done by ap- 
plying Eq.(28). The treatment may conveniently be split 
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into zero and non-zero Fourier modes. 


Fourier mode j • 0: 


Following Eq.(32) we obtain 


M M M 


(36)•'• • + a'o • •.o. + o 
i----0 i:0 i=0 


M M M 


+ + = 0. 
imO i=O i=O 


Note that s•mation over the null-vectors may be done • 
preprocess•g. Thus, cMc•ating the two constats ao •d 
a• is • O(M) operation. 


Fourier mode j: O: 


In this case the problem becomes equivalent to the example 
in the beginning of this section. Thus, •o • = 0. Since we 
choose •oo '- 0 we obtain the solution 


As a consequence we are only able to specify the value of 
•o(y) at one boundary, which is in full accordance with 
what we found in Sec. 3. As the problem is overdeter- 
mined, we will use two different methods which, however, 
are fully consistent. 


Using the Neumann conditions leads to 


M 


(37) al = U+(t) - •(:kl)i+li 2 •,o ß 
i:0 


Alternatively, one may apply the two constraints simulta- 
neously by adding the two expressions to obtain a condi- 
tion restricting the odd coefficients 


M-1 


'- -- -- • •iO ' (3s) o, 
i odd 


As it has been shown, it is possible to construct the scheme 
such that all operations are performed using banded ma- 
trices. This reduces the total operation count to O(MN) 
as compared to the direct method being an O(M3N) oper- 
ation. In addition to this, all matrices are well-conditioned 
and the boundary conditions do not introduce any addi- 
tional round-off error into the problem, as is often the case 
when using traditional tau methods. 


In the absence of the boundary conditions, the tri- 
diagonal form of the Poisson equation presented here is 


equivalent to that proposed in [16]. However, we wish 
to emphasize that this particular tri-diagonal form here 
is shown to be a consequence of the three term recurrence 
relation for the Chebyshev polynomial and not of the spe- 
cific geometry. Similar banded operators may be obtained 
for all polynomials obeying such a recurrence relation. 


4.2.2 Helmholtz' equation 


The scheme for the Helmholtz equation is very similar 
to that of the Poisson equation. Consider the Helmholtz 
equation approximated by a Fourier-Chebyshev series 


(39) lAD 2 - (1 + A(jo•)2)I] J•,•: ],• , 
for ¾j 6 [0,...,N/2], where A - vat. As for the Pois- 
son problem, all Fourier modes decouple. The solvability 
constraints for the vorticity were derived in Sec. 3 as 


j--O: 


(40) 


j•O: 


M 


-- -- • a;iø C = U-(t) - U+(t) = i 2 - 1 2L• i=o 
i even 


M 


i:0 


or 


As for the Poisson problem, direct solution leads to an 
ill-conditioned problem for large resolution. We introduce 
•j -- •2• leading to an approach for obtaining the par- 
ticular solution as 


(41) [AI- (1 + A(ja)2)• -2] •j: ]j 
D 


We note in particular that all matrices are tri-diagonal 
matrices such that the problem may be solved efficiently 
by forward substitution. The only remaining part is to 
identify the null-space of the operator. We define the null- 


•k = •k ^k vector as ej + qj, to obtain 


(42) [AD • - (1 + A(ja)2)I] • = (1 + A(ja)•)• 


Assuming • ' 2 • -- D q• one obtains the scheme 
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(43) 


Similar to the two-dimensional Poisson equation, we have 
to find the null-vector by solving the problem numerically. 
Again, this may be done in a preprocessing stage of the 
computation, with high accuracy. We find that, due to the 
appearance of the parameter • (which may vary signifi- 
candy for different computations), it is necessary to equili- 
brate the matrices prior to solving the problem by forward 
substitution. This is done in order to obtain maximum 


accuracy. 


As for the treatment of the Poisson equation, we split 
the treatment of the solvability constraints into zero and 
non-zero Fourier modes. 


Fourier mode j • O: 


Following the approach given by Eq.(28), the solvability 
constraints given in Eq.(40) for Vj 6 [1,...,N/2] are en- 
forced as 


+ .o 'V'" B + Ak 
i=0 i=0 i=0 


M M M 


44) + + = 0. 


Note again that summation over the null-vectors may be 
perfo•ed • preprocessing. 


Fourier mode j = 0: 


As stated in Eq.(40), we have three consistent conditions 
from which we may choose two. We have chosen the con- 
ditions 


(45) 


A M ^0 
eio + 


i--O i=0 
i even i even 


M •1 C 
E ei 0 _ • a• i2---1 = 2Lx 
i----O 


i even 


M-1 M-1 M-1 


• o2 • P $ •Ji0 q'•0 E '2-0 • eio • 
iml i•l i•l 
odd i odd i odd 


1 


(46) .L-6p - ---- 1 d (V+(t) + V-(t)) 2v dt ' 


Equation (45) restricts the even modes by ensuring con- 
sistency between the circulation and the vorticity, and 
Eq.(46), obtained by adding the two Neumann conditions, 
restrains the odd modes of the vorticity. Again, we end 
up with a 2 x 2 system which has to be solved in order to 
obtain the remaining constants. 


4.3 Initial vorticity distribution 


The code is initialized by choosing a vorticity distribution 
at t = 0. This initial vorticity distribution must, natu- 
rally, sastisfy the no-slip boundary conditions (12). If the 
coefficients wi• (t = 0) and B• are considered as the com- 
ponents of M dimensional vectors for fixed j -• 0, then the 
initial guess for •i• (t = 0) has to be projected onto a plane 
containing the vectors B• and B•. Since B• and B• are 
generally not mutually orthogonal, the two vectors 


(47) bie• = B5 + B• B• - B• 2 and bi• = 2 
are introduced. These two vectors are orthogonal to each 
other [9]. 


The projection of the initial guess for •i• (t = 0) onto the 
true no-slip wi• (t = 0) is then performed by Gram-Schmidt 
orthogonalization 


(48) 
In order for this projection scheme to give reasonable re- 
suits, the initial guess • should not be too far from sat- 
isfying the no-slip constraints (12). This can typically be 
achieved by choosing a zero-order distribution which gives 
rise to a flow parallel to the walls and adding an arbitrary, 
but not too large pertubation. 


4.4 Asymptotic stability of the discrete 
scheme 


As we aim at performing long time integration of the 
Navier-Stokes equations using the scheme described in the 
previous sections, we need to address the issue of temporal 
stability of the scheme. 


The emphasis will be on asymptotic stability of the 
scheme (t --* o•, At fixed) and not on the Lax-Richtmeyer 
stability (At --. 0, t fixed). The concept of asymptotic 
stability is normally considered to be of main interest for 
practical purposes [16]. 







An Accurate Tau Method For Incompressible Flo•vs 49 


In order to perform the stability analysis, we linearize 
Eq.(1) around a linear velocity profile 


u = (y, 0). 


This recasts Eq.(1) into the linear form 


• + Y•-•z = vV2• ' 
subject to the solvability constraints on the vorticity as 
derived in Sec. 3. Since the linear shear is unconditionally 
stable in the continuous case, this has to be true also for 
the fully discrete approximation. 


We continue by expanding in a truncated Fourier- 
Chebyshev series to obtain two equations for the cosine 
and sine modes, respectively, for each Fourier mode j 6 
[0,...,N/•], 


(49) 


(50) 


Ot + (ja)Yd: = [D 2 - (ja)2I] 
(ja)Y&; =. [D 2 - (ja)2I] 


Here &• = (&•j, &•4j) :r and likewise for •' 2•r/Lx ..., 
is the aspect ratio of the channel, D 2 is the 2nd order 
Chebyshev spectral differential operator and the convolu- 
tion operator, Y, is given as [16] 


j=i-1 j = i + 1 
otherwise 


for ¾i 6 [0,...,M], where co = 2, cj = 1 for j > 0 and 
cj = O for j < O. 


For the semi-implicit predictor-corrector scheme given 
in Eq.(26), we obtain the following discrete approximation 


where we have introduced 


0 I and /,j=Ly 0 I •'=Y -x 0 ' 


being the 2(M+ 1) x 2(M+ 1) convolution operator and the 
discrete Helmholtz operator, Lj = I - vAt[D 2 - (ja)2I], 
respectively, for each Fourier mode. We assume that the 
solvability constraints for the vorticity, as given by Eq. (40) 


are introduced in Lj as tau conditions. We have also in- 
troduced the 2(M + 1) vector &? = [(&•, 


The operations necessary to perform the predictor step, 
Eq.(51), may now conveniently be written in the form 


Ax* = Px n , 


where 


X* = (&•,&•,&•-I ,&•V/2,-n -.n-l,T and ,' ' ' •NI2,WN/2 ) , 


x"(,;.,•',c;,•'-•,c;,• '-• -.-.• ...,-•,:r --' ,' '', •NI2, •NI2 , WN/2 ; 


are 3(M + 1)(N + 2) long vectors. Both A and P are 
(N/2 + 1) x (N/2 + 1) block diagonal matrices where each 
submatrix has the order 3(M + 1) x 3(M + 1). 


In a similar manner we may express the correction step, 
Eq.(52), on matrix form as 


Ax n+l - Cx* , 


Combining these two expressions leads to 


Ax "+• = Cx* = CA-•Px" 


Assuming x" = A-" we obtain the generalized eigenvalue 
problem of O(3(M + 1)(N + 2)) 


Ax" = ACA-•Px" , 


by which we may show stability of the fully discrete scheme 
provided IAI •_ 1. The eigenvalue problem may be solved 
using the QZ-algorithm. To limit the size of the ac- 
tual computation, the eigenvalue problem for each Fourier 
mode may be treated separately. 


In Figure I we show a typical spectrum obtained for 
M = N = 24, At = 0.10, L• = 2•r and Re = 1/• = 100. 
This clearly confirms that the total scheme is asymptoti- 
cally stable and no numerical instabilities are introduced 
through the approximation of the continuous stable shear 
flow. 


We observe that once the viscous boundary layer is re- 
solved, which happens approximately for 


M>v•e , 


the stability of the explicit part of the time integration 
is well characterized by the Courant-Friedrichs-Levy crite- 
rion 


CFL = [UmaxlAt < 1 . 
A 3•mi n -- 


A detailed discussion on the use of the CFL condition in 


spectral schemes is given in [17]. 
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Figure 1: Characteristic eigenvalue spectrum for the fully discrete stability analysis for M = N = 24, Re = 1/v = 100, 
L• = 2•r and At = 0.1. Left: The spectrum around the unit circle. Right: Detail of the spectrum close to the unit circle. 


For the case shown in Fig. 1, the CFL-criterion requires 
At _• 0.125, which is supported by our results. We observe 
that as At increases, eigenvalues from the left half-plane 
move towards the unit circle. In Fig. I we have used At = 
0.1 and the scheme remains stable, but increasing the time 
step slightly implies that eigenvalues cross the unit circle 
and as a result the scheme becomes unstable. 


5 Calculation of pressure field 


The traditional approach of calculating the pressure is to 
take the divergence of the momentum equation and enforce 
the condition of incompressibility leading to the Poisson 
problem: 
(53) v•p = v. (pu. Vu). 


The boundary conditions are found by considering the mo- 
mentum equation at the boundaries. Assuming fluid ad- 
hesion (no-slip) at the walls, the momentum equation 


ut+u-Vu= 1Vp+r, V2u 
P 


gives 


Vplov - -u'(t) + v V•ulov 
where U(t) is the wall velocity. This expression for the 
gradient of p gives rise to both Neumann and Dirichlet 
conditions on p, which leads to too many boundary con- 
ditions on the pressure. This problem can be overcome 
in a number of ways. However, there remains a serious 


accuracy issue. If the Navier-Stokes equations are solved 
in primitive variables, second-order derivatives of the ve- 
locity field must be calculated. If the w - • form is used, 
then third-order derivatives must be taken since the com- 


putation of the velocity already involves a computation of 
V•. Of course, things are not necessarily drastically bad, 
since the stream function is calculated from the vorticity in 
spectral space by inverting the Laplace operator; and this 
procedure is smoothing. However, the problem of comput- 
ing third derivatives can still be serious [6]. 


In our alternative approach, we avoid the issues related 
to overdeterminacy by rewriting the momentum equation 
in the form 


so that, introducing the dynamic pressure 


we obtain 


I 2 
.P = p+ ]pu , 


-1VP = -V (• + v•) x •.- wV•. 
p 


Again, at first sight, calculating •t involves high deriva- 
tives since 


However, this relation can be written as 


v • (,/,6 + ,,,,,,) = [o.,, 
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This computes the lumped quantity •,. + • which, after 
all, is what appears on the right hand side of the pressure 
gradient equation. Thus, the need to consider anything but 
first derivatives in the pressure calculation is eliminated. 


This leads to the following algorithm for the pressure 
computation: 


ß Given a vorticity field • 


ß Find the values of the j-th Fourier mode of • at walls, 
for j • 0: 


M 


i--O 


ß Find • by solving the Poisson problems: 


2 ^ 


I V•o =-•o , dy •=ñ• 
ß Compute the Jacobian [a•, •p] 


ß Compute the quantity •Pt + 
Solve 


v 2 + = 
subject to the boundary conditions 


__ 5P ñ ø Oy 


ß Finally, compute a•'•b 


• pu s ß Now consider the dynamic pressure P - p + • 
which satisfies: 


IVP = -V (•p• + v.•) x •. -•v•p 
p 


The right hand side is known, to an accuracy of the 
same order as the rest of the quantities involved in the 
code. 


We may compute the dynamic pressure in mode space 
by inverting either the x- or the y-component of 
the gradient. Each computation should produce the 
Fourier-Chebyshev expansion of P except for the cor- 
responding 0-mode (i.e. inverting the x-component 
gives no information about the 0-Fourier mode, and, 
similarly, the y-component will yield no informa- 
tion about the 0-Chebyshev mode). Combining both 


computations, we recover P. The two expansions 
thus constructed should agree on the non-zero modes. 
The difference of these two independent computations 
provides an upper estimate for the accuracy of the 
scheme. 


6 Numerical tests 


In previous papers [9, 18], the high accuracy of our method 
in calculations at moderate Reynolds numbers up to Re _< 
3000 was demonstrated and close agreement with experi- 
mental results were shown. 


Here, we will report results obtained by our code for 
higher Reynolds number flows in order to demonstrate the 
capabilities of the method. 


6.1 Unstable Poiseuille flow 


In the first example, we report results from direct simula- 
tions of a Poiseuille flow at Re = 10,000 and a = 2rr/Lx - 
1.0. These parameters correspond exactly to the eigenso- 
lutions obtained for the Orr-Sommerfeld equation studied 
in Sec. 3.1. As we know the solution of the linearized prob- 
lem with high accuracy, this procedure may be viewed as 
a thorough test of the full scheme and interdependencies 
of the spatial and temporal resolution. 


In order to extract the unstable mode, we apply the 
algorithm by Buneman [19] which allows for calculating 
the frequency and growth rate of a monochromatic signal. 
It should be noted that this scheme is only second order 
accurate in time. As a signal for the diagnostics we use 
the time-trace of the expansion coefficient of the second 
Chebyshev mode and the first Fourier mode, i.e. k = 1. 


In all runs we used a time step, At, which is well un- 
der the limit dictated by the semi-implicit time advancing 
scheme. All rnn.• have been continued until T = 200. The 


numbers are accurate to O(10-?). 
In Table 3 we study the spatial convergence of the 


scheme. As found from the linear eigenvalue analysis in 
Sec. 3.1, we confirm that M --- 64 and N = 16 is sufficient 
to resolve the dynamics of the unstable Poiseuille flow. We 
observe that as soon as the dynamics is resolved, we obtain 
the eigenvalues with very good accuracy. 


We have also studied the temporal convergence of the 
full scheme. We find that the scheme is clearly first order 
in time as expected from the backward Euler time step for 
the diffusive part of the equation. 
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T=8.00 


T=10.00 T=10.00 


T=14.00 


T=30.00 T=30.00 


Figure 2: The roll up of a thin shear layer in a periodic channel with counter moving walls at Re = 40,000. The 
coutour plots show vorticity (left) and pressure (right) with full and dashed lines indicating positive and negative levels, 
respectively. . 
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M .iV A,• ,X• 
64 16 0.01250 0.2375063 0.0037167 
64 32 0.01250 0.2375063 0.0037167 


64 64 0.01250 0.2375063 0.0037167 
64 128 0.01250 0.2375063 0.0037167 
i6 16 0.00625 0.2367990 0.0212072 
32 16 0.00625 0.2396010 0.0042858 
64 16 0.00625 0.2375164 0.0037283 


128 16 0.00625 0.2375164 0.0037282 


complex dynamics involved in vorticity production during 
boundary layer eruptions. 


The computation of the pressure gives global errors, as 
defined in the last part of Sec. 5, of (P(10 -7) up to T • 5, 
when thin boundary layers near the walls are formed. The 
global error then grows to (P(10 -s) which is kept through- 
out the symmetric evolution, demonstrating the high ac- 
curacy of the pressure algorithm. 


Table 3: Spatial convergence of frequency, hi, and growth 
rate, At, for the unstable mode of a Poiseuille flow at 
Re--10,000, k -- 1, a = 1.0 and U0 = 1.0. M and N are 
the number of Chebyshev and Fourier modes, respectively, 
and At designates the used time-step. 


6.2 Roll up between moving walls at high 
Reynolds number 


In Figure 2 we show the evolution of the vorticity and pres- 
sure field during roll up of a thin shear layer in a periodic 
channel with counter moving walls at Reynolds number 
Re -- 40, 000. The value of Re is based on the channel 
half width and the total velocity difference between the 
upper and lower walls moving with U + -- -1 and U- = 1, 
respectively. Obviously, this example has mainly theoreti- 
cal interest, since three-dimensional effects will begin to be 
important already at much lower Reynolds numbers. At 
T = 0, we have set up an unstable vorticity sheet perturbed 
in the •c-direction by mode number 1. In this example, we 
have used 512 Fourier modes and 1024 Chebyshev modes, 
corresponding to 342 x 684 active modes after de-aliasing. 
The time step, At, is 10 -3 . 


We observe a very high degree of symmetry in the nu- 
merical solution despite many violent bursts of boundary 
layer vorticity. Symmetry of the flow is maintained up to 
T • 35. After this, the code can no longer adequately re- 
solve the dynamics and breaks down shortly after T -- 37. 
We have performed a similar simulation [20] with addi- 
tional random noise of amplitude 10 -s added to all the 
spectral modes at T -- 0. This slightly noisy run begins to 
lose symmetry at T • 20, indicating that round-off errors 
in the present calculation are less than 10 -s. 


The accuracy checks described in Sec. 2.1 for the energy 
and enstrophy evolution give 5.10 -4 accuracy for dE/dr 
and 5.10 -2 for dF2/dt at T --- 24. At T = 30, these num- 
bers are 2.10 -2 and 10 -1, respectively, indicating the loss 
of adequate resolution near the end of the simulation. We 
would like to emphasize that these accuracy tests, and es- 
pecial!y the enstrophy evolution test, are very valuable di- 
agnostic tools, since they provide consistency checks for the 


? Concluding remarks 


In this paper, we have developed a spectral tau method 
for the solution of the incompressible Navier-Stokes equa- 
tions in a planar geometry. The emphasis has been on 
the periodic channel with no-slip walls, but we have pre- 
viously employed similar algorithms in annular geometries 
[3, 7, 18], just as we are presently adapting the scheme to 
a disk geometry. 


The emphasis in this work has been on the accurate so- 
lution of the incompressible Navier-Stokes equations for 
flows with strong boundary layer interactions. Such flows 
require high spatial resolution, which, in turn, impose se- 
vere requirements on the development of accurate and effi- 
cient algorithms. We have implemented several diagnostic 
accuracy tests in the code, and in the present paper, we 
have reported results demonstrating that high accuracy 
can be obtained even for flows with violent boundary layer 
activity. 


We have previously demonstrated close agreement [3, 7, 
18] between our numerical results and experiments per- 
formed at moderate Reynolds numbers, (P(1000). In this 
paper, we have furthermore demonstrated the ability of 
our scheme to perform accurate and direct simulations 
of turbulent boundary layer eruptions in planar flows at 
Reynolds numbers which are even an order of magnitude 
higher. 
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Spectral-Fourier Method for 
Axisymmetric Problems 


M. Dauge* 


Abstract 


This paper is a short presentation of a joint work with 
Mejdi Azar/ez, Christine Bernardi and Yvon Maday, which 
will be published in a book entitled "Spectral Methods for 
Axisymmetric Domains". Here we focus on the solution of 
a simple boundary value problem: the Dirichlet problem 
associated with the Laplace operator. 


Key words: axisymmetric, spectral, Dirichlet, Laplace. 


AMS subject classifications: 65N35, 35J05. 


1 Introduction 


1.1 The geometry 


As a prototype for axisymmetric boundary value problems, 
we consider the Dirichlet problem for the Laplacian iX in a 
three-dimensional axisymmetric domain f•. Let us denote 
by Ct C R + x R the meridian domain of f}. 


If (x,y, z) are the Cartesian coordinates in R s and 
(r, z, S) are the corresponding cylindrical coordinates in 
R + x R x T with T = R/27rZ, we have 


(x,v,z)e• -'. ? (r,z) efi and SeT. 


The rotation axis is r = 0. 


Our geometrical assumptions are the following: 
ß fi is a polygonal domain with sides and corners, 
ß • Cl {r = 0) =: Fo is a full side of •. 


We denote by F the part of the boundary of Ct which is 
not contained in Fo and we have, for the boundary of f} 


(x,y,z)•O• .•. (r,z)•r and SeT. 
*URA CNRS 305, IRMAR, Universit4 de Rennes 1, Campus de 


Beaulieu, 35042 Rennes Cedex, FRANCE 
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1.2 The Dirichlet problem 


In Cartesian coordinates (x,y,z), the Dirichlet problem 
writes: 


--A,•, = / in •, (1) fi = • on 0•. 
In cylindrical coordinates problem (1) becomes 


{ - oN- o0' = ] in n x (2) • = .• on r x T. 
Thus, the coefficients are independent from the angular 
variable 0 and a natural method for this problem is the 
angular Fourier decomposition. 


To this respect, let us recall that the Fourier decompo- 
sition, associated with a cut-off frequency, is known as the 
Fourier version of spectral methods. 


1.3 Fourier decomposition 


For • defined on f}, the Fourier coefficients are 


vk(r, z)= • v(r, z,S) e -'kø dS. 
The Dirichlet problem (1) on f• is equivalent to the s• 


quence of D•ic•et problems on •: Vk 6 Z 


•2u•=f• in •, u • = g• on r. 


We propose a n•eric• •ysis of each problem (3), 
combined with a cut-off •uency in the Fourier parameter 
k, w• yields a n•eric• appro•h to the solution of 
the thr•dimension• problem (1) by a finite number of 
discrete tw•dimension• problems. 


• the c•e when the right hand side (], •) is invariant 
by rotation, i.e. if its o•y non zero Fourier coe•cient is 
(•0, gO), • h• only its coe•cient u ø non zero •d problem 
(1) is equi•ent to the only problem (3) with k = 0. A 
numeric• •alysis by Finite Element Method of this fully 
•s•etric situation w• performed in [9]. 
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A complete coupling between the Fourier decomposition 
and Finite Element Method for general data is studied 
more recently in [8]. 


After the presentation of an abstract framework for the 
Fourier anal• coupled with an approximation of the 
problems (3), we construct a spectral method adapted to 
the different problems (3) •nd satisfying the convenient 
estimates with respect to k. 


2 Variational formulations 


2.1 The spaces 


The pivot space on • is L2(•) and the variational space 
on • is H•(•). 


We give hereafter their characterization by Fourier coef- 
ficients: let v be a function defined on • and let v k be its 
Fourier coefficients. 


Concerning the L 2 norm, we have the following equiva- 
lence 


where the norm in L2• (f}) is defined as 


Ilwll•<n) = Iw(r,z)l zrdrdz. 
The space L2•(f}) is the L z space on f} associated with the 
measure r dr dz. 


Concerning the H • norm on •} we have 


where the norm with parameter H ' [[s•)(n) is defined as 
k 2 


Thus, for any k • Z, the pivot space of problem (3) is 
L•(fl), whereas, as can be seen by the definition of the 
norm [I ' [In/,•(n), the variational spaces are different ac- 
cording as k is 0 or not: these are 


H•(f•):-{wl0•w, 0•w, weL•(n)} ifk=0, 
2.2 The problems 
In order to introduce the variational formulation for the 


continuous problems (3), we need the subspaces of the vari- 
ational spaces with zero Dirichlet traces: 


H•o(f•)={wßH•(n),w=0onr} ilk=0, V•(fl) = {w ß V•(fl), w = 0 on r} if k :• O. 


We introduce the product in 


(f,v) -- Jfn f(r,z)U(r,z) rdrdz. 
For k -- 0, the variational formulation of problem (3) is 


(4) [find u ø ß HI(f]), with u ø- gO ß H•o(n) , s.t. w ß Hlo(n), ao(•O, 


whereas for k • 0, this is 


(5) [find u • ß V•(fl), with u t• - gt• ß V?o(fl) , s.t. w ß V?o(n), a•(• 


with, for any k ß Z: 


ak(u,v) = 0ru0r•+ i:9•ui:9•U+ • uU rdrdz 
The integrodifferential forms ao, resp. ak for k 5& 0, are 
continuous •.d coercive on HL(n), resp. on V?o(n): 


3 X- Fourier method 


We introduce an abstract method of approximation "X" for 
each problem (4) and (5) and thus define a discrete method 
for the three-dimensional problem (1) via the introduction 
of a cut-off frequency. 


3.1 Spaces and forms 


Let K ß N denote the cut-off frequency and let • denote 
the parameter of discretization for the problems (4) and 
(5). For the Finite Element Method, the size of the mesh 
h plays the role of 5, for the p-version 5 equals p, the 
degree of polynomials, and for the spectral method, we 
use to denote by N the degree of the polynomials and it 
will be taken as 5. 


The approximate spaces are essentially generated by two 
families of finite dimensional subspaces of 


(• (f•))e family of approximate spaces for HI (n) 
(X• (f•))• family of approximate spaces for 


These two families generate a new family of spaces 


(S•ce(•))•c • approximating H;(•), defined by 
K 


= = 


and for k • 0, v k 
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We can also take into account a quadrature formula and 
introduce for any k 6 z the sesquilinear forms ak,• which 
approach the forms ak and we also need an approximate 
scalar product (.,.)• for (-,-). 


3.2 Discretized problems 


The exact solution • of problem (i) is approached by •c• 
belonging to SK•(•): 


with u• solution of the discretized variational problem for 
k=0: 


(7) [find ,• • Xo(f•), with u• - g• • X•(•), s.t. vv• • •(n), a0,•(-•, v•) = <f0, 


and u• solution of the discretized variational problem for 
k•0: 


(8) [find u• • X• (f•), with u• - g• • X•(f•), s.t. Vv• • •(n), ak,•(.•, v•)= (f•, 


Here X$ (f•), resp. X• (f•), denote the subspace of X0 (f•), 
resp. X$ (f•), with null traces on F. Moreover, the functions 
g• are approximates of gt in X0 (f•), resp. X• (f•) if k • 0. 


3.3 Fourier error estimates 


Let us introduce the exact truncated Fourier series 


K 


•[K] = E u• ei•s' 


We obviously have 


- u•ll•a• 
(o) 


2 


K 


Lemma 3.1 For any s k O, if • belongs to the Sobolev 
space H'+•(•), there holds: 


Let f • H'-l(•) and • • H'+a(fi). If • has a smooth 
boundary, then • belongs HS+1(•). But, with our geo- 
metrical assumptions, f• has conical points and edges in a 


generic way. Thus, as proven in [7] and [4] for instance, 
• does not belong to H•+i(•) in general: indeed, • has 
singular parts near the conical points and near the edges. 
Nevertheless, we prove that the singular parts near the 
conical points involve only a finite number of Fourier co- 
efficients and moreover that the singular parts near the 
edges are regular with respect to the angular Variable 8, 
and as a consequence we can state: 


Theorem 3.1 For any s _• O, if f • H•-•(•) and • • 
H•+i(•), there holds for the solution • of problem (1): 


3.4 Abstract error estimates 


We characterize for any s _• 0, the Sobolev space H•(•) by 
the Fourier coefficients: for any k • Z, there exist spaces 


H•k)(f•) endowed with a norm ]] ' ][H•.)(n) such that 


II•11•,(•)-- Y] 
With the help of different function• tools (tensorization 
of the •iables r •d z, Taylor decomposition in r = 0 of 
the functions of r, H•dy's inequalities, weighted Sobolev 
spaces) we prove that H•t)(•) is a subspace of the Sobolev 
space H•(•) of exponent s •sociated to the me•ure 
r dr dz: For Ikl > s - 1 


2 2 k2s 2 Ilwll•&>( m IIw 
•d •or I•l • s- 1, H?n (•) is a subspace of H•(•) ch•- - () 
•tefized by the n•lity of a ce•ain set of traces on the 
rotation •s r = 0. For inst•ce, for k = 0, all traces of 
odd r& •e 0, •d for a l•ger •ue of I kl, this set of 
trac• incre,es: for [k I > s - 1 • eftsting traces •e 0. 


Combin•g Theorem 3.1 with (9), we obtain 


Th•rem 3.2 We •sume that for any k • Z, we have 
the estimate •tween the solutions of problems (4) and (7), 
•sp. (5) and (8) q k 4 0 


for a •nstant X(k, 6) > O. 
Then, for the appm•mate solution •Ke defined 


we ha•e the e•r estimate 


(10) •=-• 
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4 Spectral element method and 


4.1 Domain decomposition 


Since fi is a polygonal domain, it can be covered by a 
"disjoint union" of quadrilaterals fit, i.e. satisfying 


fit n 


Since we have assumed that • Cl (r = 0} = F0 is a full 
side of f2, it is possible to choose a decomposition of 
satisfying: 


-- fitt•Fo= •) or0. 
The model one dimensional sub-element is the interval 


A = (-1,.1) 


and the model two dimensional element is the square 


There exist local maps •'t: • onto fit. According to the 
situation of fit with respect to the rotation axis F0, there 


are two models: and 
(•) -•'t maps the side • = -1 onto •t VI F0, 
•) "ordinary" Cartesian situation. 


4.2 Discrete spaces 


The parameter of discretization in • is taken as the de- 
gree N of the polynomials on which are based the discrete 
spaces 


5= N, N , +•. 


The basic spaces of polynomial functions are defined on 
the interval A: 


P•v(A) = {w polynomial ,degw _< N} 


= (w ß ?N(A), w(-1) = 0}, 


from which are constructed the spaces on the square E by 
tensorization 


?N(r) = ?s(A) © ?•(5) 


• (I•) = •*N (A) © PN (A). 


The spaces X•(Ft) and X;(•) of the abstract theory are 
now denoted XN(fi) and X•v (fi) respectively, and defined 


We have 


4.3 Quadrature formulas 


One of the specificities of the spectra] methods is the 
quadrature formulas whose nodes are taken as the roots of 
certain families of orthogonal polynomials (which are the 
orthonormal bases of eigenvectors of some second order 
differential operators on the interval A, degenerate at the 
ends 4-1 of A). 


For the direction • in case (•) ) For both directions • and • in case (•) 


the Gauss-Lobatto formula is used: its nodes •j and 
weights pj are such that 


W ß ?a•_• (A), 
1 N 


/_ q)(•)d• = E q)(•5)pj. 1 j=O 


For the direction ( in case (•), we have constructed 3 
formulas, indexed by m ß (1, 2, 
ß the formula m = 1 is a Gauss-Radau formula (in • = +1) 
for the measure (1 + ()d(; 
ß the formula rn = 2 is a Gauss-Lobatto formula for the 


measure (1 + •)d•; .. 
ß the formula m = 3 is derived from the Gauss-Radau 


formula for the measure d(: it has the same nodes denoted 


(is) and its weights wJ a) are obtained from the weights •j of 
the ordinary Gauss-Radau formula by 


These quadrature formulas satisfy: 


ß rn = 1, 3: the nodes •Jm) are such that 


-1 < C? ) <-.. < C(N m) < ((N•: = 1 
and the exactness property reads 


I N+I 


f •o(•')(1 4- •)dC E ,,.(m), (m) = •qj ) wj 
1 


j=l 


-- for m = 1, we even have the exactness for •o ß •2•v(A). 
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Experimental 2t + 2 t + • 2t + 1 
re=l, 3 


L•2(A) norm 
Theoretical 2t + 1 t + • 2t 


Experimental 2t + 2 t + • 2t + 1 
m=2 


Li•(A) norm 
Theoretical 2t + 2 t + • 2t 


Experimental 2t x x 
m--2 


/?_1 (A) norm 
Theoretical 2t x x 


Table 1: Table of convergence for the interpolation operators 


ß m = 2: the nodes C (•) •j are such that 


= r(2) = 1 ½? -1 < ½?) <..-< ½(•) < -•v+l 
and the exactness property reads 


N+I /,•2). •o(•) (1 + ½)d• = y• •o(½J :)) 
1 j=l 


4.4 Projection operators on the interval 


Let L•(A) and L • L • _•(A) be the spaces on A associated 
with the measures (1 + ½)d½ and (1 + ½)- ld½ respectively. 
The sharpest results for the orthogonal projection oper- 
ators in L2(A), L•(A), L•_i(A) use the Sobolev spaces 
H•t•(A ) associated with the Jacobi weights (1-0a(1+()•. 
We have 


11•o + N -s - •dl,.•,(^) < c 


The Sobolev spaces in the right hand sides axe the domains 
of the power { of the Sturm-Liouville operators associated 
with LZ(A), L•(A), L2_• (A) respectively. Such an approach 
is given in [5, 6]. 


The interpolation operators associated with the Gauss- 
Lobatto formula on A are denoted iN, whereas those asso- 
ciated to the formula (m) are denoted i• •). We have 


II• - iw•[[,.=(^) _( c N-' [[•IInL(^ ). 
Let us give here the L a estimates for the i?): if s _• 1 


Ilv-i?)vllr.,•(^) _< cm-'ll•ll,:_,,.(^), m-- 1,3, 
II•- i(•)•llq(^) < ca -• 


and if, moreover •o(-1) = 0 


The formula m = 2 is the only one which is convenient 
for the norm L • and thus, for the variational space V• 
(when k • 0), since it is the only formula which preserves 
the zero trace in • -- -1, which corresponds to the rotation 
axis. The three formulas can be used for the variational 
space H• (when k = 0). 


In the above Table 1, we show the results of numerical 


tests for the convergence rate of I[•o - i? )•o[I in L • norms 
for the following functions •o: 


V;-(•)=(1+•) ', V,ø(½)= I½1 ', 
which have singularities in -1, 0 and +1 respectively. 
These numerical results show an order of convergence equal 
to those of the projection operators in L•(A) or L2_• (A). 
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4.5 Discrete scalar product and forms 
We return to the bidimensional domain fi itself. Let œ• be 
the •et of the indices œ of the domain decomposition in the 
situation (•), and œ5 be the set of the œ in the situation 
¸. 


By the help of the local maps Yt, we define interpolation 
operators Z• "•) on the domain fi: for v in ½0(•), Z•-•)v is 
the only element of XN (fi) such that 


vœ • œ•, vj, j' 


We have similar L 2 estimates as in the interval A. Here 


are the estimates that we can obtain in the norms H•k ) (f•) 
of the x2riational spaces of problems (4) and {5): when 
k=0, wehavefors>l andre=l,2,3 


(11) 


and when k • 0, we have for s > • and m = 2 


(12) [Iv 


The definitions of the approximate scalar product and 
forms are obvious from the above quadrature formulas: for 
any function v which is integrable for the measure r dr dz, 
let us denote for each œ by Ttv the function on the square 
E such that 


/nv(r,z) rdrdz = • jf• Ttv(•,•) (1 +•)dCd• 
+ • fr T%(½,•) de dE. 


The approximate scalar product (., ')N is defined for v and 
w in ½o(•) by 


= E ' 


+ • •(v•)(•,•,)• •,. 


For any k 6 Z the sesquilinear forms ak,N which ap- 
proach the forms a• are defined thanks to the approxi- 
mate scalar product (',')N: for u and v in C•(•) (with 
zero traces on F0 if k • 0) 


For k = 0, any from the three quadrature formulas can be 
used, and if k • 0, only m = 2 is used. The discrete forms 
a•,N are coercive on H(•k)(•) for any k, uniformly in k. 


5 Error estimates for the spectral 
element method 


The error estimates for the discrete problems in fi (7) 
and (8) obtained with the above definitions of the discrete 
spaces and quadrature formulas, are based on lemmas of 
classical type. 


5.1 Lemmas of type C(•a and Strang 


Lemma 5.1 For k = O, we have the following estimate 
between the solution u ø of the continuous problem (4) 
and the solution u• of the discrete problem (7): for any 
v• ½ XN(fi) such that u•-v• belongs to X• (fi), for any 
w•_• ½ xN_•(fi), for any f•_• 


Ilu ø - •,g• Ilsi(a) <_ c (ll•, ø - v• II.i(a)+ Ilu ø - w•_• IIs•(a) 
+ II/ø - •?)føllz•(n) + II/ø - I•_, IIq(o)) 


Lemma 5.2 For any k •: O, we have the following esti- 
mate between the solution u • of the continuous problem 
(5) and the solution u• of the discrete problem (8): for 
any • • x•(•) such that u•-• belongs to •(•), for 
any w•_• • x•_• (n), for any .f•_• 


with a constant c independent of k. 


As v•v and v[ we can take •(m) o •(•) k z•, u N and respec- .% UN 
tively. 


5.2 Evaluation of the constants X(k, N) 


In order to estimate the constants X(k, N) appearing in 
Theorem 3.2, we have to study the behavior of each of 
the four terms on the right hand side in each of the above 
estimates. Concerning the terms involving the data fk, we 
can rely on the regularity of the data in problem (1). As for 
the terms involving the solutions themselves, we have to 
take into account the limitation of their regularity caused 
by the corners of •. 


Let us denote by e the corners of • which do not belong 
to the rotation axis r0. They correspond to the edges of 
•. Let w(e) be the opening of the angle of fi at the corner 
e. We set: 


w = supw(e). 
e 
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Similarly, we denote by c the corners of • which belong to 
F0. They correspond to the conical points of •. Let a(c) 
be the opening of the angle of • at the corner c. We set: 


a -- sup a(c). 


The regularity of u k is limited by the first exponent of sin- 
gularity at each corner. For a corner e, this first exponent 
does not depend on k and is equal to 7r/•(e). For a corner 
c• it depends on k and is equal to •(a(c)) with •(a) the 
smallest positive root of the equation 


= 0 


where P• is the Legendre function of degree • and order k. 
All of these functions decrease with respect to the opening; 
the smallest "edge exponent" is •/w and, for each k, the 
smallest "corner exponent" is equal to •(•). Setting 


s•= min( • •} + 


we obtain the largest Sobolev exponent such that, if s • s• 


u e W > 0. 


Then, when s is large enough, the constant X(k, N) has a 
similar behavior as N-•: in the best polynomial approx- 
imation of singular functions, we also find the doubling of 
the convergence order well-known in the p-version of finite 
elements [5, 6, 1], and in spectral elements in the Cartesian 
case [2]. Indeed, setting 


and for k • 0 


v0=min --,uo(a)+ 


1} vk =rain --,vk(a)-• 
we obtain, combining the above lemmas with the estinmtes 
about the projection and interpolation operators 


(la) X(k,N) _< c(N-2•-k(logN) a/2 + Nt-'•). 
6 Conclusions 


6.1 Global estimates 


We obtain a global estimate between the solution of the 
three dimensional problem (1) and the approximate solu- 
tion 


K 


•KN = E UkN eikO 
k=-K 


with the help of the general estimate (10) and the above 
majoration (13). Taking into account 


(14) 0<Uo and l<u• <vo <..., 


we get 


115- 


(K -s + N •-s + (N -2rø + N -2r•)(log N) a/2) 


6.2 Examples 


If the angles c•(c) are equal to 7r/2, the domain •t has no 
conical point in c. Thus, % = v• = 7r/•. If • is a rectangle, 
then the convergence rate in the norm H x (•t) is 


K -s + N •-s + N-4(log N)3/2. 


and in the norm L2(•), we prove by an Aubin-Nitsche 
argument 


K -•-• + N •-• + N-'• (log N)3/2. 


If fi has the shape of a L, then the convergence rate in 
the norm H•(•t) is 


K -s + N •-• + N-4/3(log N)I/2. 


Thanks to the minorations of (14), in the most general 
case, the exponents 2to and 2r• are always > 1. 


6.3 Hints about the numerical solution 


For the discrete problems (7) and (8), there are several pos- 
sibilities to derive matrices to be inverted for their nunmr- 


ical solution. Essential objects linking the discrete vari- 
ational systems and the linear systems are the bases of 


Lagrange polynomials •j and •5'•): the integer N being 
fixed, for j • {0,..., N}, tj is the unique polynomial be- 
longing to ?• (A) which equals 1 in the node •j and 0 in 
the other nodes. Similarly, concerning the "radial" vari- 


able, for j • {1,..., N + 1}, t•'•)is the unique polynomial 
belonging to n>• (A) which equals 1 in the node (Jm) and 0 
in the other nodes. 


To describe some peculiarities of these matrices, we focus 
on the radial variable r -- (+ 1, for ( in the interval A. Let 
us consider the discrete problems (7) and (8) without the 
variable z, in the only variable r. With the choice of basis 


functions t•"•) for the test and trial functions, the Galerkin 
zion) method reads as an algebraic problem,.c^• k U = F with a 
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(,•) •(,•) )j stiffness matrix zl(") equal to (ak,N(•j ,•j, ) ,j,. The • 'GAL k 


matrix •(•) of the collocation system at the nodes • • •COL k 


reads 


( k' (•) (•)) •0•-0•+ )(• )(•), ) . (-0• -; • 
It is known [3], that in the Cartesian c•e the Galerkin 


and the collocation systems are equivalent. In the radial 
case, when k = 0, the Galerkin method is equivalent to the 
collocation method only for m = 3; and when k • 0, the 
Galerkin method is equivalent to the collocation method 
for m = 2. 


Numerical evaluation of the condition numbers of the 


different rigidity matrices show a behavior in N • for all 
Galerkin matrices 4(•) •GA• k, a behavior in N 4 for the collo- 
cation matrix4(•') ifk=0, m=3ork•0, m=2, and • •COL k 


in N • for the "forbidden" collocation matrix with k = 0, 


[9] B. Mercier, G. Raugel, Rdsolution d'un probldme aux 
limites dans un ouvert axisymdtrique par dldments fi- 
nis en r, z et sdries de Fourier en O, R.A.I.R.O. Anal. 
Numdr. 16 (1982), 405-461. 
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Parallel Element-by-Element 
Spectral Multilevel Techniques 


M.B. Davis G.F. Carey* 


Abstract 


A parallel element-by-element ,nultilevel strategy is devel- 
oped and applied to two nonlinear, coupled PDE system.•. 
Spectral (p) finite elements are used to discretize the 
lems and the multilevel solution strategy uses projections 
between bases of different degree (level). The projection 
methods for the p-multilevel schemes are developed and an- 
alyzed for Lagrange and hierarchic bases. The approach is 
implemented in a parallel element-by-element algorithm, 
which is particularly suitable for the spectral finite ele- 
ment method. Results are presented for two candidate 
nonlinear elliptic transport problems: the augmented drift- 
diffusion equations of semiconductor device modeling and 
the stream function-vorticity equations of incompressible 
fluid dynamics. 


Key words: spectral elements, multilevel method, drift- 
diffusion equation. 


AMS subject classifications: 65N30, 65N35, 65N55. 


1 Introduction 


Finite element methods in which the refinement is accom- 


plished by increasing the degree p of the polynomial basis 
can give superior accuracy for similar computational work 
as compared to the more commonly used h refinement 
schemes. However, the condition number of the matrix 
deteriorates with increasing p. This motivates the need 
for an effective preconditioner, and a multilevel scheme in 
which the basis degree serves as the grid level is a natural 
choice. Such schemes may also be easily parallelized. 


In the finite element context, the variational statement 
of the problem on the different grid levels leads naturally 


' University of Texas at Austin 
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to the development of appropriate projection operators [5• 
8]. Hierarchic basis functions, which are constructed by 
adding appropriate functions to the existing lower-degree 
polynomials, lead to matrices and vectors which are nested. 
This may be a particularly suitable choice for multilevel 
methods, since the projections for hierarchic multilevel are 
performed by merely truncating or appending a part of the 
vector at little or no computational cost [9]. 


Element-by-element strategies have proven to be effi- 
cient and scalable for parallelization of finite element meth- 
ods using gradient iterative solvers [2, 3• 6• 7]. The basic 
idea in the parallel EBE scheme is to avoid assembling the 
system and instead perform matrix-vector and dot prod- 
ucts in parallel at the element level. All matrices and vec- 
tors are stored in element format, which means the memory 
is scalable with the number of elements. Use of high-degree 
polynomials as the bases makes the element vectors longer 
and increases the ratio of calculation to communication by 
increasing the ratio of total degrees-of-freedom to element 
boundary degrees-of-freedom. 


Moreover, in this approach, multilevel operations such 
as residual calculation, restriction and prolongation can 
be confined to an element and hence are completely par- 
allel. The only steps that require communication are the 
smoothing (iteration) phase and coarse grid solves. A fur- 
ther advantage of spectral multilevel methods is that the 
number of elements in the domain remains constant, and 


hence the decomposition of the domain is fixed across grid 
levels. An important issue with parallel multilevel meth- 
ods defined in this way is the ratio of communication to 
calculation. Although this ratio may be small for the fine 
level (high-degree basis), on coarser levels it gets succes- 
sively larger, and at some level the communication time 
may dominate the total computational time. 


2 Spectral elements and multi- 
level 


An alternative to refining the mesh by making the element 
size h smaller is to increase the degree p of the polynomial 
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basis. Use of high-p finite elements can give higher-order 
accuracy for the same number of grid points. For example, 
the L 2 finite element error estimate for elliptic PDE's has 
the form [1] 


(1) llell: C(p)h, -- rain(r,p + 1) 


where r is the regularity of the solution (u • H r) and p 
is the degree of the basis. For smooth solutions the con- 
vergence rate with respect to h is then O(hp+l). If we 
increase the polynomial degree instead of decreasing the 
grid spacing we get exponential convergence of the error. 
This rate is not achieved in the vicinity of a singularity 
due to the local lack of regularity. In such regions the er- 
ror is O(h •) and, therefore, increasing p will not increase 
the rate beyond r. The optimal refinement strategy should 
be to decrease the element size h near a singularity, and 
to increase the degree p in smooth regions. Of course, we 
can grade the mesh (redistribute the grid) to cluster near 
a singularity and then increase p uniformly [5]. 


One disadvantage of the p-type finite element method is 
that the conditioning of the matrix deteriorates with in- 
creasing p. This deterioration is dependent on the type of 
basis used. One way to counter this is to apply a precondi- 
tioner to the system. A p-type multilevel method may be 
defined by using the degree of the polynomial basis as the 
grid level. The intergrid transfers can then be naturally 
defined in terms of expansions in the appropriate bases. 


The analysis of a finite element Galerkin multilevel 
scheme is best carried out in the variational setting. In 
this way the Galerkin statement can be formulated on each 


grid level. and the consistency of the projection operators 
with the finite element discretizations on the associated 


grid levels is assured. The approach here follows that in 
[5!. We proceed by considering a representative linear el- 
liptic problem on a domain Ft with a boundary 0f•: 


(2) L(u) =f in Ft 
(3) u=g on OFt 


where L denotes the differential operator. Applying the 
method of weighted residuals and integrating by parts, the 
variational statement of the problem has the form: Find 
• E H with u: g on OFt such that 


(4) a(u,v) = f(v) Vv • H 


with v = 0 on 0[2. Here a(., .) denotes the bilinear func- 
tional, f(.) is a linear functional and H is the appropriate 
space of admissible functions. Introducing a finite element 
discretization and a polynomial basis so that S p C H, we 
define the approximate variational problem on grid level p 


(7) 


where 


(s) 


as: Find Up • S p with Up = g on OFt such that 


(5) •(•,•) = f(•) W• • S • 


with Vp - 0 on OFtp. Introducing the finite element expan- 
sion and evaluating the integrals in (5) leads to a linear 
system of the form 
(6) Apup ---- bp 
where p qnce again indicates the grid level. Now con- 
sider a m•dtilevel scheme where (6) corresponds to the fine 
grid system. Application of an iterative smoother to this 
system yields an approximation Up and associated error 
ep -- Up -- Up. Substituting this into (5), the error ep is 
specified by the residual equation 


a(½;, Up) -- •*(Up) for all Up • So p 


r*(Vp) = f(vp) -- a(ttp, Vp). 
Next, introduce a coarse grid level q such that S q C S p. 


Since all Vq are in S q and thus in S p we can test against 
the set of bases Vq [5] so the solution of (7) also satisfies 
the property 


(9) a(e;, vq): r*(Vq) for all Vq • $• 


where r*(vq) = f(vq)- a(u•, Vq). This system is obviously 
underdetermined, so we take the best (Galerkin) approxi- 


* * 


mation eq • S q to ep. That is. find eq • S• such that 
* 


(10) a(eq, vq) -- r*(vq) for all Vq • S• 
Substituting the finite element expansion in (10) yields 


the coarse level system for the error correction vector 
* 


(11) Aqeq -- rq. 


where Aq is computed by evaluating the bilinear form on 
the space S q and the right side vector defines a natural 
projection of the residual from S p to Sq. More specifically. 
(8) implies 
(•2) r*(•,•) = f(•,•) - •(•;, •). 
Note that this requires the a(.,-) inner product of u; and 
•q. 


As an illustration, consider the bilinear form for the 
Laplacian 


(13) a(u, v) = • Vu. Vvdfi 
Introducing a polynomial expansion for u; and polyno- 


mial test function Vq 


Np 


* •(* P q (14) Up = Up)j•j(x), Vq = •i (x) 
j=l 
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P and •b• q denote the respective basis functions for where (bj 
$P and Sq. Upon s•5•stitution this yields 


Np 


= 
j----1 


Np 


Let this projection operator be denoted A q'p. Then 


q (16) Ai• p 


so that (12) implies 


Np 


(17) r*(•) f(•iq)- Z q'p * ---- Aij (•p)j 


or in matrix form 


(18) r; = fq - Aq'Pu; 


Now, in the spirit of traditional multigrid methods on fi- 
nite difference grids, we can characterize the projection as 
the product of its component parts: residual vector calcu- 
lation (matrix multiplication) and projection to the coarser 
space. 


To illustrate this idea, let us expand the test function 
in the higher-dimensional basis. Then 


Np 


(19) •'q --- Z 7•q'PrfiP 


Substituting (19) into (17) 


Np N r 


j•l j•l 


(•0) -- • q'P*'P - m v • (%) 
j=l 


or in matrix form 


* = Mq'P(bp- Apu;): Mq'Pr; (21) rq 


At this point we need to determine the actual values of 
m q'p in order to be able to carry out the projection. The ik 


following analysis is for Lagrange bases. These bases have 
the interpolation property that the value of each basis func- 
tion is one at the node corresponding to the basis function, 


and zero at all other nodes, i.e. ½i(xj) = 6ij. It follows 
that 


Np 


(22) 0•(xj): y•q'P•Prx • : m•j p 


That is, the components of the projection matrix M q'p are 
simply the values of the coarse grid basis at the fine grid 
nodes. 


To complete the multilevel concept in the variational set- 
ting, a prolongation operator is needed which will project 
the error correction in equation (11) to grid level p. A nat- 
ural choice for the prolongation operator is the transpose 
of the restriction operator in (22). Then the fine grid cor- 
rection is computed from the coarse grid result according 
to 


* 


(23) ep = (Mq'p)Te; 
As in the standard multigrid method, these error correc- 
tions are added to the approximate solution on the finer 
level to obtain the corrected approxinmtion and smoothed 
by fine grid iteration. 


2.1 Hierarchic bases and multilevel 


Hierarchic basis functions are constructed by adding the 
next degree basis function to an existing basis of lower de- 
gree. For example, a quadratic basis may be formed by 
adding a quadratic polynomial to an existing linear basis. 
The higher degree basis then explicitly contains the lower 
degree basis. This implies that the finite element •natrix 
and vector contributions corresponding to the lower de- 
gree polynomials are nested in the matrix and vector con- 
tributions for the higher degree polynomials. Similarly, 
coarsening implies simply deleting the appropriate rows 
and columns of the matrix. These properties are useful in 
the multilevel context. However, the interpolation prop- 
erty 4>i(xj) = 5ij for Lagrange polynomials holds only for 
the p = 1 basis. 


The advantages of hierarchic bases become apparent 
when we extend the previous multilevel analysis to this set- 
ting. The change of basis coefficients in (19) for Lagrange 
bases are simplified for hierarchics because the basis for the 
space S q is explicitly contained in the basis for S p. That 
is, 


(24) ½•=• l_<i<_Nq 


If we follow the same strategy as for the Lagrange ba- 
sis, then the residual projection in (17) becomes r*(O•) = 
r*(½/p) for i = 1, 2,..., Nq. That is, the components of the 
residual projection to the subspace S q are precisely the 
first Nq components of the fine grid residual. Hence, only 
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the first Nq components of the residual vector need to be 
computed. 


Similarly, the coarse grid matrix Aq is now the leading 
Nq x Nq minor of the fine level matrix Ap. Hence Aq does 
not need to be recomputed. 


The subspace problem for the error correction in $q 
again has the form in (11). That is, 


* 


{25) AqeS----rq. 
* 


In a two level scheme this system is solved for eq. The pro- 
jection of e• to the higher level space S p is trivial because 
of the explicit inclusion of the basis (recall (24)). Hence 
the corrected high level approximation is simply obtained 
by adding the Nq components of e• to the first Nq com- 


* 


ponents of up. This new approximation in S p can then be 
iteratively smoothed and the cycle repeated. 


We can express this alternatively by introducing the pro- 
jection operator defined by 


(26) (Ppq)ij-Sv i=l,...,Nq, j=l,...,Np. 


Then P• extracts the first Nq components of a vector of 
length Np. The problem on the coarse grid can then be 
expressed as 


(27) Aqe5 •- Ppq(bp- Apu;) 
or after projection 


(28) Aqeq 


An alternative to the standard error correction method 


described above takes advantage of the nesting of the ma- 
trices and vectors [9]. Instead of computing a correction 
and adding it to the existing approximation, one can di- 
rectly compute the corrected solution on the coarse level 


fiq = u(• + e i. More specifically, adding Aqu• to each side 
of (28) we have 


q * Aqu• (29) Aqfiq - bq -- PpApup + . 


and clearly can solve this system to get Uq. Note also that 
the matrix Ap and the vector u• can be decomposed into 
blocks in the following fashion 


(30) Ap = Apq App Up -- . Upp 


* 


where Aq and Uq are the coarse level matrix and solution 
approximation, respectively. Using this block decompo- 
sition and the projection defined in (26), equation (29) 
simplifies to 


* 


(31) Aq•Iq -- bq - Aqpupp. 


This form has two advantages. First, it mnphasizes the fact 
that the full residual need not be computed. Second, no 
intermediate correction needs to be projected and added 
to the fine level approximation. The computed coarse level 
solution from (31) is trivially inserted as the first Nq com- 
ponents of the fine level solution vector. 


2.2 Smoothing and correction 


For reasons of convenience and parallelization, a simple 
point Jacobi scheme is the preferred smoother for the mul- 
tilevel scheme. Any smoother must efficiently damp the 
high frequency error modes on the respective grids. For 
the relaxed Jacobi smoother, the relaxation parameter de- 
termines which frequencies are damped more quickly than 
others. If we assume that we wish to eliminate the highest 
frequency eigenmode corresponding to the leading eigen- 
value of the discrete operator we obtain the relaxation fac- 
tor for optimum multilevel smoothing [8, 14] 


(x, Ax) 
(32) •: ((x, Dx))-1 
xvhere D is a diagonal matrix with Di, =Aii. 


Since this relaxation factor •: is a function of the matrix 


A, it changes with both the problem and the discretiza- 
tion. Hence the optimum relaxation needs to be repeat- 
edly calculated for each decoupled equation matrix. This 
value can be conveniently calculated using a power series 
method. 


Calculation of this eigenvalue (or relaxation parameter) 
in a power series scheme generally requires 30-40 matrix- 
vector multiplies. If this were done at each nonlinear it- 
eration for each decoupled linear system, the cost would 
quickly become a significant part of the total computa- 
tion and communication time. However, if the linear sys- 
tem corresponding to a particular equation doesn't change 
enough to significantly alter this eigenvalue estimate over 
several block iterations, then the calculation can be done 
infrequently, and the cost can be amortized over several 
nonlinear iterations. In practice, this is found to be the 
case for both the augmented drift-diffusion and stream 
function - vorticity equations. Hence the relaxation is only 
recomputed every ten block iterations, or at the start of a 
continuation step. 


There are two main choices for a multilevel strategy ap- 
plied to a linear system: a V (or W) cycle, or a full multi- 
grid cycle. The full nmltigrid (FMV) cycle uses nested it- 
eration to improve the initial guess on the fine grid, hasten- 
ing convergence. The strategy for solution of the nonlin- 
ear problem uses block iteration and successive approxima- 
tions. Hence, at each nonlinear (or block) iteration, there 
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exists a good initial guess on the fine grid. For this reason 
only V-cycles are used as a multigrid cycling scheme. 


The Jacobi smoother can generate oscillations in the 
cross-wind direction for convection dominated problems. 
The magnitude of these oscillations is proportional to the 
magnitude of the residual. In order to minimize these oscil- 
lations, an initial coarse grid correction (no pre-smooths) 
is performed at the first V-cycle. This initial correction 
further improves the initial guess from the previous block 
iterate, and convergence is improved [8]. 


Multigrid cycling schemes such as the Full Approxima- 
tion Scheme can be used on the full nonlinear problem. 
Two alternative approaches are used here for the nonlin- 
ear problem. First, the multilevel solver is used only as 
the linear system solver for the fine grid problem, which 
is run to convergence using successive approximations and 
continuation. The second approach is a nested iteration 
scheme: The coarsest grid problem is run to convergence 
on the full nonlinear problem, including continuation in 
the boundary voltage or Reynolds number. The solution 
is then projected to the next finest grid and the problem on 
this grid level is then run to convergence at the final volt- 
age or Reynolds number. This strategy is repeated until 
the highest grid level is reached. 


3 Parallelization 


Finite element methods divide a given problem domain 
into a union of elements for discrete solution. Hence 


schemes in which blocks of elements are operated on by 
a processor and the processor decomposition follows ele- 
ment boundaries provide a natural way in which to paral- 
lelize finite element methods [2, 3, 6, 7]. Adjacent elements 
share nodes on the element interface, so the information 
associated with these nodes may be stored on different pro- 
cessors. This information is updated during matrix-vector 
product or inner product operations. This means that mes- 
sages must be passed between processors in order to update 
these values. The ratio of communication to computation 
is important because it can limit efficiency. The use of 
high-p elements, which have more internal degrees of free- 
dom, results in a higher computation to communication 
ratio. 


For a message passing paradigm, the time to send a mes- 
sage is given by 
(33) 


where a is the startup time or latency, /• is the time per 
byte for message transfer, and L,,• is the length of the mes- 
sage in bytes. For transfers in which a large amount of data 
is to be transferred, the key is to send as few messages as 


possible so that the startup time is minimized. Otherwise 
the startup time may dominate the communication time. 
The optimum situation would be to send one long message 
so that the latency is essentially hidden. 


The previous argument motivates the need for message 
bundling using sendlists. A data structure is developed in 
which each processor has a pointer array which contains 
the element and node numbers that are shared with an- 


other processor. The order in which this information is 
to be placed into a message is also stored. Thus, when a 
vector is to be updated, a message vector is filled in order 
and sent to the appropriate processor. In turn, a message 
is received from that processor. A pointer array indicates 
which element and local node corresponds to which posi- 
tion in the array, in the same way as for the message which 
was sent. In this fashion all of the communication between 


adjacent processors can be accomplished using one mes- 
sage each way, and message latency is minimized. There 
is, however, some overhead in the packing and unpacking 
phases. 


In the present work we can use an element-type data 
structure and recast all matrix-vector or projection opera- 
tions at the element level. This means that instead of ad- 


dressing a vector by its global node number, it is addressed 
by its element and local node number. In addition, each 
element has a pointer array which stores its neighbor ele- 
ments and which nodes are shared with this neighbor. A 
specific processor will store information only for elements 
local to that processor. Elements are therefore addressed 
by the number local to that processor rather than a global 
element number. The pointer array for neighbor infor- 
mation includes the local element number and processor 
number for neighboring elements. This format facilitates 
parallel coding. 


The formation of the matrix and RHS vector for finite 


element methods is usually accomplished by forming the 
local element matrices and vectors and summing them to 
get the global matrix and RHS as implied in the multi- 
level formulation of the previous sections. However, in the 
present parallel algorithm we no longer form the global ma- 
trix and RHS, but leave them in element form. The matrix 
and RHS calculation phase is therefore completely paral- 
lel. If the matrix is to be preconditioned using a global 
Jacobi preconditioner (diagonal scaling), then the diago- 
nal elements of the matrices may be assembled to find the 
scaling factor. This accumulation phase will involve com- 
munication across processor boundaries. 


Iteration by point iterative methods (Jacobi, SOR, etc.) 
as a smoother or gradient methods (CG, BCG, etc.) for 
the coarse grid solve involves repeated matrix-vector mul- 
tiplications or dot products. Calculation of either one re- 
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quires that the information on shared nodes be updated. 
For instance, to compute a matrix-vector product such as 


* 


(34) Apup -- Vp 


in the residual calculation (21), we write u; = B,u; where 
Bc is the Boolean (adjacency or connectivity) matrix for 
element e and relates local to global variables. Then 


(35) Ap = Z T e B e ApB• 


and 


E E 


Apup (E T e ß ß B• ApB•)up Z T = = B e Apup 
c:l 


E 


: v 


Hence the calculation requires element matrix-vector prod- 
ucts that can be carried out independently in parallel. 


Note that the solution vector is stored in summed form, 
but still in element format. The element accumulation 


in (36) requires communication if the element boundary 
corresponds to a processor boundary. High-p elements, 
which have more internal degrees of freedom, will result in 
a higher ratio of computation to communication. 


Hence we see that when structured in this way, multilevel 
methods are a natural extension of the parallel EBE solu- 
tion of finite element problems using gradient or other it- 
erative methods. Obviously the smoothing phase proceeds 
as before with matrix-vector products updated across el- 
ement boundaries. The issues of the residual calculation, 
restriction, and prolongation also need to be addressed. 


For example, consider the residual calculation rp = bp - 
ApUp. In the EBE structure we obtain 


E E E 


(37) • • B•rp • T e : Bebp _ • T e * B• ApBeup 
e=l e=l 


but B•u; = u; so (37) implies 
E E 


T e e e (38) • B[r; = •B• (bp- ApUp) 
e=l e:l 


and we can use directly the element residuals 


(39) rp •- bp - Apup 


Note also that because the element bases are defined locally 
we can introduce a local change of basis at the element 


level and corresponding to the global matrix M q'p in (21) 
we have the element projection matrix M• 'p. Then the 
element residual projection follows in a manner analogous 
to (21) as 
(40) r• = M•'Pr; 


Thus residual calculation and restriction take place on the 
element level, without communication, and are completely 
parallel operations. The prolongation to finer grid operates 
on the error vector, which is the solution on the coarser 
grid. This vector is stored in summed format, and hence 
no updating is necessary. Therefore, prolongation can also 
take place on an element and is once again completely par- 
allel. 


To summarize, the basic steps of the parallel algorith•n 
for a two-level scheme are: 


1. Processor partition. An element-by-element partition- 
ing of the domain is made (contiguous element blocks 
are desirable). Sendlists for interprocessor communi- 
cation are constructed. 


2. High-level smoothing iteration. 


(a) For each processor subdomain in parallel com- 
pute element matrix and vector contribu- 
tions at every level and store elementwise 


{A;}, {b;}, {A•}. {b•}. 
(b) For k = 1, 2,..., K iterations carry out relaxed 


Jacobi iteration (or a similar scheme). This in- 
volves local element matrix-vector products with 
element solution vector iterate {u;} and commu- 
nication between adjacent processors for element 
nodes on an interprocessor boundary. 


Residual computation and projection. For each ele- 
ment in parallel, compute element residuals (level p) 
and locally project to level q to get residuals r•. For 
the hierarchic basis this reduces to simply comput- 
ing the first •V• components of the residual for each 
element e. 


Coarse grid solution. The coarse grid system is solved 
in parallel using an element-by-element generalized 
conjugate gradient solver. 


High-level update. The coarse level correction for each 
element is projected elementwise to the higher level 
using (23) and these p-level element corrections are 
added to the current p-level element iterate. 


6. Return to Step 2(b) and repeat the cycle until the fine 
grid iterate satisfies a specified stopping test. 
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Remark 1: In the above procedure all matrices and vec- 
tors are generated and stored elementwise. This permits a 
more straightforward parallel implementation and simpli- 
fies coding. 


Remark 2: Additional level projections and smoothing 
iterations 'an be included in the usual way. 


4 Applications 


The above method is now formulated for two nonlinear, 
coupled transport problems. The first test case is the aug- 
mented drift-diffusion equations, which model the trans- 
port of electrons and holes (carriers) in semiconductor de- 
vices. The steady state, scaled form of the equations is 
[4. 11. 15. 16] 


A2/X½ = n-p--C' 
(41) V. (/•Vn-/•nV½) = R 


•7 . (l_tp•7p q- i_tpp•7tO) = R 


xvhere •' is the electrostatic potential, n and p are car- 
rier concentrations, /• and /•p are mobilities, R is the 
recombination-generation rate, C is the doping, and A is 
the scaled Debye length. An augmented mobility model is 
used for the carrier mobilities [4]. 


Equations (41) are decoupled iteratively and successive 
approximations used to solve the nonlinear problem [10]. 
A linearized Newton step is used on the potential equa- 
tion to facilitate convergence[8, 10]. The equations are 
then discretized using a spectral finite element method. 
The approximate variational statement of the decoupled 
problem is: For iterate k = 1, 2, 3, find ½k-•1, T•q-1 and 
pk+l H h H t • ( (Ft) C (Ft) satisfying the respective essential 
boundary conditions and such that 


and 


/]•p( • k+l --/o h 


= f• Rv• dx Vv• • H h (f•) 


for test functions wn, uh, vh vanishing on those harts of 
the boundary where respective essential data is g: .en and 
where zero flux conditions are taken elsewhere. Further 


details are given in [8]. 
Upon integration, three linear systems are obtained, 


which are solved successively with a multilevel method us- 
ing available solution iterates of the other field variables 
[8]. Due to discontinuities in the doping C for these prob- 
lems, the issue of gridding is critical for high-p elements. 
A transition region must be used between different doping 
values, and at least one element must be in this region. 
Otherwise, Gibbs-type oscillations are set up in the inte- 
rior of the element containing the discontinuity, resulting 
in divergence. 


The second application is the stream function-vorticity 
equations for incompressible Navier-Stokes flow in two 


The steady state form of the equations is dimensions. 


[8, 12, 13] 


(42) -•,A•+ u. V( = f 


where 0 is the stream function, • is the vorticity, u is the 
velocity, and f is the divergence of the body force. 


Following the procedure outlined above, the equations 
are decoupled and discretized to obtain the variational 
statement: For iterate k = 1 2.3. find r•+l H • , ... c 
Hl(•) satisfying the essential boundary conditions and 
such that 


+ 


k k+l w )u) ad= fwad VwaH 


where vorticity boundary data is computed from the avail- 
able stream function iterate. Then find •'•+• • Ha(fi) 
satisfying the essential boundary conditions and such that 


h Sh •h dz 


e H 


Again, the line• systems arising from substitution of 
the appropriate basis and integration are solved with a 
multilevel scheme, and available solution iterates are used. 


5 Results 


The first test case is the augmented drift-diffusion equa- 
tions. The example chosen is an n + - n - n + diode with 
doping of 5 x 1017 and 2 x 10 •5 in the n + and n regions 
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Figure 1: Electrostatic potential. 1V bias 
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Figure 2: Electron concentration. 1V bias 


respectively. device length of .3/zm, active length of .ltzm, 
and an applied bias of iV. Surface plots of the electro- 
static potential and electron concentration are shown in 
Figures 1 and 2. This solution was computed using a uni- 
form 12 x 12 grid of 144 bicubic elements, and a multilevel 
solver which used bilinear elements as the coarsest level. 


A further study examined the performance of the nonlin- 
ear successive approximation scheme for different choices 
of element degree. The convergence history of the non- 
linear iterations is shown in Figure 3 for biquadratic and 
biquintic elements. The graph shows the L2 norm of the 
residual of the electron transport linear system at each 
block iteration. Experience has shown that for the drift- 
diffusion problem. a good initial iterate is very important 


for convergence of the decoupled iterations. Hence. both 
continuation in the applied bias and nested iteration are 
used. The spikes in Figure 3 correspond to either a new 
continuation step or the beginning of the solution on a finer 
grid in a nested iteration step. Note that for both cases. 
the nonlinear convergence is not smooth early in the his- 
tory, but becomes smoother at later nested iteration steps 
and also later in the specific continuation or nested itera- 
tion cycle. 
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Figure 3: Electron concentration convergence with block 
iterations 


The convergence of the multilevel method for the La- 
grange and hierarchic bases is next considered. A compar- 
ison is given for both the potential and electron transport 
equations in Table 1. Here the tabulated values correspond 
to the fraction of the residual remaining at the end of the 
V-cycle. Note that the residual reduction factor is very 
good for the Lagrange basis for p < 6 in the potential 
equation. but deteriorates at p = 6. The reduction factor 
for the transport equation is not as good. as should be ex- 
pected. and deteriorates as the basis degree is increased. 
For a Lagrange basis and the multilevel scheme used. this 
makes sense. The coarse level linear system is solved ex- 
actly, so the higher the basis degree, the further away it 
is from an exact solution since the intermediate levels are 


not solved exactly. The hierarchic basis reduction factors 
exhibit the opposite trend with basis degree. This makes 
sense since the problem at intermediate and coarse grids 
doesn't begin with an initial guess of zero. Since the so- 
lution is nested. intermediate grids have a non-zero initial 
guess, which is improved by the smoothing steps on inter- 
mediate grid levels. 


The second example is the stream function-vorticity 
equations applied to the driven cavity problem. The re- 
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Lagrange Hierarchic 
p • n • n 
2 .07 .28 .53 .58 


3 .07 .30 .49 .55 


4 .17 .31 .52 .42 


5 .17 .52 .51 .37 


6 .69 .79 .49 .28 


Table 1: Multilevel residual reduction factor for the aug- 
mented drift-diffusion problem 
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Figure 5: Vorticity, Re = 100 
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Figure 4: Stream function, Re = 100 


locity of the top of the cavity is normalized to one and the 
viscosity is chosen so that the Reynolds number of the flow 
is 100. Contour plots for the stream function and vorticity 
are shown in Figures 4 and 5. The solution was computed 
using a uniform 16 x 16 grid of 1024 quadratic elements, 
and a multilevel solver which used bilinear elements as the 


coarse grid. 
The convergence history for the stream function linear 


system is shown in Figure 6. Notice that the convergence 
is smooth and that it asymptotes to a specific rate. The 
rate is determined by the largest block relaxation which 
gives convergence. This relaxation is lower for the higher 
degree elements, and hence convergence is slower. Experi- 
ence has shown that at this Reynolds number continuation 
is unnecessary and more computationally expensive, as is 
nested iteration. 


The residual reduction factor for the stream function 
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Figure 6: Stream function convergence with block itera- 
tions 
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Lagrange Hierarchic 


2 .20 .26 .23 .19 


3 .17 .29 .19 .17 


4 .38 .34 .19 .17 


5 .49 .53 .10 .10 


6 .70 .70 .07 .07 


Table 2: Multilevel residual reduction factor for the stream 


function-vorticity problem at Re = 100 


equation and the vorticity transport equation are shown 
in Table 2. Once again, the Lagrange basis exhibits a 
steady deterioration of the reduction factor with degree 
p for both equations. In this case the values are more 
similar since the problem is not as convection-dominated. 
The hierarchic basis performs well on this problem, with a 
gradual reduction of the factor with basis degree. 


Figure 7 shows the speedup on the Intel iPSC/860 hy- 
percube for the stream function-vorticity problem. The 
speedups are presented for a grid of 1024 quadratic ele- 
ments and a grid of 64 quintic elements, with a Lagrange 
basis used in both instances. The processor decomposition 
is performed by ordering the elements in the square do- 
main naturally and distributing them to the processors in 
order. i.e. the first • elements go to the first processor Np 
and so on, with _N• the number of elements and Np the 
number of processors. The speedup for less than 16 pro- 
cessors is very good, with a parallel efficiency of .83 for 8 
processors. The deterioration of performance above this 
level is due to the smaller problem sizes on each processor, 
meaning the communication-computation ratio is larger. 
The speedups are similar since the p = 5 case has fewer 
grid points (smaller problem size). For the same number of 
elements as for the p = 2 case, the speedup will obviously 
be better. 


6 Conclusions 


Spectral elements have proven to be a practical discretiza- 
tion technique for both the augmented drift-diffusion and 
stream function-vorticity problems. However, care must 
be taken in the augmented drift-diffusion problem with 
the placement of the elements. At least one element must 
lie in a transition region between different doping values, 
or the solution diverges due to Gibbs-type oscillations. 


Spectral multilevel is an effective preconditioner for the 
high-p systems for both applications and both Lagrange 


Speedup on Intel iPSC/860 
, 


0 35 


i i i i i i 


5 10 15 20 25 30 
Processors 


Figure 7: Speedup, stream function-vorticity, Re = 100, 
Lagrange basis 


and hierarchic bases. Adaptive calculation of the relax- 
ation parameter • allows use of simple point Jacobi re- 
laxation as a multilevel smoother, even for high-p ele- 
ments. Nested iteration has proven to be an efficient so- 
lution method for the augmented drift-diffusion problem, 
reducing the number of fine grid nonlinear iterations sig- 
nificantly. Extension of the multilevel scheme to include 
additional smoothers, especially gradient solvers, may fur- 
ther improve efficiency. 


In an element-by-element scheme, multilevel methods 
are easily parallelizable, with very good speedups if the 
problem size per processor is moderate. Use of very 
high-degree elements, problems with multiple degrees-of- 
freedom per node, or three-dimensional problems may ex- 
tend this parallel performance down to decompositions 
which have only one element per processor. 
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A Nonlinear Glerkin Method' 


The Two-Level Chebyshev Collocation Case 


Lucia Dettori* David Gottlieb t Roger Temam* 


Abstract 


In this article we study the implementation of the Non- 
linear Galerkin method as a multiresolution method when 


a two-level Chebyshev-collocation discretization is used. 
A fine grid containing an even number of Gauss-Lobatto 
points is considered. The grid is decomposed into two 
coarse grids based on half as many Gauss-Radau points. 
This splitting suggests a decomposition of the unknowns 
in low modes and high modes components which is con- 
venient also in the physical space. A nonlinear Galerkin 
scheme is then applied to a linear parabolic equation in the 
case of a Chebyshev-Legendre scheme. L2-norm stability 
is proved. 


Key words: nonlinear Galerkin method, Chebyshev col- 
location method. 


AMS subject classifications: 65N30, 65N35. 


1 Introduction 


In this article •ve study the implementation of the Non- 
linear Galerkin method in the case of a Chebyshev- 
collocation discretization. 


Following the guidelines of a previous article [3] in which 
the Fourier space-periodic case was considered, we address 
here the case of a Chebyshev approximation. 
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The basic idea in the Nonlinear Galerkin method (and in 
the theory of inertial manifolds) is the decomposition of the 
unknown u into its large scale and small scale components, 
y and z: 


(1) u=y+z. 


In the case of a Fourier expansion it is clear that y corre- 
sponds to the low modes and z to the high modes. When 
a Chebyshev expansion is considered: 


M 


(2) = 
k=O 


we show that the low modes are the coefficients of the 


low degree Chebyshev polynomials (k < N) and the high 
modes are the coefficients corresponding to the high degree 
Chebyshev polynomials (N + i < k < M). 


When a collocation method is used (as opposed to a full 
spectral method) we need to find a decomposition of the 
kind (1) which is suitable in the physical space. Such a 
decomposition is accomplished via the splitting of the fine 
grid into two coarse grids, based on half the points. A 
Nonlinear Galerkin method is applied to a linear parabolic 
equation in the case of a Chebyshev-Legendre approxima- 
tion. A slightly modified version of the original method 
proposed in [4] is considered and the L2-norm stability is 
proved. 


The article is organized as follows: Section 2 describes 
the choice of collocation points. The fine grid consists of an 
even number of Gauss-Lobatto points (M + i: 2N + 2), 
the two coarse grids are based on N + i Gauss-Radau 
points, each one containing one boundary point. 


A decomposition of type (1) is proposed in Section 3. 
Here y contains only low degree coefficients and is based on 
one coarse grid and z contains only high degree coefficients 
and is based on the other coarse grid. 


Based on a decomposition of type (1), a nonlinear 
Galerkin method for a linear parabolic equation is dis- 
cussed in Section 4. A new version of the Chebyshev- 
Legendre method originally presented in [4] is considered 
and L2-norm stability is proved. In a future article we 
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will extend the nonlinear Galerkin method based on the 


Chebyshev-Legendre approach to a nonlinear parabolic 
equation. 


2 Preliminaries 


Note that, since the pj are the zeros of Q, 


7-l s (Pk,Pj) -- 6kj. Q 


The Lagrange polynomial 7-/•_ (x, •jv) corresponding to 
the Gauss-Radau points •jv is given by (8), with: 


In this article we will use two polynomial spaces; we define, 
for 2•I = 2N + 1, the spaces: 


P M = {polynomials of degree _< 
(3) PN = {polynomials of degree _< N}, 
of dimensions M + i = (2N + 2) and N + i respectively. 


In the following we use many standard results in the 
Chebyshev approximation; for an overview of those results 
the reader is referred to [5, 7, 6] and [2]. (9) 


A generic function f, defined on [-1, 1] can be projected 
onto the space PM by interpolation on the following set of 
points: 


•rj 0<j<M, (4) x•:cosM, - - 
that we will refer to as the fine grid. We recall that the 
Gauss-Lobatto points x• are the zeros of (1 - x2)T}t(x), 
where TM(x) is the Chebyshev polynomial of degree M. (10) 


To project a function f on the spaces PN we will alter- 
natively use the two following coarse grids 


2•rj 2rrj 0 < j < N, (•) •;*: cos -•- = cos 2x +-----•' - - 
(6) •}Y = cos (2/+ 1)•r (2j + 1)•r 0 < j < N. M =cos 2N+l ' - - 
The Gauss-Radau points •Nare the zeros of TN+• -- TN, 
while the •]jY are the zeros of TN+ 1 q- T N (see e.g. [2], 
Chapter II]). 


Remark 2.1 The fine grid, which contains even number (11) 
of points. is composed of the union of the two coarse grids, 
which both contain odd number of points: 


Indeed, we have: 


(7) •-• = •7, • : .7, 0 < • < 2• •. •2j+l -- -- 


In the following we give a general formula for the La- 
grange polynomial interpolating at a given set of points. 


Lemma 2.1 Given S + 1 points pj, j = 0,..., S, zeros of 
a polynomial Q(x), the Lagrange polynomial 7-I • that in- 
terpolates at those points is defined by (see e.g. [5], Section 
I. 11]): 


Q(x) 1 (12) 
(8) Tl•(x, pj) = x - pj Q'(pj)' 


c2(•) - (r•+• - r•)(•), 


•'(•J•) = (-1/+' 2• + 1 2 cos •j ' 
M 


Definition 2.1 Let f be a function defined on [-1, 1]; the 
interpolation polynomial Q2vf 6 P• is defined by: 


QNf(x) -- 
N 


j=0 


An alternative way of representing QNf is to use the iden- 
tity (see e.g. [9], Chapter I]): 


4 • T•(•)T•(x) 
k=0 


where, •0 N: 2, /•jv = 1 (1 _< j < N). Substituting (10) 
into (9) we get: 


N 


k=0 


where 


4 N f(•cJV)T•(•f ) 


It can be seen that: 


Lemma 2.2 The polynomial QNf interpolates the func- 
tion f at the collocation points •',i.e. : 


(Q2vf)(•jv) = f(•jv), 0 •_ j _• N. 


Alternatively, the projection on the space PN can be 
accomplished via collocation at the other coarse grid points 
,jr; in this case the Lagrange polynomial 7-/•_(x, r/J v) is 
given by (8) substituting: 


•(•) 


c•' ( .J • ) 
-- (TN+ 1 q- TN)(X), 


= (_l)j+ 1 2N + 1 
2 sin (2j+1)• ' 


2M 
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Definition 2.2 Let f - f(x) be a function defined on 
[-1, 1]; the interpolation polynomial QNf e PN is defined 
by: 


N 


(13) QNf(x) = 
j=O 


An alternative representation of QNf is: 
N 


(14) (•.vf(x) -- Z l•ff Tk(x), 
k=O 


where, 


- 4 '¾ f(vf)Tk(vf) 


where,•5•=2, •f=l(0CjCN-1). 
We can summarize the above by: 


Lemma 2.3 The polynomial QN interpolates f at the col- 
location points • ,i.e. ß 


(16) (QNf)(•f) = f(•f), 0 • j • N. 
The projection on the space PM is accomplished via 


collocation at the Gauss-Lobatto points x•. The cor- 
responding Lagrange polynomial •M (X M • ,Xj ), is given by 
(8), substituting 


(17) 


where a• = ai• = 2, 


= (1 - 
= (-- x)J+1d•/2•/, 


./= 1 (1 $ j $ M- 
Definition 2.3 Let f be a function defined on [-1, 1]; the 
interpolation polynomial IMf • PM is defined by: 


(18) 


M 


j=O 


Using the following equality, similar to (10), 


(19) 7-/M (x,x•)-- 2 • r•(x•)r•(x) 
k=0 


we can give an alternative representation of IMf: 


M 


(20) 
j=0 


where 


(21) - 
j=0 


In the following we define the scalar product with which 
we endow the spaces P•v. 


Definition 2.4 Suppose that u and v are given at the 
points •jv, then the scalar product (u, V)N in PN is defined 
as follows: 


(22) 
N 


j=0 


3 Fine/coarse grids vs high/low 
modes 


The main goal of this section is to find a decomposition of 
the fine grid into two coarse grids such that the difference 
between the projection operators at the different meshes 
turns out to be small both in the physical and the poly- 
nomial space. In other words we want to construct two 
collocation operators, ,7• on P;v and •M on P• that de- 
compose a generic function into its low modes and high 
modes components. 


In the case of a Fourier expansion it is clear that the large 
scale component corresponds to the low modes, (i.e. to 
½iN•rx for small N) and the small scale component corre- 
sponds to the high modes, (e i'¾• for large N). In the case 
of a Chebyshev expansion we need to understand better 
the concept of small and large scales. Consider the Fourier 
expansion of the function (1 - x2)--'}TN ß 


y• . N i k rr.r __-- Ok • '. (23) v•- x • 


The coefficients b• can be expressed in terms of the Bessel 
function B•v(x)(see [[1], Chapter 10] and [[8], Lemma 2.6]): 


i'¾•'B •'k (24) b•= • •v( ), 
and they verify the following estimate: 


(2s) e•'k :v \ Ibl _< Amin 1, (•-•)) 
where A is a constant independent of k or N. Estimate (25) 
shows that, for large N, the lower terms in (23) decay 
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exponentially xvith N. VVe conclude that, for large N, 
basically only the terms that have mode number larger 
than N appear in the Fourier expansion (23). Therefore, 
TN, for large N, can be considered a small scale function. 


This justifies the following terminology of "low and high 
modes" in the case of a Chebyshev expansion. 


Consider a function f, expanded in the Chebyshev basis: 


M 


(26) f(x): Z f•Tk(x); 
k=O 


we refer to the first N coefficients as the low modes of 


f and to the coefficients corresponding to the Chebyshev 
polynonfials of degree from N + 1 to M as the high modes. 


The results of this section are based on the following: 


Theorem 3.1 


Let •1 = 2N + 1 and let QN, (•Nand I• be defined as in 
(g). (13) and (18). We set: 


(27) 3r.¾ - 


(28) 


Then. any function f • P M can be written, as: 


(29) f -- ,ffNf +6Mf, 


where •7.vf • P•v and GMf • P• (the orthogonal com- 
plement of P N in P M). Hence, •N f has only low modes 
and •.• f has only high modes, i.e.ß 


N+i 


(30) G,wf(x) = • ;•v• T 'x' dN+k N+kk ]. 
k=l 


A similar decomposition holds for IMf, for any function 
f.' 


(at) IMf = •7'Nf +6Mf. 


Proof VVe show that the coefficients of f and •f,¾f, cor- 
responding to 0 < k < N, agree. Recalling the definition 


of fM and using (7) we have: k 


(32) 


The following Lemma provides an explicit inversion for- 
mula expressing the Chebyshev coefficients of a function 


f • P'• in terms of its values at the points N ' 


Lemma 3.1 Consider a function f • PS• of the form 
N+• 


(33) f(x) -- f,v+•T,¾+t- (x), 
k=l 


where • is given in (21). For the .sake of simplicity. d.¾+k 
we will denote 


(34) F•. ^M .N. = f2N+•-•, k=O,... 


Let •j¾ be defined as in (5); then, for k -- 0,... ,N. 


(35) Fk = 4 X 
Proof From (33), evaluating f(•f), we obtain 


N+i [(2N +1 +k-(N + 1))2r•j] = + 
k=l 
N+I N 


f•+k N+•-k(•) ) = • v•r•(•ff) 
k=l k=0 


(36) 
Thus, using (22), 


(37)• =ø 
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The result follows then from the fact that 


(38) { (T•, Tp)•V =0, (Tp, = 


for k •p, 


Given the inversion formula (35), we can express a func- 
pM in terms of its values at the points •jv; the tion f • --N 


corresponding Lagrange interpolation operator turns out 
to be a linear combination of the Lagrange Kernels 
and T/M . [] 


GL 


Theorem 3.2 


Consider a function f in P,•, of the form 


N+i 


(39) f(x) = • ^M T 
k----1 


let •SY be defined as in (5). Then we have: 


(40) 
N+i 


where• 


(41) gj(x) = - 
Proof Substituting in (39) • he Chebyshev coefficients of 
f(x) expressed as in (35), we find: 


(42) 


thus. since Tt:(•j v) = T2N+,_•(scJv): 


(43) 


N 


f(x) - Z f(•.jv) (2N + 1)3• N x j=o 
N '¾ :r.•x+-,_,:((;. )T=•+i_,(•) 


x • 3' • k=0 k 


Rearranging the terms in (43), we eventually get: 


(44) 


f(x) ---- zJV=0 N 4 X f(•j ) (2•z+•)•j ¾ 
N+I TN+p(•j¾)TN+p(X) 
p=l 


where _N+• _ 2, and o'; +1 - 1 (p = 1.... N) The ON+ 1 -- __ , ß 
Theorem is proved, providing that: 


(45) 
--- 


N+! 
4 TN+p(•)¾)TN+p(X) 


(2N + 1)•J v Z a.•,'v+:t ' p----1 


this is a consequence of the alternative representation of 


the Lagrange polynomials 7'/•L and T/•_, (19) and (10). 


4 The linear case 


We consider in this section the instructive case of the linear 


parabolic equation: 


(46) tit -- 1]Uxx -- O, u(-1, t)=u(1, t) =0, 
u(•, 0) = u0, 


x • (-1.1), 
t>0, 
x 6 (-1,1), 


t>0, 


where t• is a positive constant. The nonlinear Burgers 
equation will be considered in a future work. 


The choice of homogeneous boundary conditions is just 
for the sake of simplicity; all the results we present extend 
easily to the non homogeneous case. 


In the following we propose a Nonlinear Galerkin 
Method for problem (46) and compare it with a slightly 
modified version of the Chebyshev-Legendre method pre- 
sented in [4]. 


4.1 The Chebyshev-Legendre collocation 
method 


We describe hereafter the Chebyshev-Legendre Colloca- 
tion Method for (46) on the fine grid x•. W'e recall that in 
the Chebyshev-Legendre Collocation method the bound- 
ary conditions are imposed via a penalty method in such a 
way that the method is stable in the usual L•-norm (rather 
than the weighted L•-norm). We present here a slightly 
modified version of the method, in which a penalty term 
is still present, but the boundary conditions are satisfied 
exactly. In order to prove the L • stability, we need to in- 
troduce the Legendre collocation points (? defined as the 
roots of the polynomial (1 -x•)P•t, for M = 2N+ 1. Note 
that we do not need to use the Legendre points in the ac- 
tual computations but they are "ghost points" introduced 
only for the sake of the proof. The discrete scalar product 
corresponding to the points (? is defined as follows: 


M 


(47) 
$=0 
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where the •j are the usual Legendre weights (see e.g. [5], 
Chapter II]). 


For M = 2N+1, let PM be defined as in (3); we denote 


(48) B•+l = (1 + x)Ph(x) (1 - x)Ph(•) 2Ph(1) Bh= 2ph(_l) (53) 
In the classical Chebyshev-Legendre method we seek the 


polynomial uM • PM that satisfies: 


(49) •u.•(x) = v Ox • 


at the points x = x•, the Chebyshev collocation points (54) defined in (4); v0 and • are positive parameters deter- 
mined in the stability proof. 


We propose, instead: 


ß ) 
- 


at the points x = x•. Note that in this c•e, since 
d u • •(•1) = 0, the boundary conditions are satisfied for 


any t > 0 if they are initially satisfied. 
In both cases the penalty term is different from zero for 


all the Chebyshev points •; this adds some penalty terms 
to the differentiation matrix; however, since P•z((j¾) are 
given explicitly in [4], Section 3, these additional terms can 
be evaluated once and for all for any grSt size M. In [4] 
the following stability result is stated. 


Theorem 4.1 


Let u = u(x,t) • P•f be the solution of the Chebyshev- (55 
Legendre scheme (49). If •o and •I satisfy the following 
conditions.' 


(5•) •0 a 4•' •u a 4• h' 
then u satisfies: 


tM-1 


- u•q• ,t)dt. 
j=l 


Remark 4.1 The crucial point in the stability proof for 
this method relies on the fact that equality (49) is actually 
verified at every point x • (-1, 1), since both sides of (g9) 
are polynomials of degree M that agree at •I + 1 points. 
Hence, we can read the equality at the Legendre points 
• and thus carry on the proof as in the usual Legendre- 
collocation case. For all the details see [4], Lemma 4.1, 
Theorem 4.1]. The same remark is valid for the scheme 
(50) with the simplification that, since the boundary con- 
ditions are exactly satisfied, the boundary terms in the in- 
tegrations by parts are zero. 


4.2 The nonlinear Galerkin method 


As suggested by Theorem (3.1), we have a natural decom- 
position of any function u E PM: 


u = •¾u + 6Mu -- y + z, 


where •7N = (QN +(•N)/2 and 6M: IM--..7N. Projecting 
equation (49) with •7•v and gM, respectively, we obtain 
the following scheme: 


yt(x) 


at the points x = ()•; the coefficient c• is equal to 0 or 1 
according to the term zt being removed or not. 


Remark 4.2 Note that the penalty terms •.• B•+• , •x B•, 
(I• - J•v)B• and (IM -- Js•)Bji are different from zero 
at all the points •jY, but they can be computed once and for 
all at the beginning of the iteration. This leads to a slight 
modification of the differentiation matrix. 


As in the previous Section, one can consider a slightly 
different scheme (corresponding to (50))' 


at the points x -- •Y. 
The stability of the methods is a direct consequence of 


the stability of (49) and (50). In fact, from (54) it 
is immediately seen that y + z satisfies equation (49) at 
the points •jv. Actually, equality (543) and (54b) are 
true also at the points •/jY. Let us consider the first equa- 
tion: both sides are polynomials of degree N that agree at 
N + 1 points, thus they agree at all the points x • [-1, 1], 
in particular at •/jv. Regarding the second equation, we 
observe that both sides are polynomials in pM of the N, 


form O(x) N -- Y•'.•=• •+•T•v+•(x) and, thanks to Theorem 
(3.2), these polynomials are uniquely determined by their 
values at the points (if. Hence, we deduce that equality 
(54b) is verified at all points in the interval [-1,1], and 
thus at the points r•J v. The following Theorem is, there- 
fore, proved. 
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Theorem 4.2 


Let y(x, t) and z(x,t) be the solutions of the Chebyshev- 
Legendre scheme (5,i). If ro and rM satisfy f51), then 
y + z satisfies: 


(56) /(y + z)(., t), (y + z) 


2 fo - x(q ,t) dt. 
j=l 


In a similar way one can prove that the scheme (55) is 
stable in norm L 2. 


5 Implementation issues 


In this section we discuss some aspects of the implementa- 
tion of the Nonlinear Galerkin method introduced in the 


previous section. We will show how the splitting of the 
equation in low and high modes produces a significant gain 
in terms of the total computational cost, compared to the 
classical method (49). 


VVe consider in the following the scheme (54), but simi- 
lar considerations are valid in the case of the scheme (55). 
We propose to solve both equations in (54) on the physical 
space, via collocation on the coarse grid points {•jv}. In 
fact, the unknown z contains only modes with wave num- 
bers larger than N, thus it belongs to the space U•. The 
representation formula (40) given in Theorem (3.2) is used 
to solve the high modes equation in (54) on the coarse grid 
{•jv}. Note also that the penalty terms •7NB•, ,•NB•i, 
(I.v• -- •7N)B.• and (IM -- •7N)B•4 can be computed once 
and for all at the beginning of the iteration. 


In the following we will compare the number of opera- 
tions needed to advance the solution of from time t = 0 to 


time t - 1. For the sake of simplicity, we assume that all 
the derivatives are computed via vector-matrix multipli- 
cations and that the time stepping is done via an explicit 
method. 


Consider the Chebyshev-Legendre scheme (49) based 
on the fine grid {xff}, containing 2N + 2 points. In order 
to compute the spatial derivative we need (2N) 2 opera- 
tions. Since At ,• x W-•W' we have the total number of 
64N 6 operations. 


Consider now the Chebyshev-Legendre nonlinear 
Galerkin scheme (54). Assume that y and z are given 
at the fine mesh. In order to solve (543) 3N 2 operations 
are needed for the derivatives (note that •xxQN and •x(•N 
should be taken separately). To solve equation (54b), us- 
ing (40), we can compute the spatial derivative in just 
N 2 operations. The total count to evaluate the spatial 


derivatives sums up to 5N 2. Also in view of the appli- 
cation we have in mind to a nonlinear equation, we sug- 
gest to advance the coarse grid equation in time with an 
explicit method, and therefore consider a time step of or- 
der At , x W'•. On the other hand, we suggest to use for 
the high modes equation, which is linear in z, an implicit 
method. The total computational cost is then 5N 6, offer- 
ing a substantial saving over the non-split scheme. 
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Solution of Parabolic Partial Differential Equations 
in Complex Geometries 


by a Modified Fourier Collocation Method 
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Abstract 


The heat equation with Dirichlet boundary conditions is 
solved in various geometries by a modified Fourier colloca- 
tion method. The computational domain is embedded in 
a larger, regular domain with a uniform, Cartesian grid, 
and the solution is defined to be identically zero outside 
the original domain. The discontinuities thus introduced 
across the boundary are handled by the modified Fourier 
collocation method, such that highly accurate approxima- 
tions to the spatial derivatives along each grid line can 
be calculated. One-dimensional applications are presented 
to demonstrate the accuracy and the robustness of the 
method. A detected robustness problem with respect to 
the location of boundary points relative to grid points is 
discussed. and modifications that stabilize the method are 


presented. Two-dimensional problems are then solved with 
high accuracy, and the flexibility with respect to complex 
geometries is demonstrated. 


Key words: spectral methods, Fourier series, Bernoulli 
polynomials. parabolic partial differential equations, 
complex geometries. 


AMS subject classifications: 65M70, 65M20, 35K05. 


1 Introduction 


The modified Fourier collocation method presented in [5] 
constitutes a flexible scheme which, in principle, is applica- 
ble to a large class of initial-boundary value problems for 
partial differential equations in complex geometries. The 
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Figure 1: A domain [2 with complex geometry embedded 
in a rectangular domain D, with a regular grid. 


method uses a combination of trigonometric functions and 
polynomials to represent the functions involved along each 
grid line. Such representations have previously, to some ex- 
tent, been considered by Lanczos [9] and others, e.g. [7, 10], 
in less general contexts. 


As a model problem we shall, in this paper, study 
the heat equation subject to given initial conditions and 
Dirichlet boundary conditions: 


(1) 
ut =V2u, x•[2ClR •, 
u(x, 0): u0(x), x • n, 
•(x, t) = g(x, t), x • 0[2. 


t>O, 


Traditional numerical methods for such problems are 
normally of low order and utilize grids which are adapted 
to the actual geometry of the problem. When the given 
domain [2 has a complex geometry and high accuracy is 
desirable, (1) is consequently a challenging problem. 


A well-known technique (see e.g. [12]) is to embed the do- 
main [2 in a larger, rectangular domain D with a uniform, 
Cartesian grid, as shown in figure 1. This approach has 
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'! 1 Y 2 ¾ 3 


Figure 2: An example of a solution along the grid line 
marked in figure 1. Circles indicate the values at the grid 
points, and •/1-74 denote the points where the grid line 
intersects the bohndary 0f]. 


been used in various ways, e.g. [2, 11, 13], involving mod- 
ifications of the governing partial differential equations to 
account for the boundary conditions. The modified Fourier 
collocation method described in [5] applies a totally differ- 
ent strategy than earlier approaches. The partial differ- 
ential equation is not changed and is not solved at grid 
points outside the original domain. The embedding do- 
main is only used to represent the solution in a wa•v which 
facilitates the calculation of derivatives. 


The grid points inside fl will be referred to as "interior 
points", while the rest are called "exterior points". The 
solution is defined to be zero at all the exterior points, and 
the method of lines is applied in order to solve (1) at the 
interior points. 


When the solution u(x, t) is given on the uniform grid at 
a certain instant t. the spatial derivatives at the grid points 
can clearly be determined by considering u(x, t) along each 
grid line separately. As an example, the solution u(x,t) 
along the grid line marked in figure 1 may look something 
like that indicated in figure 2. 


One-dimensional functions along each grid line have to 
be differentiated in our approach, and as illustrated in fig- 
ure 2. these functions can be expected to be piecewise 
smooth with jump-singularities at the points stemming 
from the boundary 0fl. In section 2 we briefly review the 
main features of the method presented in [5] for handling 
the possible discontinuities introduced in the solution or its 
derivatives at these boundary points. In this connection we 
note that boundary points do not normally coincide with 
grid points. 


The method is in section 3 applied to the one-dimen- 
sional problem (1). In section 4 we discuss robustness prob- 
lems connected with the location of the boundary points, 
and show how these problems can be overcome for general 
geometries. With these modifications, the application of 
the method presented in [5] to two-dimensional problems 
(1) is relatively straightforward, and examples are given in 
section 5. Finally, in section 6, we give some concluding 


remarks. 


2 The modified Fourier colloca- 


tion method 


We shall denote by w(x) the solution of the problem (1) 
along an arbitrarily given grid line (in the x-, y- or z- 
direction) at an arbitrarily given instant t. Since we clearly, 
without loss of generality, may take the domain D to be 
[0, 2•r]d; the one-dimensional function w(x) can be assumed 
to be a piecewise smooth function defined on the interval 
[0,2•r]. Following [5], a representation of the solution on 
the following form is sought: 


(2) w(x) = wQ(x)+ Ayv(x 
j=l n=O 


Here the functions •,(z; •) are determined for n = O, 1,... 
by the Bernoulli polynomials B•,+•(z) [1] in the following 
way: 


(3) •*(x;•/J) - (n+ 1)• •**+• ' 
0!z-9• •2=. 


= <0. 


In the context of this paper •, j = 1, 2,..., M. shall de- 
note the points where the boundary 8• of the original 
domain intersects the given grid line. 


By definkion, the function V• (z; %) is a piecewise poly- 
nomial function of degree n • 1 which is n - 1 •imes con- 
tinuously differentiable on [0.2•], while the nth derivative 
of • (z; •) suffers a jump discontinuity of magnitude 1 at 
z = •j. If we for n = 0,1,2,...,•, • = 1,2 ..... •, let 
A? be given as the jump in the nth derivative of w(z) at 


(4) Aj - dx • 
it readily follows from (2) that the 2•-periodic extension of 
w Q (x) is at least Q times continuously differentiable every- 
where. For Q sufficiently large, the Fourier coefficients as- 
sociated with w Q (x) are therefore rapidly decreasing; and 
consequently wQ(x) can, in this case, be accurately ap- 
proffimated by a truncated Fourier series expansion: 


2v/2-• 


k=-N/2+l 


Since w(x) = 0 at all exterior points and Dirichlet 
boundary conditions are assumed, the jumps A•, j = 
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1, 2,..., M, can be readily determined by the data given 
in (1). •Ve subtract the corresponding terms in the follow- 
ing way: 


M 


(6) wø(x) = w(x) - •-•,A•Vo(x; ffj). 
j=l 


Based on the values of this function wø(x) at the N grid 
points xl = 2•'l/N, 1 = 0, 1,..., N - 1, we now calculate 
the corresponding discrete Fourier coefficients •. 


Still following [5], the jumps A• in the derivatives up to 
order Q are approximately determined as the least squares 
solution of the overdetermined system 


(7) 
n •0 


n----1 2=1 


where (•)k(•,j) denote the discrete Fourier coefficients as- 
sociated with the functions V•(x; 7j). The Fourier coeffi- 
cients in (5) are then approximately calculated by 


(s) 


More details on the calculation of approximate jumps and 
coefficients can be found in [6]. 


From (3) and properties of the Bernoulli polynomials, 
we have for x :• 7: 


(9) 


d 


7) = if), 
d 


u0(: 7): 


n=l,2,..., 


The derivatives of w(x) can therefore be approximately 
calculated from (2) and (5) when x :• 7j, J = 1,..., M: 


(10) 
dxp 


N/2-1 M 


- 2-; 
k=-N/2+l j=l 


+ Z ZA?V•-p(X;•/j). 
j=l n=p 


It is shown in [4, 5] that this method gives a 
(Q + 1- p)'th order accurate approximation to the pth 
derivative of w(x) for p = 0, 1,..., Q, when N -• •. We 
also note that formal spectral accuracy can here, in princi- 
ple, be obtained by defining the parameter Q as a function 
of N. 
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1 e-05 
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I '• 
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N 


Figure 3: RMS-error over the grid points for the approxi- 
mate second derivative of the function (11). 


Q 2 3 4 5 6 
Theoretically expected order 1.5 2.5 3.5 4.5 5.5 


Experimental order 1.6 2.7 3.9 5.2 6.5 


Table 1: Convergence orders for the RMS-error of the ap- 
proximation to the second derivative of the function (11). 


To demonstrate the order estimates numerically, we con- 
sider as an example the accuracy of the calculated second 
derivative of the following function: 


(11) u(x) = - exp(x/2) + (exp(7r) - 1)x/27r + 1, 0< x< 27r. 
-- -- 


The RMS-errors are shown in figure 3. With the exception 
of the smallest values of N for Q -- 5 and Q - 6, the curves 
of the maximum errors in figure 3 are close to straight lines, 
as expected from the asymptotic theory. Approximate or- 
ders of convergence found from the slopes of the curves 
between N - 32 and N = 64, and are shown in table 1 
for different values of Q. Assuming that the largest errors 
only occur at the points closest to the boundary points, the 
RMS-error is expected to be one half order better than the 
maximum error. These theoretical estimates are given in 
table 1, and are clearly confirmed by the numerical results. 
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Figure 4: The solution of (12), (13) at different times, 
calculated with N = 32 and (2 = 4. The positions of the 
grid points and the two boundary points are shown on the 
curve for t = 0.01. 


3 The heat equation in one di- 
mension 


In this section we consider '•e one-dimensional version 


of (1). and restrict ourselves to two boundary points 
(.•I = 2 in the notation of the previous section): 


ut = uzx, 0 < "/•. < x < '72 < 27r, t > O, 
(i2) 0) = 0 < < < ,o_ < 


t): t) = t > 0. 


We want to apply the method described in the previous 
section for calculating ux• at each interior grid point (for 
z E (')•. •2)), and solve the resulting system of ordinary dif- 
ferential equations by a fourth order explicit Runge-Kutta 
method IS]. 


XVe first consider (12) with the following initial- and 
boundary conditions: 


(13) u0(x): 0.0, g• -- 1.0, g2: 0.5. 


The boundary points are chosen to be 


(14) ^n = 0.26rr, '/2 = 1.847r, 


and the solution at different times for N = 32 and (2 = 4 
converges nicely to a straight line, as shown in figure 4. 


In this example all eigenfunctions associated with the 
spatial operator in (12) are excited through the incompat- 
ibility between the initial- and boundary conditions (13). 


Figure 5: RMS-error at t = 0.6 in the solution of (12). (15). 


In order to study the accuracy of the method, it is more 
revealing to look at the accuracy obtained for the solution 
of (12) corresponding to the lowest order eigenfunction. In 
fact, that solution decays more slowly than all other solu- 
tions and will; therefore, normally dominate the accuracy. 


As will be discussed in section 4, the location of the 
boundary points relative to the grid points may influ- 
ence both the approximation accuracy [6] and the sta- 
bility of the described algorithm for the time-dependent 
problem (12). To eliminate these effects in the measure- 
ment of accuracy, the next example is defined on the full 
interval [0, 27r]. This means that */• = 0, and ?2 = 27r 
is identified with '/• through the periodicity of the repre- 
sentation (2). The initial function, corresponding to the 
fundamental eigenfunction associated with (12) is then 


(1,5) u0 = sin(x/2), 0 < x _< 27r. 


With this initial function, the exact solution of (12) at 
later times is just a scaled version of (15). After integration 
to t = 0.6, the solution has decayed to around 10% of the 
initial function. The RMS-errors at t- 0.6 for different 


values of N and (2 are shown in figure 5. 
Figure 5 illustrates how the order of accuracy increases 


with increasing (2, but it also shows that remarkably good 
results can be obtained on coarse grids, i.e., far from the 
asymptotic range where the theoretical error estimates are 
valid. For the highest values of (2 and N, the applied 
numerical precision is the most important limiting factor 
for the obtained accuracy. 


The stability limit for the time-steps was, in our calcu- 
lations, found to be At .• 2IN 2'•, and was virtually inde- 
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pendent of Q. The stability limit is, therefore, comparable 
with the stability limit for the standard Fourier method 
for periodic problems and considerably better than the 
O(N -4) limit for Chebyshev or Legendre methods [3] for 
the problem (12), (15). Even though it would be interest- 
ing to search for efficient implicit solvers for the modified 
Fourier method, these results means that explicit time in- 
tegration for second order equations is not necessarily pro- 
hibitively expensive with this method. We shall therefore, 
in this work. restrict our attention to explicit methods. 


4 Discussion of robustness 


It was demonstrated in the previous section that the dif- 
ferentiation method described in section 2 produces a sta- 
ble method for the solution of the one-dimensional heat 


equation. However, as already mentioned, the stability 
is found to be sensitive to the location of the boundary 
points. There are no stability problems when the bound- 
ary points coincide with grid points, but for applications 
to problems in higher dimensions with domains of com- 
plex geometry, it is apparent from figure I that boundary 
points at general locations relative to the grid points must 
normally be dealt with. 


In the one-dimensional case it seems that Q - 2 always 
produces a stable algorithm, while we have observed in- 
stabilities in certain circumstances for all higher values of 
Q. Apparently, even values of Q are more robust than odd 
values, and higher even values of Q seem less robust than 
lower ones. For Q even, it appears that a sufficient condi- 
tion for stability is that each boundary point is situated at 
a distance from an exterior grid point which is not larger 
than 0.6. Ax, where Ax = 2:r/N is the grid spacing. 


To at least partially explain this instability, we note that 
the Dirichlet boundary conditions are introduced only by 
specifying the jumps in the function values at the boundary 
points. and subtracting their contributions as described 
by (6). However, specifying the jump does not introduce 
a strict control on each of the two one-sided limit values 


at the boundary point, because the solution at the bound- 
ary could in principle then "float", with correct jump but 
wrong values. The value of the solution is specified at the 
exterior grid points, but if the distance from the nearest 
of these to the boundary point is too large, the "floating" 
may produce an instability. 


One way to avoid the instability may be to adjust the 
boundary of the domain in such a way that the boundary 
points on each grid line in each spatial direction are moved 
to nearby "stable" positions. Since each boundary point 
only has to be moved within a single grid interval, this 


process will clearly converge, but will probably reduce the 
order of the method. Thus other approaches should be 
investigated, and this is the topic of the present section. 


In the situation considered here, we assume that there 
is an exterior interval where the solution is identically zero 
at one side of each boundary point. This information can 
be used in different ways, and we shall first consider the 
use of Taylor expansions around the boundary points. 


For the case M -- 2 we know that 


dnw dnw + 
(16) d--•--•-(?•- ) = d--•(72 )=0, n=0,1,2,.... 
The jumps A?, A• calculated by (7) are known to approx- 
imately satisfy (4), hence equation (16) implies that the 
calculated value of A? approximates w(")(x) at x = 
and -A• approximates w('O(x) at x = •. Since it w• 
shown in [5] that the error in the jump Ay calculated by (7) 
actually is of the order O(N -(q+l-•)) as N • •, we get 
that the following approximate Taylor expansion around 
x = •/• holds for w(x) as long as 0 • x - qq • 2w/N: 


w(X) = A• + (x - 71)A• + 2] A• +.-. 
(17) (x _ •1) Q 


( Q] A• + O(•-(Q+i)). 
A corresponding formula holds for 0 • •2 -x • 2w/N, 
except for a change of sign. If x•_• • •/• < x• and xt < 
72 • x•+•, we therefore obtain the following approximate 
formul• for the second derivative of w(x) at the interior 
grid points x = x• and x = 


Wxx(Xk) = A• + (Xk -- *i)A• +'" + (Xk -- •/1)Q-2A• ' 
(Q- 


= - - -.- '- 
(lS) 
With this modification introduced, we have not detected 
instabilities when Q is even. Although unstable situations 
have been observed in some cases for odd values of Q, the 
modification has been seen to have a stabilizing effect for 
most cases. 


Unfortunately, however, calculations show that the accu- 
racy of the calculated second derivative normally decreases 
at the grid points where the Taylor expansion method (18) 
is applied, even though the formal approximation error is 
of the same order as in the original method. We shall 
therefore consider another approach, which also has more 
general applications [4]. 


From (2) and the corresponding discrete Fourier series 
M 


= 
j=l 
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the folloxving equations can be derived for ra = 0, 1, 2,... 
as •¾ --• oc: 


(19) 


+ = 


30000 


25000 


20000 


15000 


For x anywhere in the exterior intervals, the term •-k-2•-•w(x) toooo 
is zero, so the only unknowns in (19) are the jumps A• for 
n = 1,2,..., and j = 1,2,...,M. It can be shown [4] that 


5000 


the error in A• calculated from (19) is of the same order 
when N -• oc as for the jumps calculated by the spectral 
equations (7). 0 


Following the comments made earlier in this section 
about "floating" boundary values, it is natural to evalu- 
ate (19) at the limits as x ---> "/j from the outside, i.e., from 
an exterior interval. Numerical experiments have shown 
that if (19) with m = 0, 1.2 are added to the system of 
equations (7). we obtain stable calculations regardless of 
the boundary locations. 


There is a price to pay for including the additional 
equations (19) in the calculations of the jumps, however, 
namely that the second derivative operator may become 
more stiff, manifested through a negative eigenvalue with 
large magnitude. This occurs in the same situations which 
previously led to instabilities; when a boundary point 
is located close to an interior grid point. Thus, stable 
calculations require shorter time-steps for explicit time- 


integration in such cases. (20) 
An illustration is given in figure 6, where the abso- 


lute value of the largest negative eigenvalue of the second 
derivative operator is plotted for N = 32 and Q - 4. The 
right boundary point ?2 is fixed at 29.5Ax, while the po- 
sition of the left boundary point 7• varies, and it is clearly 
seen that positions close to interior grid points lead to 
growth in the eigenvalue. This growth has been found 
to be largest when (19) is used with m = 0 only, and de- 
creases when higher values of m are used, but only small 
improvements are achieved by using values of m larger than 
2. 


Even in the worst cases displayed in figure 6, the eigen- 


value is only increased by a factor of about 10. As this (21) 
is still small compared to N 2, it does not seriously affect 
the comments made in the previous section about explicit 
time-integration. Ho•vever, there is clearly a potential gain 
if this growth can be avoided, because some boundary 
points must be expected to end up close to the least fa- 
vorable positions when problems in complex geometries in 
higher dimensions are solved. We hope in the near future 
to be able to describe such improvements elsewhere. 


i , 


No extra eqs. -+- 
Extra eqs. with m=0,1,2 -+--- 


i i i i 


1 2 3 4 5 
Left boundary position (in units of grid spacing) 


Figure 6: Magnitude of the negative eigenvalue with 
largest absolute value for the second derivative operator 
with Dirichlet boundary conditions, as a function of the 
position 7z of the left boundary point for N = 32, Q = 4, 
•/2 = 29.5Ax. 


5 The heat equation in two di- 
mensions 


In this section we consider the two-dimensional version 


of (1). 


Compared to the solution method for the one-dimensional 
case in section 3, the only change in the procedure needed 
here is that the derivatives must be calculated along every 
grid line in both the spatial directions. The shape of the 
domain f• will clearly, in general, give different locations 
for the boundary points for each such grid line. 


We shall first study an example where the exact solution 
is easy to obtain, namely the case where f• is a circular 
domain with centre at (x0, y0) and radius r0: 


a = { y)l( - + (y - y0) < }, 
x0 = 1.1•r, Y0 = 0.95•r, r0 = 0.75•r. 


Corresponding to the one-dimensional example (12), 
(15), we choose the initial condition to be the most slowly 
decaying eigenfunction for the spatial operator in (20) on 
the domain (21): 


(22) uo(x,y)= J0 (h•v/(x- x0) 2 + (y- y0)2/r0) ß 
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Figure 7: The initial condition (22) on the circle (21), 
shoxvn on a 48 x 48 grid. 


Here J0 is the Bessel function of the first kind of order 
zero, and •1 m 2.40 is its first zero [1]. A homogeneous 
boundary condition is applied: 


Figure 8: Solution at t - 0.05 of the two-dimensional 
heat equation (20) on the circle (21) with the initial con- 
dition (22), calculated with N• = N s = 48 and Q = 6. 


(23) g(x, y) = O, when (x - xo) 


The initial condition (22) is shown in figure 7, and the 
solution at t = 0.05, calculated with N• = N s = 48 and 
Q = 6. is shown in figure 8. 


Figure 9 shoxvs the RMS-error at t = 0.05 for different 
values of N• = N s = N and Q. The exact solution at 
t - 0.05 is equal to the initial condition multiplied by a 
scaling factor 0.60. These results were obtained when the 
additional equations (19) xvith m = 0, 1, 2 were included at 
the exterior limits of the boundary points. As for the one- 
dimensional results in figure 5, the convergence is algebraic 
when the number of grid points are large enough, but we 
note that quite accurate results are obtained also on the 
coatset grids. 


Finally, we xvant to demonstrate the flexibility of the 
method with regard to more complex geometries. The con- 
sidered domain is shoxvn in figure 10, and the initial- and 
boundary conditions are chosen as 
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•0(x,y) 
(24) 


g(x,y,t) 


: 0.08 + 0.23(1 + cos(x - 0.8•r)) 
(1 + cos(y- 0.9•r)), (x,y) E •, 


= •0(x, y), (x,y) e 


and displayed in figure 11. To calculate the solution for this 
problem, the only necessary modifications of the program 
used in the previous example are to adjust the parameters 


Figure 9: RMS error of solutions at t = 0.05 of the two- 
dimensional heat equation on the circle (21), with the ini- 
tial condition (22). 
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Polynomial Approximation of Some 
Singular Solutions in Weighted Sobolev Spaces 


G. Fdez-Mann * R. Mufioz-Sola t 


Abstract 


Error estimates for some spectral projection operators in 
weighted $obolev spaces of Jacobi type are derived in terms 
of a new family of weighted spaces, improving standard es- 
timates. Our results are used to improve error estimates 
for the Jacobi spectral solution of a model problem in a 
square by taking into account the decomposition of the 
solution near the corners. This generalizes to the Jacobi 
framework some results known in the unweighted case. 


Key words: weighted Sobolev spaces, Jacoby polynomi- 
als, spectral projection operators, singularities in el- 
liptic problems. 


AMS subject classifications: 65N35, 41A10, 65N15. 


Introduction 


The analysis of the convergence rate of high order dis- 
cretizations of elliptic problems over polygonal domains 
requires us to take into account the structure of the so- 
lutions near the corners. An early reference, concerning 
the p-version of the finite element method (F.E.M.) is [1]. 
It has been noted therein that the approximation results 
for the singular part of the solution, as obtained from esti- 
mates involving the usual unweighted Sobolev spaces H s, 
are not optimal for the p-version. An approximation the- 
ory for the p-version in the framework of certain weighted 
Sobolev spaces is given in [9]. In that paper, estimates 
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for the distance, •neasured in standard Sobolev norms, be- 
tween a function u and its high-order polynomial approx- 
imation up are given in terms of the norm of u in some 
weighted spaces. This theory has been applied in [10] to 
the analysis of the p-version of the F.E.M. over polygonal 
and polyhedral domains. It enables us to recover optimal 
convergence rates by analyzing separately the singular and 
the regular part of the solution. 


The results for the Legendre spectral discretizations are 
very close to those for the p-version since in both cases 
standard Sobolev norms of the error u - up are concerned. 
But for the numerical analysis of Chebyshev spectral meth- 
ods this error must be measured in terms of weighted 
$obolev norms based upon the Chebyshev weight. More- 
over, the analysis may require results related to other 
weights, for instance to the inverse of the Chebyshev weight 
as in [3]. So, it is useful to consider a wide range of weights, 
namely the Jacobi weights, as in [4]. The approximation 
theory for these spaces as developed therein involves high 
order weighted $obolev spaces H•. For a - 0 these spaces 
reduce to the usual unweighted ones. So, it can be ex- 
pected that the application of this theory to the H i ap- 
proximation of the singular part of the solutions will not 
yield optimal estimates. 


The aim of this paper is to improve the results in [4] for 
the Jacobi spectral approximation by using a new family 
of weighted spaces and the decomposition of the solution 
into a regular and a singular part. So, our results extend 
some results of [9] and [10] to the Jacobi framework. 


Although in this paper we present the analysis of a sim- 
ple model problem as an application , the techniques and 
results can be useful in the general context of elliptic prob- 
lems. 


The next section is devoted to introducing the basic no- 
tations. In section 3, we define the new family of weighted 
spaces and state our basic approximation results. Section 4 
is devoted to obtaining a characterization of the new spaces 
in terms of an intrinsic norm. In section 5, we study the 
approximation of some singular functions related to the 
solution of some elliptic problems. In section 6, we ob- 
tain improved convergence estimates for a simple model 
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problem. Finally, we resume our conclusions in section 7. 
For the sake of brevity some proofs have been omitted 


or only sketched but the detailed version of this work will 
appear in Fdez-Manin [11]. 


2 Preliminaries and notations 


Let A = (-1, 1) and a > -1 . We denote 


(f• •(x)2P•(x)dx) « < •}. 
For any s > 0 and a 6 (-1, 1) we denote H•(A) the 


weighted Sobolev space of order s associated to the weight 
function (1 - x2) • . Its norm will be denoted by 
Let P•¾ (A) be the space of polynomials with degree < N 
in A. Moreover, we shall note: 


rI• the orthogonal projection operator from L2•(A) 
onto Px(A) . 


ß {57,•} the family of Jacobi polynomials associated to 
the weight (1 - x2) • normalized in the following way: 
the degree of gr• is n and it satisfies 


r(•+•+•) 
(1) j)'•(4-1) = (+l)•r( n + 1)r(c• + l) 
where F stands for the classical Euler's gamma function. 
Their norm is given by 


(2) I1•? II • - 0,•,A -- 


22•+l(F(n + a + 1)) 2 


(3) 
(2n + 2• + 1)r(n + •) r(n + 2• •- 1) 


We also use the integral relation 


(4) 
1 (n+2a+l n + 2a 


when f •7•(t)dt is such that 


) 2•(t)p•(t)dt - O. 
A survey on the properties of the ,7• can be found in [4] 
and [12]. 


We shall also consider the function spaces defined over 
fl=AxA. For any-1 < a < 1 and s >0, H&(•) will 
stand for the Sobolev space of order s related to the weight 
(1- x2)•(1- y2)• (see [4] for a precise definition). The 
norm in this space will be denoted ]1' I1.•,•,•, We shall note 


ß P• (fl) the space of polynomials with degree < N with 
respect to each variable. 


ß 1-I• the orthogonal projection operator from L2•(fl) 
onto P2v(fl) ß 


It is standard to note that II•v = II•v '(•) o 


3 Approximation properties of 
the Z•(A) spaces 


For each integer m _> 0 , we define 


dJv 2 rn} (5) ZT(A)= {• • •(A)/• • •+•.(A), 1 _<j <_ 
equipped with the norm 


and for s > 0 non integer, s = m + cr . with 0 < cr < 1, 
we define Z•(A) by 


Z•(A): [Z•(A), Z•"•(A)]•,2 


where [.]•,2 stands for the K-interpolation method (see [2]). 
The next three lemmas show the behavior of the deriva- 


tion and integration operators over Z•(A) and a property 
which will be useful in the following section. 


2 define Lemma 3.1 For a > -1 and u • L,+•(A) we 
.T 


(Pu) by (Pu)(x)= fo u(t)dt . Then. for all m _> I in- 
teger, the mapping P"• is continuous from L2•+,•(A) into 
Z'•(A)). 


Lemma 3.2 For a > -1, 0 < 0 < 1 
m > 1 , it holds: 


and any integer 


(7) 


Lemma 3.3 For each non negative integer ra and for 


u • ZT(A) ß u: • •.7•(•) , •eing • the corre- 
sponding Fourier coefficients , we have: 


d j u 


(S) dx• 
• dJ•7• 


- •+,(A) -y]•• i• ,•<j<.• 
n----j 
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The next lemma gives a characterization of the space 
Z/•(A) together with an equivalent norm in this space 
which is useful in proving the approximation result in norm 


Lemma3.4 Let be s > 0. For u e L•(A), 


* c• 2 1 
(9) II u II•z(^)- (• I•,•1•(1 + n•)• II JA IIo,,•.^) • 


n•O 


then 


and the norm II. II•x(A) is a norm in J•(A) equivalent 
to II. 


Proof When s is an integer, the result easily follows by 
using lemmas (3.1), (3.3) and properties of the polynomials 
•f,'•. For the non-integer case we use a standard interpola- 
tion argument. [] 


Theorem 3.1 If u • Zi}(A) for O _< s' _< s . the follow- 
•ng estimation is satisfied 


Proof The result follows from (9) using the classical tech- 
niques for these kinds of estimations. 


Theorem 3.2 Let be O _< s' < s and u • Z•'(A) . If 


•,ith A = A('u) independent of N, Then u • Z•-•'(A) Ve •, 
O. Moreover 


I1•- u.•llzx-•(•) -< c(s, s', •,•)[11 • Ilzx'(•> +A] 


In order to obtain the approximation theorem in norm 
H• 1 we prove a technical result that gives the expression 
of the Fourier coefficients of u' with respect to {57•} in 
terms of those of u with respect to the same basis. This 
result generalizes well-known expressions for the case c• = 
0 and c• = -1/2. In the next step we obtain that II•v(u' )- 
(II•u)'belongs to a bidimensional subspace of polynomials 
and finally we conclude the approximation theorem. 


Theorem 3.3 For u • C•:(•,), u 


•,' = 2:,•%o •,75'•, then 


= Un• and 
r•O 


(10) 07 = (2• + 2• + 1)r(• + 2. + 1) 
r(•+.+l) 


• r(n+.+ 1) 
Y•- r(• +2. + 1) a• 


odd 


( in the exceptional case k = 0 and c• = -1/2 we set 


(2• + o• + 1)r(• + 2• + 1) = r(2a + 2) ) 


Proof Firstly by using (4) we obtain the equality 


secondly we solve the homogeneous difference equation 


(n + 
(n + a)(2n + 2a- 1) 


(n+c• + 1) 
(12) (n + 2a + 1)(2n + 2a + 3) X•+x = 0 


•1 =•Y• :1 


to obtain the general term for k _> i 


X•= (2k+2a+l) r(k+2a+l) r(ct-lq-3) 
(2a - 21 + 5) F(k + a + 1) r(2a - l + 3) 


with l=0 if k even, 1=1 if k odd. 
defined by 


•t(k 1) -- r•'k •i 1) 
Then, equation (11) leads to 


For k _> 1 let O(k 1) be 


o(nl]l __ ½(1) (/-/+ a)(2n + 2a - 1) 1 •+• = n + 2a X,•_• 0, 


using that u • C•:(•) we deduce that 
Therefore 


lim b(k 1) = 0 . 


•1) __ Z (7/ q- OZ)(27t q- 20• -- 1) 1 n +2a '•'n - 1 
n=k+l 


n+kodd 


and we conclude the result for k >_ 1. The identity (11) 
with n - i solves the case fi(01) 
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• it(• •) • have Lemma 3.5 For u 6 H i (A) and u'= ,f,• we 


the following property: 


{ A•(N)0o N -]- A•(N -]- 1)07 for N even H•(tt')-(II•vtt)'-- A•(N -]- 1)0o • -]- A•(N)•bf for N odd 
(•) 
where 


•' (2• + 2• + 1)r(• + 2• + 1) 
•.----0 


•"(m) = (2,• + 2• + 1)r(m + 2• + 1) ' 
The previous lemma allows us to state the following the- 


orere. 


Theorem a.4 For s > i- c• and u e Z}(A)•H}(A) 
lL•e have 


We now focus on the two-dimensional case. First, for 


.s _> 0 we define the space Z• (•) by 


(1,) z,;(a) = 
Using the standard tensorization argument and theorem 
3.1 we obtain the following result concerning the approxi- 
mation in the I] I[0.•.^ norm. 


Theorem 3.5 For s > 0 and u • Z}(f•) we have: 


l[ •-H•.• II0.•,•< c N -• II • Ilz•(•> 
For the approximation in ]l II•,•,^, now we state: 


Theorem 3.6 For allr > 0, s > 1-c• and uE Z}(f•) 
Ou Ou 


such that Ox ' Oy • Z•( ) we have: 


(16) N -• 11 • Ilzx(•) q- I1• Ilzx(•) 


Proof We use the following decomposition 


a• ( (n•)) = a• a• + 


a• o•, 
and we apply the monodimensional result to the first and 
second terms. The third term is handled by using theorem 
3.3 


4 Intrinsic norms of the spaces 


Z(A) 
In this section we use the notations appearing in the works 
Bernardi-Dauge-Maday [7] and Triebel [13], as well as some 
results therein. 


For m non negative integer we denote the space 


with the norm defined by 
1 


: • 
j=O ,h 


For any number s > 0 non integer we put s =m+0 
with 0 < 0 < 1 and m integer, and denote 


with the norm 


(18) ,,vl,2 • dJv 2.•+2( j - + 


•'•- • -.•).A 


•.• I•- yl 1+2ø (1 - x2)•dx dy 
where for all a > 1 the domain &A,= is defined by: 


{ (•,•)•AxA/•<O and •<l+•<a(l+•) 
a 


•A.a • 


or•>O and x-• < 1-o<a(1-•) a 


The space denoted by W•'2(A) in [7] coincides with H}(A). 
We characterize the space Z} (A) by the following theorem. 
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Theorem 4.1 Let s be a positive real number which is 
not an integer. s -- m q- O with O < O < i and s • l q- c• 
when c• E (-1, 0). Then, a no• in Z•(A) which defines 
the space is: 


1 


•,• ix_ yl•+• s (1 - dy 
Proof • consider three cases depending on the values 
of s and a 


First case: •>0, and0<s<l. 
Following the notation in •iebel [13] we have: 


(20) Z2(A ) = •ø(A, pa,pa) 


W2•(A) = •V•(A,p(•+i),p(•_•)) 
and with the notation in Bernardi-Dauge-Madw [7] we 


can state the inclusions: 


1.2 1 l•f 1,2 c c ,, 


By using theorem (1.b.10) and lemma (1.b.22) in [7] we 
have that •;2• (A) •2 


(2•) Z}(A) •.2 


Moreover the identifications (20) and (21) lead to: 


From the results in section 3.4.2 of [13] we have: 


Finally we apply proposition (1.c.2) and renmrk 
(1.c.3) in [7] to deduce that for s non integer 
i[?(A,p(•+•),p(•_s)) = V2+•(A) and therefore 


= = U+,(5) 


Using again theorem (1.b.10) of [7] we obtain 
s2 


and conclude the theorem in this case. 


Second case: a > -1 , and m • 1. 
If follows e•ily from the first case together with lemma 


Third case:-l<•<0 and 0<s< 1. 


In this c•e, we prove first an analogous result for the 
spaces defined on the interval Z = (0, 1) in a quite sim- 
ilar way. This allows us to handle only one singular point 


instead of two. We consider the weight x • and define the 
natural spaces L2• (27), s,2 W• (27), Vd ,2 (27) and ZI (27). Then, 
the mapping 


r' Z2(Z ) m.2 
v o(t) = v(t =) 


is an isomorphism for m-0, 1. Therefore 


is also an isomorphism. As we have a characterization of 
H5s,2 s the norm in x+2•(27) we can obtain a norm in Z,•(I). 


Finally, the result holds for the domain A from standard 
localization techniques . [] 


5 Approximation of singular func- 
tions 


%Ve are interested in the approximation by polynomials of 
the functions W•(x, y) defined by: 


W•(x,y) = ((1 - x) + i(1 - y))• 


for e > -1, because they coincide with the singular part of 
the solution of the Dirichlet or Neumann problem for the 
Laplace operator, and also for the biharmonic operator. 


Theorem 5.1 For any real number e > -1 the function 
14/•(x, y) belongs to Z•(f•) for any positive real number s < 
2(e + a + 1) 


Proof The proof must distinguish between two cases, de- 
pending on whether s is an integer or not. 
If s = m integer, taking into account (15) we only have 
to check that W•(x,y) • Z;(A; L•(A)) because the other 
case is analogous. Let 0 _< j _< m, the strongest singu- 


o• w• arises near larity in the expression of • 2 2 
L,•.j(A,L.(A)) 


the point (1, 1), so: 


for sonhe positive constants Cx and C2. In order to bound 
the last term in (21), we consider the change of variables: 


I - x: rcos½ 


1 - y = rsin0 
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then we obtain the integral 


(23) r 2(e-j)+2a+j+l cos •+j • sin • 0 dr de 


which is finite because c• + j > -1 , c• > -1 and 2(e - 
j) + 2c• +j + i > -1 when m < 2(e+ c• + 1). 
When s is not an integer we must verify 


(24) II w•(x,y)Ilzx(A•L•<,•//< • 


because the other term is analogous. To do this, we use the 
intrinsic norm given by theorem 4.1. Since the mapping 


(x,•) A f(x,y)=((1-x)+/(1-y))•-m 


is C • away from (1, 1), it clearly suffices to bound the 
integral 


.Ix- x'l 
(1 - z•)•+•(1 - 


where 


•={O<x<l,O<z' <1,1--- 
1--37 


We make the change of variables 


1-x=(1-y)t 


1-x' =(1-y)tz 


and we must veri•' that the integral 


(26) I =/•(1 - y)2e+2c•-s+ltc•+s-2ø ß 
I(t + i) e-m -- (tz q- i)•-"•12dzdtdy 


is finite, where 


Iz - 11 •+2ø 


©={0<y<l,0<t< 
I 1 


1-y'a 


For fixed t, we apply Hardy's inequality in [•, 1] and in 
[1. a] to obtain 


(27) a l(t + i) •--• -- (tZ + i)½--•l 2 {z- 11 •+20 dz < 


C f•a t21 z _ 111-20( 1 + t2h2) e-m-•dz _< 
Ct2(1 + t2h2) e-m-• 


where 


• for e-m-l<O h= • 
a for e-m-l>_O 


From (26) and (27), we obtain that. I is bounded by 


(28) c (• - •)•+•-'•+• 
1 


o •-• tc•+'•-2øt2(1 + t2h 2) .... •dtdy. 
Finally, we bound the integral with respect to t and af- 


terwards with respect to y to obtain the desired result. 


Remark 5.1 For any real number e > -1, we also intro- 
duce the function 17V•(x, y) defined by 


IZV• (x, y) - ((1 - x) + i(1 - y))• log((1 - x) + i(1 - y)) 


By using the same proof, it can be verified that theorem 
(5.1) is still valid with V[• replaced by •. 


6 Application to elliptic problems 
We consider the Dirichlet problem on the square •2 


- Au = f in •2 


(29) u=0 in 0S2. 


Let (aj,bj) , I _< j <_ 4 denote the vertices off•. If the 
function f belongs to H•P(•2) . for p _> 0. then a decompo- 
sition result of M. Dauge [8], guarantees that the solution 
u of (29) can be written as 


4 


j----1 


The function u• belongs to H/} (f•) for all non negative real 
number s < min{p+2,5+o•}. the X• are C • cut-off 
functions and the functions •. i < j < 4 are 


IYV•(x,y) = Im{((aj - x) + i(bj - y))2 log((a• - x) + i(b3 - y)}. 


Therefore the solution u belongs to H•(•2) for all 
0 < s < min{p + 2, 3 + (•}. We denote urv the discrete so- 
lution provided by the Gauss-Lobatto-Jacobi collocation 
spectral method, namely: 


v• • P•(•) 


(30) -AUN(x) = f(x) x 
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where E stands for the set of Gauss-Lobatto-Jacobi nodes. 


So, if only standard approximation results (see [4] and [6]) 
are used, the following convergence estimation is obtained: 


(31) Ilu- /tNII1,o,• __• 


where a = rain{3 + a, p + 2}. 
However, following the same lines as in section 4 of [5] we 
can use the previous results in this paper to approximate 
the functions • in the framework of the Z• spaces, and 
use standard results to approximate the regular part u•. 
Finally, to enforce the homogeneous boundary conditions 
we use [4, proposition V.1] and we obtain the estimation 


(32) Ilu- 


where now a = rain{5 + a, 5 + 2•, p + 2}. 
In (29) and (30) • can be taken arbitrarily small. 
For instance, if • = -1/2 and f • C•(•), the standard 
results state 


while the ideas here proposed conclude an improvement in 
the estimate to obtain 


7 Conclusions 


We have improved the classical results for the polynomial 
approximation in weighted Sobolev spaces of Jacobi type 
by introducing a new family of weighted spaces. We have 
shown in a model problem that our results enable us to 
improve the error estimates for Jacobi spectral methods 
by using the knmvledge of the singularities of the solution 
near the corners. Our analysis includes, in particular, the 
important case of the Chebyshev weight. Although we 
have considered the analysis of a simple model problem, 
the results and techniques can be used in the general case 
of Jacobi spectral discretization of elliptic problems. In the 
future we will also apply the patching method with these 
techniques in order to state results about spectral Cheby- 
shev approximations in more general domains. 
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Chebyshev Pseudospectral ('ollocation for 
Parabolic Problems with Nonconstant Coefficients 


J. de Frutos * R. Mufioz-Sola t 


Abstract 


This paper analyses a Chebyshev pseudospectral collo- 
cation semidiscrete (continuous in time) discretization of 
a variable coefficient parabolic problem. Optimal stabil- 
ity and convergence estimates are given. The analysis is 
based on an approximation property concerning the Gauss- 
Lobatto-Chebyshev interpolation operator. 
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1 Introduction 


Spectral approximations to the Dirichlet problem for linear 
parabolic equations with constant coefficients have been 
extensively investigated. Early references are [12], where 
Galerkin type discretizations are studied and [11], for pseu- 
dospectral approximations. A variational treatment for 
both Galerkin and collocations methods may be seen in 
[5]. Pseudospectral approximations for two dimensional 
problems are treated, among others, in [3]. 


However, less analysis has been done for the variable 
coefficient case. The paper [10] is one of the very few 
examples in the literature. 
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This paper analyses a Chebyshev pseudospectral ap- 
proximation to a parabolic problem with nonconstant coef- 
ficients. More precisely, let us consider the parabolic prob- 
lem 


(1) ut- (a(X)Ux)x : f(x,t), x C A,t _> 0, 
u(-1, t)-u(1, t) = 0, t_>0, 


u(x, 0) = no(x), xCA, 


where A = (-1, 1), a is smooth function satisfying the 
-- 


classical assumption 0 < a < a(x) _< • in A, which ensure 
the parabolicity of the problem. 


We follow the treatment given in [6] for a stationary 
advection-diffusion equation and discretize the equation by 
direct collocation at the Chebyshev-Gauss-Lobatto points. 
The leading term in our discretization is the derivative of 
the interpolating polynomial of a(x)u.•. Written in this 
form, the discretized equations have additional difficulties. 
In [10] the leading term was written as a(x)u.•.• and treated 
pseudospectrally by means of a special norm involving the 
function a. The approach we follow here has the advan- 
tage that the extension to advection-diffusion equations 
with nonconstant coefficient in both advective and diffu- 


sive terms is quite straightforward. Also, extensions to 
some problems in two dimensions, not reported in this pa- 
per, are possible along the lines presented here. Further- 
more. our formulation is of interest from a practical point 
of view. The solution of the discrete equations obtained by 
spectral collocation needs of an appropriate time-stepping. 
Explicit time-integrators suffer from very severe stability 
time-step restrictions and implicit ones need the solution of 
linear systems of equations. The use of iterative solvers for 
such systems has become popular. As noted in [4], there 
is no effective preconditioning available for problems with 
large first derivative. So, one is impeled to reformulate non 
constant coefficient problems in the form of equation (1). 


The next section is devoted to introduce the basic nota- 


tions. The properties of problem (1) are stated in Section 
3. Section 4 is devoted to the analysis of the collocation 
equations. The error estimates are presented in Section 
5. In the last section we add some final remarks concern- 
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ing the extension of the analysis to the advection-diffusion 
equation and to fully discrete schemes. 


2 Preliminaries and notation 


Let •,, be the Chebyshev weight. All the functional 
spaces related to the spatial variable are defined over A. 
\Ve use the notations, L2w = {v I f•v2wdx < oc} and 
H 1 : {v • L}lv.• • L 2 v(1)= v(-1) = 0} respectively co,0 


endowed with the norms II.llo,• and II.}l•.•. The inner 
product in L2• is represented by (.,-)o,•. Sobolev spaces 
of higher order with respect the Chebyshev weight are 
denoted by H•, v > 0 (see, for example,[1], [2, Chap- 
ter 1], for a definition). Let Hj • be the dual space of 
H}. o. The norm in H• • is denoted by II.ll-•,•. We 
shall identify the space L} with its dual, so we have 
H • 2 C H•7 , each space being dense in the 
next. We recall that, with this identification, for g • L•, 
,,'e have IIg!l-•,• = sup{f^ gvw dx/llvll•.• Iv •/•.0}. 


The space of polynomials of degree N satisf•ving the 
boundary conditions will be denoted by I•0 •. Let wj and 
x3, 0 < j <_ N, be the weights and nodes of the Gauss- 
Lobatto-Chebyshev quadrature in A. We denote by Ix 
the corresponding interpolation operator. We use the dis- 


crete norm II•,•ll,• = E•_-o v (xj)2wj defined over 
• and denote by (., ')N the corresponding inner product. 


Let T• be the k-th Chebyshev polynomial in A. Each 
polynomial in l?ff has a (unique) representation in terms 
of the derivatives of the T•,k = 1,..., N- 1: 


N-1 


(2) v •¾(x): • 0•(1 - x2)T•(x). 
k=l 


Throughout, we use the norxn 


!11•'111-- {f.• [(v•:)•] 2 •:-•d• } 1/0 It is well known that 
is a norm over H • equivalent to II' II•,•- Furthermore, w,0 


calculation shows that, for polynomials v • • 
N-1 


(3) IIIvNlll 2 • I • 
k=l 


where O• denotes the k-th coefficient in the representation 
(2) of t, •'. 


3 The continuous problem 


The problem (1) can be written in variational form as 


(4) (ut,•p)o,• + a(u, qz) = (f(t),qz)0,•, Vqz • H • C•',0 ' 


where a(u, v) is the bilinear form over H • defined by co,0 


(•) a(•,v) = f• a(x)•(v•:)•d• W, •, • • ' •,0' 


supplemented with the initial condition u(., O) = u0('). 
In this section we analyze the continuous problem (4). 


We start the analysis by stating a coercivity inequality for 
th• bilinear form a(u, v) in (5). More precisely we have 
following 


Theorem 3.1 Let a(x) be a function with continuous first 
order derivative in A. There exists a positive constant •o 
such that if • > •o 


for all u • H},.o. Here % > 0 is a suitable positive constant 
depending on •. 


Proof Following the techniques in [4, Theorem 11.1], we 
first obtain the auxiliary result 


i a(x)u;wdx + • (7) a(u,u) k • . 


and, as a consequence, the inequality 


l i, a(x)u:wdx_ 11• (s) a(u, u) • • • [•a•]- u'• •, 


where [xa•]- denotes the negative part of the function Xax. 
Let M be an upper bound of [xa•]-' the second term in 
(8) is bounded by 


(•) [•]- u• 5 
1 


and, using a Hardy inequality [2, Lemma 2.3] and the well- 
known fact that ab • •a 2 + (1/4•)b 2 we have 


• [•- M•] II%ll•,• •ll•ll 2 
Taking •o = g/'M and •o = M/l•o we have that, for 
• > •o, 


with % {(•- •)= M2 • • = 
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The coercivity of A(u, v) = a(u, v) + I•(u, v)o.w en- 
sures that, for data u0 E L• and f • L2([O,T];H•I), 
0 < T < •c, the problem (4) has a unique solu- 
tion u H•,o) NC([O,T];L•) such that ut 
L2([O,T];H• •) (see [8, Cap. XVIII, õ3, Ths. 1-2]). Fur- 
thermore, it is now straightforward to show that the prob- 
lem is well-posed. 


Theorem 3.2 In the above conditions, the solution of (J) 
satisfies the stability estimate 


where C(?) is a constant depending on ? = •. 


4 The collocation approximation 


Problem (1) is discretized, in a standard way, by colloca- 
tion at the Gauss-Lobatto points. Following [6], the collo- 
cation equations are written in variational form as 


(12) (u;•¾ (t), v•V)•v + a•v(uST (t), v •v) = (I•v(f), v•V)•v, 


for all v •v • 1•0 N , where the discrete bilinear form a•v is 
defined. for polynomials ½N, ½N in •ff, by 


(13) aN(• N, 0 N) = • IN(a(x)•7)(½N•)xdx. 
Formula (12) is supplemented with the initial condition 


(14) u•(0) = I•(uo). 


In order to prove the stability of the semidiscrete approx- 
imation (12)-(14), we first establish a coercivity property 
similar to (6). The proof is based on a approximation prop- 
erty for the interpolation operator IN that we next state 
as a lemma. 


Lemma 4.1 Let b(x) be a function in C • = C "•'•, m + 
• = or, 0 _< 0 < 1, the class of functions whose m-th deriva- 
twe is HSlder continuous in A with exponent •. The in- 
terpolation operator IN based on the Gauss-Lobatto points 
satisfies, for each polynomial v N 


(15) [•(x)•(x)] •(x)v•(x) I•¾ 1 - x 2 - 1 - x 2 0,• 
< CArrS• [log X]•/211v• 


Proof Using (2), (3) and the equivalence between the 
norms I1' [Ix,• and II1' Ill, we arrive at 


(16) IN / 1 -- 


1•_• }1/2 <_ CIIvN IIx,• 


In order to estimate the terms II•N[brg-br•llo,•, let us in- 
troduce •, the best m•imum-norm approximation poly- 
nomial of degree r of b(x) over A. A classical result [13, 
Theorem 1.5], states 


(17) Ilb-•11• qi•.lib qll• • C•-•11bllc • 
where IIbllc• denotes the norm in C 


IIbllc• = sup IbC•)(x)l + sup 


Then, we have that 


iI•N[bT•] - bT;110,• 


Using that IIr•llo,•: •3w2 h• the second term in the 
right-hand side, the equivalence between the norms ]l' I Io,•, 
and I1,11• in the first and (17), we obtain, for 1 5 k 5 Ar-1, 


Even though the above inequality can be used for all pos- 
sible values of k, it only provides a useful estimate for k 
bounded away from N. On the other hand, we also have, 
for 1 gk•N-1, 


(19) [l•x[6r•] - bY•110,• • 2•11611c• 3/2, 
So, our purpose is to use (19) for the first values of k, and 
(19) for the rest. With this in mind, we take v, 0 < v < 1, 
and write (/.J denotes integer part), 


N-1 


k=l 


[•NJ N-• 
t 2 


k=l k=[vNJ 


Using (19) and (19) in order to handle the first and second 
terms respectively, we get 


L•J N-• 


S•C • k-•(N+l-k) -2•+C • k -x, 
k=l L•NJ+I 
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where C is a constant depending only on b. Using now 
that •¾ + 1 - k _> (1 - v)N for k _< LvNJ, we get 


S< 


C (1-v)-2•Y-2•(1 +1ogN)+logv -1 +log L•NJ/' 
Now we restrict • to be in [•, 1]. Using the boundedness 
of the function log •/(1 - •) on that interval, we obtain 


S • C ((1 - •)-•-•(• + 1og•)+ (1 - •) + •-•) 
for all u • [•,1] and for all N • 4 with a constant C 
independent of both N and •. In order to make the bound 
optimal we choose u = u(N) = 1 - N -2•/(1+2a) (which 
indeed belongs to [•, 1] for N large enough) and get the 
final bound 


--2• 


S • CN• logN. 


Theorem 4.1 Let us suppose that the function a has con- 
-- 


ti•uous first order derivatives in A. There exist positive 
constants lu• and No such that, if lu > lu•, and N > N0, 


(20) a•.(½ •' v N) + •(vS,vl•'),• > •11•Sll • • -- 1.w• 


for all v •v • •. Here • is a positive constant depending 
o, • but not on N. 


Proof We denote by C a uniform positive constant not 
necessarily the same at each occurrence. Let v N 
Our aim is to prove the inequality 


(2•) a•v(• '•, •) • 


i •,•[av)•]•7• d• + X a.•(•'•)%•z- Z•[v •] 4 • ' 


with 


œx[•, 'v] = 


• + l_x.----- 7 IN Li_•j •'z•'• • 
Using a Hardy inequality to handle the term EN, we get 


I•[v•]l • Cll•NIl•,• •N F•avS 1 •av• L•W] •-• 0.•' 
The conclusion is then reached by applying (16) and argu- 
ing as in Theorem 3.1. In order to get (21), we start by 
writing aN in the form 


(22)%v(v•' v'•) = •x I•[av•]v.•'•dx 
1• lf• 


with 


[I• •avN •a'vN 


We next observe that 


^ (23) a•v(v•V,v •v) + v• 1- x 2• 


• (1-z•)•a• • • [•] •ø' 
where 


z(•)[v•]: 
Integrating by parts the second term in (23) and using 
w• - 2w•/w • w •, it is easy to obtain 


i •a(v ) d (a• (•4) 5 - 


• •a•(•) 
Finally, using (22) and (24) and following once more the 
techniques in [4, Theorem 11.1], we obtain the desired in- 
equality (21) 


5 Error estimates 


In order to get the optimal error esthnates. we need to 
state the stability of the discrete problem for a slightly 
more general class of discrete right-hand sides. Namely, 
we consider the following generalization of (12) 


•v /•(t),v x (25) (•,;•(t),v•),• +a.•.(•, (t),v "•) =< , > 
for all •,• • 7o •', where • • •(0,•:(•7)*). Ue•e 
< .,- > stands for the duality between (•)* and •'. 
For g e (Pff)* we write Ilgll-x.m' =sup{< g,v >/llvllx.• I 
v • •ff}. As (25) is a finite dimension problem, it has 
a unique solution uN(t) • • for data u•' 6 •v and 
1N • L2(0, T;(•ff)*), T > 0. Further, the uniform 
ercivity of the bilinear forms aN(½ 
ensures that we have the discrete analogue of Theorem 3.2: 


Theorem 5.1 In the above conditions, the solution of 
(25) satisfies, for N > No, the following uniform stabil- 
ity estimate: 


(26) II•(t)11o,• + Ilu•(•)lli•d• 
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where C(•) is a constant depending on the constant 
m Theorem J.1 but not on N. 


For the error between the exact solution u and its colloca- 


tion approximation u N, we have the following result. 


Theorem 5.2 Assume the function a(x) is in C •, rr _> 1, 
and f • L2([O,T],H,•) , r > «. Let us suppose further that 
tt • C([O,T],H• rt) and u t • L2([0, T], m-2 H• ), m ) 3 6not 
•cessarily an integer). Then we have, for all 0 < t • T 
and N large enough, the ewor estimate: 


t • 


Ce "• N-mll•011•,• +N •-m II•(s)ll•,•d• 
1 


where C is a constant depe,ding on the function a(x) but 
•ot on N. 


Proof Let rr• ß /-/•..0 •-• ?•; be the projection operator 
defined by: 


)T ((v_ •;.•)•).• dx = 0, v• • e 1 


From [1, Theorem 4.3] we have the estimate 


(28) 


for 0 < r _< 1 <_ s. Indeed, the duality argument used 
therein to prove the estimate for r = 0 also works when 


r = -1. Let e:V(t) = 7rk4]u(t)-u'¾(t). From (4) and (12), 
we conclude that e:v(t) satisfies 


(e•v(t),vN)•+aN(e•V(t) v :v) =< l•v 2 3 vN . , (t)+l•¾(t)+l•¾(t), > 


for all t, '¾ • 70 •', where 


7r* < l•v(t),v N > : ( [3jut(t),vN)N -- (ut(t),vN)o,,• 
< l,•-(t),• '• > = a•(•.•(t),• •) - a(•(t),• •') 
< 13 v N .x(t), > = (f(t),v•')0.• - (/(t),v•')• ' 


From (28) with r - -1 and s = m- 2, we get 


(29) 


To handle l•v , we write the decomposition 


< 13(t),• • >= (a- •[.3j)•[3j•(t)•,•.• + • _ • • 


+ (•[3]) - a).,•[3ju(t)•,v• • + I - x • o.• 
+ a(•- •[,3j•(t)•),, • + • _ • 


0.w 


where , t, • stands for the best maximum norm approxi- •-] 


marion polynmnial of degree k-½J of the function a(x) over 
A. So, recalling (17) and using (28) with • = s = •, we 
obtain 


(30) 


Using the estimate for the interpolation operator 


(see [7]) and standard arguments, we obtain the bound: 


(31) Ill?vll-•,•- _< C•V-rlIflI•,•. 


The desired error estimate follows using (29)-(31) in the 
bound obtained by replacing in (26) e :v by u x and lk + 
12 3 x + l•v by l•v together with (28) applied to u. first with 
r=0ands=mandthenwithr=l ands=m-2. [] 


6 Final remarks and conclusions 


Once the coercivity of the discrete bilinear form a x has 
been proved, the analysis can be easily extended to cover 
a number of other situations. For reason of brevity we only 
point out one of such extensions: the case of the advection- 
diffusion equation in one dimension, with nonconstant co- 
efficients in both the advective and diffusive terms. Our 


analysis may also be extended to some other cases in di- 
mension two that we do not report here. The last subsec- 
tion is devoted to remarking how the fully discrete case 
can be analyzed along the preceding lines. 


6.1 Advection-diffusion equation 


Let us consider the following advection-diffusion equation 


ut-(a(x)u•)•q-b(x)u•q-c(x)u =f(x,t), xGA, t_>0, 
(32) u(-1,t) = u(1, t) = 0, t _> 0, 


•(•, 0) = •0(•), x • ^. 
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Let we assume that the functions b and c are bounded in 


A. Associated with (32) we have the bilinear form defined 
by 


(33) A(u, v) = a(u, v) + b(u, v) + c(u, v), u, v e H•, 0 
where a(u,v) is defined in (5) and b(u,v) and c(u,v) 
are respectively defined by b(u, v) = f^ b(x)uxw' dx and 
c(u, v) = f^ c(x)uwv dx. It is readily shown that 


lb(u, •)1 < b•11• 2 b• IIo.• + •11•11 • • 0,• 


(34) Ic(u, •110,•, 
where • and c• are •he maximum value in A of •he func- 
tions b(x) and c(x) respectively, and e is a parameter •o be 
determined later. So, one can consider 
and c(u, v) in (33) as perturbations of •he coercive form 
a(u. v). Using •hen (6) we ge• •he inequality 


10.• > (%- •)11•11 • (35) 
Taking e < •,/•, we get a coerdvity proper•y for •he 
perturbed form A(u, v). 


The usual collocation discrefization of (32) leads to •he 
problem 


(30) w 
with 


Ax(•: ¾ . •,•') = ..• (•, •,•) + &N(• •, •,•) + o•.(• •, •,•), 
for polynonfials u N, v N ff •. The discrete bilinear form 
a.v has been defined in (13) and the perturbations bN and 
c.v are given by, 


N-1 


N-1 


where x•, zS, j = O. 1,..., N, are the nodes and weights of 
the Gauss-Lobatto-Chebyshev quadrature formula. It is 
readily shown that •N and CN satisfy similar estimates as 
their continuous counterparts • and c. Then, taking into 
account the coerciviW of the form aN, one can obtain the 
same property for the perturbed form Ax. As a conse- 
quence the stability and convergence results of the previ- 
ous section also apply to the convection-diffusion case. In 
particular, the bilinear form AN satisfies a uniformly on N 
coercivi W inequalky 


(37) ANCVN, N) + •(vN, u N) • %llvNll•,•, for suitable constants • and 7•. 


6.2 Fully-discrete schemes 


A semidiscrete approximation to a partial differential equa- 
tion yields a system of ordinary differential equations that 
can be numerically integrated by means of a standard ODE 
solver. As it is well known, explicit finite-difference meth- 
ods for the time integration of spectral discretization of 
second order parabolic equations may have a restriction 
on the time step At of the form At _< C/N 4. see for exam- 
ple [4, Chapter 4]. For the case of a Legendre collocation 
spatial discretization of a constant coefficient advection- 
diffusion equation, it has been recently proved that, if a 
general rational approximation to the exponential is used 
for the time integration a (.9(N -4) time-step restriction 
guarantees stability. In order to avoid such a severe re- 
striction, A-stable time discretization are often used. 


The usual way to analyze a finite-difference time- 
discretization is by resorting to the energy method and 
therefore following the same lines we have previously pre- 
sented. We shall give no details but as an example, let us 
consider the backward Euler method for the problem (32), 


((•L• •)//•t,•'•)• ' + A•(•+•, •N) = 
(38) (I• [f•+•], vN)N, 


N iS meant to be an approxima- where f• = f(k•t) and u• 
tion to the solution of (36) at t = kAt. Taking v •v = u•+•, 
using (37) and summing, we get the stability estimate 


k+l ) i/2 I1.•+•11• + •t• I1'•11•,• 


c(•)• • II•[•(0)]IIN +•t IIIxE/•311•,• , 
kj=l 


for 0 • (k + 1)At • t. The error estimate for the semidis- 
crete approximation together with consistency properties 
of the scheme and standard procedures (see, for example, 
[14]) allow to derive an O(At + N -•) bound for enough 
smooth data and coe•cients. 
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A Fourier Method for Nonsmooth Hyperbolic Problems 


Knut S. Eckhoff* J. H. Rolfsnes* 


Abstract 


Nonsmooth solutions of hyperbolic systems are computed 
by a modified Fourier-Galerkin method. The described 
approach is seen to give substantially improved accuracy 
compared to more traditional methods. Discontinuities are 
accurately resolved already on coarse grids, and the fine- 
structure of structured solutions is resolved on relatively 
coarse grids as well. The accuracy is seen to be of high 
order. and even for very long term integrations the global 
error can be kept very small if the grid is sufficiently re- 
fined. 


Key words: hyperbolic systems, discontinuous functions, 
Fourier series, Bernoulli polynomials. 


AMS subject classifications: 65M70, 65M20, 35L45, 
35L67. 


I Introduction 


As is well known [4], spectral projections of discontinuous 
functions exhibit global oscillations which are particularly 
strong near the discontinuities. This is known as the Gibbs 
phenomenon. and the reduced accuracy of spectral approx- 
imations due to this oscillatory behavior, makes it neces- 
sary to modify traditional spectral methods. In particu- 
lar. for solutions of hyperbolic problems containing shock 
discontinuities, the literature most often suggests modifi- 
cations by application of various filtering techniques. It 
has been shoxvn that the computations may be stabilized 
by such techniques, and that high order accuracy may be 
recovered - at least away from the discontinuities. 


For initial value problems for linear hyperbolic equa- 
tions with discontinuous initial data, Majda et al. [16] 
proposed a modification of the Fourier collocation method 
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which incorporated smoothing filters applied to the initial 
data and to the spatial differential operator. For nonlin- 
ear hyperbolic equations further difficulties are connected 
with the fact that the nonlinearities may lead to forma- 
tion of shock discontinuities even when the initial data 


are smooth. Tadmot [18], [19] proved that it is possible 
to maintain stable spectral approximations while retain- 
ing spectral accuracy for nonlinear conservation laws, by 
application of his Spectral Viscosity method with appro- 
priate use of post-processing filters. 


In this paper we are concerned with the application 
of the modified Fourier method presented in [9] and fur- 
ther developed in [10]. The method is designed for study- 
ing nonsmooth solutions of well-posed initial value prob- 
lems for systems of hyperbolic equations, and is a shock- 
capturing method where generalized step-functions are 
utilized in the spectral scheme as well as in the post- 
processing of the numerical solutions. The idea of intro- 
ducing step-functions in the reconstruction of discontinu- 
ous functions was initiated by Gottlieb et al. [14], and has 
been further developed in [1], [2], [3], [7], [8], [9], [10], and 
[12]. 


The generalized step-functions utilized in the reconstruc- 
tion of discontinuous 2•r-periodic functions from truncated 
Fourier series expansions in [9], [10] were introduced in [8], 
and were denoted by U•(•), n = 0, 1,2,.... On the interval 
0 _< • < 2•r, the family of 2•r-periodic functions U•(•) is 
given by 


(1) V•(•) = (n + 1)• B•+• ' 
where Bj(x), j = 1,2,... are the Bernoulli polynomials 
[11]. The function Un(•) is of finite regularity for each 
n = 1,2,..., with derivatives Un(P)(•)= Un-p(•)continu- 
ous everywhere for p - 0,..., n- 1, but with L• •)(•) = 
U0(•) only piecewise continuous with jump-discontinuities 
of magnitude +1 at • = 2ra•r, m = 0,4-1, 4-2,.... In 
fact, U0(•) is a saw-tooth function, which on the interval 
(-2•r, 2•r) is given by 


• (-,n--•) if -2•-<•<0 (2) v0() = 
z (•--() if 0<(<2•-. 
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There are no jumps at the singularit), locations for the 
higher order derivatives U? ) (•), p >_ n + 1. The Fourier 
coefficients for the functions U•(•), n = O, 1, 2,... are given 
by 


(3) (v•)0 = 0, (u•)k = 2•(ik)n+• ; k # 0. 


2 Linear hyperbolic problems 


In this section we shall consider numerical solutions of pe- 
riodic initial value problems for linear hyperbolic systems 
of the form 


0u 


0--• +Lu = 0, 
0 


subject to nonsmooth initial data u(x, 0) = u0(x). Here, 
u = {u• ..... u,•} T denote the dependent variables, and 
A. B are given m x rn matrices with smooth coefficients 
which are 2•r-periodic with respect to x. •Ve restrict our- 
selves to studying solutions u(x,t) of (4) which for each 
t are piecewise smooth on [0, 2•r] and 2•r-periodic with re- 
spect to x. 


Following [8]. u(x. t) may for each t > 0, for an arbitrar- 
ily given integer Q > 0 and for some finite integer _R be 
written 


where 


u(•. t) = uO(•,t) + v(•,t), 


(2 R 


(6) V(x. t) = •y]ay(t)U,•(z-z•(t)). 
n=0 j=l 


Here. x : x•(t), j - 1,...,_R, denote the characteristic 
curves associated with (4) across which the solution it- 
self and/or some (or all) of its spatial derivatives suffer 
jump-discontinuities. Each of these characteristic curves 
is passing through one of the initial singularity locations 
at t: 0. In (5) a](t) denotes the jump in the nth spatial 
derivative of u across x = xj (t) at the time t, and for each 
t the function uC2(x, t) is 2vr-periodic and at least Q times 
continuously differentiable everywhere with respect to x. 


For any given even integer N > 0 and at each instant 
t >_ 0, we may. to a piecewise smooth solution u(x, t) of 
(4). associate a truncated Fourier series 


3f/2-1 


(7) P•u(•, •): • ri•(t)• •k•, 
k=-N/2+l 


where 


1 •0 2rr (s) rib(t) = • u(x, t)•-•&. 


Substituting (5)into (8), we get in view of (3) that rio(t) - 
(uQ)0(t) and 


• Q R •(t)e-i•x•(t) (9) rib(t) = (u•)•(t)+ • • • 
•=0 j=• 2•r(ik)'•+• 


,•#0. 


For N sufficiently large, approximate singularity loca- 
tions and jumps can be computed from P•u(z, t) by the 
reconstruction algorithm described in [8]. Alternatively 
[5], [10], these quantities may be determined by integrat- 
ing respectively, the characteristic equations and the trans- 
port equations associated with (4). When, in addition to 
P•vu(z,t), the singularity locations zi(t) and the corre- 
sponding jumps ay(t) occurring in (5), (9) are known for 
each t, P.¾u•(z,t) can clearly be determined from (9). 
Hence u(z, t) may be approximately reconstructed on the 
form (5)with uQ(x,t) replaced by P•uQ(x,t). It follows 
from [8] that for each t the reconstructed solution is glob- 
ally O(N -(Q+I)) accurate. 


In view of the above considerations, it is reasonable to 
seek numerical solutions of (4) which accurately approx- 
imate PNu(x,t) in Fourier space, even though P. vu(x,t) 
by itself may not provide an accurate approximation for 
the exact solution in physical space. This is the philoso- 
phy set forth in the modified Fourier method described in 
[9], [10], which can be summarized as follows: In (4) the 
matrices A(x,t) and B(x,t) with smooth coefficients are 
approximated by PxA(x,t) and P•vB(x,t). i.e. 


then has a trigonometric polynomial solution 


3[/2--1 


(12) u•½,t) = • •(t)• •, 
k=-N/2+l 


which constitutes an accurate numerical approximation to 
PNu(x, t). When accurate information about the solution 
is needed, UN(X, t) is post-processed by reconstruction to 
the form (5). 


In cases where the coefficients A,/• m'e independent of 
x, we have 


(13) P•[L•vu2•¾_2] = Lu.¾. 
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The problem (11) is, therefore, in this case readily seen 
to be equivalent to the problem resulting from application 
of the ordinary Fourier-Galerkin method to (4) in SN = 
span{eik½ I - .55/2 + I _< k _< N/2- 1}. No numerical 
dispersion or diffusion is introduced through the spatial 
discretization in this case. 


If, on the other hand, A and B do depend on x, the 
solution u.¾ of (11) is formally seen to depend on the 
Fourier-Galerkin solution 112N_2(X , t) in S2N-2. To cir- 
cumvent this difficulty. the modified Fourier method advo- 
cated in [9], [10] approximates 112N_2(2 , t) at each instant 
t to the order O(155 -(O+1)) by de-truncating UN(X, t). This 
is achieved by putting 


(14)a•(t): Z Z 2•r(ik)n+l ' :55/2 _< Ikl <_ x- 2. 
n=03=l 


Here the approximate singularity locations xj(t) and the 
corresponding jumps ay(t) are calculated either from 
ux (x, t) by application of the reconstruction algorithm [8], 
or by the method of characteristics. 


The main feature of the modified method (11), (14) is 
that it reduces to a minimum the numerical dispersion 
and the numerical diffusion in the spectral approximation 
u.v (x'. t) of the nonsmooth solution u(x, t). As pointed out 
for the case of variable coefficients in [6], [9], the standard 
Fourier-Galerkin method for (4) introduces dispersive and 
diffusive effects by the way Lu is projected onto S.•-. This 
is expected to represent the major source of error for tra- 
ditional methods when dealing with nonsmooth solutions 
of (4). 


The de-truncation (14) may also formally be written 


(15) u2.v-2(x, t) = u Q (x,t) • P2•v-29(x, t) 


where •(x, t) is an approximation for V(x, t) in (5) and 
0 (x, t) is an approximation for •vuQ(x, t) determined H.V 


by 
(16) u•.(x, t) = ux(x, t)- PN•(x,t) 
In view of (15), it follows that (11) is formally approxi- 
mately equivalent to 


(17) Ot 
where G.¾ is the standard Fourier-Galerkin projection op- 
erator onto S.¾. Thus, the sources of numerical disper- 
sion and numerical diffusion stemming from the spatial 
discretization is, in the modified method, essentially lim- 
ited to the truncation error associated with L.v and to the 
discretization of L•vu Q. As a result, accurate approxima- 
tions for discontinuous solutions of (1) can be obtained on 
relatively coarse grids. 


3 Nonlinear conservation laws 


In this section we shall consider numerical solutions of peri- 
odic initial value problems for nonlinear conservation laws 
of the form 


(18) au oW + f(u) = o. 
Here, as in the preceding section, u = {Ul,..., u,•} r de- 
note the dependent variables. The given flux function 
f = {fl,..., f,•}r is assumed to be smooth with respect to 
u. We continue to restrict ourselves to studying solutions 
u(x,t) of (18) which for each t are piecewise smooth on 
[0, 2•r] and 2•r-periodic with respect to 


We shall in this section consider a modified Fourier 


method (partially discussed in [9]) for studying solutions of 
(18) containing shock discontinuities, adapting several of 
the features discussed in the previous section. The method 
is geared at handling the propagation of shock-solutions, 
but is not designed to accurately handle the process where 
shocks are actually formed. In the short time interval 
where a shock is formed in an area where the solution ear- 


lier was smooth, other methods may. therefore: be more 
appropriate [18], [19]. 


Thus. we shall consider the solution of (18) subject 
to initial data u(x. 0) = u0(x), where u0(x) is a 2•r- 
periodic discontinuous function which is piecewise smooth 
on [0, 2•r], and which corresponds to some weak entropy so- 
lution of (18). We restrict ourselves to studying solutions 
u(x, t) of (18) in some finite time interval t 6 [0, T] which 
is such that u(x, t) for each t is piecewise smooth on [0, 2•] 
and has no other shock discontinuities than those origi- 
nating from the initial ones. In this time interval, u(x. t) 
then has a representation of the form (5) for some integer 
R, and for each j = 1,..., R. x = xj(t) denote the curves 
across which u(x, t) suffer shock discontinuities. 


Since f(u) is assumed to be smooth with respect to u, 
it is clear that f(u(x,t)) is a piecewise smooth function 
with respect to x for each t, if u(x, t) is piecewise smooth 
for each t. The singularities for f(u(x,t)) are dearly lo- 
cated at the same points where u(x, t) is singular. Thus, 
a representation analogous to (5) is valid 


(19) f(u(x, t)) -- fc2(x, t) + W(x, t), 


where, as usual. fO(x, t) denotes the Q times continuously 
differentiable F:.•.rt; and W(x, t) denotes the singular part. 
We clearly have W(x, t) -- 0 if V(x,t) _= 0, but otherwise 
the relations between the smooth and the singular parts 
of f(u(x, t)) and u(x, t) are relatively complicated, in gen- 
eral. We shall, therefore, confine our discussion here to 
the important special case where each component of f(u) 
is a quadratic form with respect to u. i.e. fj(u) = u. Aju, 
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j = 1 ..... m, where Aj are given m x ra matrices. We then 
for j -- 1 ..... m have that 


L.(u(x, t)) = uQ(x,t). AuQ(,t) 


(20) 


Clearly. the first term on the right hand side in (20) can 
only contribute to the smooth part fQ(x, t) of f(u(x, t)). In 
general, however. the last three terms in (20) all contribute 
to both the smooth part fQ(x, t) and to the singular part 
W(x. t) of f(u(x, t)). 


In order to be able to calculate a numerical solution of 


(18) which accurately approximates Psru(x, t) in Fourier 
space, we again note that a trigonometric polynomial 
u.v(x.t) given by (12) and representing a shock-solution, 
may be accurately reconstructed as 


(21) vx(x, t)=u Q •r(x,t). 


Again, •r(x.t)is an approximation for V(x,t) determined 
by the reconstruction algorithm described in [8], and 
u • (x t) is given by (16). 


A numerical solution ux(x, t) of (18) which accurately 
approximates Pxu(x, t) in Fourier space may therefore [9] 
be calculated by solving the following initial value problem 


__ 0 au.,v -+- •-• [P.vf(viv)] = 0 
0): 


The spatial discretization of the nonlinear terms rele- 
vant for the semi-discrete formulation (22) is of particu- 
lar interest here. For quadratic nonlinear terms, we note 
that the projection of the first term on the right hand 
side in (20) may be accurately calculated by the standard 
Fourier-Galerkin projection in S5• of a product of smooth 
functions. The projections of the second and the third 
term on the right hand side in (20) correspond to the ap- 
proximate projections presented for the linear case (11), 
where an approximation for the product of a smooth func- 
tion and a singular function was handled by de-truncation. 
For the last term in (20), we note that a product of piece- 
wise polynomials is itself a piecewise polynomial. The last 
term is clearly a linear combination of products of the type 
Uk(x - ?)Uz(x - la), and if we let K = k + I and let 
be any two constants such that 7 • b, then the following 
relations can be shown to hold: 


(23) + ( { ) - 
j=l 


Here, U,•(•') is given by (1) also for n = -1, and the con- 
stant C•,•,•,u may readily be determined from (23). More- 
over, if • = b, (23) is valid when •-b and b-•, are 
replaced by 0 + and 0-, respectively. The Fourier coeffi- 
cients associated with the last term in (20) are therefore 
readily obtainable in view of (3). 


4 Linear numerical examples 


In this section, the performance of the method described 
in section 2 is demonstrated by applications to one test 
problem with constant coefficients and one with variable 
coefficients. For the cases considered, the Fourier coeffi- 


cients corresponding to the numerical solution u.v deter- 
mined by (11) are advanced in time by applying a (4)5 
order Runge-Kutta method with step size control due to 
Dormand and Prince [15]. The product terms treated by 
the de-truncation method are computed by employing 2N- 
point FFT. Bv Method I we shall refer to solutions with 
singularity locations and jumps determined by the char- 
acteristic equations and the transport equations, respec- 
tively, and by Method 2 we shall refer to solutions where 
the reconstruction algorithm is utilized instead. 


The first test case considered is the linear constant co- 


efficient problem 


(24) 


where 


= 


• u2 - 1 0 • 


•2 


0 O_<x<2 


1 2<x<2.5 


1+0.1sin[a-(z-2.5)] 2.5 <x <3.5 


1 3.5<x<4 


0 4<x<2•-, 


The solution of (24) is readily found to be given by 
1 


(26) u•(x,t) = •[g(x+t)+g(x-t)], 
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Figure 1: Computed solution of (24), N = 64, Q = 1. 


(27) t) = 1 . 5[g(x- t)- + 
Consequently. the singularities in g(x) are transported 
with half their initial strength along the characteristic 
curves x-t- c• and x+t- c2. Thus for t > 0 fixed, 
the solution normally will have 8 singularity locations on 
[0.2rr), with jump discontinuities in the derivatives at lo- 
cations distinct from the points where the solution itself 
is discontinuous. As pointed out in section 2, the numeri- 
cal solution u.v of (24), (25) obtained from (11) is for this 
case equivalent to the Fourier-Galerkin solution, and we 
actually have ux -- P. vu. 


The considered example (24), (25) is primarily intended 
as a demonstration of the accuracy of the reconstruction 
algorithm [8] for piecewise smooth solutions on the form 
(5) from knowledge of P,¾u. The reconstructed solution 
is plotted in Figure 1 and error results for Method 1 and 
Method 2 are presented in Figure 2, where straight lines 
are fitted to the error data by means of least square linear 
regression. 


As pointed out in section 2, we would expect the recon- 
structed solution to be O(N -(Q+z)) accurate, and since 
the solution in this case is seen to have no jump disconti- 
nuities in its second derivative, we would actually expect 
to do even better for Q = 1. For Method 1, these pre- 
sumptions are clearly confirmed by the results in Figure 
2 where the accuracy appears to be at least O(N -•) for 
Q = 0 and at least O(N -3) for Q = 1. As for Method 2, 
we note that no convergence is achieved with Q -- 0, i.e., 
when the discontinuities are the only singularity locations 
counted (R = 4). In this case the reconstruction algorithm 
is not accurate due to the presence of the discontinuities 
in the derivatives at locations distinct from the locations 


of the discontinuities in the function itself [8]. We note, 
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Figure 2: Maximum RMS-error in the two computed solu- 
tion components of (24). 


however, that Method 2 appeared to be O(N -•) accurate 
for the case Q - 0, R - 8, i.e. when all the singularity 
locations where counted as discontinuities. 


For the case Q = 1, we first note that the application of 
the reconstruction algorithm with 8 singularity locations 
requires 24 Fourier coefficients with positive wave num- 
bers. Method 2, therefore, does not apply for N = 32 
in this case. In order to reflect the asymptotic behavior 
of Method 2, the corresponding straight lines in Figure 2 
were fitted to the error data obtained for N = 128,144. 192 


where the last point is not included in the figure. From the 
obtained results, Method 2 appears to be at least O(N -3) 
accurate. 


As our next example, we consider the problem 


Ou Ou 


0'-• + a(x)•--•x : 0, u(x, 0): b(x), (28) 


where 


(29) b(x) = { 1 +0.1sin 4 (•.-•) 0 < x < 2 0 2<x<2•r 


and where 


1 0<x<2 (30) a(x)= l+c[(x-2)(x-4)] 2 2<x<4 


1 4_<x < 2•r. 


Here, c is a constant for which we have considered two 
different values: c = 0.1 and c = 0.2. The solution of (28) 
is given by 


• dr (31) u(x,t)= B(O(x)- t) where O(x)= a(r)' 
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Figure 3: Computed solution of (28), N = 64, c = 0.2 
INlethod 2) 


and where B(•) is the ¸(2•r)-periodic function which is 
such that B(O(z)) = b(z). Since a(x) is positive every- 
where, this constitutes a wave propagating to the right 
retaining essentially the form of b(x). For c > 0, how- 
ever. the solution is modified by a stretching in the interval 
2 < x < 4, where the amount of stretching is determined 
by the magnitude of c. The wave regains its original form 
after its trailing front has passed x = 4. When a(x) is 
replaced by Pxa(x), the exact solution (31) of (28) has for 
each t jump discontinuities at two distinct points in each 
period. while there are no jumps in its first three deriva- 
tives. In the computations we therefore let Q = 0. The 
time range for the computations corresponds to somewhat 
more than five time periods for the choice c -- 0.2. A plot of 
the computed solution after approximately five periods is 
shown in Figure 3. Figure 4 shows the error in the discon- 
tinuity location computed in Method 2, and corresponding 
to the leading front of the wave. 


From (30), a(x) is seen to be a continuously differen- 
tiable function which has jump discontinuities in its second 
derivative. Hence [4], the approximation by P•va is only 
O(.Y -2) accurate in L2(0, 2rr). Consequently we should, a 
priori, not expect the computed solution to be more accu- 
rate than that. In the implementation of Method 1 we have 
calculated the singularity locations from the characteristics 
corresponding to the exact a(x) and not to P•Ta(x), and 
the results shown in Figure 5 and Figure 6 for Method 1 
indicate the above expected accuracy. We note, however, 
that the effect of the oscillatory behavior of P•va(x) rela- 
tive to the exact values of a(x) is not accounted for by the 
above L 2 argument. x, Ve may, therefore, hope for a faster 
convergence than O(N -2) for Method 2. This is actually 
confirmed by the results shown in Figures 5 and 6. In view 
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Figure 4: Absolute error in computed discontinuity loca- 
tion, c = 0.2. 
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Figure 5: Calculated error for the computed solution of 
(28). 
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Figure 6: Calculated error for the computed solution of 
(28). 
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of these results, we may anticipate a similar improvement 
in accuracy for Method I if it is based on the characteris- 
tics corresponding to PNa(x). 


In order to avoid instabilities for Method 2 within the 


time range considered we had, in the computations, to dis- 
regard a few of the highest order Fourier coefficients in u•v 
when we applied the reconstruction algorithm for the de- 
truncation at each time step. This is done since the highest 
order modes were polluted with errors which presumably 
stemmed from the numerical dispersion resulting from the 
relatively slow convergence of P.¾a. An alternative way 
of stabilizing the computations is, presumably, to utilize 
some weak filtering. 


5 Nonlinear numerical examples 


As our first nonlinear example to be solved numerically 
bv the method described in section 3, we take the widely 
used test case which is normally referred to as the inviscid 
Burgers equation: 


/32) + = o 
u(x. O) = uo(x) = sin(x). 


For this case the solution u(x, t) develops one shock in each 
period. starting at t = 1 with an infinitely steep gradient at 
the point x: 7r, and then at later times t > 1 the solution 
has a jump discontinuity at the same location. In order 
to prevent nonlinear instabilities from ruining the compu- 
tations during the transition from a smooth solution to a 
solution with shocks, the numerical solution u2,¾(x, t) of 
(32) has been computed by the Fourier-Galerkin method 
augmented with the spectral vanishing viscosity regular- 
ization [18] in the time interval up until the shock discon- 
tinuity has formed. At later times, the method described 
in section 3 is applied and is seen to be more accurate - 
especially for long term integrations on relatively coarse 
grids. 


In order to know when the procedure described in section 
3 should be invoked, the question of how one can decide 
from the knowledge of u2.¾ when a shock has appeared in 
the solution must be answered. For this purpose we have 
implemented a shock-test which is based on the assumption 
that the highest order modes of the truncated series u•v 
contains sufficiently accurate information about the shock 
shortly after it has formed. As soon as the discontinuity 
has been detected the computations are carried on by the 
method described in section 3 on the coarser grid corre- 
sponding to u.¾. The discontinuity location and the jump 
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Figure 7: Computed solution of (32). N = 16. 
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Figure 8: Computed solution of (32), N = 16. 


are computed at each time step applying the reconstruc- 
tion algorithm [8]. Since the exact solution has no jumps 
in its derivatives, the method is implemented with Q = 0. 
Plots of the computed solution are shown in Figures 7 and 
8. Figures 9 and 10 show the error in the computed solu- 
tion in logarithmic scale. Note that the peaks in the error 
shown in Figure 9 are due to the insufficient resolution of 
the curved structure close to the shock at t = 1.1 rather 


than to remaining Gibbs oscillations. In fact, at t = 2.0 
where this curved structure is no longer present, the error 
is evenly spread throughout the domain (Figure 10). This 
indicates that the shock location and the shock strength 
are accurately determined in the calculations. 


Our final test case is an initial value problem for the 
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Figure 9: Pointwise error in computed solution, t = 1.1 
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Figure 10: Pointwise error in computed solution, t = 2.0 


shallow water equations 


0 u• 0 •u• + -- 
-- 


Ot 32 Ox th'u2 
(33) 


32 = h(x) at t = 0. 
Here, u I corresponds to the velocity and u• to the depth, 
while g is the constant acceleration of gravity. As our ini- 
tial condition we choose the symmetric bell-shaped func- 
tion 


h0 0 < x < •r/2 h(x) = ho + C[(x - 5)(-• - x)] 4 7r/2 < x < 37r/2 


h0 37r/2 < x < 27r , 
(34) 
where h0 is the depth of the undisturbed water, and C • 
0 is a constant which determines the size of the initial 


surface elevation, which is seen to have its maximum at 
x = •r. With the symmetric initial condition (34), the 2•- 
periodic solution of (33) is also seen to give the physical 
relevant solution of the problem (33) when fixed walls are 
introduced at x = 0 and x = 2•r. 


When the system is released, the initial surface elevation 
first descends and then splits into two symmetric waves 
traveling in opposite directions, leaving a region of undis- 
turbed water between them. The velocity develops into 
an N-wave [20] with zero velocity at the symmetry point 
x = 7r (Figure 11). Due to the effect of nonlinearity, the 
waves steepen and eventually break, i.e. shock discontinu- 
ities form in the corresponding weak entropy solution of 
(33). 


In the computations we let h0 = 0.5, and C was cho- 
sen to correspond to a maximum initial surface elevation 
of 0.2. The standard Fourier-Galerkin method with de- 


aliasing was used for computing the solution u•v up until 
wave breaking occurred. Spectral viscosity regularization 
was not added in the pre-shock computations in this test 
case, since the solution computed by the Fourier method 
appears to be much less prone to nonlinear instabilities 
during the transition to a discontinuous solution than for 
the Burgers equation. 


Shortly before the formation of the shocks, however, the 
highest order modes in uN are polluted and therefore do 
not contain sufficiently accurate information for the recon- 
struction algorithm to be applied. An integer parameter D 
has thus been introduced, and a shock criterion has been 
implemented based on the highest order modes in UN-2D 
instead, from which also approximate shock locations were 
computed. By observing that the corresponding computed 
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Figure 11: Computed solution of (33), N = 32. 


shock locations for depth and velocity, respectively, ap- 
proach each other as the shocks are formed, shocks in the 
computations were considered to have been formed in the 
solution when those computed location pairs were dose 
enough. In the computations reported here for N = 64 
and N = 128, D was set to 10 and 25, respectively. At 
the instant t = rs, where the discontinuities were detected 
according to this criterion, the reconstruction of u.v on the 
form (21) was invoked. From this time on the computa- 
tions were continued by the procedure described in section 
3 with Q -- 0. We remark here that a weak filtering of the 
smooth part u c• of the solution at t = t• and at subse- N ' 


quent times, was necessary to stabilize the computations; 
and for that purpose an 8th order exponential cuff-off filter 
was implemented. 


Plots of the computed discontinuous solution are shown 
in Figures 12-15. Figures 12 and 13 are approximately 0.1 
time units after the shocks where detected. Figure 14 is 
shortly before the shock waves collide, and Figure 15 is 
after the collision. 


6 Conclusions 


We have, in this paper, presented applications of a mod- 
ified Fourier method for computing nonsmooth solutions 
of hyperbolic problems. The numerical solution is sought 
as an accurate approximation for the truncated Fourier 
series associated with the exact solution. By utilizing 
step-functions, the nonsmooth solution is accurately recon- 
structed from its truncated spectral approximation. The 
reconstructed solution is used to avoid numerical disper- 
sion and diffusion in connection with the computation for 
variable coefficients and nonlinear terms. The described 


approach is seen to give substantially improved accuracy 
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Figure 12: Computed solution of (33), N = 32. 
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Figure 13: Computed solution of (33), N -- 128. 
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Figure 14: Computed solution of (33), N - 128. 
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Figure 15: Computed solution of (33), N = 128. 


compared to more traditional methods. 
We would. finally, like to give a brief remark on the post- 


processing of the numerical solutions. Referring to (21), 
we recall that when the discontinuities are accurately cap- 
tured, the global error is mainly due to the truncation error 
associated with u c½ In the cases where finite regularity of 
u Q is the dominant source of this truncation error, it is 
reasonable to expect that the global error could be further 


Q In improved by additional post-processing applied to Uiv. 
this connection, the filters described by Vandeven [17] and 
the Gegenbauer reconstruction method due to Gottlieb et 
al. [13] seem particularly interesting. 
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On the Spectral Viscosity Method 
in Multidomain Chebyshev Discretizations 


Ivar Lie * 


Abstract 


This paper describes how one can use the spectral vanish- 
ing viscosity method proposed by Tadmor in multidomain 
solution of hyperbolic systems. Interface conditions are 
derived using a variational approach, and open boundary 
conditions are derived using the approach used in [9] for 
incomplete parabolic systems. 


Key words: multidomain solution, spectral viscosity, in- 
terface conditions, boundary conditions. 


AMS subject classifications: 35L60, 65M70. 


1 Introduction 


Filtering of the solution is often necessary when using spec- 
tral methods on nonlinear problems with solutions of lim- 
ited regularity. The main reason for using filtering is to 
prevent the buildup of components of high spatial fre- 
quency, i.e. towards the end of the spectrum of the discrete 
operator. The filtering thus prevents unwanted coupling 
from high to low frequencies, i.e. it stabilizes the numeri- 
cal solution. There are many variants of filtering described 
in the literature, see e.g. [6] for a general overview, and 
[8] for special techniques to handle discontinuities. We will 
here concentrate on problems where we don't have to deal 
explicitly with shocks or discontinuities, but where we filter 
to stabilize the smooth solution. 


We consider a quasi-linear hyperbolic system 


d 


(1) ut+ EAi(u,x,t) u•, =b(u,x,t), 
i=l 


*NDRE, P.O.Box 25, N-2007 Kjeller, Norway e-mail: 
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ference on Spectral and High Order Methods. 1•)1996 Houston 
Journal of Mathematics, University of Houston. 


where u, b 6 ll• TM, Ai 6 • x m Chebyshev spectral collo- 
cation will be used to discretize the PDE system at least in 
one direction, and we consider the solution of (1) in multi- 
ple subdomains, i.e. the domain is given by 
The interfaces between the subdomains are denoted by Fij 
and the outer boundaries by c9fli. We will therefore have 
to find interface conditions at Fij for the the numerical 
method to work properly. In addition we want open or 
transparent boundary conditions, since we are interested 
in wave-like solutions where our boundary is just an arti- 
ficial one. Open boundary conditions for hyperbolic sys- 
tems are described in many papers, but here we consider 
the method using characteristic variables as described in 
e.g. [111, [171 and [11 . 


We will use the spectral viscosity method for Chebyshev 
discretizations proposed by Tadmor, [14], and discussed in 
detail in [2]. Other filtering or artificial viscosity methods 
are described in [6]. 


The rest of the paper is organized as follows: In section 
2 we describe the spectral viscosity in detail and inter- 
face conditions are derived using a variational technique. 
Section 3 is devoted to the derivation of open boundary 
conditions. 


Spectral viscosity and interface 
conditions 


Spectral viscosity or more precisely, spectral vanishing vis- 
cosity was introduced by Tadmor in the Fourier case in [15], 
and he showed that this method converged to the entropy 
solution of a system of conservation laws. The spectral 
viscosity (SV) method is a spectral filter which acts only 
on frequencies higher than a certain threshold, and hence 
should leave the low frequency (smooth) components in- 
tact. The theory is generalized in [16]. 
For the Chebyshev case, Tadmor have suggested the fol- 
lowing family of SV filters, see [14] and [2]: 


(2) eN 0 RN * , o= w-5 l 


121 







122 ICOSAHOM 95 


where es. is the "viscosity" coefficient, w(x) - (1-x2) -1/2 
the Chebyshev weight, p, q • Z. The filtering function is 
defined as: 


(3) 
mN<I<N 


where /•l are filter coe•cients and •l are tM Chebyshev 
coe•cients (Chebyshev transform) of the weighted first 
derivative 1/w(x)qu•. The parameters suggested by Tad- 
mop are: 


e• • N -•, m• N •/•, 


•. • I - , k > m N . 


The parameters p and q were set to I and 0 respectively 
in the numerical experiments reported in [17], because one 
wanted to keep the hyperbolic boundary and interface con- 
ditions. These values have also been chosen in larger ex- 
periments, see e.g. [3]. If we don't impose the restriction 
of using the hyperbolic boundary and interface conditions, 
but rather derive boundary conditions based on the PDE 
system with the viscosity term, we are free to choose val- 
ues for p and q. The simplest choice is to set both to zero, 
such that it resembles the Fourier variant. 


Note that there does not exist a convergence theory in 
the Chebyshev case, so we do not have a sound basis for 
choosing the parameters. The numerical experiments done 
so far indicate however that the choices above are reason- 
able. 


Consider now the PDE system (1) with the SV term 
added: 


d d 


(4) ut+•Aiux,=e•P (ii) l i=l i=l W(x)P (Ri * UX')x' + b 
where we have •sumed that the matrix p(ii) is diagonal, 
and that e represents a small parameter. Note that the SV 
method is defined in discrete form (see (3), and here we 
assume the existence of continuous operators R• for which 
R,•-• is a discrete approximation. 


To derive the interface conditions, we will use the varia- 
tional method applied in [9] for incomplete parabolic sys- 
tenas. In order to perform this we have to keeze the co- 
efficients at the interface, i.e. to linearize locally around 
the solution and the position. For (4), this implies that 
the matrices 
inner product within a domain, and denote by < .,. > the 
L2 inner product on the boundary. For sufficiently smooth 
functions, we will use the following Green's formula: 


(5a) (Aiux,,V) + (A•u, vx,) = (A•u, vn,) 


(Sb) 


We will use an antisymmetric term for the first derivative 
terms, and from the Green's formula, we have immediately 
that: 


1 (Aitt, vni) l[(A,u•,,v) - (A,u,v•i)] + • (Aiu•,, v) = • 
Hence we can write the PDE system for p - q -- 0 in 
variational form: 


1 


(ut, v) + 
i 


E E p(ii) ((Rz •t tlx,), t,x, ) 
i 


2 


(6) + 
i 


For p = 1 we get a similar result, but now the boundary 
term for the SV vanishes because of the form of the weight 
function. Since this will not give us other interface condi- 
tions than in the hyperbolic case, we concentrate on the 
case p - 0 from now on. 
If we introduce bilinear forms: 


we can write the the equations in variational form: 


(7) (•,, •) + •(u, •) + •(u, •) = (s•, •,) + (b, •,) 


where 


œU = eP(ii)(Ri *Ux,) + •Aiu ß 


We now proceed exactly as done in [9] and introduce two 
subdomains ft + and f•- and bilinear forms a +, a-, s +, s- 
defined over the respective subdomains. We have that: 


•(•,•) = a+(u,•)+a-(u,•) 
4u, •) = •+(•, •) + •- (u, •) 
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So by writing the equation (7) for fl+ and fl-, we can add 
these equations and subtract (7). We then obtain 


(s) v/n+ + v/n- -- o 


where the superscripts indicate the subdomains to which 
the quantity belongs. If we assume that the test function 
v is compactly supported in fl, then the boundary inner 
products reduces to that of the interface. The transmission 
conditions are: 


(9a) (œu)- = (œu) + 
(9b) u- - u + 


where the superscripts "+" and "-" refers to the values 
of the quantity taken in fl+ and fl- respectively. So in 
particular if .q+ and P.- are half-spaces with the x•-axis 
as the interface, we obtain the following conditions: 


(10a) Ep(11) (Z•l 
(10b) u + -- u- 
Note that the explicit dependence on Ai disappears be- 
cause we have to assume that this matrix is non-singular. 
Alternatively, we can of course use the condition Aiu + 
Aiu-, or TAiu + = TAiu- where T is the left eigenvector 
matrix of Ai. The latter condition expresses that the char- 
acteristic variables should be continuous at the interface. 


Hence for each component u/½ of U, we have apart from the 
continuity of the variable itself, a relation of the form: 


+ - ) (11) E+(R1 + 
If ;ve now take the discrete version of these conditions and 


use the definition (3) of the SV filter, 


rnN+ </<N+ 


ms_ <l<N_ 


we see that if the number of gridpoints in the two do- 
mains are equal, and therefore the parameters in the SV 
method, the conditions reduces to require that the Cheby- 
shev coefficients in the two subdomains should be equal 
for mN _• I _• N. In the much more interesting case where 
the number of grid points are not equal, we see from the 
definition that the coefficients of the expansion of the fil- 
tered values must be matched. For example, for the case 
where N+ > N_, and hence raN+ > raN_, we have the 
conditions: 


(13a) 


(13b) E+•t+•)t + = E-fiF;F, raN+ _<1 <_ N_ 
(3c) E+fi?;? = 0, 


These conditions are quite different from the interface con- 
ditions in [9], and the reason is that spectral viscosity is 
defined in spectral space, and hence we get matching condi- 
tions on the Chebyshev spectra in each domain. The condi- 
tions express that in [raN_, N_]Cl[raN+, N+] the Chebyshev 
coefficients have to be matched, and outside this interval 
they are set to zero. 


It is fairly obvious that these conditions can be gener- 
alized to work for an interface of arbitrary (but smooth) 
shape. 


The implementation of these interface conditions can be 
done by a penalty method, or by exchanging interface val- 
ues as described in [13]. 


3 Boundary conditions 


Again we consider the PDE system (4) with p = 0: 


d d 


(14) ut + • Aiu•, : E • p(ii) (Ri * uZ,)x, + b 
i=l i=1 


We are now interested in imposing correct boundary con- 
ditions on fli. We know from numerical experiments. see 
e.g. [5] and [12], that indirect imposition of the bound- 
ary conditions seems to work well. This procedure goes as 
follows: Assume that we have a viscous term of the form 


ax/ 


and a boundary condition of the form 


Ou 


where a,/3,-y • ll•. At the boundary we now solve for ofl• 
in the boundary condition and insert this expression in the 
viscous term. Then we perform the second differentiation. 
These modified second derivatives are only computed at 
the boundary, elsewhere we compute the term as usual. If 
our viscous term is of the SV type, we can use the same pro- 
cedure, but slightly modified: We solve for the derivative 
in the boundary condition as before, but now we expand 
the result (a linear function of u) in Chebyshev series and 
filter these coefficients before performing the second differ- 
entiation. 


The situation is different if we want open or transpar- 
ent boundary conditions since it is not always possible to 
express such conditions as mixed type of boundary condi- 
tions. It is well known that the ideal open boundary condi- 
tions are global both in time and space, and therefore local 
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approximations have to be made. There are many meth- 
ods suggested for a Navier-Stokes type of equations, but 
here we will use the theory developed in [9]. Applications 
of this theory and discussion of the discrete case is given 
in [12]. The starting point for the derivation of the open 
boundary conditions in [9] are the interface conditions be- 
tween two subdomains. The theory relies on the fact that 
the linearized incomplete parabolic systems has solutions 
of the normal mode type: 


r+p 


i----I 


For the explanation of the symbols, see [9]. If we shall use 
this theory also for the SV case, we have to show that such 
solutions also exist for this case. 


3.1 The advection-diffusion equation 


In order to gain some insight into the existence of normal 
mode solutions for our type of SV equation, consider an 
advection equation with SV in 1D: 


0 


(15) t,t + ½vx = (R. vx) 
in the half-space •+ - (0, oc). If we perform a Laplace 
transform in t and assume zero initial conditions we get 


0 (R. •) s6 + c9• = e•x x . 


Now inserting a solution e f•, we get after canceling the 
common efX-term: 


(16) s + c• - •2•(•) 


where/•(•) is the Laplace transform of the filtering func- 
tion R. This means that we can solve (16) for • (at least in 
principle), and then find a normal mode for our PDE. The 
equation (16) is the same as the basic equation [9, (1.1)], 
and hence we have for the general case that 


Q(•,io) 


(17) 


d 


Ai• + • Ajirlj + ep(•)•2/•, (•) _ 
j=2 


d 


j--2 


To allow for different filtering parameters for the individual 
equations, we let •(•) - diag(1•ll(•),...,I•ln(•)), and 
similarly for the other coordinate directions. 


If we now go back to (1•6), we see that we should have an 
explicit expression for R(•), and we have not specified the 
operator itself yet, only indicated that it should be so con- 
structed that the discrete filtering operator Rs is a good 
approximation to it. If we consider R as a distribution we 
know that R - 5 will give the usual advection-diffusion 
equation, because we have that 5 * vx = vx and œ5 = 1 
(œ denotes the Laplace transform of a distribution). Open 
boundary conditions for the advection-diffusion equation 
are derived in [13]. 


We can express the filtering distribution in terms of a 
type of summability kernels used in harmonic analysis, see 
e.g. [10]. An example of such a kernel is the De la Vall4e 
Poussin kernel 


Vx = 2K2x - Kx 


where Kx is the F•jer kernel, see again [10]. The Fourier 
transform of the De la Vall•e Poussin kernel is shown in 


figure 1. We see that a possible filtering operation may be 


Y}. 


k 2k 


Figure 1: Fourier transform of the De la Vall•e Poussin 
kernel 


expressed as R ß v.• = v• - Vx ß Vx for a suitable A, hence 
the filtering distribution can be written R = 5 - Vx. We 
are seeking the Laplace transform of this distribution, and 
that is different from the Fourier representation since we 
have the relation 


œ(f(x))=.•'(f(x)e-•rz), •= a+iw, 


where w is the variable in Fourier space. We will try to 
find a kernel with Fourier transform matching the form of 
•he spectral viscosity. Let V(•) be the Laplace transform 
of such a kernel. Then we can write (16) 


(18) s + • = e• 2 (1 - V(•)). 


The distribution V(•) should then tend to zero • [•[ • •. 
An interesting kernel is the function of Riesz-mean type 
discussed in [4, p.34]. In Fourier space it is given by 


1-112 0 w>l 
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Note that the Riesz-mean kernel does not have the same 


Fourier representation as the SV method calls for, but the 
characteristics are very similar. We will see below that 
there are analytical results available for the Riesz-mean, 
which give us insight into how the filtering affects the con- 
struction of the open boundary conditions. If 0 < a < b 
the following kernel has the wanted properties: 


v•b(•') = aK - (a - 1)K , a = b2 _ a• 
The Fourier representation of this function is given in figure 
2. The inverse transform of K(w) is also given in [4]: 


! 


ß 


Figure 2: Fourier representation of the kernel 


•-•(K(•)) = x-3/2J3/2(x), 
hence 


•'-•Vab -- c•b-X/2J3/2(bx) - (a - 1)a-U•Js/•(ax) 


that goes as O(x -2) • x • •. Hence it is a well- 
behaved function. The Laplace transform of •-•(K(•)) 
is possible to calculate and it is expressed • a hyperge• 
metric function. 


c •-•/•/•(•))=•/•r(•)•r ;•;•; • . 
The hypergeometric function is the expression 


( r ;•; •' • • = • (•m +•)tSm + •) mmO 


It is e•y to see that the transform behaves like O(• -1) • 
• • •, hence have the wanted behavior. 


The Laplace transform of the filtering distribution can 
now be written 


I 1 


(19) V(•) = 1 - c1• - C2• + 0(• -5) 


for [•[ sufficiently large, and where Ci, C2 6 1• To sim- 
plify further, we may assume'l• I so large that the •-•-term 
can be ignored, and we are left with the -•- term. The 
constant C1 is easily calculated from the expression for the 
Laplace transform. So the "characteristic" equation (16) 
now becomes: 


Consider now a kernel that has a Fourier representation 
that corresponds to the SV method. Let 


(21) •c(•)= • - - 
• •v•a 


We want to compute the inverse Fourier transform for this 
distribution: 


•'-I(K:) = ei•tdt + ei"•t--dt 0.22 ' 


The first integral, denoted by I•, is elementary: 


l ' iat 1) (22) •- •(• - 
The second integral is more difficult, but the inverse trans- 
form of P[•-• is known. Furthermore, the following relation 
holds: 


•'-•(Pf ) = •'-•(l+(w)•) q- •'(l+(w) ), 
where l+(w) is the unit step function. The last term can 
be computed by using the result in [7, p.177]: 


•'(1+(•) 1) = a(o2)t - a(2•t ln(t - i0) aj2 -- 


where a(02) - i, a(._? -- i(1 q- F'(1) q- i-•). Using the expres- 
sion for Pf•--• in [18, p.204], we have the wanted inverse 
transform: 


t (2)t + a(2•t ln(t - i0) (23) I2 = •- l+(t)t-a o _ 
We will now compute the Laplace transform of I1 and I2, 
and again we are only interested in the asymptotic prop- 
erties of these transforms. We have 


œ(I1) -/log • 
• - ia 


but expanding Ia in power series we get the asymptotic 
result: 


a a 2 


(24) œ(I•) -- • q- •-• q- O(• -3) 
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The Laplace transform of I2 has the following asymptotic 
expansion: 


c 


(25) œ(I2) = • + O(•-a), C e R 
Hence by assuming that I•[ is sufficiently large, we may 
include only the •-l-term, and this gives the same "char- 
acteristic" equation as (20), but where the constant C1 is 
now substituted by a. 


The open boundary condition comes from the transmis- 
sion condition where we have inserted the normal mode 


solution in the outer domain: 


(26) n, sv• = s•(•)v, 


cfr. [9, Thm.2.2], with/•(•) = 1 - V(f). The exact form 
of the boundary condition now depends on the behavior of 
V(•) as s -• 0 for the obtained values of f. 


Let us first consider the case where all V(f) can be 
ignored, i.e. [•[ is sufficiently large for this to be satis- 
fied within the required accuracy for the open boundary 
conditions. Then (16) reduces to the ordinary advection- 
diffusion equation: 


which has roots: 


s + c• = 


- + - + O(s), and - - + e . + 0(?) 
s c c 


This gives the following first order open boundary condi- 
tions: 


(27a) s(R. v•) = 0, on outflow 
(27b) s(R.v•) = cv, on inflow 


The second order (and time-dependent) conditions are: 


(28a) s(R . v•) = --vt, on outflow 
½ 


(28b) s(R.v•) = cv + -vt, on inflow 
c 


These conditions make sense since for R = 5 they are iden- 
tical to the conditions for the advection-diffusion equation 
obtained in [13]. The interpretation of the conditions in the 
discrete case is via the Chebyshev expansion both sides of 
the equations. So for the first order conditions, the inter- 
pretation is as follows: 


outflow: 


0 <_ I _< mN : bt unchanged 


rnN<l<N .' /•tbt=O 


inflow: 


O_<l_<mN : at=0 


mN< I _< N : t•tbt = c at 


where al are the Chebyshev coefficients for the unknown 


Similar interpretations are valid for the second order 
conditions. An alternative is to use indirect imposition 
of the boundary conditions, i.e. substitute for s(R ß v•) at 
the boundary before performing the second differentiation 
in the viscous term. 


Now consider the equation (20) again, and this has the 
following roots expanded in s-series: 


c $ 


-- + -- + C1 + 
• ½ 


and 


s( s2 sC• ) -- + s + + O(s 2) 


With C1 = a = rnN = s -1/2 we have that s•/•(•) = 
s• - s 1/2 + O(1), hence with the roots above this becomes: 


$ 


c + -s + O(s3/2), and 
c 


s s__•3/2 + 0½2) - -s+ c2• c 


This gives the following open boundary conditions: For the 
outflow case we get the same conditions as above, but now 
the terms omitted are (.9(sa/2). For the inflow case we also 
get the same conditions because the terms of order s 1/2 in 
s•(•) cancel. 


If we include the second order term in the Laplace trans- 
form, we get the same first root, but the s-term in the sec- 
ond root, which does not influence the boundary condition, 
now becomes 


s 2 s a 2 ' 


C3+ --+--. -- a c2 c 
If we include the third order term in the Laplace trans- 


form, and not the second order term. we get an entirely 
similar result: The s-term of the second root becomes: 


s • s C• 
C3 q-Cl• q---. $ 


We see that in this case we obtain an integro-differential 
relation, which is not local. 


3.2 The incomplete parabolic system 


•Ve now return to the incomplete parabolic system. From 
the above results for the advection-diffusion equation we 
may infer that the conditions to be used here are the same 
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as the ones derived in e.g. [12], but where the left hand 
side of the conditions now are of the form: 


v(R,ui,z). 


However, this has to be justified (at least partially) because 
the theory developed in [9] is based upon certain assump- 
tions which we now have to check. We will therefore follow 


the derivation in [9] in broad terms. In the following we will 
assume that the filtering function/•(•) will have the form 
1 - V(•) for all the variables. Moreover, the matrices P(JJ) 
in the SVoterm will be assumed to be diagonal. The latter 
assumption should not cause problems for the systems we 
will consider below. We will consider the problem in the 
half-space Q- - (x: x• < 0) bounded by the boundary 
F = {x: x• -- 0). The half-space Q+ = {x: x• > 0) then 
represents th outer domain. 


The first point to check is if the normal modes • have 
the same behavior as stated in [9, Thm. l.1] as e --• 0. 
In essence, r values should tend to infinity and n values 
should have a finite limit. The proof in [9] can be used 
almost as it stands, but we have to check that 


I•p(11)•2k(•)- sI I -- 0 
has r roots with negative real part and r roots with positive 
real part. Using the assumption that the matrix 
is diagonal and positive definite, and that •(•) has the 
required form, we can easily find that the theorem holds. 


Now we can assume a solution in the outer domain of 


the normal mode type: 


• -- E Aie•iXa (I)i. 


This solution will be used to derive the open boundary 
condition in the first form. We start with the transmission 


condition 


(29) R ß •p(1•)• _ R ß eP(l•)fi• + 


and compute fi•+ and R ß fi•. We get 


i:1 


and hence the transmission condition is 


r+p 


S * ep(ll)•tz -- ep(11) E •i•ik(•i)(I)i' 
i=1 


Now using the derivation in the proof of [9, Thm.2.2], we 
obtain an equivalent result: 


Lemma 3.1 The open boundary condition at F for the 
half-space fl- is: 


(30) R * 
r+pr+p 


i=lj=l 


ß 


We have used the same notation as in [9] and [12]. From 
the assumptions we have 


The next step depends on the asymptotic properties of •. 
It is relatively straightforward to show using the proof of 
[9, Thm. l.1] that we have the following expressions: 


(• "[- O(e 1/2) i __< j _• rn ($1) •j = 0 _x_ (9(1) < j _• • + •/• + m r + p 


where the quantities a and 0 are found as in [9], and where 
X is found from another generalized eigenproblem which we 
don't give here because it will not be used in the following. 
Hence we see that the asymptotic properties of z•/•(•i) 
are the same as in [9], but now we have terms of order e 1/• 
in both expressions. So we can now construct boundary 
conditions of half orders. 


By performing the limiting process, we obtain a parallel 
to the conditions [9, (2.10a), (2.10b)]: 


where now 


•i -- { Oi + Xie •/• + m+l<_i_<r+p 
l<i<m 


hence the first order conditions are the same as those ob- 


tained in e.g. [12], whereas the second order conditions are 
now in fact conditions of order 1«. 


3.3 Applications to the Euler equations 
for an atmosphere 


In this section we will be applying the results obtained 
above to the Euler equations used to simulate gravity 
waves in the atmosphere, for the physics see e.g. [3]. The 
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governing equations are as follows: 


du 


(33a) p•- = Vp 4. pg 4. F 
(33b) dp 4- •/pV . u - 0 


dt 


(33c) Op o-• + v. (pu) = o 
Here u is the velocity vector, p is the density, p is the pres- 
sure, g is the acceleration of gravity, and 7 is the ratio 
of specific heats. The open boundary conditions for this 
system of PDEs is given e.g. in [2]. The open bound- 
ary conditions for the incomplete parabolic system for this 
PDE system is not given explicitly in the literature, but 
we can easily infer what the conditions are from the re- 
sults for a closely related system, namely the equations for 
nonlinear acoustic propagation in sea water, given in [12]. 


We include a SV-term in these PDE system and assume 
that P(•) = diag(1, 1, 1, n/e, 0), and also that the filtering 
function (using the parameters ra2v and N) is the same for 
all variables. Hence the pressure equation can have a dif- 
ferent amount of damping from the momentum equations. 
It is straightforward to extend the results to the case where 
P(•) can have arbitrary positive elements. 


Since the first order conditions are identical to the ones 


obtained'for the usual incomplete parabolic system except 
that the left hand side is the filtered derivative, we can 
write down the results directly from the formulas given in 
[12]. Consider first the right interface and the inflow case. 
We then get: 


(34a) R , e•x = 
0S 


(34b) R,e•x = 


(34c) R , e ox - 
o• 


(34d) R* e•x x = 


01 


01) 


A _ 


(a + a- o•) 


Here the hatted quantities are the frozen coefficients used 
in the derivation of the characteristic variables, a and so 
on represents the variables with homogeneous initial con- 
ditions, a is the sound speed, and 


i (•(1 + n)- v/4(a 2- •2)+ •2(1 + n)2) 0• = • . 
In the inflow case there is also a hyperbolic part which is 
an old friend: 


P Po 


(35) P &2 = Po a2 


where the quantities with the zero subscript refers to the 
values exterior to the domain. 


For the outflow case we don't have any hyperbolic part 
of the boundary conditions, and the parabolic part, again 
from the results in [12] is: 


0• 0• 


(36a) R,e•x = )(&+•t_0•) 
(36b) R,e•-•x = 0 


0• 


(36c) a, •-; = 
o• 


(36d) n,• = 


o 


0•(0• -•) 
()aa - i•) 


We see that these conditions contains the outgoing fast 
characteristic for the hyperbolic part of the system, so that 
the conditions reduce to specifying the incoming character- 
istics in the e -, 0 limit. 


For the left boundary we have a different incoming char- 
acteristic which will enter in the expression. Again form 
[12] we get. for the inflow case: 


0• 02 


(37a) R,e•x = )(a+fi-02)()aa+P) 
0• 


(37b) n,• = • 
0w 


(37c) R* e-- = 
Ox 


(37d) R,e•x x = (a+fi-02) 
We also have a hyperbolic part of the boundary conditions 
and this identical to (35). 
For the outflow case we get in a similar way 


(38a) R ß e-- = ()fi'a + p) 
Ox )(a + a - 02 ) 
Oe 


(38b) R,e-- = 0 
Ox 
Ow 


(38c) R * e ox = 0 


(38d) R ,e•-• = 
and there is no hyperbolic part here 
The interpretation of these conditions in the discrete case is 
again via the Chebyshev coefficients, exactly as shown for 
the advection-diffusion case. The practical implementation 
can be done in several ways, and in [12] the numerical ex- 
periments show that the indirect imposition method works 
best. This procedure can of course also be applied here, 
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but then the direct correspondence between the Chebyshev 
coefficients is somewhat hidden. 


Note that for frequencies (and i-values) below the filter- 
ing threshold, we have a hyperbolic system with its cor- 
responding open boundary conditions. In practice that 
means that we have to impose both types of boundary 
conditions, those belonging to the h•vperbolic system, and 
viscous ones like those derived above. 


4 Conclusion 


[3] 


[4] 


The spectral viscosity method is a useful method to sta- [5] 
bilize the computations when using Chebyshev spectral 
methods in long-term simulations. We have extended the 
spectral viscosity method to a multidomain method by [6] 
deriving interface conditions between subdomains. The 
domain decomposition technique is useful for example to 
adapt the resolution to the physical phenomena studied, 
and to handle complex geometries. [7] 


The interface conditions were derived based on a varia- 


riohal formulation and can be implemented in the same 
way as done for multidomain solution of advection- 
diffusion equations. [8] 


We have also derived transparent boundary conditions 
for quasilinear hyperbolic systems with spectral viscosity. 
Such boundary conditions are needed when modeling wave 
phenomena in a physically unbounded domain. The same 
procedure used to derive the transparent boundary condi- [9] 
tions can also be used for other types of boundary condi- 
tions. 


The numerical experiments with the interface and 
boundary conditions have just started, and what the best 
way of implementing then is, is not yet clear. Further- 


more, theoretical work in the Chebyshev case has not really [11] 
started, and we hope to contribute to the understanding 
of the spectral viscosity method in forthcoming reports. 
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A Numerical Study on the Accuracy of 
Fourier Spectral Methods Applied 
to the Nonlinear Burgers Equation 


Chi-Wang Shu* Peter S. Wong* 


Abstract 


It is well known that spectral method can achieve expo- 
nential accuracy both on the approximation level and for 
solving partial differential equations if the solutions are an- 
alytic.- However, the situation is very different when the 
function or solution is not smooth. For a linear partial 
differential equation with discontinuous solutions, Fourier 
spectral method will produce poor point-wise accuracy, but 
will still maintain exponential accuracy for all moments 
against analytic functions. In this presentation we address 
the issue of accuracy of Fourier spectral method applied to 
the nonlinear Burgers equation through a numerical study. 
Our numerical experiments show that, unlike in the linear 
case, the moments against analytic functions are no longer 
very accurate. However the numerical solution seems to 
still contain accurate information, since accurate point val- 
ues can be extracted by a Gegenbauer polynomial based 
post-processing. 


Key words: spectral method, accuracy, Gibbs phe- 
nomenon, Burgers equation. 


AMS subject classifications: 65M15, 42A10. 


I Introduction 


In this presentation we are concerned with the accuracy 
of Fourier spectral method when applied to a nonlinear 
conservation law 


OtU+Oxf(U) = 0, -l_<x< 1 
(1) u(x,0) -- uø(x) 


* Division of Applied Mathematics, Brown University, Providence, 
RI 02912. 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. (•)1996 Houston 
Journal of Mathematics, University of Houston. 


where the initial condition uø(x) is 2-periodic. As is well 
known, solutions to (1) typically contain discontinuities 
even if the initial condition uø(x) is analytic. Our purpose 
is to assess accuracy under such situation through a nu- 


• 1/:2 merical study for the case of Burgers equation f(u) - -T' 
See also [15]. 


First some notations. The Fourier approximation oper- 
ator Siv to an L 2 function u(x) is 


N 


(2) sivu(x) = 0ke 


where the Fourier coefficients fik are defined by 


for Fourier Galerkin, or by 


N 


(4) •k = 2N + I 


where xj 2j for Fourier collocation. To solve the par- • 2N+l ' 
tial differential equation (1), the standard Fourier spectral 
algorithm is 


SN(OtVN +Oxf(vN)) = 0, -1 _< x < 1 
(5) •iv(x, 0) = Sivuø(x) 


whereviv(x,t) iv = •=_iv 0k is supposed to approx- 
imate the exact solution u(x, t) of (1), and Siv is either the 
Galerkin or the collocation Fourier approximation operator 
defined by (2)-(a) or by (2)-(4). 


The approximation error 


(•) u(x)- Sivu½) 


is well known to be exponentially small (i.e., it is of the 
size O(r N) for some 0 ( r (1) if u(x) is analytic. In 
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this presentation, we will only discuss analytic functions 
as representations of general smooth functions. Similar 
results can also be obtained for C ø• or C k functions. How- 
ever, if u(x) is only piecewise analytic but discontinuous, 
the approximation error (6) is O(1) near the discontinu- 
ity and only first order O(-•) elsewhere. This is known as 
the Gibbs phenomenon. See, e.g., [4] and [3]. Fortunately, 
even if the accuracy is poor in the point-wise sense, it is 
still excelIent for the moments against any analytic func- 
tions. For any L • function u(x) and any analytic function 
w(x), we have [5]: 


(7) - sNu(x))w(x)ax[ Cr N 
for some constant C and 0 • r • I independent of N. This 
property is the basis of all the "reconstruction" or "post- 
processing" techniques. These techniques try to recover 
exponential or at least high order accuracy for point values 
based on the Fourier approximation SNU(X ) of a piecewise 
analytic function. In other words, one tries to obtain a 
small post-processed approximation error 


(8) u(x) - P,¾ s,u(x) 


where PN is some post-processing operator. Examples of 
PA' include various high frequency filters [14], [11], [17], 
[2], which are of the form 


with $NU(X) given by (2). The function a(•) in (9) is even 
(or satisfies a(-•) -- a(•) if it is complex valued as in 
[2]), smooth (the accuracy of the filter depends upon its 
smoothness), supported in (-1, 1) and satisfies a(0) = 1 
and a(k)(0) = 0 for I _< k <_ K (with accuracy of the 
filter again depends upon K). These filters can recover 
high order or even exponential accuracy in the smooth re- 
gions away from the discontinuities (the filter in [2] can also 
recover high order accuracy up to the discontinuity from 
one side). A more recent example of PN is the Gegenbauer 
polynomial based procedure discussed in [6], [7], [8], [9] and 
[10], which can give uniform exponential accuracy for all 
x right up to the discontinuity for piecewise analytic func- 
tions. In this sense spectral Fourier approximation is also 
exponentially accurate for piecewise analytic functions-- 
one only has to extract the hidden information from the 
poor approximation $N(X) using the post-processor PN. 


When spectral method is used to solve the PDE (1), we 
can consider the following different types of errors. The 


strongest is the point-wise error from the exact solution 
u(x,t): 
(10) u(x,t) - VN(X,t), 
which cannot be small even for t = 0 due to the Gibbs 


phenomenon, if the initial condition contains shocks. A 
more reasonable error is the point-wise error of the numer- 
ical solution VN(X, t) from the Fourier approximation of 
the exact solution $NU(X, t): 


(11) SNU(X,t) -- VN(X,t). 


If this error is exponentially small, we can claim the spec- 
tral method for (1) is exponentially accurate because of 
the post-processor (8) for the exact solution u(x, t). An 
even weaker error is defined by the error in the first few 
Fourier coefficients, i.e. 


(12) •,(t) - 9•,(t) 


for the first few k, where •(t) are the Fourier coefficients 
of the exact solution u(x,t) of (1). This is actually an 
example of the more general definition of error in moments 
against any analytic function w(x): 


/: (13) t)- 
1 


In fact, as long as this error in moments is exponentially 
small, we can claim that the spectral method is exponen- 
tially accurate in solving (1) by using property (7) for the 
exact solution u(x, t) and the post-processing (8). 


If the PDE (1) is linear (i.e. f(u) - a(x,t)u), it is 
proven in [5], [1] that spectral Fourier method is exponen- 
tially accurate in the sense that (13) is exponentially small. 
A post-processing (8) applied to rs. (x, t) would then yield 
an exponentially accurate point-wise approximation to the 
exact solution u(x,t). However, if (1) is nonlinear, it is 
still a theoretically open problem whether spectral Fourier 
method, equipped with either high frequency filtering or 
vanishing viscosity [16], [12], is exponentially (or high or- 
der) accurate in the sense of (13). Computational evidence 
in [13] seems to suggest that, even in this nonlinear case, 
highly accurate information is still implicitly contained in 
the numerical solution and can be extracted (at least away 
from the discontinuity) by a post-processing using high fre- 
quency filtering. However, because of the O(1) Gibbs phe- 
nomenon, the global error of the post-processed solution is 
still only at most first order in L •. Thus these numerical 
experiments do not establish global high order accuracy in 
the presence of shocks. In the next section we will perform 
a detailed numerical case study about this accuracy issue 
for the Burgers' equation (f(u) = -T)' We use a high fre- 
quency solution filter to stabilize the algorithm, and post 
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process the numerical result using the Gegenbauer poly- 
nomial based procedure [6], [10]. We observe that, unlike 
in the linear case, the spectral Fourier method is not very 
accurate in the sense of moments against analytic func- 
tions (13). However, numerical evidence does indicate the 
possibility of very high accuracy under some weaker defi- 
nition, perhaps some average of Fourier coefficients, since 
the post-processed result Pzvwv(x,t) is much more accu- 
rate than the Fourier coefficients themselves, and accurate 
Fourier coefficients can be "reconstructed" from this post- 
processed solution P•vv•v (x, t). 


Before finishing this introduction, we would like to de- 
scribe briefly the Gegenbauer polynomial based postpro- 
cessing procedure in [6], [7], [8], [9] and [10]. Let's consider 
the simplest case of only one discontinuity, located at the 
interval boundary x = +1. That is, u(x) is an analytic 
function in [-1, 1] but not periodic. Let's also only con- 
sider the Galerkin case, i.e. assume that we are given the 
first 2N + 1 Fourier coefficients of u(x) defined by (3), and 
hence S•.u(x) in (2). The objective is to recover exponen- 
tially accurate point values of u(x), uniformly over [-1,1]. 
To achieve this end, we consider the Gegenbauer expan- 
sion of u(x) over [-1.1], i.e., expansions in the Gegenbauer 
polynomials C•(x), which are orthogonal with the weight 
function (1 - x2):•-«: 


(14) u(x) -- Z f•C•(x) 


Of course, we do not know the exact Gegenbauer coeffi- 
cients Ax of u(x), but just the approximate Gegenbauer 
coefficients, fix obtained from SNu(x): N.k' 


(15) SNU(X) -- • •,•.•:C•(x) 
k----O 


The two most important ingredients in the reconstruction 
procedure are: (1) do not fix the parameter ,•, but choose 
it proportional to, but less than, N, and (2) do not sum 
(15) to infinity, but only to m: 


m 


(16) PNS•vu(x)- • '• • u.,kCk(x) 
k----O 


where m is again chosen proportional to, but less than, N. 
One could choose, for example, m = A = • •N, among many 
other possibilities. It can be proven [6] that, under such 
choices, the reconstruction error is uniformly exponentially 
small: 


(17) max lu(x)- PNSNu(x)I _• Cr N 
--l<x<l 


for some constants C > 0 and 0 < r < 1 independent of N. 
This is in contrast with earlier filtering techniques which 
can obtain good accuracy away from the discontinuity but 
still leaves O(1) errors near the discontinuity. The same 
conclusion also holds for more than one shocks, for Legen- 
dre, Chebyshev or general Gegenbauer expansions rather 
than Fourier expansions, and for collocation rather than 
aalerkin, [8], [9] and [10]. 


2 A numerical case 


accuracy 


study about 


In our numerical solution reported in this section, time dis- 
cretization is by a third order Runge-Kutta method, with 
a time step At sufficiently small such that the spatial error 
is dominant in all cases. We compute the exact solution of 
the Burgers equation by Newton iterations on the implicit 
characteristic equations, and compute the Fourier coeffi- 
cients of a function (if not analytically given) by using a 
sufficiently accurate numerical quadrature. 


We first solve a linear equation 


3 
Otu+ O•:u = 0, -l<x< 1 


5 - 4 cos(wx) - 
0) = 


with periodic boundary conditions, up to t--1. using the 
Fourier Galerkin method: 


SN OtVN + 5-- 4COS(itX) O•'t'5' = 0, 
N 


(19) VN(X,O)=SNX= • (--1)ki i• kit e 
k=-N 


k•O 


Standard Galerkin method is stable for this linear prob- 
lem but produces poor point value accuracy, see Figure 1. 
In all the figures, we have shown the solution in a period 
bordered by the single discontinuity. However, the accu- 
racy in the first few Fourier coefficients, as representatives 
of moments against analytic functions, are computed more 
accurately, see Figure 2. 


In order to compare with the nonlinear case reported 
later, we solve the same linear equation (18) using the fil- 
tered Fourier method, i.e., after each Runge-Kutta time 
step, the numerical solution is filtered by (9) with the ex- 
ponential filter: 
(20) = 
where r is increasing with N and is related to the order of 
the filter, and a is chosen such that e -a equals machine 
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i Pointwise Error --- linear, no filter 10 • 
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I 1ø • 
i 


i lo' 
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Figure 1: Point-wise errors in the logarithm scale, linear 
PDE (18). Fourier Galerkin using 2N + 1 modes, for N = 
10, 20, 40 and 80. 


Error in First 10 Fourier Coeff --- linear, no filter, before post-pro• 
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Figure 2: Errors in the first 10 Fourier coefficients, in the 
logarithm scale, linear PDE (18). Fourier Galerkin using 
2N + I modes, for N = 10, 20, 40 and 80. 


Pointwise Error --- linear, filter 
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Figure 3: Point-wise errors in the logarithm scale, linear 
PDE (18). Fourier Galerkin using 2N + 1 modes with 
exponential solution filters of order r. r -- 4 for N = 10; 
r = 6 for N = 20; r - 8 for N = 40 and r - 12 for N = 80. 


zero ( 10 -16 for double precision). The exponential filter 
(20) has the advantage of simplicity, and usually it works 
equally well as more complicated filters [17]. For this linear 
problem, as well as for the nonlinear Burgers' equation 
later, we will use the Fourier method with the following 
choice of filter orders: r = 4 for N = 10; r = 6 for N - 
20; r = 8 for N = 40 and r = 12 for N = 80. The 
result is shown in Figure 3 for the point-wise errors and in 
Figure 4 for the errors in the first few Fourier coefficients. 
Comparing with Figure i and Figure 2, we can see better 
point value accuracy in the smooth region because of the 
filters, and similar (good) accuracy for the first few Fourier 
coefficients. 


The computational result for the linear equation is not 
surprising since it just verifies the proven fact [5], [1] that 
Fourier coefficients, as representatives of moments against 
analytic functions, are computed with exponential accu- 
racy by the spectral Fourier method, and filtering will re- 
cover exponential point value accuracy in smooth regions 
away from the discontinuity. It should be noticed that, for 
the same N, the accuracy for the first few Fourier coeffi- 
cients is at the same level at or better than the best point 
value accuracy in the smooth region after filtering. This is 
again not surprising since point value accuracy is obtained 
from the Fourier coefficients through filtering. 


We now come to the nonlinear problem we are really 
interested in: we solve the nonlinear Burgers' equation 


Otu+Ox(•) = 0, -l<_x<l 
(21) u(x,O) = 0.3+0.7sin(•rx). 


The solution develops a shock at t = 0.-• and we compute 
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Error in First 10 Fourier Coeff --- linear, filter 


1½ _N=10 
1o' N=2• __ 
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10' N=8_•.0• • 
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0 2 4 6 6 


Figure 4: Errors in the first 10 Fourier coefficients, in the 
logarithm scale, linear PDE (18). Fourier Galerkin using 
2N + 1 modes with exponential solution filters of order r. 
r -- 4 for N = 10; r = 6 for N = 20; r = 8 for N = 40 and 
r - 12 for N = 80. 


the solution up to t - 1. The initial condition is chosen 
such that the shock is moving with time. For this nonlin- 
ear PDE, the standard Galerkin method cannot converge 
to the entropy solution [16]. One would need to add dissi- 
pations either by the high frequency solution filtering (9) 
or by the spectral vanishing viscosity [16], [12], [13]. Nu- 
merical results for the Burgers' equation with the vanishing 
viscosity method can be found in, e.g., [13]. Here we will 
only report the results obtained by solution filtering, using 
the same r as in the previous linear case (18). We have 
also computed with the vanishing viscosity methods and 
have obtained similar results. 


In Figure 5 we plot the point-wise error u(x, t)--rs(x, t), 
and in Figure 6 the error for the first 10 Fourier coeffi- 
cients. While the pattern of the point-wise errors are simi- 
lar to the linear case in Figure 3, the errors for the Fourier 
coefficients are clearly much worse in comparison. As a 
matter of fact, for the same N, the errors for the first few 
Fourier coefficients are a few magnitudes larger than the 
smallest point value error in the smooth region. This is 
clearly different from what we observe in the linear case 
in Figure 4, and suggests that the first few Fourier coef- 
ficients, again as representatives of moments against ana- 
lytical functions, are no longer computed with exponential 
or high order accuracy. It is sort of puzzling that each dif- 
ference in the Fourier coefficients •k (t) - 9k (t) is relatively 
large (Figure 6), but the point-wise error u(x, t) - VN (x, t), 
which is just an average (weighted sum) of 
(against O(1) weight functions eik•x), is much smaller in 
the smooth region (Figure 5). Some caneelation must be 
present for this to happen. 


Next, we apply the Gegenbauer post-processor [6], as 


Poin •t•o, ise Error --- Before Post-Processing 


.,.-,. / / 2,m 
1o• N=4 


10'•/ ' • 015 ' ' ' ' 010 ' ' ' 0'5 


Figure 5: Point-wise errors in the logarithm scale, Burgers 
equation (21). Fourier Galerkin using 2N + I modes with 
exponential solution filters of order r. r = 4 for N = 10; 
r = 6 for N = 20; r = 8 for N = 40 and r = 12 for N = 80. 


Error in First 10 Fourier Coefficients --- Before Post-Processing 
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Figure 6: Errors in the first 10 Fourier coefficients, in the 
logarithm scale, Burgers equation (21). Fourier Galerkin 
using 2N + 1 modes with exponential solution filters of 
orderr. r =4 forN= 10; r = 6 for N=20; r =8 for 
N = 40 and r = 12 for N = 80. 
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Pointwise Error --- After Post-Processing 
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First 10 Fouder Coefficients --- After Post-Processing 


Figure 7: Point-wise errors in the logarithm scale, Burgers 
equation (21). Fourier Galerkin using 2N + i modes with 
exponential solution filters of order r. r - 4 for N - 10; 
r - 6 for N - 20; r - 8 for N - 40 and r - 12 for N - 80. 
Gegenbauer post-processed, with parameters A - 2, m - 1 
for N- 10; A-- 3, m- 3 for N-20; A-- 12, m-7for 
N-40and A-62, m-15, forN-80. 


Figure 8: Errors in the first 10 Fourier coefficients, recon- 
structed from PNVN(X, t), in the logarithm scale, Burgers 
equation (21). Fourier Galerkin using 2N + I modes with 
exponential solution filters of order r. r - 4 for N - 10; 
r - 6 for N - 20; r - 8 for N - 40 and r = 12 for N = 80. 
Gegenbauer post-processed, with parameters A -- 2, m = 1 
forN= 10; A=3, m=3 for N= 20; A= 12, rn= 7 for 
N=40andA=62, m=15, forN=80. 


briefly described in the previous section, to the numerical 
solution VN(X,t). We first use the exact shock location, 
and use the following values for the parameters m and A: 
A = 2, m = I for N = 10; A = 3, m = 3 for N = 20; 
A = 12, rn = 7 for N = 40 and A = 62, m = 15, for 
N = 80. We would like to point out that there is no the- 
oretical justification in doing this post-processing for the 
current nonlinear case, since the post-processing procedure 
assumes that the Fourier coefficients are accurate, which 
is not true any more. However, the post-processed result 
is surprisingly good, see the point-wise errors in Figure 7. 
Just like in the approximation test cases [6], V•re can ob- 
serve good accuracy everywhere including at the disconti- 
nuity x - +1 + 0.3. From these very accurate point values 
we can reconstruct the Fourier coefficients, namely we can 
compute the Fourier coefficients of PNVN(X,t), see Fig- 
ure 8. These reconstructed Fourier coefficients are much 


more accurate than before the post-processing, comparing 
Figure 8 with Figure 6. 


This suggests that, even if VN(X,t) or its Fourier co- 
efficients 9k(t) are not very accurate, it must implicitly 
contain accurate information which is extracted in this 


case by the Gegenbauer polynomial based post-processor 
PN. This numerical evidence suggests that in the nonlin- 
ear PDE case, Fourier coefficients 9k (t), just like point-wise 
values in the linear (or nonlinear) PDE case, are no longer 
good indicators of accuracy. They themselves are not very 
accurate, but they implicitly contain accurate information 
which can be extracted by adequate post-processors PN. 


This accurate information might be contained in some av- 
erages of the Fourier coefficients (since the post-processing 
procedure based on Gegenbauer polynomials [6] uses cer- 
tain averages of Fourier coefficients rather than the coeffi- 
cients themselves). 


We finally make two remarks: 


Remark 2.1 In the Gegenbauer reconstruction procedure 
above we have used the exact shock location. The proce- 
dure in [8] allows us to use an approximate shock loca- 
tion, determined from the Fourier coeJficients themselves 
(e.g., [2]). Similarly good results can be obtained when 
the reconstruction is performed in a slightly smaller sub- 
interval inside which the solution is guaranteed to be ana- 
lytic. For example, we use the shock detector in [2], which 
in this case detects the shock location to within 0.0000025 


for all the N values used, and a reconstruction inside the 
sub-interval [-0.999997,0.999997], which is just slightly 
smaller than [-1, 1] (when numerically detected shock is 
shifted to x = -1) and guarantees that the true shock is 
outside this region. The result is shown in Figure 9. It is 
clearly as good as the case where the exact shock location 
is used (comparing with Figure 7). 


Remark 2.2 If we use collocation (J) instead of Galerkin, 
and the Gegenbauer reconstruction procedure in [10], the 
result is almost identically good: Compare Figure 10 with 
Figure 7. 
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Pointwise error --- after post-process with detected shock locatio 
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Figure 9: Point-wise errors in the logarithm scale, Burg- 
ers equation (21). Fourier Galerkin method using 2N + 1 
modes .with exponential solution filters of order r. r = 4 
for N = 10; r = 6 for N = 20; r - 8 for N = 40 and r = 12 
for N = 80. Gegenbauer post-processed with a numerically 
determined shock location which for this problem produces 
shock locations to within 0.0000025 for all the N used. The 


reconstruction sub-interval is [-0.999997, 0.999997] when 
the numerical shock is shifted to x = -1. Parameters: 


A = 2, m = 1 for N = 10; A = 3, m = 3 for N = 20; 
A = 26, m = 9 for N = 40 and A = 52, m = 17, for 
N=80. 


Pointwise Error--- After Post-Processing, Collocation 
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Figure 10: Point-wise errors in the logarithm scale, Burgers 
equation (21). Fourier collocation method using 2N + 1 
modes with exponential solution filters of order r. r = 4 
for N = 10; r = 6 for N = 20; r = 8 for N = 40 and 
r = 12 for N = 80. Gegenbauer post-processed, with 
parameters A = 2, m = I for N = 10; A = 3, m = 3 for 
N=20; A=26, m=9 for N=40 and A =60, m= 15, 
for N = 80. 
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Spectrally Accurate Solution 
of Non-Periodic Boundary-Value Problems 


by Gegenbauer Expansions 


A. Weill * M. Israeli t L. Vozovoi * 


Abstract 1 Introduction 


In this paper we apply the Fourier-Gegenbauer (FG) 
method, introduced in [4], to evaluate spatial derivatives of 
discontinuous but piecewise analytic functions. The basic 
conception of this method consists of the reexpansion of the 
partial sum of Fourier series of a function, which does not 
converge in the maximum norm (Gibbs phenomenon), into 
a rapidly convergent Gegenbauer series. This technique is 
extended in order to construct the Gegenbauer series for 
the derivatives. Although the derivatives of discontinuous 
functions are not in L2, the exponential convergence of 
truncated Gegenbauer series can be proved, and the rate 
of convergence can be estimated. parameters 


When the FG method is applied to the solution of a 
boundary-value problem with a modified Helmholtz oper- 
ator, an intermediate solution may have steep profiles near 
the boundaries. These steep regions introduce a large er- 
ror into the final solution, wich has (presumably) a smooth 
profile. A method which compensates for this loss of accu- 
racy by using appropriately constructed boundary Green's 
functions. is proposed. 


Key words: Gibbs phenomenon, Gegenbauer polynomi- 
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Fourier spectral methods, dealing with the approximation 
of functions by trigonometric series, are highly efficient 
for the solution of differential equations, for the following 
reasons: first, the differential operators are represented in 
the transform space by diagonal matrices, therefore decou- 
pling harmonics with different wave numbers. Then, the 
pseudo-spectral Fourier method is compatible with a fast 
transform (FFT) on an regularly spaced grid. Finally, for 
time-dependent problems the use of a uniform spatial grid 
permits larger stability bounds on the time step than in 
polynomial methods(J5]). 


It is known, however, that trigonometric series converge 
exponentially fast only for analytic and periodic functions. 
For non-periodic functions, having a discontinuous peri- 
odic extension, Fourier series do not converge uniformly in 
the interval. Away from the boundaries the rate of con- 
vergence is O(1/N), while near the boundaries oscillations 
of order O(1), which do not decrease with N, appear (the 
Gibbs phenomenon) . 


The Fourier method can be successfully used, however, 
for the solution of non-periodic problems if the functions 
are preliminary smoothed. In [2] the trigonometric basis 
was employed along with a smoothing procedure, u•ing an 
appropriately constructed bell function. However. such a 
smoothing procedure requires the knowledge of the func- 
tion on an extended domain, which is not possible in case 
of non-periodicity. 


In [6, 4] it was shown that the first Fourier coefficients 
](k), Ikl _• N of an analytic but not periodic function 
f(x),x • [-1, 1] contain enough information to construct 
a spectrally accurate approximation to this function by a 
Gegenbauer expansion. This expansion is spectrally accu- 
rate on the whole interval, including the point of disconti- 
nuity itself (x = :t:1). It was proven that if the number of 
terms and the parameter A of the Gegenbauer polynomials 
Cl•(X) are proportional to the number of Fourier modes, 
then this series converges exponentially with N. 
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In the present paper we extend the Fourier-Gegenbauer 
(FG) method of [6, 4] to evaluate, within spectral accu- 
racy, the derivatives of an analytic but non-periodic func- 
tion. The convergence of truncated Gegenbauer series with 
N is not ensured automatically for the derivatives, since 
the Fourier series for the derivatives are not necessarily 
bounded. which is •Ve will demonstrate in this paper that 
there exists a parametric region where Gegenbauer series 
for the derivatives converge exponentially. 


The application of the FG method to the solution 
of differential equations, in particular, to the modified 
Helmholtz equation 


(1) u"-/•2u = -/•2f(x), x • [a,b] 


which is frequently used in CFD applications, faces ad- 
ditional difficulties. For t• >> 1, a particular solution, 
which is obtained in an intermediate step of the numer- 
ical method, has a large gradient near the boundaries. 
This gradient cannot be resolved accurately by the present 
method. Thus, a large error is introduced into the final so- 
lution, even if it is smooth and does not contain boundary 
layers. X• propose a correction procedure, using appro- 
priately constructed homogeneous solutions, in order to 
recover the spectral accuracy. 


The outline of this paper is as follows: in section 2 we set 
up the stage for the rest of the paper with a brief descrip- 
tion and notations for the Fourier-Gegenbauer method. In 
section 3, estimates for the accuracy of Gegenbauer inte- 
gration and differentiation are given. In the next section, a 
method for improving the convergence of the FG method, 
based on successive smoothings of the original function, is 
described. Finally, in section 5 we apply the FG method 
to the solution of non-periodic boundary-value problems 
while preserving the spectral accuracy. 


2 The 


method 
Fourier-Gegenbauer 


In this section we briefly describe the Fourier-Gegenbauer 
method of [6, 4]. Consider an analytic but not periodic 
function f(x) defined in [-1, 1]. Such a function has dis- 
continuities at the boundaries x - :t:1 if it is extended 


periodically with period 2. The Fourier coefficients of f(x) 
are defined by 


f(x)e-ilc•rXdx (2) 7(I) = 
Assume that the first 2N + 1 Fourier coefficients ](k) are 
given. Our objective is to recover the function f(x) on 


x • [-1,1] with exponential accuracy in the maximum 
norm. 


The truncated Fourier series for a discontinuous function 


N 


(s) fN(x) = 
k=-N 


converges slowly, like O(•), inside the interval and ex- 
hibits O(1) spurious oscillations near the boundaries x - 
:i:1 known as Gibbs phenomenon. Thus there is no con- 
vergence in the maximum norm. 


The basic approach of [4] consists of reexpanding Eq. 
(3) into rapidly convergent Gegenbauer series 


(4) f(x) = 
1=0 


where C'/•(•) is the two-parametric family of the Gegen- 
bauer polynomials (l is the order of the polynomial, • is a 
parameter. The formula for computation of the polynomi- 
als C/•(•) can be found in [1], page 782). 


The Gegenbauer coefficients are defined by 


i (1 - (s) 
where 


(6) h• = rr«Ct•(1) F(X+ 1/2) 
r(x)(t + x) 


As we do not know the function f(x), but rather its trun- 
cated Fourier series Eq. (3), we have only an approxima- 
tion to ]'x(1) which we denote by 


-- (1 - x2) 'x-« fs'(x)Cfi(x)dx. (7) 
It is a remarkable fact that the approximate Gegenbauer 


coefficients • (1) can be explicitly expressed in terms of the 
Fourier coefficients •(k) m follows: 


(8) = + 


0(1•1• 


where F(A) and J•(x) •e the Gamma and the Bessel func- 
tions. The corresponding Gegenbauer expansion, b•ed on 
the approximate coe•cients g• (l) will be then: 


M 







Solution Of Non-Periodic PDE's By Gegenbauer Expansions 141 


We shall refer to Eqs. (9, 9) as the Fourier-Gegenbauer 
(FG) approximation of f(x). The transformation from 
f (x) to õ• (l) will be denoted 6. 


The difference between the Gegenbauer partial sum with 
21! terms of the function f(x) 


M 


(10) f•l(x) = 
/=0 


and that of the truncated Fourier series fN (x) is called the 
truncation error:. 


TE(x,f,A,M,N) 


(11) : • (iX(l)- •O•v(1))CtX(x) 
/=0 


It measures the error in the finite Gegenbauer expansion 
due to the truncation of the Fourier series. This error 


decays exponentially with N provided that both A and M 
are proportional to (but less than) N. For example, the 
relations M = A = N/4 can guarantee such a decay. 
The total error of the FG approximation 


E(x,f,A,M,N) =1 f(x)- f•.N(X) l 


can be split into two components as follows: 


E(x,f,•,M,N) If(x) f•l(x) + f•(x) = - - fh.N(X) l 


<_ I/(x)-L•(x)l+ 
(12) I f,•(x) - f•l,N(•) I ß 


The second component is the truncation error (11). The 
first component 


• M 


s•(•,L•,•,N) = •]•(t)c)(•)- 
/=0 /=0 


arises due to truncation of the Gegenbauer series. It is 
called the regula•zation error. 


3 Convergence of the Fourier- 
Gegenbauer series for deriva- 
tives and integrals 


Our purpose is to construct a spectrally accurate approx- 
imation to the derivatives (integrals) of an analytic and 
not periodic function f(x). As in the case of interpolation, 
we are given only the first 2N + 1 Fourier coefficients f(k) 
defined in Eq. (2). Knowing f(k), we can represent the 


derivatives (integrals) of the function f(x) in the spectral 
space. For the r-th derivative f(r)(x), r = 1, 2, ..., we have: 


(13) L(k) -- (i•rk)r f(k), Ikl _• N 


and, similarly, for the integral I(x) - f_• f(t)dt: 


](k> Ikl _• N. (14) i(k) =- i•'k' 
A "natural" way to construct an approximation to the 
derivatives or to the integral is to implement the FG algo- 
rithm, using the coefficients (1 3) or (14) instead of ](k) in 
Eq. (9). 


We consider first the case of the derivatives. The Fourier 


partial sum for the rth derivative of a function f(x) is 
defined by: 


N 


(15) 


The Gegenbauer coefficients for f(" and ff) are given 
respectively by: 


(16) f•(1) 


gN.•(I) (17) •X 


= h• 1 (1 - x•) -• f(•)(x)C•(x)dx 
1 // 1 t(r) = -- (1- •)•-• (x)C)(x)• •N 


h• • 


where ht • is defined in (6). Then the FG approximation 
to the rth derivative of f(x) will be: 


M 


(lS) '•(•) (1)CtX(x) 
1=0 


(note that f(r) rx• depends also on A). M.N\ ! 


An estimate of the truncation error of this approxilna- 
tion is given by the following lemma: 


Lemma 3.1 Given a function f(x) in L2(-1, 1), there ex- 
ists a constant • independent of A,M,N such that the 
truncation error in the FG expansion of the r-th deriva- 
tive of f(x) satisfies the following estimate: 


(19)TE(x, f(•), A,M, N) < ,•q)•(M, A)(•-•) x-•-• 


We start with the case r = 1. We shall prove Lemma 
3.1 for this case and show the generalization to r > 1. 
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Proof Using the definitions (16), (17) of the Gegen- 
bauer coefficients for f'(x) and f•v(x) (r = 1), the def- 
inition (11) of the truncation error, and the equality 
max-•<x<• I C•(x) I = C/•(1) (see [3], page 206) we have: 


TE(x, f', ,•, M, N) _< 


(20) M max max I(]•(/) A• I -- gNA(l)) 
O<_l_<3d -l<x<l 


< M max 
-- 0</<M h• 


I/f• (f'(x) - f;v(x))C•(x)(1- x•)•-•/2dx 
We have to find now a bound for the integral ß 


/: (21) z, = (f'(x)- f•,(x))C)(x)(1 - :?)•-•/•x 
1 


It is convenient to introduce the following notations: 


TN(X) = f(x)-- fN(x) 
N(X) (•)-- fN(•) 


1 


.•(x) = C)(x)(1-x2)X-• 


H¾(x) = (1 - x2)•-•(/+ 2A- 1)(-xC•(x)+ 
(in the last expression we used the differential relation for 
C•(x)- see [1], page 783). 


Replacing the relevant terms in Eq. (21) and performing 
integration by parts, we obtain: 


• = r;.(x).•(•.)ax 
1 


(22) = [r•.(z).•(x)]•_• - rN(X)**7(x)ax 
1 


The first component vanishes because Wt(x) is zero at the 
end points •1. Substituting the expression from Eq. (22) 
and using the folloxving relation for the Gegenbauer poly- 
nomials 


• + • c)•(x) (2•) xC)(x)- ck•(x)- 2(x- •) 
(it can be derived after some manipulations with the r• 
cursion formul• in [1], page 782) we have: 


• = r;(•)W(x)ax 
1 


- •(t,x) r•(x)(• (x)ax -- -- x .1 
1 


where 


(24) •(1, A)= (l + 2A- 1)(/+ 1) 
2(•- 1) 


Combining (21), (21) and (24), we obtain: 


TE(x, ?, •, M, N) < 


M max •(/,A) © 
o_•t_•M h• 


f•TN(x)C•(x)(1- x •) -2dx] 
At this point we substitute the expression 


(•) •(• = •(•_ •(•) = • 


into (25), and using the relation 


-- •'•C•(x)(• - x•)•-• = 


(•c) r(x)i•(• + ,)7•+.(•)(•)• 
(see [3], page 178) together with the boundedness of the 
Fourier coefficients of f (x) (f (x) • L•[- 1, 1]). 


(•?) •](•)• • • 


we are left with the following estimate: 


TE(x,f•,A,M,N) • 


MA max •(l,A) h• F(A- 1)(/+ •) 
0•t•M 


c•(1) • • 
•>• 


Since [ J•(x) [• I for all x and y • 0, we obtain, after 
some algebra: 


(28) TE(x,f•,A,M,N) • 


• m• •1(/ A)• (•).•-• O•l•M 


where 


(2o) 
r(x) (t + x) r(t + 


(I,•(t, x)= 2 r(2x) 
Here we also used the notation .• = MA, Eq. (6) for ht x 
and the relation 


r(t + 2X) (30) C)(1) = 
t!r(2•x) 
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(see [3], page 206). 
It is easily seen that •l (l, A) is an increasing function of 


I. Thus, we have: 


Ikl>N 


(31) < •i•l(M,A) ;N 
The truncation error for this case is O(•---•) [] 


We have found that the estimate (31) is valid for the FG 
expansion of the first derivative of f(z). 


The truncation error for the approximation of f(r)(z) is 
given by: 


1 


= r?•)(•)•(•) _• - • (•)u•/(•)• 


where T•-•)(z) is the truncation error for the approxima- 
tion of the (r- 1)th derivative. The integration by parts 
can be repeated r - 1 times, 
yielding: 


1 


/: (32) = (-1) r , T•¾(x)U•(•)(x)dx 
since the expressions in brackets vanish at the end points 
ifA > r. 


It can be shown that: 


(33) **5(*>(x) = (1-•2)x-•-*ox-*rx• •t •) 
H;:• [(• + p)(• + 2• - p)] (a4) •,(t,x) = 


(for s = 1 it coincides with • of Eq. (24)). 
Substituting Eq. (34) into Eq. (32), using again the 


bound Eq. (27), and combining Eqs. (26), (6) and (30), 
we have finally: 


TE(x, f(O, A, M, N) • 


• m• •(t,x) c)(•) 
0<t<M h• 


2 )i-1 
Ikl>N 


< •i•(M,X) 7N 
where 


(35) •,t,x) = 2 • r(x) (t + x) r(/+ 
r(2x) 


(compare with Eq. (29) for r = 1). Therefore for the 
rth derivative the truncation error-will be of the order 


o( • N--X-Z-•T). [] 
A similar proof applies for the case of the integration, 


(which is a simpler one, since I(x) is in L2[-1, 1]). For the 
integral of f(x), the truncation error TE(x, I, •, M, N) is 
of order O(•-r). Likewise, successive integrations can be 
performed on the Fourier coefficients, gaining a power of 
1IN at each integration in the bound for the truncation 
error. 


Following the demonstration of [4] it can be shown that 
the truncation error in the approximation of the derivatives 
and integrals of f(x) becomes exponentially small when 
there is a linear relation between M, A and N. 


The results are shown in Figs. 1 and 2 for the function 
f(x) =x • . 
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.. 
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Figure 1: Effect of differentiation and integration on the 
pointwise error for Gegenbauer interpolation 


The accuracy of the FG approximation increases with N. 
For fixed N, the error increases with the number of deriva- 
tions: we obtain a larger error for the second derivative 
than for the first derivative, which itself is less accurate 
than the interpolation. Integration is more accurate than 
interpolation. This is in agreement with the theoretical 
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5 Helmholtz equation 


We now consider the solution of differential equations by 
the FG method. We illustrate our approach on a second- 
order equation: 


u• - lffu = -Ifil(x) -1<x_<1 
u(-1) = B1 


(37) u(1) = B2 


where f(x) is a continuous non-periodic function in the 
domain [-1, 1] . We assume that the solution is not de- 
pendent on/•. This assumption is accurate for the equa- 
tions arising from the implicit time discretization of a time- 
dependent CFD problem ( in this case the parameter/• is 
related to the time step r as/• cx 1/x/• ). 


The numerical solution process consists of two steps. In 
the first step we apply the Fourier transform to the Eq.(37) 
and integrate in the Fourier space, to obtain the coefficients 


(38) a(k) = 
+ 


Replacing the Fourier coefficients ](k) in the FG algo- 
rithm (7)-(9) by the coefficients (38) we obtain a particular 
solution up(x) in the physical space . 


M 


(39) 11•I.N(X ) = • f, XN(l)C•(x ) 
1=0 


where the coefficients 6•,(I) are the FG coefficients for 
up(x). We define as well fi•(/), the Gegenbauer coefficients 
for ur(x ). 


It can be easily shown that the truncation error up(x) 
satisfies the following estimate: 


(40) TE(up,,X, rn, N) < .•q)(m,A)(•-•) •+• 
where (I)(M, ,•) = (M+A)F(M+2A)F(A) (M-1)!F(2A) and .• is a constant. It 
can be made exponentially small for large N and by choos- 
ing the parameters M, A accordingly. Details are given in 
Appendix A. 


The particular solution thus constructed tends to 0 near 
the boundaries x = +1 in accordance with an asymptotic 
behavior of the Fourier coefficients •(k) ,,• f(k)/k 2 ,,• i/k s 
at k >> 1, which is typical of C x- continuous functions 
(Gottlieb and Orszag, [7] ). Therefore it does not necessar- 
ily satisfy the boundary conditions (37). For example, the 
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Figure 3: The particular solution up(x) at A = 5 (solid 
line) and the exact solution u•(x) (dashed line) 


profile up(x) is shown in Fig. 1 in the case f(x) = x. A = 5 
(solid line); the dashed line corresponds to the exact solu- 
tion u•(x) = x. 


The purpose of the second step is to correct the particu- 
lar solution obtained so that it satisfies the given boundary 
conditions. This can be done by adding two linearly inde- 
pendent homogeneous solutions as follows: 


(41) u(x) = up(x) + D•e -"• + D•e"*" 


D1 and D2 being uniquely determined by the boundary 
conditions B1 and B2. 


Equation (37) was solved for the case u(x) = x •. with 
N = 64, m = I = 16. Two cases were implemented ß the 
spectral case (Fourier coefficients are computed exactly) 
and the pseudospectral case, where they are computed by 
a FFT procedure. In both cases a linear combination of the 
exact homogeneous functions e +•'x was added to the par- 
ticular solution, in order to enforce boundary conditions. 
The logarithm of the error for/• = i , is sho•vn in Figs. 
4 and 5, for the spectral case. The FG series converges 
pointwise with exponential accuracy. Results for several 
values of/• are summarized in Table 2. The logarithm of 
the maximum error norm is shown for the spectral and 
pseudospectral Gegenbauer procedure , and compared to 
the spectral and pseudospectral Fourier expansion. 


We can see that for small •'s the Gegenbauer expansion 
recovers the accuracy lost in the Fourier expansion, both in 
the spectral and pseudospectral case. However, for 20 <_ 
/• _< 60 the spectral accuracy deteriorates, to the extent 
that in this parameter interval the Fourier expansion gives 
better results than the FG expansion. The reason for this 
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Fourief-Gegenbauer solution of aelrahol•z eq. for u=x..3 
-2 
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Figure 4: Pointwise error in F-G solution of Helmholtz 
equation. spectral case 


• Spectral Pseudospectral 
Gegenbauer Fourier Gegenbauer Fourier 


I -13.066 -4.840 -12.925 -3.969 


5 -5.930 -4.260 -5.930 -3.413 


10 -2.889 -3.567 -2.888 -2.750 


20 -1.386 -2.946 -1.383 -2.191 


40 -1.874 -2.347 -1.861 -1.708 


60 -3.057 -2.006 -3.026 -1.478 


80 -4:228 -1.773 -4.176 -1.350 


Table 2: Log II u - Uex for u" = f, x 3 


behavior is the presence of exponential components e -•'x 
and e •x in the particular solution up(x) obtained from the 
procedure . For large •z's the profile Up(X) coincides with 
the line u(x) = x inside the interval, except for two thin 
regions near the boundary, where it abruptly decays to 
zero. 


The operator G interpolates well the smooth part of the 
particular solution, but cannot obtain a high accuracy in 
the interpolation of the steep exponential functions. This 
is shown in Fig. 6. 


The previous observation gives us the means to compen- 
sate exactly for the numerical error which arises due to 
the boundary layers. Instead of using the exact functions 
e ñ•'x in the second step of the algorithm, we shall define 
as new homogeneous solutions the FG expansion of these 
functions, as follows: 


(42) uh• = •J-•(e ux) 
(43) ua2 = 6-•(e -•'•) 


and thus cancel the approximation error in the intermedi- 


Four•er-Geqenbauer solution of Hel•holtz eq. l[or 
, , 


I lu-uexl t -- 


- 14 •0 I 310 I I 415 I I I 15 2 25 35 40 50 55 60 65 
N 


Figure 5: Maximum error in F-G solution of Hehnholtz 
eqnation, spectral case 


ate step of the computation of Up(X). 


As shown in Table 3, we obtain then a good accuracy 
for every •z in the interval [1, 80] . 


• Spectral Pseudospectral 
Gegenbauer Gegenbauer 


1 -9.421 10.078 


5 -9.608 -10.212 


10 -9.854 -10.480 


20 -10.342 -10.970 


40 -10.913 -11.498 


60 -11.184 -11.835 


80 -11.362 -11.932 


Table 3: Log II •e• I1• for u"- tz2u = f, u = x 3, for ß 


approximated homogeneous solutions 


The approximation error for the Fourier-Gegenbauer so- 
lution of the Helmholtz equation stems from the large reg- 
ularization error RE(x, up, M, A, N) in the homogeneous 
components of the solution for large •z's. This error is 
shown in Fig. 7 as a function of 2N, the number of terms 
in the Fourier partial sum, and for several values of •z. We 
have chosen the same values for the parameters as in [4], 
namely, M = A = •. When the ratio r = • reaches 
some minimum value (meaning that the minimum number 
of terms per wave is satisfied ), we obtain an exponential 
convergence of the solution, as expected. 
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sinh(pz) Figure 6: Gegenbauer interpolation of sinh(•) for •t = 20 
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Figure 7: Resolution error E(•. •-, N, •) in maximum 
norm for different values of 


5.1 Recovering the accuracy 


In order to overcome the inaccuracy of the solution of 
Eq. (37) for large /z, for a L2 non-periodic function 
.f(x), it is useful to note that the partial sum us(x) = 
]•-•=-N •tkeik•z converges to a periodic function that we 
shall designate by us(x ). We propose here a method to 
recover the accuracy for large/z's, first for an antisymmet- 
ric function and then for a symmetric function. As every 
function f(x) can be written as the sum of a symmetric 
function and of an antisymmetric function , the following 
procedure is suitable for every f(x) 6 L2 and non-periodic. 


Antisymmetric case 


We consider the antisymmetric case where: 


uxx-la2u ' = f(x) -l_•x•_ 1 
(44) u(-1) = -u(1) 


where f(x) is a continuous antisymmetric function in the 
domain (-1, 1) . As explained before the particular solu- 
tion obtained by the spectral procedure would have (for 
large/z) a smooth component and a non-smooth exponen- 
tial component. If us(x ) designates such a particular solu- 
tion, it must be of the form: 


(45) us(x ) = us(x)-Us(1) sinh(px) 
sinh(p) 


since us(1 ) = 0. It can be assumed that the homogeneous 
solution will be in this case a combination of antisymmetric 
functions, hence the sinh(/zx) instead of e m"•. However, 
the solution obtained from the Gegenbauer procedure is 
6-•(ug(1)) and not (us(1)). As 6-1(rig(i)) • 0 we do not 
have an equality but' 


(46) 6-1(ug(1)) • 6-1(Us(1))[1-ut•(1)] 
sinh(•x) where ua•(x): G-l(sinh(g) ) ' 


Therefore we obtain the following approximation for 
u,(1) ' 


6-•(us(1)) 
(47) u.(1) • 


[1- ua•(1)] 


so that we can compute an approximation to u•(x) by Eq. 
(45). 


We expect this approximation to be accurate for large 
ft as it cancels the inaccuracy present in the Gegenbauer 
representation of •in•(•) For small •'s (• < 10 ) •his sinh/z 
procedure becomes inaccurate. 


Symmetric case 


The symmetric case is very similar; f(x) is a continuous, 
symmetric function in the domain (-1, 1), and we expect 
that: 


(48) us(x ) = us(x)-u•(1) pcøsh(px) 
sinh(p) 


Designating by v(x) the first derivative of u(x), which is 
antisymmetric, we obtain: 


(49) . . sinh (•ux) 
vs(x ) - v•(x)- vs(1) sinh(•) 
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and an estimate to vs(1) can be found as follows: 


(50) Vs(1) 
[1 - tuh2(1)] 


cosh(•x) • where uh2(x) = •-1(Ltsinll(ltl) ] . Us(X ) is obtained by inte- 
gration of v,(x). 
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Figure 8: Comparison of the accuracy of two different so- 
lutions. NBCOR: correction procedure. EXHOM :exact 
homogeneous functions and boundary conditions 
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Figure 9: Comparison of the accuracy of two different so- 
lutions . CONBCOR ß subtraction +correction procedure. 
COEXHOM: subtraction + exact homogeneous functions 
and boundary conditions 


Results 


The correction procedure described above was applied to 
the same test problem as in section 4: u(x) = x •,N = 


64, M = A = 16. The comparison between the two meth- 
ods (the solution procedure with exact boundary condi- 
tions and exact homogeneous solution on one hand, and 
the correction procedure on the other hand) is shown in 
Fig. 8 . For the latter procedure, the accuracy for small 
/Ys is poor, but improves quickly and an accuracy of 10 -lø 
is achieved for /• k 20 . For the former procedure the 
situation reverses itself: accurate results are obtained for 


small/Ys, and accuracy degradates when • increases. 
The same comparison was repeated for the same problem 


with smoothed right hand side (Cø-continuity ensured by 
subtracting a first-order polynomial from the right hand 
side). As before the first solution strategy yields spec- 
tral accuracy for /• _• 5, then the accuracy deteriorates 
while the accuracy of the correction procedure improves. 
Due to the higher smoothness of the periodic extension of 
the f(x), the correction procedure achieves an accuracy of 
10 -12 in the maximum norm. However, qualitatively the 
results of the two tests are similar (Fig. 9). 


It is therefore possible to combine the two methods, 
choosing the correction procedure or the FG method with 
prescribed boundary conditions, according to the value of 
/•. Although the accuracy at the intersection point, in the 
examples shown here, is only of 10 -•, a better accuracy 
can be obtained by successive subtractions of polynomials. 
For example, If one has to work in the region 5 •_ # •_ 10, it 
is advisable to work with the cubic subtraction procedure, 
in order to ensure a good accuracy. 


Results for the solution of the symmetric case u(x) -- 3z 4 
are comparable to the CO-continuity case. When solving a 
problem with an arbitrary right hand side (f(x) = xS+x4), 
we obtain the worst-case accuracy, e.g. the same accuracy 
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Figure 10: Accuracy of the correction method for antisym- 
metric, symmetric and arbitrary r.h.s 
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as for u(x) = x a (Fig. 10). 
Finally, the same tests were performed for the pseu- 


dospectral method. The exact Fourier coefficients of the 
Galerkin formulation were replaced by Fourier coefficients 
obtained from a standard FFT procedure. The procedure 
was found to be very sensitive to the accuracy to which 
these coefficients are computed. Very poor results were 
obtained for the correction method, and the computation 
of the coefficients by a high-order Romberg procedure was 
needed in order to achieve a high accuracy. However, the 
Romberg procedure adds few calculations to the process, 
and the FFT method plus the extra computation for the 
Romberg method still are efficient enough for our purpose. 


-3.0 • t I I i I 0 4 50 60 70 80 90 100 


FG solution of Helmholtz equation by correction 
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discrete Fourier coeff by Romberg int.. 
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Figure 11: Comparison of the accuracy of the correction 
method, for exact and discrete Fourier coefficients 


Results are shown in Fig. 11. 


6 Conclusion 


The Fourier-Gegenbauer method was adapted to the solu- 
tion of Helmholtz like equations in non-periodic domains. 
This method can be helpful in the multidomain solution of 
CFD problems, since a good accuracy can be recovered (af- 
ter a suitable adaptation to improve the approximation of 
the homogeneous components). No overlapping is needed 
between the subdomains, thus saving computation time 
and storage space. However, for oscillatory functions, the 
resolution requirements of the Gegenbauer expansion are 
more stringent than for Chebyshev or Fourier expansions, 
and therefore more collocation points per wave are needed 
when resolving steep gradients. The method becomes then 
less efficient. Future directions of research in this topic 
should be based on the combination of Fourier-Gegenbauer 


method with other spectral methods, as Chebyshev or 
Fourier methods. 


Convergence estimates for the solution of Helmholtz 
equation, derivatives and integrals were investigated for 
the first time. The numerical results seem to match the 


expectations. It becomes therefore possible to use the 
Fourier coefficients of non-periodic functions to reconstruct 
its derivatives with a spectral accuracy. This was not pos- 
sible in the classical Fourier spectral methods. 


A Truncation error for the partic- 
ular solution 


We are interested in evaluating the truncation error in 
the Gegenbauer expansion for a particular solution of Eq. 
(37). 


Lemma A.1 Given the equation u"-iffu = f(x), ill(x) 
is a L • function on [-1, 1] , and up(x) is a solution of the 
equation such that it has a continuous periodic extension, 
there exists a constant .• independent of,k, M, N such that 
the truncation error for Up(X) satisfies the following esti- 
mate: 


2 (51) TE(x,up, A,M,N) 
where (I)(M, A) = (M+•)r(•l+•)r(•) (M- •)!r(2,x) 


Proof In the definition of the truncation error, we replace 
f by u to obtain: 


(52) 


TE(x, Up, A, M, N) _• 
A,I max max 


O _• l _• M -l_•x_•l 


I (fi'x(!)- 


<_M max 
O</<M h/A 


f(x) is a L 2 function, which gives ß 


(53) <_ A k = N,N+ 1, N+ 2... 


It follows that up(x) • L2[-1, 1], since it was obtained by 
successive integrations of f(x). Replacing f(k) by ft(k) we 
obtain: 


p2A 
(54) I < 
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•A 
(55) k2 


(56) _• N• 
Note that the last bound is valid only for tz < N. 


As in Paragraph 2, we can combine the equations (25) 
(26) and (30) and obtain the following bound for the trun- 
cation error of up: 


where (I)(M, A) = (M+x)r(.•+2x)r(x) which can be made (M- 1)!F(2)•) 


exponentially sinall for large N and by choosing the pa- 
rameters M, A accordingly. 
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Abstract 


This paper deals with a viscous/inviscid coupled model. 
A new global variational formulation is introduced. The 
coupled equations are approximated by a spectral method 
using the discrete spaces (JP:v x JP:v-2) x 
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Introduction 


Coupling different partial differential equations, as a par- 
ticular implementation of domain decomposition ideas, al- 
lows faster solution in many cases. Indeed, in the simula- 
tion of the fluid flow past an obstacle, for instance, often 
a complex and expensive model is only needed in a small 
fraction of domain. Outside this region we can use a sim- 
pler model. There has been much work on this research 
domain (see [3] for the theoretical justification, [1] for the 
numerical implementation on finite element methods and 
[6] for the first approximation by spectral element meth- 
ods). An essential point in this type of approximation 
consists of finding correct conditions on the interface sep- 
arating the viscous and inviscid subdomains. Secondly, 
appropriate algorithm is also important to the numeri- 
cal implementation. The coupled model considered here 
has been first investigated in [6] where the discrete spaces 
(lløN x llø:V_•) x (lløN x llø•) were used (where llø• x llø•_• 
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are the discrete velocity and pressure spaces for the Navier- 
Stokes equations; JPiv x JP• are the discrete velocity and 
pressure spaces for the Euler equations). In the existing 
literature, the numerical algorithm used to solve the re- 
suitant discrete equations was iteration-by-subdomain res- 
olution. An effective iterative procedure requires exact 
convergence analysis and repeated resolutions to reach the 
convergence, which is often theoretically non trivial and 
numerically costly. Instead, the new variational formu- 
lation that we are going to introduce here allows us to 
globally solve the coupled problem. This global resolution 
method does not require the convergence analysis of the in- 
terface iterative procedure; it alleviates the need for repeat 
computations and offers potential advantages as regards 
to the overall computational cost. This paper follows the 
works of [6] and considers, furthermore, the discrete spaces 
(JPN x iPN_2) x (JP:v-2 x JP•-a). We give the comparisons 
of the costs between the pure Navier-Stokes model and the 
coupled Navier-Stokes/Euler model. 


2 Viscous/inviscid coupling 


For the sake of simplification, consider domain fl =] - 
2,2[x]- •,•[, which is broken into fl- =]- 2,0[x•- 1,1[ 
and fl+ =]0,2[x]- 1, 1[. Let F k = 0f•C•0fl;', k = -, +;F = 
Off- C• Off +. • is the normal on 0fl to fl, and •-, •+ are 
the normals on F to fl-, fl+, respectively. 


For any integer m, let H'•(fl) be the classical Hilbert 
Sobolev space, provided with the usual norm [[. Jim.n, 
and also with the semi-norm [. [,,•.n. Lo•(fl) = {•.: v • 


= 0). 
Throughout this paper, with any function • defined in 


fl, we identify by •k the restriction in fl• of ½, k = -, +. 
Reciprocally, for the functions • defined in fl•, we denote 
by • the pair (•-, •+). 


Consider the viscous/inviscid coupled problem: Find 
two pairs (if-, if+), (p-, p+) defined in (fl-, fl+) respec- 
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tively, such that: 


{ aff--vAff-+Vp- = f V.ff-=0 infl-, (1) aft+ + Vp+ = f V. q+ = 0 in fi+, 
a- = 0 onr-, 


if+ ß if, = 0 on F +, 


where f• L2(•) 2 and a, v are two positive constants. 
Define two real Hilbert spaces: 


X-- {•7;ffln- • H•(•-)2,ffln+ • L2(•+)2, fflr- -0}, 
M- {q;q[n- • L2(fl-),qln+ • H•(n+),fnq-O } 


with the norms 


II•11x -II•-IIx,n- + I1•110,•+, 
Ilqll• -IIq-II0.•- + Iq+lx,•+ ß 


It has been proven [7] that the equations (1), with the 
following interface conditions: 


Off- _ •_ p+ if+ vO-- • - p n = on F, 
ff-'ff- = -*7 +'if+ onF 


are well-posed in X x M, and the corresponding variational 
formulation writes: Find ff x p • X x M, such that 


a(ff, if) + y(Vff-, Vff-)_ - (p-, V. •-)_ 


+(Vp+, •+I+ - (p+ ß if+, ff-)r = (j(•) V•eX, (2) (V . ff_,q_ _ _ (ff+, Vq+)+ _ (ff_ . ff_,q+)r = 0 
Vq • 3,1, 


where (., ')k, (', ')r are defined by 


(,:.t')•.=fn •', (•,•,)r=fr•V•, k=-,+. k 


Theorem 2.1 For all ct and v positive, problem (œ) has 
one unique solution in X x M. 


Proof The proof is standard by using the saddle-point 
theorem. We write problem (2) in the form: Find ff x p • 
X x M, such that 


a(ff, ff)+b(ff, p) = (f, ff) Vff•X, b(ff, q) = 0 Vq • M, 


where forms a and b are defined as follow: 


•(•, •) = 
,(•, q) = 


.(a,.) + •(v•-, w-)_ va,, e x, 
-(q-, X7 ß •-)_ + (X7q+, v-'+)+ 
+(q+, if- ß ff-)r Vff • X, q • M. 


The saddle-point theorem consists in verifying four prop- 
erties: continuity and ellipticity of the form a; continuity 


and compatibility of the form b. The three firsts are proven 
in a classical way. The last one is proven if we show: there 
exists a positive constant •, such that 


b(•,q) 
inf sup > f) 
• •x II•11xllqll• - 


which can be found in [7]. 


3 Spectral discretizations and er- 
ror estimations 


Let • be the space of all polynomials of degree _< N. 
•/•,& and wi•,• (i,j - 0,...,N) denote, respectively, the 
(N + 1) 2 Gauss-Lobatto points and weights corresponding 
to the subdomain fl•(k +) Let •v =-, . = {•ij,k;i,j = 
0,... ,N}. 


A classical method of solving a coupled problem con- 
sists of exhibiting its solution as a limit of solutions of two 
subproblems within fl- and •+. This is done by consider- 
ing the following iterative procedure: first the one of two 
subproblems, in •2- for instance: 


aff-yAff+Vp = f in •2-, V.ff = 0 in •2-, 
ff = 0 on F-, 


Off p+ if+ v•-•-p.•- = ß on F 
is solved with a Neumann-type condition p+. if+ arbitrary; 
then, knowing if- on F, we solve the other subproblem: 


aft+ V'p = f in fl+, V.ff = 0 in fl+, 
if-ff = 0 on F +, 


if.if+ = ff-.ff+ on F 


which gives p+; and so on until the convergence be reached. 
The procedure requires generally a certain number of re- 
peat resolutions to reach the convergence. 


But here, we choose the strategy called "global reso- 
lution", which has been first used in [6]. Precisely, we 
consider the discrete coupled problem: Find ff2v x p• • 
X• x M•, such that 


(3• a•v(q2v,Y•v)+b•v(Y•v,p2v) = (f,•2v)2v ¾•2v e X•v, bN (fiN, qN) = 0 VqN • MN 


where 


x• = x n (•n(fl-) x •n_2(fl+)), 
M 2v = M I• (•o•v_2(fl-) x •o•v_2(fl+)), 
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and aN, bN are two bilinear forms, defined by 


VSN, •7N • XN, 


bN(GN,qN) = --(q•v,V'•N)-,N + (VqN + • • N)+,N--2 
+(qN +, •' ff-)r,N V• ½ XN, qN • MN, 


where 


(a, •)N = (5-, o'-)_,N + (5 +, 


with 
N 


(5-, œ7-)_,N = Ei,j=o(U . -'- N N v )(%._)we,_, 
w•N-2 •~+ •(•N-2• N-• (if+, t•)+.N-2 = •i,j=OX u ' Ix•ij,+ /•ij,+ ' 


(v, V)•.N = Z•=o(VV)(•.-)w•.- 
(or equivalently, N N N = E•=o (vV)(•o•,+)Wo•.+). 


g•% first state the following results [2]. 


Lemma 3.1 Them exist projection operators • from 
L2(Q •) in •N(Qt'),k = --,+; •'• •om {ff;ff • 
H•(•-),fflr = 0} in {•N;•N • •X(•-),YNIr = 0} and 
H +'• from H•(Q +) in •N(Q +) such that N 


V•H•(fl•), m)0, k=-,+, 
--.1 


(4) II;- nx •11•,•- • CXX-mll•ll,,.n- v• • H'"(• -) m • 1, 
I• - •+'• N •lx.n+ • cmx-mll•llm.n+ 


V• • Hm(• +) m & l. 


Theorem 3.1 The discrete problem (3) is well posed in 
the space XN x 3[N. 


Proof The proof is done as in the theorem 2.1. The 
verification of the "Inf-Sup"is given in Lemma 3.2 below. 


Lemma 3.2 There exists a positive constant •N, possibly 
depending on N, such that 


inf sup 
•.•M• •.•x• II•NllxllqNllM 


Proof The proof follows the same lines as in the contin- 
uous case. We give only the estimation of the "Inf-Sup" 
constant/3N: 


where • is the local "Inf-Sup" constant corresponding to 
the Navier-Stokes part. rn 


Define the space 


VN -- {•7N;•7N • XN,bN(•N,qN) = 0, VqN • ]kiN} 


The error estimations are given in the following theorem. 


Theorem 3.2 Assume that the solutions of the prob- 
lem (1) satisfy 5 = 5- x 5 + • Ht(f•-) • x Hm-i(f•+) •, 
p = p- xp + 6 Hl-•(f• -) xHm(f•+), where I and m are real 
numbers, I _> 2, m _> 2; furthermore, assume f 6 H•(f•) •, 
where a is a real number _> 2, then the approximate solu- 
tions of (3) 5N = 5• x u•,pN = P•V X p+• verify 


Proof Estimation (5) is a direct consequence of 
lemma 3.2 and following result [2]: 


C[ inf (115- •NIIx q- sup 
•x •V,•, •x •V.x- 


(a - ax)(ff.¾, uT:v)) 


(b - b.v )( tFx. qx ) ) 


Remark 3.1 The estimate (5) is not optimal. It could be 
improved by looking for a better estimation for the term 


inf II 5 -YN IIx. We refer this question to [2]. 
•,x, 6Ix 


4 Description of the algorithm 


Let Ua,Pa(k = -,+) be the values at the global collo- 
cation points of the velocity and the pressure. D- and 
(D+) T denote the discrete divergence operators. B- and 
B + are the associated mass matrices. W denotes the dis- 
crete trace operator. Define 


L • = aB a + v (D-)(D-)r6t_. 


with 


1 k=- 5•_ = 0 k=+ 
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We write discrete problem (3) at the following matrix 
st at ement: 


]LU+IDP = ]BF 


(6) n)ru = o 
where 0 is zero vector, and 


U-- U+ , P- p+ , 0 L + ' 


0 D+ ]B = 0 B + ' 
It is assumed that the boundary conditions in the viscous 
part are already incorporated into the matrix operators. 


%Ve use the global iterative Uzawa procedure to solve (6). 
Formally, (6) can be equivalently replaced by the two sep- 
arated systems: 


(7) ]Dr]L-•IDP = ]DT]L-11BF 


(8) =mF-DP 


Noting that IDTIL-11D is a positive definite symmetric 
matrix, the pressure can be solved by an inner/outer con- 
jugate gradient iterative procedure. An important point 
to note is that the matrix IL in (7) and (8) is diagonal 
by bloc on the interface level, which means that the inner 
procedure is only needed in the viscous part. 


5 Generalization to the coupled 
Navier-Stokes/Euler equations 


We generalize the coupled model (1) to the coupled prob- 
lem between the Navier-Stokes equations and the Euler 
equations: 


•-+(ff-.V)ff--vAff-+Vp-=f- in Q- 
-•+ 


(9) O__• + (if+. V)f+ + Vp + = f+ in Q+ 
i-(O) = 55 in fi- f+(0) = • in fi+ 
if-Jr- = 0 f+ ß •+[r+ = 0 


with the incompressibility V. f = 0, where Q• = ft • x 
(0, T), k = -, +, and f•, U•o are two functions given. The 
non-linear term is treated by the method of characteristics. 
That is, we rewrite (9) under the form 


-- vAf- + Vp- = f- in Q 


Dt Df + + + 
(10) -•-+Vp =f inQ 


f-(0)=f• infi- f+(0)=U•o infi+ 
q-It--0 f+'ff+lr+=0' 


where D/Dr is the total derivative in the direction f. We 
discretize (10) in time by an implicit scheme: 


au - raft -"+• + Vp -"+• 
- f-"+• + af-" 


.•_n+l u It--0 


in •- 


in •+ 


where a = •tt with At the time step, and X"(X) = 
X(x, (n + 1)At, nat) is the solution of 


(11) dx •r----ffn(x), X(x,(n+ l)t;(n+ l)t)--x 
The time scheme is unconditionally stable, and each time 
iteration requires a coupled viscous/inviscid resolution plus 
a transport of the previous solution on the characteristics. 


We note that, on the interface F, we have f- ß if- -- f+. 
if-. Thus (11) is solved globally in all domain fi without 
any additional interface conditions on F. 


6 Numerical results 


We give a numerical example obtained by using the al- 
gorithm presented in previous sections. We consider the 
equation (9) with an exact analytical solution: 


u•(x, y) = 1-y2, u2(x, y) -- 0, p(x, y) = sin•rx sin•ry. 


Table 1 lists the discrete L2-error of ff- fin using 
the pure Navier-Stokes (NS), coupled Navier-Stokes/Euler 
with (/PN x/Px-2) x (/PN x/Px) version (N'S/EU(1)) and 
coupled Navier-Stokes/Euler with (/PN x/Px-2) x (/PN-2 x 
/PN-•) version (NS/EU(2)). The systems (7)-(8) are solved 
by the multigradient solver. The three methods give the 
same accuracy and converge exponentially. 


N NS NS/Eu(1) NS/Eu(2) 
5 9.49E-04 1.04E-0a 8.66E-03 
7 2.56E-04 2.38E-04 6.23E-04 


9 2.17E-05 2.08E-05 2.95E-05 


11 9.67E-06 2.23E-06 5.03E-06 


13 4.82E-07 2.56E-06 8.95E-07 


Table 1: Discrete L•-error of f - fN 


Table 2 lists the execution time in minutes on PC 486DX 


using the three models. The programs are written in For- 
tran and compiled with NDP486. The scheme in time is 
of 2-order. We take N = 11, At = 0.01, • = 0.001. 
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Time steps NS NS/Eu(1) NS/Eu(2) 
10 1.50m 1.20m 0.88m 


20 2.10m 2.01m 1.47m 


30 2.55m 2.38m 2.07m 


40 3.35m 2.57m 2.15m 


50 4.07m 3.20m 2.51m 


Table 2: Execution time in minutes 


7 Conclusions and discussions 


In conclusion, we have presented a coupled model and 
its global resolution algorithm. The theoretical anal- 
ysis and the numerical test show the effectiveness of 
the method. The comparisons of the execution time 
between the viscous/inviscid coupled resolution and 
tho pure viscous (i.e. global Navier-Stokes equations) 
resolution have been done. The partial results show 
that the (F'•, x •PN-•) x (•P•v x •P,v) approximative 
viscous/inviscid coupled model is more economical 
than the pure •P,v x •[P2v-2 viscous model and that 
(J•PN X J•N-2) X (J•PN-2 X J•N-2) version is even more 
so. 


In our numerical test the gain is obtained for the do- 
main splitted only into two sanhe subdomains. The 
gain would be greatly increased if we used the Navier- 
Stokes equations only in a small fraction of domain. 


The simulation of complex flows will produce a large 
and full matrix before the pressure P. The "sim- 
ple" nested conjugate gradient algorithm, in this case, 
would no longer be efficient. One way to recover a 
rapid convergence of the Uzawa algorithm is to use a 
preconditioner. 
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Finite Elements 
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Figure on reverse: 
Instantaneous velocity field for uniform flow around a 
cylinder (approximated by a 24-gon) with Reynolds num- 
ber 100. Fourth-order finite elements were used on an 


irregular triangular mesh with 2831 nodal points. (From 
"Fast Algorithms for High-Order FEM for Incompress- 
ible Flow" by L. R. Scott, A. V. Ilin, R. W. Metcalfe 
and B. Bagheft., page 221) 








Concepts for Higher Order 
Finite Elements on Sparse Grids 
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Abstract 


On the way to an efficient implementation of finite element 
algorithms related to the p- and h-p-versions on sparse 
grids, we present a general concept for the construction of 
hierarchical bases of higher order suitable for sparse grid 
methods. For the solution of partial differential equations, 
this approach allows us to profit both from the efficiency 
of sparse grid discretizations and from the advantages of 
higher order basis functions with regard to their approxi- 
mation accuracy. 


We discuss the general relations of sparse grids and 
higher order techniques, and we report the results of 
some first numerical experiments concerning piecewise bi- 
quadratic hierarchical basis functions. 


Key words: finite element method, hierarchical bases, 
higher order techniques, partial differential equations, 
p- and h-p-version, sparse grids. 
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1 Introduction 


Since their presentation in 1990 [18], sparse grids have 
turned out to be a very interesting approach to use for the 
efficient solution of partial differential equations and for 
a lot of other topics in numerical analysis like numerical 
integration [5] or FFT [14]. In comparison to the stan- 
dard full grid approach, the number of grid points can be 
reduced significantly from O(N d) to O(N (log 2 (N))d-•) or 
even O(N) in the d-dimensional case; whereas the accuracy 
of the sparse grid interpolant and of the approximation to 
the solution of the given boundary value problem, resp., 
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is only slightly deteriorated. For piecewise d-linear basis 
functions, an accuracy of the order O(N-2(log•(N)) d-•) 
with respect to the L2- or the maximum norm and of the 
order O(N -•) with respect to the energy norm has been 
shown [7]. Furthermore, regular sparse grids can be ex- 
tended in a very simple and natural manner to adaptive 
ones, which makes the hierarchical sparse grid concept ap- 
plicable to problems that require adaptive grid refinement, 
too. 


For the two-dimensional case, the results mentioned 
above show that, apart from the logarithmic factor and 
with respect to the Le-norm, sparse grid techniques with 
piecewise bilinear (biquadratic, ...) hierarchical basis func- 
tions correspond to full grid methods of fourth (sixth, ...) 
order. In the three-dimensional case, the gain in order 
is even more impressive. Therefore, sparse grid methods 
themselves can be considered as an approach of higher or- 
der. Additionally, together with polynomials of higher de- 
gree as basis functions, sparse grids are well-suited for the 
efficient realization of higher order finite element methods. 
Finally, implementing p- or h-p-version-type algorithms on 
sparse grids seems to be a very promising approach that 
allows us to profit not only from the sparse grid efficiency, 
but from the advantages of usual h-adaptivity, and the im- 
proved approximation quality of higher order basis func- 
tions. 


In this paper, first, a short introduction to sparse grid 
methods recalls their most important properties. Further- 
more, an overview of existing high order concepts for sparse 
grids is provided. Then, we present a new approach for 
generating higher order hierarchical bases on sparse grids, 
followed by some first numerical results for the case of 
piecewise biquadratic basis functions.- Finally, some con- 
cluding remarks and an outlook on further work to be done 
will close the discussion. 


2 Sparse grids 


The use of hierarchical bases for finite element discretiza- 


tions as proposed by Yserentant [17] and Bank, Dupont, 
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and Yserentant [4] instead of standard nodal bases stood 
at the beginning of the sparse grid idea, together with a 
tensor-product-type approach for the generalization from 
the one-dimensional to the d-dimensional case. For the 


corresponding subspace splitting of a full grid discretiza- 
tion space in two dimensions with piecewise bilinear hier- 
archical basis functions as in figure 1, it can be seen that 
the dimension (i. e., the number of grid points) of all sub- 
spaces with il q- i2 = c is 2 c-2. Furthermore, it has been 
shown in [7] that the contribution of all those subspaces 
with il + i2 = c to the interpolant of a function u is of 
the same order 0(2 -2c) with respect to the L2- or maxi- 
mum norm and O(2 -c) with regard to the energy norm, 


0% c0() if u fulfills the smoothness requirement ox•rg• • 
for the two-dimensional and o•...o• • ½0(•) for the gen- 
eral d-dimensional case, respectively. Here, fl denotes the 
underlying domain. Therefore, it turns out to be more rea- 
sonable to deal with a triangular subspace scheme as given 
in figure 2 instead of using the quadratic scheme of figure 
1. This leads us to the so-called sparse grids. For a formal 
definition of sparse grids, see [6], [7], or [18], e.g. 


iL= I 


I,= I i.= 3 i.-2 


Figure 1: Subspace splitting of a full grid space. 


Besides the regular sparse grids that result from skipping 
certain subspaces according to figure 2, adaptive grid re- 
finement can be realized in the sparse grid context in a very 
straightforward way. Since we use recursive dynamic data 
structures like binary trees for the implementation, and 
since the value of a hierarchical basis function, the hierar- 
chical surplus, can be used itself to indicate the smoothness 


i2=2 


ß 


ß 


Figure 2: Subspace splitting of a sparse grid space. 


of u at the corresponding grid point and, consequently, the 
necessity to refine the grid here, no additional work has to 
be done to implement adaptive refinement. Figure 3 shows 
a two-dimensional regular sparse grid, and figure 4 shows 
a three-dimensional adaptive one with singularities at the 
re-entrant corner and along the edges. 


Figure 3: Regular sparse grid. 


Speaking about the most important properties of sparse 
grids, we at least have to look at the number of grid points 
involved and at the approximation accuracy of piecewise 
d-linear hierarchical basis functions on sparse grids. For a 
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3 A bicubic approach on sparse 


.".:. i if' i.:'.11i' i i..ii..11 grids 
.......:....?.[ :.: • ::•..:•.•i::•:.;.•..[,..... •., • ... h• been done by St6rtkuhl [16]. There, the main empha- 
..'.-..x:'.•:..x:: •:•..;,.,•.•,•?•::• ...... "•. • "• ' ' sis is put on the solution of the twodimensional Stokes 
'•':,¾.::•'•' •'•"•-•"•:•':•. q'-'l:..¾.. • . [ equations. Using the stream function • and the vorticity 
" • ........... •' ..... ' ' ' w • variables, this system of two partial differential equa- 
-. '. '-. ' .... :.'•. :':".?.: tions of second order can be reduced to the fourth order 


.., .. •., x•.•.: :"-,.."s ' ', ... biharmonic equation •9: O. The corresponding bilinear -. :::,'...':... ?; ?'.?; orm:i: :,mme:ic, 


ß 
Figure 4: Adaptive sparse grid. 


detailed analysis, we once again refer to [7] and [18]. For a 
d-dimensional problem, the approach described above and 
illustrated in figure 2 leads to regular sparse grids with 
O(N(log2(N)) •-•) grid points, if N denotes the number of 
grid points in one dimension (i.e., • is the smallest mesh 
width occurring). A variant also discussed in [7] even leads 
to regular sparse grids with O(N) grid points. These re- 
suits have to be compared with the O(N •) points of regular 
full grids. Concerning the approximation quality, the ac- 
curacy of the sparse grid interpolant is only slightly deteri- 
orated from O(N- 2) to O(N- 2 (log 2 (N))•- • ) with respect 
to the L2- or maximum norm. With regard to the energs' 
norm, both the sparse grid interpolant and the finite ele- 
ment approximation to the solution of the given boundary 
value problem stay of the order O(N-•). 


Thus, sparse grids enable us to gain a factor of 2 in accu- 
racy for arbitrary number d of dimensions by just doubling 
the number of grid points. Since the smoothness require- 
ments can be overcome by adaptive grid refinement, sparse 
grids are a very efficient approach for the solution of partial 
differential equations. 


Recently, the class of problems that can be treated with 
sparse grid methods has been significantly extended. First 
experiments with time-dependent problems have been re- 
ported by Balder et al. in [3]; Pflaum [15] generalized the 
algorithm for the solution of the Poisson equation to the 
case of general elliptic differential operators of second order 
in two dimensions, and Dornseifer developed a mapping 
technique to deal with curvilinear domains. Furthermore, 
systems of equations like the Stokes equations are the focus 
of present sparse grid interest. 


Since this approach requires the use of ½l-elements, a 
piecewise cubic hierarchical Hermite basis is defined for the 
one-dimensional case, first. Here, we get two basis func- 
tions (i.e., two degrees of freedom to fix the value of the 
function and its first derivative) per grid point. For d = 2, 
the usual sparse grid tensor product approach leads to a 
piecewise bicubic hierarchical basis with four degrees of 
freedom per grid point. The resulting four different types 
of basis functions are shown in figure 5. 


Figure 5: The four types of bicubic basis functions. 


In the following, we present an alternative approach (cf. 
[8]) based on Cø-elements with still one degree of freedom 
per grid point. 
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4 Another concept for generating 
higher order hierarchical bases 
on sparse grids 


4.1 A quadratic hierarchical basis 


For reasons of clarity, let us study the one-dimensional case 
of a regular grid with N grid points, N = 2 n + 1, n • lN, 
and N values to be interpolated, first. For the construction 
of a piecewise quadratic interpolant, one has to fix three 
degrees of freedom in each interval between two neighbor- 
ing grid points. This leads to a total of 3N - 3 degrees 
of freedom for the whole problem. It is well-known that 
quadratic splines are perhaps the most common way to 
construct a suitable interpolant. With splines, we need N 
degrees of freedom to get an interpolant and twice N - 2 
degrees of freedom to make the interpolant both continu- 
ous and differentiable at the inner grid points. With one 
more condition fixed (some kind of boundary condition, 
e.g.), the interpolant is definitely determined. Thus, the 
higher order of the polynomials used leads to more smooth- 
ness of the interpolant. This effect is especially attractive, 
if smooth functions are to be interpolated, or if partial 
differential equations of higher order (like the biharmonic 
equation, e.g.. see [16]) have to be solved. However, in 
a lot of other situations (like the numerical treatment of 
singularities, e.g.), it seems to be neither necessary nor 
desirable. 


Therefore, we suggest a construction that leads to an in- 
terpolant (N degrees of freedom) which is only continuous 
(N - 2 degrees of freedom). The remaining N - 1 degrees 
of freedom are fixed by interpolation conditions outside 
the respective interval. For instance, the parabolic inter- 
polant between two neighboring grid points i and i q- 1, 
1 _• i _• N - 1, could be determined by either the values 
at the grid points i - 1, i, and i q- 1 (if i • 1), or the 
values at the nodes i, i q- 1, and i q- 2 (if i ( N- 1), or 
even the values at the grid points i, i q- 1 and an arbitrary 
third point. Since we want to define hierarchical bases, it 
turns out to be the best choice to determine the third grid 
point for interpolation by means of an hierarchical crite- 
rion: If i is a grid point on the finest level only, i.e., if i 
is even, then i - 1, i, and i q- 1 are taken into account. 
If, on the other hand, i is a coarse grid point (i.e. odd) 
and if, thus, i q- 1 does appear on the finest grid only, then 
i, i q- 1, and i q- 2 are the points chosen for interpolation. 
The result of this approach is shown in figure 6. On the 
intervals [2k + 1,2k + 3], 0 _• k _• (N- 3)/2, the resulting 
overall interpolant is quadrat!c, but at the (coarse) grid 
points 2k + 1, it may not be differentiable. 


I i-2 i-5 N 


Figure 6: Piecewise quadratic ½ø-interpolant. 


Starting from these considerations, we now introduce 
a piecewise quadratic hierarchical basis. To explain the 
principles, we first look at the well-known piecewise lin- 
ear case in one dimension. If we add appropriate basis 
functions at the coarse grid points to the hierarchical basis 
functions of each level, we get nested spaces of piecewise 
linear functions on the different levels (see figure 7). Here, 
a coarse grid function can be constructed by summing up 
three neighboring fine grid functions with the weights «. 
1, and «. This is important for a simple switch from one 
level to another, and it is necessary for the efficient imple- 
mentation of sparse grid algorithms. 


/ 


/ 
, 


,, / 


Figure 7: Linear hierarchical basis and nodal point bases 
on each level. 


The quadratic case turns out to be a little bit more 
complicated, because it is not possible to get a quadratic 
basis function on the coarse grid as a weighted sum of 
three neighboring quadratic basis functions on the fine 
grid. However, if we sum up two quadratic fine grid func- 
tions with the weight ¬ and one standard piecewise linear 
coarse grid function with the weight 1 as indicated in fig- 
ure 8, we get the desired quadratic function on the coarse 
grid. 


Now, figure 9 shows our piecewise quadratic hierarchical 
basis (solid lines), together with the extension to a nodal 
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1 1 


I III \\\\ 


Figure 8: Switching from fine to coarse level with quadratic 
hierarchical basis functions. 


point basis on each level (dashed lines). Note that each 
of these nodal bases consists of basis functions whose sup- 
ports vary in size. 


Figure 9: Quadratic hierarchical basis and nodal point 
bases on each level. 


As in the linear case, the generalization to a d- 
dimensional piecewise d-quadratic hierarchical basis with 
d > 1 is done by the tensor product approach that is typ- 
ical for the sparse grid context. 


Another important problem we have to deal with is the 
question of how to calculate the (quadratic) hierarchical 
surplus. Again, we first look at the one-dimensional case. 
The linear hierarchical surplus v• ) in a grid point m with 
hierarchical neighbors e(m) and w(m) is given by 


1 


(1) v• ) = u,,• - 3' (ue(,O + u•,(,,O) , 
where u,,•, Ue(m), and uw(,O denote the values of the 


underlying function u at the respective grid points. Re- 
member that the hierarchical neighbors of a grid point rn 
are just the two ends of the support of the hierarchical 
basis function located in rn. The corresponding formula 
for the quadratic hierarchical surplus v• ) depends on the 


hierarchical relations of the involved grid points. Figure 
10 illustrates the situation if e(m) is the father of m (with 
respect to the underlying binary tree) and if e(e(m)) is the 
father of e(m). 


A short calculation leads to 


i.e., the quadratic hierarchical surplus at a grid point m 
can be easily calculated with the help of the linear hierar- 
chical surplus at m and the linear surplus at the father of 
m: 


(2) 4 e(,,)' 


Thus, as in the linear case, nothing else has to be stored 
other than the linear hierarchical surplus. Again, the ten- 
sor product approach leads to a generalization of this result 
to the d-dimensional case with d > 1. For d = 2, e.g., we 
immediately get 


1 . v(t) 1 . v( (3) v!• 
where e(m) denotes the father of m in x-direction, n(m) 
the father of m in y-direction, and he(m) the father of 
n(m) in x-direction (see figure 11). For arbitrary d, the 
quadratic hierarchical surplus is given by 


(4) V(m q'd) --- 1,- ß v, . 


n(m) he(m) 


m e(m) 


Figure 11: Calculation of the quadratic hierarchical sur- 
plus for d -- 2. 
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Vm(q) / 
/ 


/ 


vm([) //// //'"/ 


w(m) 


v (I) 
e(rn) 


m e(m) e(e(m)) 


Figure 10: Linear and quadratic hierarchical surplus. 


4.2 Theoretical results 


Now, we turn to the approximation properties of sparse 
grids with the quadratic hierarchical basis introduced 
above. To this end, we study the behavior of the inter- 
polation error with respect to the L2-, the maximum, and 
the energy norm. According to finite element theory, the 
latter gives insight into the error of the finite element so- 
lution, too. 


In the main, the notation and the argumentation follow 
the linear case from [7]. Because of (2) and (4), we look at 


(5) 


for the one-dimensional case or 


(6) J(m q'a) := [1,- ß A t'a) 
for the general d-dimensional case. Here, for some suf- 
ficiently smooth function u (a) of d independent variables, 
J•'a) is the integral well-known from linear sparse grid the- 
ory, 


(7) 


Z•n l.d) :--- /_+h• /+ha d . (II • w• 
j:l 


02au (•) (x•, ..., xa) 
ß :7. ax, ... axe, 


at a grid point m (here normed to O) with assigned piece- 


d 


wise linear hierarchical basis function H•=l w3 


(s) h•+• if -h 3 <xj <0, 
hj ' -- -- 


wj(xj) := h•-x• if 0<xj <hj 
0 otherwise. 


Since we know from [7] that .,, is just the linear hierar- 
chical surplus v• 'a) at point rn, with (4) and (6) we get 


J(mq ,d) 


--- V (rnq , d) 


In the following, we study the situation for d - 1, first. 
Together with (7) and (8) for d- 1, (5) leads to 


.-- Z(m/,1) __ I . 1(1,1) 4 


3h• G•2U(1) (Xl) -- tl(Xl) ' 0X21 J -hz 
dXl, 


where e(rn) again denotes the hierarchical father of m with 
assigned support I-hi, 3hi] and 


1{ (10) tl(xl):= õ' 
-3xl - 3hx, -h• < x• _< O, 
5xl - 3h•, 0 __< Xl <__ 
--Xl q- 3hi, hi g xl < 3hi. 
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By partial integration for each sub-interval [-51,0], [0, 51] , 
and [hi, 351], and by elimination of the resulting hl2-terms 
(which is possible here in contrast to the linear case), we 
get 


(11) J(m q'l) f3h• 03uO)(x•) -- -- TI(Xl) ß Ox13 dXl, J -h• 


(12) 


1 


Wl(Xl) := 1-•' 


-3Xl -'6h]Xl - 3hi 2, ß 5Xl 2 -- 6hlXl - 35•, 
--Xl 2 + 6hlXl - 95•1, 


-h• _< x• _< 0, 
0 _• Xl _• 51, 
h• _• x• _• 351. 


Together with (6) and (7), this result can be used to derive 
the generalization for the d-dimensional case. After a short 
calculation, we get 


(13) 


J(mq. d) .f3h•.f3hd d (-1) d (HT)(xj))' J--hz "J-hd j=l 
c•3du(d) (Xl, ... , Xd) 


OXl s ... Ox• dxd ... dxl, 
where Tj(xj) is defined in an analogous way to (12). 


%Vith (9) and (13), we are able to give two bounds for 
the quadratic hierarchical surplus v•'d): 


(14) 03du (d) 


-< Ox...o4 
and 


(15) 
_< o3d (½d) ß ) ) 


ß ' 'ø1 ' '" ' 'ød ' 


where •(md)(x•, ...Xd) denotes the characteristic function 
of the support of the basis function located at point 
(hi, ..., hal), ifm is normed to the origin. Note that (14) and 
(15) are correct only if we really have a quadratic surplus 
in each direction. On the coarsest level in some coordinate 


direction j (i.e., ij - I or xj - « for the unit square), 
however, figure 9 shows that, in spite of using a quadratic 
basis function, we have to use the linear hierarchical sur- 
plus with respect to the boundary values. Therefore, we 
get for the general case of a point m with k indices il, ..., ik 


equaling I and the others being greater than I (0 _• k _• d) 


(16) 


and 


[ < [[ a3d-•'u(d) [ 2 3 OXl '"OXkOXk+ 1 •c 
1 


'• '" k+1 ' '" 


(17) 


[ < 


Thus, with the following definition 


(18) 
u(d) l•c := sup ....... •,•(•.3} Ox•' ...Ox• • • ' 


:= sup •-_"5 i'" n'--E'• , 
2 ai6{2,3} 0X'l '"C/Wd 2 


we get 


(19) 


and 


1 


.h•2.....h•.h•+• 


(20) 


Finally, we have to calculate the L2- and maximum norm 
d 


of the &quadratic hierarchical basis function 1-Ij=l gj(xj), 
2 


(21) gj(xj) - h• - xj 
which is now used instead of the piecewise d-linear 


d 


•Ij-_• wj (xj) defined in (8). Obviously, the maximum norm 
d 


of 1-I•_-• gj(xj) is 1; and for the L2-norm, we get 


(22) gj(xj) •, •-•/ "•, ..... d ß 
j=l 2 


Now, we are ready to apply standard sparse grid approx- 
imation theory to the situation of piecewise d-quadratic 
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hierarchical basis functions. We are first interested in the 


difference between a sufficiently smooth function u (d) and 
its piecewise d-quadratic sparse grid interpolant a(d) of 
level n with a smallest occurring mesh width of 2-". Anal- 
ogously to the linear case, (19), (20), and (22) lead to 


(23) 
u(d) - (d) • . B(n d) , - u"'I - 14 


where 


(24) Bt•d) := d- 1 
Consequently, we get for the sparse grid interpolation error 


(d) u(d) _ 


(25) 
u(d) -- un'I] 2 


= O 


-- O 


where N = 2'*+ 1 denotes the maximum number of 


grid points in one direction. Thus, in comparison to the 
standard regular full grid, the accuracy of the interpola- 
tion is only slightly deteriorated by the logarithmic factor 
(log2(N)) d-•. Note that, according to the above argumen- 
tation and analogously to the piecewise linear case, u (a) has 
to fulfill the following smoothness requirement, e.g.: 


03du (d) 


(26) axe... Ox• • Cø ( • )' 
With respect to the energy norm, we again have to look 


d 


at our d-quadratic hierarchical basis function Hj=i gl (xj), 
first: 


dxd .. dx• 


) h• dxd... dXl 


a ((16) d-• (ji•t)8 1) = 
/=1 


- -- l=• h• 


d 


As above, this result concerning rlj=• g•(xj) and (19) are 
the staxting point for standard sparse grid analysis, which 
finally results in 


(27) I u(")-•(a) I = O(4-") -- O(N -2) '• n,I E ' 


the desired bound for the sparse grid interpolation error 
u (a) a(a) with regard to the energy norm. Thus, as in 
the linear case, the order of the energy error does not de- 
teriorate when we switch from full grids to sparse. Since 
it is a well-known fact from finite element analysis that 
the finite element solution 5(,d) of a given boundary value 
problem is a best approximation to the solution u (a) on the 
underlying grid, we also get the following result concerning 
the error u (a) - fi(n d) of the finite element approximation: 


(28) u (d)-5?) r = O(4-") = O(N-2). 


5 First numerical experiments 


In this section, we report the results of some first numerical 
experiments concerning the piecewise quadratic hierarchi- 
cal basis described above. For that, we study the Laplace 
equation on the unit square with Dirichlet boundary con- 
ditions as a simple model problem: 


Au(x,y) = 0 on • = [0.1] 2, 


u(x,y) = sin(try)-sinh(rr(1 - x)) 
sinh(7r) 


Figure 12 shows the approximation to the solution cal- 
culated on the regular sparse grid of level 10 and its error. 


For the solution of the linear system that results from 
the finite element discretization on the sparse grid, a simple 
Gauss~SeideMteration was used. The numerical results for 


this model problem are given in table 1. There, n denotes 
the level of the regular sparse grids considered (i.e., 2 -• 
is the smallest mesh width occurring). [[e][•: indicates the 
maximum norm of the sparse grid error u (a) -;,(a) and 
lie[It denotes its energy norm. Finally, p•c and pr indicate 
the rates of reduction from level n to 'level n + 1 of the 


respective error, and dof, denotes the number of degrees 
of freedom, i.e. the number of grid points of the respective 
sparse grid. In table 1 and in figure 13, one can clearly see 
the 0(4-") - O(N-•)-behaviour of the energy norm, and 
the convergence with respect to the maximum norm turns 
out to be just slightly worse than 0(8-"), as was to be 
expected due to the logarithmic factor in (25). 


Furthermore, in figure 14, the results for the piecewise 
biquadratic case are compared to the piecewise bilinear 
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Figure 12: Sparse grid solution (above) and error (below) 
of the model problem. 


situation. Here, both times, adaptive sparse grids were 
used. Again, the advantages of the quadratic approach 
can be seen clearly. 


Now, let us turn to a second example: 


Au(x,y) = 0 on fi = [0,1] 2 , 


u(x,y) = cos(4•r(x-- y)). sinh(4•r(x + y)) 
sinh(8•r) 


Here, again, u fulfills the smoothness requirement (26). 
However, in contrast to our first example, adaptive grid 
refinement is very helpful (see figure 15). 


Figure 16 illustrates the results for piecewise bilinear and 
piecewise biquadratic basis functions. In both cases, adap- 
tive grid refinement has been used. In comparison with fig- 
ure 14, the gain that can be achieved with the biquadratic 
approach is smaller. This had to be expected, since adap- 
tive mesh refinement is very efficient in such situations, 
and it indicates that a combined process of adaptive grid 
refinement and adaptive choice of the polynomial degree 
p of the basis functions might be the appropriate strategy 
for sparse grids, too. 


1 2.53 10 -s 2.43 10 -a 1 
1.02 3.02 


2 2.48 10 -s 8.05 10 -2 5 
2.67 3.41 


3 9.28 10 -4 2.36 10 -2 17 
3.14 3.77 


4 2.96 10 -4 6.26 10 -s 49 
4.09 3.91 


5 7.24 10 -5 1.60 10 -s 129 
5.36 3.98 


6 1.35 10 -5 4.02 10 -4 321 
6.19 3.98 


7 2.18 10 -0 1.01 10 -4 769 
6.83 4.02 


8 3.19 10 -7 2.51 10 -5 1793 
7.28 3.99 


9 4.38 10 -0 6.29 10 -0 4097 
7.60 4.01 


10 5.76 10 -9 1.57 10 -0 9217 
7.76 3.99 


11 7.42 10 -•ø 3.93 10 -7 20481 
7.89 4.00 


12 9.41 10 -• 9.82 10 -0 45057 
7.94 3.99 


13 1.19 10 -• 2.46 10 -s 98305 
7.97 4.01 


14 1.49 10 -•2 6.14 10 -9 212993 


Table 1: Error on the regular sparse grid of level n. 


6 Concluding remarks 


In this paper, some first steps towards an efficient imple- 
mentation of higher order techniques on sparse grids have 
been discussed. The approach of section 4 leads to hier- 
archical bases of polynomials of higher degree p > 1. but 
still results in CO-(sparse grid)-interpolants. However, the 
number of degrees of freedom per grid point does not in- 
crease with growing p. Obviously, the concepts presented 
for the quadratic case can be generalized to the situation 
with cubic polynomials, and so on, which will be in the 
centre of future work. Finally, h-p-version-type algorithms 
[1, 12, 13] are to be developed for sparse grids, too. 


The following tables 2 and 3 show why higher order tech- 
niques on sparse grids seem to be a very promising ap- 
proach to the efficient numerical treatment of partial dif- 
ferential equations. Each row in both tables corresponds to 
a fixed number d of dimensions of the underlying problem, 
and each column stands for a certain polynomial degree p 
of the basis functions used. If M denotes the overall num- 


ber of unknowns (i.e., M = N d for a regular full grid and 
M = O(N(log2(N)) 'i-•) or M = O(N), respectively, for 
regular sparse grids), then, we can indicate the order of 
approximation with respect to the energy norm by 
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I- • e- .... o energy norm 
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O 2 4 6 8 10 12 


Level •. of -eõu:or sporse grid 


10 ̧ 


10-2 


10 -4 


10-6 


10 -8 


1o-lO 
lO 


•----o quodrot;c cose •,. 


10 2 i0 5 1 • 
Number o• g-;c pcints (cdcot;ve spc•se g•'•s) 


Figure 13: Rates poc and PE of error reduction. 


The entries in both tables now show the respective val- 
ues of a. For example, if we want to achieve second order 
with respect to the number of unknowns on full grids, i.e. 
a - 2. we have to use quadratic polynomials in the one- 
dimensional case, quartic ones for d = 2; and, for three- 
dimensional problems. even polynomials of degree p = 6 
have to be used. With sparse grids. in contrast to that, p 
does not depend on d. For a = 2, quadratic polynomials 
are sufficient for arbitrary d. 


Table 2: Approximation order M -• for various d and p on 
full grids. 


At this point, we have to go into the smoothness re- 
quirements of sparse grid techniques. For the quadratic 
case, they are given in (26). At first glance, these seem 
to be quite restrictive, especially for larger p. However, as 
in the linear case, the inherent h-adaptivity of sparse grid 
techniques should be able to deal with non-smooth situa- 
tions, too. Furthermore, we can learn from tables 2 and 
3 that, with respect to the overall number of unknowns, 
sparse grids can manage with smaller values of p than full 
grids. Therefore, especially for achieving high approxima- 


Figure 14: Maximum error vs. number of grid points (lin- 
ear and quadratic case). 


Figure 15: Sparse grid solution of the second example. 


tion quality for three-dimensional problems, sparse grids 
even turn out to be advantageous regarding smoothness 
requirements. 


7 Acknowledgments 


This work is supported by the Bayerische Forschungs- 
stirtung via FORTWlHR t The Bavarian Consortium for 
High Performance Scientific Computing. I am indebted to 
Prof. Christoph Zenger for many fruitful discussions and 
suggestions. 


References 


[1] I. Babu•ka and M. Suri. The p- and h-p-versions of 







Higher Order Finite Elements On Sparse Grids 169 


io ̧  


•0-2 
10 --4 '•' e. e ' 


10-6,1_ ... • Iineo• case 
I 


1 


,0-8[ 
. _ •___• quadratic case 


I0 ' 


i ........ • • ..... 10 • 10 2 •0 3 1 
Number of 9•;d points {adoptive sparse 9rids) 


Figure 16: Maximum error vs. number of grid points (lin- 
ear and quadratic case). 


dkp [ 1 [ 2 3 4 5 6 
1 1 2 3 4 5 6 


2 1 2 3 4 5 6 


3 1 2 3 4 5 6 


Table 3: Approximation order M -a for various d and p on 
sparse grids. 


[2] 


[3] 


[4] 


[51 


the finite element method: An overview. Cornput. 
Methods Appl. Mech. Engrg., 80:5-26, 1990. 


I. Babuõka, B. A. Szab6, and I. N. Katz. The p-version 
of the finite element method. SIAM J. Numer. Anal., 
18(3):515-545, 1981. 


[6] 


[7] 


[8] 


[9] 


[10] 


[11] 


[12] 


R. Balder, U. Riide, S. Schneider, and C. Zenger. 
Sparse grid and extrapolation methods for parabolic [13] 
problems. In A. Peters, G. Witturn, B. Herrling, 
and U. Meissner, editors, Proceedings of the loth In- 
ternational Conference on Computational Methods in 
Water Resources, Heidelberg, July 1994. Kluwer aca- [14] 
demic publishers, 1994. 


[15] 
R. E. Bank, T. Dupont, and H. Yserentant. The hi- 
erarchical basis multigrid method. Numerische Math- 
ematik, 52:427-458, 1988. 


T. Bonk. A new algorithm for multi-dimensional 
adaptive numerical quadrature. In W. Hackbusch, 


editor, Proceedings of the 9th GAMM-Seminar, Kiel, 
January 1993. Vieweg, Braunschweig, 1994. 


H.-J. Bungartz. An adaptive Poisson solver using hi- 
erarchical bases and sparse grids. In P. de Groen and 
R. Beauwens, editors, Iterative Methods in Linear Al- 
gebra: Proceedings of the IMA CS International Sym- 
posium, Brussels, 2.-d. d. 1991, pages 293-310. Else- 
vier, Amsterdam, 1992. 


H.-J. Bungartz. Diinne Gitter und deren Anwen- 
dung bei der adapriven LSsung der dreidimensionalen 
Poisson-Gleichung. Dissertation, Institut fiir Infor- 
matik, TU Mfinchen, 1992. 


H.-J. Bungartz. Higher Order Finite Elements on 
Sparse Grids. SFB Report 342/01/95 A, Institut fiir 
Informatik, TU Mfinchen, 1995. 


H.-J. Bungartz, M. Griebel, and U. Rfide. Extrap- 
olation, combination, and sparse grid techniques for 
elliptic boundary value problems. Cornput. Methods 
Appl. Mech. Engrg., 116:243-252, 1994. 


M. Griebel. Parallel multigrid methods on sparse 
grids. In W. Hackbusch and U. Trottenberg, editors. 
Multigrid Methods III: Proceedings of the 3rd Euro- 
pean Conference on Multigrid Methods. Bonn. Octo- 
ber 1990, pages 211-221. Int. Set. Num. Math. 98. 
Birkh•iuser, Basel, 1991. 


M. Griebel. A parallelizable and vectorizable multi- 
level algorithm on sparse grids. In W. Hackbusch, edi- 
tor, Parallel Algorithms for Partial Differential Equa- 
tions: Proceedings of the 6th GAMM-Seminar. Kiel. 
January 1990, Notes on Numerical Fluid Mechanics 
31, pages 94-100. Vieweg, Braunschweig. 1991. 


B. Guo and I. Babu•ka. The h-p-version of the finite 
element method (Part 1: The basic approximation 
results). Computational Mechanics, 1:21-41, 1986. 


B. Guo and I. Babu•ka. The h-p-version of the finite 
element method (Part 2: General results and applica- 
tions). Computational Mechanics, 1:203-220, 1986. 


K. Hallatschek. Fouriertransformation auf diinnen 


Gittern mit hierarchischen Basen. Numer. Math., 
63(1):83-97, 1992. 


C. Pfiaum. A multi-level-algorithm for the finite- 
element-solution of general second order elliptic dif- 
ferential equations on adaptive sparse grids. SFB 
Report 342/12/94 A, Institut fiir Informatik, TU 
Miinchen, 1994. 







170 ICOSAHOM 95 


[161 


[17] 


[18] 


T. StSrtkuhl. Ein numerisches, adaptives Verfahren 
zur L6sung der biharmonischen Gleichung auf diinnen 
Gittern. Dissertation, Institut ffir Informatik, TU 
Mfinchen, 1994. 


H. Yserentant. On the multilevel splitting of finite 
element spaces. Numer. Math., 49:379-412, 1986. 


C. Zenger. Sparse grids. In W. Hackbusch, editor, 
Parallel Algorithms for Partial Differential Equations: 
Proceedings of the 6th GAMM-$eminar, Kiel, Jan- 
uary 1990, Notes on Numerical Fluid Mechanics 31. 
Vieweg, Braunschweig, 1991. 








Stable Higher Order Triangular Finite Elements 
with Mass Lumping for the Wave Equation 


Gary Cohen Patrick Joly Nathalie Tordjman * 


Abstract 


Solving the wave equation by a C o finite element method 
requires to mass-lump the term in time of the variational 
f6rmulation in order to avoid the inversion of a n-diagonal 
symmetric matrix at each time-step of the algorithm. One 
can easily get this mass-lumping on quadrilateral meshes 
by using a h-version of the spectral elements, based on 
Gauss-Lobatto quadrature formulae but the equivalent 
method is not obvious for triangular meshes. In this paper 
we construct and analyze new families of triangular finite 
elements which fulfill the same requirements as spectral 
quadratic and cubic finite elements. 


Key words: wave equations, finite elements, mass- 
lumping. 


AMS subject classifications: 35L05, 65L20, 65N30. 


I Introduction 


Solving the wave equation in time domain by finite element 
methods is challenging but fundamental in order to model 
problems closer to the needs of industry. However, the use 
of such techniques rises some difficulties due the presence 
of a mass-matrix which grows with the order of the method 
and the dimension of the problem and must be inverted at 
each time-step. For this reason, finite difference methods 
were preferred to FEM for a long time. 


Recent developments of FEM with mass-lumping, such 
as spectral finite elements enable to overcome this difficulty 
by using quadrilateral or hexahedral finite elements mass- 
lumped with Gauss-Lobatto quadrature rules [8]. Such 
elements were used and analyzed in their h-version and 


*INRIA Domaine de Voluceau-Rocquencourt B.P 105 78153 Le 
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some properties of superconvergence were pointed out, in 
particular for the error committed on the velocity [4]. 


However, the use of quadrilateral finite elements is not so 
easy (in particular because non-regular quadrilaterals lead 
to isoparametric elements) and the use of triangles remains 
more popular in the industrial community. For that rea- 
son, we construct and analyze, in this paper, higher order 
triangular finite elements fitted to the numerical resolu- 
tion of the wave equation. This purpose implies an ade- 
quate mass-lumping using a quadrature rule with positive 
weights in order to ensure the positivity of the discrete 
harmonic operator appearing in the scheme. Moreover. 
the accuracy of the method without mass-lumping must 
be kept. 


In order to get all these properties, we construct a class 
of HLconform triangular finite elements which correspond 
to P2 and P3 spectral finite elements. However. to get the 
positivity of the discrete operator, we must modify the 
classical spaces of polynomials Pk. 


The P2 standard space must be replaced by P2 = 
P2 • (b) where b = A•A2A3 in barycentric coordinates is 
the "bubble" function equal to 1 at the center of the tri- 
angle and 0 on its three edges. The new element is an 
element with 7 degrees of freedom which are those of the 
classical P2 triangle plus its center. Then, the correspond- 
ing quadrature rule is the well known Simpson's rule the 
weights of which are positive [11]. 


For P3, the process is more complex. The new element 
has 12 degrees of freedom and the space of polynomials 
is •s = Ps • (b•, b2, bs) where b•, b•, b3 are polynomials 
equal to I at three points symmetrically located on the 
three medians of the triangle respectively and 0 on the 
three edges of the triangle. We show that the problem has 
a solution for a unique set of points. 


An other approach can be found in [6]. 
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2 A non-stable approach 


We shall consider the following model problem: 


Findu' /R 2x]0, T[-, /R so that: 


(1) •-•7(x,t) - Au(x,t) = 0 in/R 2 x ]0, T[ 


u(x,O) = uo(x), •(x,O) = u•(x) in/R 2 
Its variational formulation is: 


dt 2 uvdx + VuVvdx=O Vv•H •(•2) 2 2 


(2) 
In this section. we shall only deal with the space ap- 
proximation which is the main point of this study. Let 
[.•t.(•2) = {v • H•(• 2) /Vi • N v/r• • P&}, be the 
Lagrange finite element space of kth order •sociated to a 
triangular mesh {•} of •2, Ti • •. The semi-discretized 
formulation of the problem can be written • follows: 


Find u•(.,t) • V•(•2), t • ]0, T[ so that: 


(a) + = 0 2 


2) 


Ouh (x, O] = = 
Let (•i)iex be a basis of V•(•2). Then (3) is equivalent 
to the following (infinite) ordinary differential equations 
system: 


(J•12.h)l. i -'- /iR2 •I(X ) •i(X) dx 
(4) 


with (I¾2'h)l'i -- fir •7•l(32) •7•i(x) dx ' 2 


(l, i) 6 N • 


So, we get a matrix (M2.h) which is n-diagonal symmet- 
ric and must be inverted at each time-step for any ex- 
plicit scheme, and we wish to lump this mass-matrix in 


order to avoid this inversion. This mass-lumping implies 
to find quadrature rules the points of which coincide with 
the degrees of freedom of the elements. Moreover, in order 
to keep the same accuracy as that of the scheme with- 
out mass-lumping, the quadrature rules must be exact for 
polynomials of degree 2k - 2 [2]. 


For P•, the degrees of freedom are the vertices of the 
triangle and the suitable rule is the trapezoidal rule. 


For P2, the degrees of freedom are the vertices of the 
triangle and the middles of the edges, and the suitable 
rule is so that the weights are equal to 0 at the vertices 
and 1/3 at the edges [11]. 


For these two first kinds of finite elements, the nodes 
of the element coincide with the points of the quadrature 
rule in a natural way. For cubic elements, the location of 
the nodes on the edges of the elements must be changed so 
that these nodes coincide with the points of the quadrature 
rule. Actually, the same fact occurs for quadrilaterals [4]. 


Without mass-lumping, the degrees of freedom of cubic 
elements are the vertices of the triangle, two points located 
at one third and two thirds of the edge and the center of 
the triangle. In order to mass-lump, we must define a new 
element with the same degrees of freedom but in which the 
distance of the points of the edges to the nearest vertex is 
(3 - x/'•)/6. So, the weights of the suitable quadrature rule 
are -1/120 at the vertices, 1/20 on the edges and 9/40 at 
the the center of the element [7]. As one can see, for P2 and 
Pa, the weights at the vertices of the quadrature rules are 
null or negative. So, these rules will not provide a proper 
approximation of -A: for P2, we get an ill-posed discrete 
problem and for Pa, the stability is not ensured. 


Some other quadrature rules which do not fit to our 
problem can be found in [5]. 


3 New finite element spaces 


Since the quadrature formulae above defined are unique, P2 
and Pa seem to have no chance to fulfill the requirements 
of mass-lumping for the wave equation. So, in order to 
overcome the difficulty risen by the non-positivity of the 
weigh_ts, we are going to construct new spaces, namely P2 
and Pa which will be slightly larger than P2 and Pa. This 
boils down to add some interior nodes to the previous P2 
and Pa triangles with the hope that we will be able to find 
quadrature rules which will be suitable for achieving mass 
lumping while keeping the order of the method. 


In fact, one can find also in [2] that if a space of poly- 
nomials /B satisfies Pk C /• C Pk', k _< k', one gets the 
"Pk accuracy" as soon as the quadrature formula is exact 
for Pk+•'-2. Considering the symmetries of the triangle, 
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one can show that it is sufficient to have three degrees of 
freedom (not fixed by symmetry) to integrate Pa and five 
degrees of freedom to integrate Ps [9]. 


3.1 The case of P2 elements 


In order to have the same accuracy as quadratic ele•.•ments, 
one would like to have a space P2 satisfying P2 C P2 C P3. 
Moreover, the quadrature formula should integrate exactly 
P3 (since 3 = 3 + 2 - 2). 


For this purpose, we shall define P2 by: 


(5) = Pe(v} 


where b denotes the "bubble" function expressed in 
barycentric coordinates {A1, As, As} as ß 


(6) b = AiA2A3 


The triangle corresponding to P2 is the classical P2 triangle 
(the nodes of which are the vertices Sj, j = 1, 3 and the 
middles of the edges Ej, j = 1, 3) to which we add its center 
of gravity G. The new finite element has seven degrees of 
freedom and it is immediate to check that we do get the 
P•-unisolvence. Moreover, as b vanishes on the edges of K, 
the degree of any element of •2 on any edge of K remains 
equal to 2. 


Now, if we can consider the space: 


(7) Vh = {v • co(Q)/VK • T•, V/K • •} 


as a space of approximation of H 1 (fl). Vh clearly admits 
three types of basis functions ß 


functions associated to the vertices of the triangles the 
support of which is equal to the number of triangles 
admitting a given node as a common vertex 


functions associated to the edges of the mesh the sup- 
port of which is made of two triangles 


"bubble"functions supported by one triangle. 


In this case, the Simpson's rule mass-lumps properly. Its 
points are the nodes of the degrees of freedom and its 
weights are: 


1 2 9 


(s) = 76 = = 76 
which are all positive. 


3.2 The case of P3 elements 


Now, we would like to construct a triangular finite element 
which will have the same properties as Pa and will provide 
a_positive mass-lum•ing. For that purpose, we shall define 
Pa such that Pa C P3 C P4. The corresponding quadrature 
rule must be exact for P5 (since 3 + 4 - 2 = 5). Of course, 
we wish to have a set of points as small as possible in 
order to keep a reasonable computational cost but large 
enough to lead to the five free parameters required for Ps, 
as mentioned above._Moreover, our choice is that the traces 
of the functions of Pa on the edges of the triangle should 
be of third order. 


So, all these required properties lead us to define a set 
of quadrature points classified as follows: 


the three vertices {S•, S2, S3} 


boundary points 


interior points {G•(,$), G2(3), 


In what precedes, (a,3) denotes two real parame- 
ter between 0 and 1, Gi(,3) has barycentric coordinates 


(,3,1-/3 1-•3 1•/• 1___• 2 ' 2 )' G2(•) (--,•, ) and Gs(3) 


( 2 , •,•), while Mo(a ) denotes the barycentre of 
Si and Sy with respective weights a and (1 - a) (see figure 
1). 


Note that, with respect to the quadrature points consid- 
ered in section 2, we gained one parameter (namely •)) by 
splitting the center of gravity G into three interior points 
G• (3), G•(3) and Ga(3). 


On the other hand, the set •3 must satisfy: 
( i ) Pa C Pa C P4. 
(ii) The previous quadrature points are Pa-unisolvent. 
(iii) Traces on OK of functions of Pa have degree 3. 
All this is obtained by choosing: 


(9) = P3 e 


the dimension of which is equal to 12, which coincides with 
the number of quadrature points we have considered. It 
is easy to construct the three basis functions bl, b2 and 
b3 associated to G•(3), G•(/3) and G3(/3) as bubble type 
functions defined by: 


(10) bj = b(Aj - I - •) 2 


To see that the quadrature p2ints are Pa-unisolvent it suf- 
fices to remark that any i•of Pa has a unique decomposition 
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s1 


M2 


S3 


S2 


-o"-bs3 
M M 


13 31 


Figure 1' The degrees of freedom for •2 (left) and •a (right). 


in the form: 


(11) { •'-p+bq pE P3, p(G) ---- 0 
qEP1 


Then if • vanishes in all quadrature points, p vanishes 
at all boundary points and also at G. These points being 
Pa-unisolvent, we deduce that p = 0. Now the fact that 
•(Gj(,$)) = 0 yields q(Gj(/3)) which yields q = 0 since 
q E P1 and since the three points G• (/3), (72(/3) and Ca(/3) 


1 


are not aligned as soon as/3 •k õ. 
Taking into account the different kinds of points, the 


quadrature formula can be written: 


(12) 


E(f) = 


which is a formula with 


five parameters (ws, w•, co O, a and/3) while we have 5 
classes of equivalence in Ps. 


One shows there exists a unique set for the parameters 
in order that formula (12) integrates exactly Ps. This set 


is' 


(13) 


/3 __1 2__• V• 3 + __• 0.5853 


-42 - 21 vf• + V/35 + 16 v"-•v•v• 
84 + 42 v/• 


0.2935 


919 v• + 2471 
"' 0.0148 


124080 VQ + 330960 


OJc• --- 2 • (2 '•- V/'•) 4 • 0.0488 
25280 + 9520 V• 


147 + 42 v/• 
w O = 2 -,-, 0.2208 


400 x/• + 1280 


Of course, we now construct a space of approximation of 
H• (f/) as: 


(14) Vn -- {v 6 Cø(•)/VK ß Th, V/K • •3} 
Once again there are three types of basis functions. The 
difference with the •2 space lies in the fact that there is 
still one basis functions by vertex (as for P2) but two basis 
functions by edge and three basis functions by triangle. 


The approximation of the term in time leads to a di- 
agonal mass-matrix only when one uses the appropriate 
quadrature formula to compute the integrals appearing in 
the variational formulation but the computation of the in- 
tegrals coming from the harmonic operator can be made 
in two ways: either exactly or by using the same quadra- 
ture formula (which will not provide an exact value of the 
integrals). We shall present here the first point of view. 
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Of course, this kind of result could be extended to higher 
order triangular finite elements but, even for P3, the com- 
putations, made with the help of MAPLE, which led to 
this result were not immediate and it is obvious that such 


computations will rapidly reach the bounds of any soft- 
ware of this kind for higher order elements. So, although 
conceptually possible, the extension to higher order does 
not seem easy in practice. Moreover, we don't have any 
theoretical result ensuring that it is possible to construct 
an adequate quadrature formula with positive weights at 
any order. 


Immediate generalization of such elements to 3D pro- 
vided non-positive quadrature rules until now. 


3.3 Discretization in time 


The higher order character of the approximation in space 
suggests to use a higher order approximation in time in or- 
der not to sully the accuracy of the global approximation. 
Of course, the most natural way to get a fourth order time 
discretization would be to discretize the time derivative by 
using a centered fourth order finite difference scheme. Un- 
fortunately, such schemes are unconditionally unstable. So 
two solutions remain: either use a standard second order 
finite difference scheme: 


n--1 


(15) 02uh(t") ,.v 11•-}-1 -- 212• Jr' ll h 
which is stable but reduces the convergence of the method 
to second order or apply a modified equation approach 
described, for instance, in [3] but in a slightly different 
way, as described below: 


By writing down the Taylor expansion of (15) we get: 


(16) 
Ot 2 At2 


12 0t 4 
+o(h 6) 


04Uh 
At this step, we replace • by N•uh (Na - M•,•K2,a) 


(these matrices were defined in (4)). 
The new formulation can then be written: 


At 2 At 2 _ ., 
(17) •+' = • - •-• - h•-•[• - •y•hJ 
This new algorithm involves two computations of the dis- 
crete Laplace operator but this additional cost will be bal- 
anced by the increase of the stability condition, as we shall 
see below. 


A plane wave (or, equivalently, Fourier) analysis of the 
method leads to an eigenvalue problem in w• (w• is the 
pulsation of the discrete plane wave). The eigenvectors of 
this problem are in •t 6 for ,• and •t •3 for -•3. Its solu- 
tion (computed numerically) provides the following stabil- 
ity conditions: 


At 


(18) At < 0.2187 for • and •- < 0.i2aa for •3 h - - 


for the second order scheme in time, 


At 


(19) at < 0.37ss for and < 0.155 for 
for the fourth order scheme in time which allows to use 


time-steps almost twice larger than a second order sche•ne. 
This balances the increase of computation introduced by 
the method. 


Higher order approximations in time do not have the 
same properties and provide too expensive algorithms. 


Moreover, the ratio q• = w•/k gives the error committed 
on the velocity. The study of qh versus the inverse of the 
number of elements per wavelength and for different values 
of the angle of the direction of propagation 0 and the ratio 
a = At/h gives the dispersion curves [10]. On the other 
hand, log-like curves of q• shows that the error is of 4th 
order for P2 and 6th order for P3, which points out the 
same superconvergence phenomenon as for quadrilaterals. 


Remark: A classical finite element analysis gives an 
error in h 4 for the L•-norm and in h 3 for the Hi-norm 
[1], [•]. 


4 Numerical results 


We solved the following test problem for regular meshes in 
ß 


•-•T(x,y,t) - Au(x,y,t) = g(x,y)f(t) 


in ]0, 12[• x]0, 50[ 


(20) •(x, y, 0) = 0• •(x, y, 0) = 0 in ]0,12[ 2 
u(O,y,t) = u(12, y,t) = u(x,O,t) = 


u(x, 12, t) = 0 in ]0, 12[ 2 x ]0, 50[ 


where g(x, y) is a Gaussian function in polar coordinates 
and f(t) is the second derivative of a Gaussian function 
(Ricker function). 
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Figure 2: Dispersion curves for •2 and fourth order in time, ct varying from 0.05 to 0.35, for 0 = 0 (left) and 0 = rr 
4 


(right). 


We give, in the figures below, the seismograms of the 
solutions on the interval in time [25, 50] (i.e. after a trip 
of 100 wavelengths) at the point (9,3) on a regular meshes 
cont_ainin_g roughly the same number of degrees of freedom 
for P2, Pa and P1. The "exact" solution is in dotted line 
and the numerical one in continuous line. 


These figures show the gain of accuracy given by Pa and 
the importance of a good accuracy in time. In fact, in order 
to obtain an "exact" solution on a no_n-regular mesh, P2 
will take twice more CPU time than P3. 


5 Conclusion 


x, Ve constructed and analyzed triangular finite elements 
with mass-lumping for the wave equation with an accuracy 
comparable to quadratic and cubic spectral finite elements. 
These new elements ensure a stable approximation of the 
wave equation. Higher order elements could be found but 
no automatic algorithm is known for the moment. Gener- 
alization to tetrahedra is being studied. 
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Figure 3: Dispersion curves for •3 and second order in time, a varying from 0.05 to 0.124, for O = 0 (left) and O = •- 
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(right) (top) and fourth order in time, a varying from 0.1 to 0.21, for 0 = 0 (left) and 0 - • (right) (bottom). 
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Figure 4: Seismogram for P•, second order in time and space, 3.75 elements per wavelength, a - 0.3. 
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Mass Lumping Edge Elements 
in Three Dimensions 


G. Cohen* P. Monk t 


Abstract 


The phase accuracy of standard finite difference time do- 
main algorithms in computational electromagnetism limits 
the type problem that can be solved. This is because phase 
error accumulates during the computation and eventually 
destroys the solution. We propose a new mass-lumped fi- 
nite element scheme using cubic edge elements which has 
superior phase accuracy compared to the standard finite 
difference scheme. The mass lumping is performed care- 
fully to avoid loss of accuracy. We analyze the dispersion 
error of the mass-lumped cubic scheme and provide a sim- 
ple numerical example showing the accuracy of the cubic 
scheme. 


Key words: Maxwell's equations, edge elements, mass- 
lureping. 
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1 Introduction 


A central problem in computing an approximate solution 
to a linear hyperbolic problem is the control of phase error 
accumulation. As a wave propagates through computa- 
tional space, phase errors accumulate and eventually de- 
stroy the accuracy of the solution (see for example [1, 16]). 
This problem is particularly acute in computational elec- 
tromagnetism. The desire to compute accurate solutions 
to electrically large problems (ie. those problems in which 
a wave must be computed for a large number of cycles) 
implies the use of vast computational resources. There 
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is an obvious need to find numerical schemes with im- 


proved phase accuracy for approximating Maxwell's equa- 
tions. This paper is devoted to describing a mass-lumped 
finite element scheme for approximating the Maxwell sys- 
tem in three dimensions. The method is distinguished by 
having superior phase accuracy properties when compared 
to the usual finite difference scheme. 


In computational electromagnetism, the standard finite 
difference scheme for approximating the Maxwell system 
is the Yee scheme [22]. This is a second order accurate (in 
time and space) staggered grid scheme using leap-frog time 
stepping. It is very effective for computing the solution of 
Maxwell's system, but has only second order phase accu- 
racy which limits its applicability to high frequency prob- 
lems. The cubic finite element method we shall describe 


has a sixth order accurate phase error (but only fourth or- 
der spatial error) and is also a staggered grid scheme (or a 
mixed method in finite element language). 


W'e are not the first to propose higher order schemes 
for Maxwell's equations. For example, Tuomela [19] and 
Petropolis [17] have proposed fourth order finite differ- 
ence schemes based on extending the Yee approach. This 
scheme suffers from having a large stencil which compli- 
cates the implementation of boundary conditions and the 
handling of material discontinuities. 


A number of authors (for example [21, 20, 15]) have sug- 
gested using higher order finite element methods. We fol- 
low this approach and will describe a method based on 
cubic edge finite elements [13] on a mesh of cubes. An 
important difference in our approach is that we shall show 
how to mass-lump the scheme using an extension of the ap- 
proach of [9, 8, 18] while maintaining the accuracy of the 
scheme. Of course the limitation of using a grid of cubes 
will need to be relaxed in order to handle curved bound- 


aries. But we will discuss our approach to this problem 
elsewhere. 


One way of fitting curved boundaries is to use tetrahe- 
dral elements. However, in the case of edge elements, it 
is difficult to mass-lump even linear elements [7]. Mass 
lumping higher order tetrahedral elements is likely to be a 
challenging problem. 
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•Ve choose to use the edge elements of N•d•lec [13] be- 
cause these elements have the advantage of allowing con- 
trol over the divergence of the solution and allow a simple 
method of satisfying one of the standard electromagnetic 
boundary conditions. However the price to be paid for 
this is that the elements are anisotropic and more complex 
than standard elements. However as we shall discuss here, 
it is possible to show that the element anisotropy does not 
adversely effect the phase accuracy of the method. The 
family we use is cheaper to use (fewer degrees of freedom) 
than the other edge family of Mur and N•d•lec [12, 14]. 


There are also a number of more innovative approaches 
for developing phase accurate methods for the Maxwell 
system. For example Cangellaris [3] has investigated a 
spectral-cut-off method. At present that method seems 
limited to periodic problems. 


In th. is paper we shall focus on propagation and phase 
error properties of the mass-lumped scheme. For this rea- 
son we shall only consider a simple cavity problem and ig- 
nore such vital aspects of "real" electromagnetic problems 
as absorbing boundary conditions, complex structures and 
tensor material properties. These considerations, which 
are vital for realistic applications, will be discussed in the 
future. 


This work continues our study of two dimensional mass 
lumped schemes reported in [6, 4]. Here we show show to 
extend the method to three dimensions, summarize some 
results about the dispersion behavior of the three dimen- 
sional scheme and give the first numerical results in three 
dimensions. 


2 The Maxwell system 


As we discussed above, we will limit ourselves to a simple 
initial boundary value problem for the Maxwell system. 
Let [2 C R a be a domain or cavity filled with a dielec- 
tric medium having scalar permittivity e and permeability 
/z which can be functions of position (even discontinuous 
functions providing the discontinuities occur at finite el- 
ement boundaries). The electric field E = E(t, x) and 
magnetic induction B = B(t, x) are functions of time t 
and position x and satisfy the Maxwell system in [2: 


OE 


(1) v x 
OB 


(2) + v x E = O. 


In (1) the function J - J(t, x) is a known applied current 
density. For simplicity we shall assume a simple general- 


ized perfectly conducting boundary condition: 


(3) n x E = 'y on the boundary F = 0fl. 


Here 'y is a known tangential vector field on F and n is 
the unit outward normal to F. Finally, we assume that 
the initial fields E(0, .) and B(0, .) are given. The sys- 
tem (1) and (2) together with the boundary conditions (3) 
and the initial conditions is a well posed initial boundary 
value problem for the Maxwell system (at least when f• 
is a bounded Lipschitz domain, J • (L2(f•)) a, and if e 
and • are uniformly positive and bounded in L•(f•) [10]). 
We remark that we limit ourselves to dielectric media here 


since we will focus on wave propagation. A conductivity 
term can be added without difficulty. 


In the special case when f• = R a, e =/z = 1 and J = 0 
the Maxwell system possesses plane wave solutions. The 
dispersion analysis of (1) and (2) involves describing these 
solutions. Of course such a dispersion analysis is entirely 
trivial but we discuss it here for completeness. We suppose 
that the fields are time harmonic so that 


E(x,t) - •(x) exp(-iwt) and 
B(x,t) - •(x) exp(-iwt) 


where • and • are vector functions of position and • is 
a parameter. Substituting these expressions in (1) and (2) 
we obtain 


(4) -iw•-V'x• -- 0 inR 3, 
(5) -iw•+V'x• = 0 inR 3. 


Now, if • • 0 we can proceed in the usual way to eliminate 
the magnetic induction by using (5) in (4) to obtain 


v x (v x 


By standard vector identities this implies that 


However taking the divergence of (4), and assuming w • 0, 
we see that V. • = 0. Hence (6) becomes 


(7) w2•-A•=0 inR 3. 


Thus each component of • satisfies the standard 
Helmholtz equation, and the dispersion properties of (4)- 
(5) are exactly the same as for the wave equation. In par- 
ticular, we can seek a plane wave solution of (7) of the 
form 


• = •0 exp(i/• ß x) 
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where •70 is a constant vector and k = (kl, k2, ka) T. For 
this function to solve (7) it is necessary that w be related 
to k via a dispersion relation. There are two possibilities: 


(8) either co - 0 or co2 _ q- q- -Ikl 2, 


The case co = 0 corresponds to non-propagating waves, 
and the case co = +[kl corresponds to wave propagation. 
We shall refer to approximations of the dispersion relation 
co2 _ [kl2 as the "physical" dispersion relation. Unfortu- 
nately, the cubic finite element method in this paper has 
other non-zero dispersion relations that are termed "para- 
sitic" since they do not have a counterpart in the standard 
continuous theory. An alternative expression for the dis- 
persion relation corresponding to propagating waves is 


where co12(k) = k 2 is the dispersion relation for the one 
dimensional wave equation. This observation proves use- 
ful in analyzing the dispersion properties of the discrete 
scheme. 


3 Edge element discretization 


Now let us turn to discretizing (1)-(2) in space. Suppose 
we construct finite element subspaces as follows (we shall 
give details of this construction shortly): 


t:• C H(curl; 


-- {U e (L2(•))3 I V x u e (L2(•))3}, 
U0.h C H0(curl;•) 


= {u e H(curl;•)ln x u- 0 on F}, 
Vh c H(div;fi) 


- {v ß (L2(F0)3I V.v ß L2(f•)}. 
Then the obvious semi-discrete scheme for approximating 
the Maxwell system is to seek semi-discrete fields Ea(t) ß 
Ua and B(t) ß Va such that 


(eEh,t, (b) -- (lz-lBh, V x 
(9) 


(•-lSh,t, •)) -- (]•-lv X rh, 
(10) 
(11) n x Zh 


= -(J, ½), 
¾½ ß Uo,h, 


-- O, 


= ff• on F, 


where (u, v) = fn u. v dV and 'in is a suitable interpolant 
of '7 on F. In addition the initial conditions must be en- 
forced (for example by interpolating the initial data). This 
is an extension of the scheme proposed in [13] to variable 
e and/•. 


The problem with this approach is that the inner prod- 
uct (eEn,t, c)) gives rise to a projection matrix which makes 
it impossible to use a pointwise explicit time stepping 
scheme to discretize (9)-(10) in time. Following our mass- 
lureping strategy developed in [4], we mass-lump (9)-(10) 
by replacing the exact inner products by approximate in- 
ner products computed using quadrature. An important 
difference compared to the two dimensional scheme is that 
it is now necessary to apply quadrature to all terms in 
the weak formulation. We define two approximate inner 
products (., .)•h and (., ')2• which approximate (., .). Ob- 
viously the discrete bilinear forms must be chosen so as to 
lump the projection matrices for the magnetic and electric 
equations, preserve accuracy, and result in positive definite 
diagonal lumped matrices. 


Using the approximate inner products, the discrete so- 
lutions (E•(t),B•(t)) ß U• x Vh are taken to satisfy 


together with the boundary condition (11). In each case, 
for i = i or 2 the quadrature has the form 


(14) (u, v)in = (ul, Vl)lih q- (U2, V2)2ih q- (N3, V3)3ih, 


where the quadratures used to compute each term use 
quadrature points at the interpolation points for the cor- 
responding component of the solution. 


It remains to describe the quadratures and the spaces 
Un, U0,n and Vn. We suppose that • has been covered 
by a mesh consisting of translates of the "unit cell" [0, h] a. 
Obviously this greatly restricts the class of domains •. We 
could allow parallel-piped boxes, but the extension of the 
scheme to isoparametric hexahedra is much more complex 
and will be addressed in another paper. 


On each cube in the mesh, the electric and magnetic 
fields are represented by polynomials. In order to define 
these polynomials, we need to introduce some notation 
which we do next. Let -1 = •:f < :•2 t' < •a t' < •:4 t' = 1 
be the cubic Gauss-Lobatto quadrature points in [-1, 1] 
with corresponding quadrature weights tbO, tb2 •, tba • and 
tb4 •. Note that tbO = tb4 •. By mapping [-1, 1] onto [0, h] 
using an arline map, we obtain the Gauss-Lobatto points 
0 = x• < x2 • < Xa • < x4 • = h on [0, h] with associated 
weights w• = thigh/2, 1 < i < 4. Then we define the 
basis polynomials {/i (x) }/4=1 of degree 3 by requiring that 
li(xp) = 5ij, 1 < j < 4. Thus {/•(x)},4.=1 are the Lagrange 
basis functions associated with the Gauss-Lobatto points. 
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In the same way, let x• G < x• < x• G be the quadratic 
Gauss points in [0, hi (obtained by mapping the Gauss 
points in [-1,1] to [0, hi) with associated quadrature 
weights I• ,G]3 We define the quadratic Lagrange ba- lt6i fi=l' 


sis polynomials {gi(x)}•=• by gi(x?) = 6ij, I _( j (_ 3. 
Having defined these polynomials we can define the cubic 
edge elements used in this paper. These were proposed 
and analyzed in [13]. On the element [0, h] s, the discrete 
approximation En - (E•h., E2h, E3h) of E is represented 
as follows 


3 4 4 


'•'"•ijk gi(x)lj(y)lk(z), 
i=1 j=l 


4 3 4 


(16) E2•(x,y,z) • • • • •(2) •ij• li(x)gj(y)l•(z), 
i•1 j•l k=l 


4 4 3 


•=1 j=l 


where {E(j•, EJ•. © E•jk} are the degrees of freedom of the 
solution. The finite element solution on other elements 


is represented by translations of the basis functions used 
above (with different coefficients!). 


To obtain a globally curl conforming element, Elk is cho- 
sen to be continuous in across faces in the mesh that are 


normal to the y and z axes, but in general, it is discon- 
tinuous faces in the mesh that are normal to the x axis. 


Similarly E2• is continuous across faces normal to the z 
and z axes and E• is continuous across faces normal to 
the z and y axes. The space U• can then be assembled in 
the usual finite element way. The space U•,0 is the sub- 
space of U• consisting of those functions with a vanishing 
tangential component on F. This can be found simply by 
setting the degrees of freedom associated with edges or 
faces on F to zero. 


On [0. hi •, the discrete magnetic induction B• = 
(B•;•, B2•. B•) •' is represented by 


B(1) li(x)gj(y)gk(Z) ijk • 


B(2) i;k 


B(S) 


1p(x) p(2) where t•_.ijk, "-"ijk, "-'ijk } are the degrees of freedom of the 
solution. 


To obtain a globally divergence conforming element, Bxn 
is continuous across faces in the mesh that are normal to 


the x axis, but in general discontinuous across other faces. 
Similarly B2n is continuous across faces normal to the y 
axis and Bsn is continuous across faces normal to the z 
axis. The space Vn can then be assembled in the usual 
finite element way. 


Figure 1 shows the distribution of degrees of freedom 
for the first component of the electric and magnetic fields. 
Note that the polynomials used to represent En and Bn 
are of different degrees in different directions, and differ- 
ent for each component so it is not clear how the discrete 
dispersion relation will behave. 


The quadratures used to compute (., .)• and (., ')2• use 
quadrature points at the interpolation points for the cor- 
responding component of the solution. Thus, we approxi- 
mate 


rio u•v• dV • ,h]• 
3 4 4 


(21) •'• Z • u•(z•,z•, • (z•,z•, • • • • ß 
i=1 j=l k=l 


and (u•, v•)•in (see (14)) is obtained by adding quadratures 
of the type (21) over all elements. The remaining quadra- 
tures are defined similarly. Using these quadratures and 
the fact that the basis functions are Lagrange interpolants 
at the quadrature points results in a diagonal matrix mul- 
tiplying each time derivative term when the discrete equa- 
tions are written in matrix form. The fact that Gauss 


or Gauss-Lobatto quadrature is used in each direction im- 
plies that the accuracy of the finite element scheme is not 
spoiled. 


4 Dispersion analysis 


Taking f• = R a, e = /• = 1 and J = 0 in (12) and (13) 
we can perform a discrete dispersion analysis on the finite 
element scheme outlined above. We start the dispersion 
analysis of the discrete scheme by seeking discrete solutions 
of the form 


E•(x,t) = •(m)exp(-iwt), and 
Bn(x,t) = •n(x) exp(-iwt) 


where •n • Un and •n e Vn. Then (12)-(13) becomes 


- x = 0 
(22) V• n e U•, 


- (v x = 0 
(23) e 
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Figure 1: Here we show the distribution of degrees of freedom for the first component of the electric and magnetic fields 
on an element (electric field - left, magnetic induction - right). The degrees are located at •auss or Gauss-Lobatto 
points in each coordinate and are show by the bold face arrows. There are some electric degrees associated with edges 
of the grid and this is the origin of the name "edge elements" for the electric field. For the magnetic field the degrees 
of freedom are either internal to an element or associated with faces. 


we cannot find finite element functions •;a and •a that 
behave like exp(ik-x) in space since •Th and •a are piece- 
wise polynomials. Instead we demand that •;a and •a 
behave like exp(ik ß x) on the level of the mesh, so that if 
e, is the ith unit vector 


•7a(x + lhe• + mhe2 + nhea) = 
(24) •(x) exp(i(lhk• + mhk2 + nhk3)) 


and similarly for •a. In particular let us consider the 
the first component of •Ta denoted •al. This function is 
discontinuous as a function of x across faces in the mesh 


normal to the x axis, but it is continuous as a function 
of y or z across the remaining faces. Thus we are only 
concerned with (24) in the y and z directions: 


•a• (x + lhE2 + mhE3) = •a• (x) exp(ik2hl)exp(ikahm). 


This equation relates •h• on faces normal of [0, hi a to the 
y or z axis to the value on the opposite face. Motivated 
by this we define the 4 x 3 matrix Px by 


P• =- ' exp(iklh),O,O ' 
where I is the 3 x 3 identity matrix. The matrices Py 
and Pz are defined similarly with k• replaced by k2 and ka 
respectively. 


We shall also need the following notation. Let M c be 
the 3 x 3 diagonal matrix with (%o,..., OVa •) on the main 


diagonal and let 3//œ be the 4 x 4 diagonal matrix with 
(•,... •4 •) on the main diagonal. We also define DO) to 


(•)= fo • l•(x)gj(x) dx. Finally be the 4 x 3 matrix with 
let • be the 3 x 3 identity matrix and •œ be 4 x 4 identity 
matrix. 


The following theorem holds [5]' 


Theorem 4.1 Let 0 _< kih _• 7r, 1 _< i _< 3 and suppose 
o•n • 0 where o•a is the dispersion relation for the first kind 
edge elements with mass-lumping. Then 


where 0•2• is an eigenvalue for 


(25) PjD(•)MS•D(1):rpxu• 2 ß - %•P• M•P:u• = 0 


and similarly for 0•2• and 053h (with x replaced by y and 
z). 


Remarks. 


, 


. 


The proof of this theorem follows the same outline 
as derivation of the the dispersion relations for the 
continuous problem given in the introduction. 


Equation (25) is exactly the equation arising from a 
dispersion analysis of the one dimensional wave equa- 
tion discretized using finite elements and mass-lumped 
by Gauss-Lobatto point integration [4]. Thus disper- 
sion relations are available [18]. 
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3. Despite the use of anisotropic basis functions (differ- 
ent degrees in different directions), from the point of 
view of phase error the method behaves as if full cubic 
polynomials have been used in all directions. 


4. If we do not mass lump (so use (9)-(10) rather than 
(12)-(13)) the same conclusion holds if we replace Mc 
and ML by suitable non-diagonal inner product ma- 
trices for the appropriate elements. 


From [18] we know that (25) has three dispersion rela- 
tions (we have suppressed the dependency on x): 


h6k6 •v•(k) = A•(k) • k 2 1 302400 + 
(26) 


(27) 


(28) 


+o(1))), 
+o(1))). 


The first dispersion relation (26) is the "physical" disper- 
sion relationship corresponding to a sixth order approxi- 
mation to the true dispersion relation •2 = k2 for the one 
dimensional wave equation. The remaining dispersion re- 
lations (27) and (28) are parasitic modes. These modes do 
not seem to cause catastrophic problems in practice, but 
must be taken into account when determing the stability 
of the scheme. 


Using (26)-(28) we have the foilroving corollary: 
Corollary 4.1 There are 27 non zero dispersion relations 
for the cubic edge finite element scheme described here. 
They are 


ß 


= ) + 
for 1 < i,j,k < 3. One mode, •a 2 (k), is a sixth or- - -- h,1,1,1 


der approximation to the physical mode given in (8). The 
remaining 26 modes are parasitic. 


One more point is that using this corollary and the re- 
suits of [18] we can show that 


2 2 (29) max maxh cz•,i,j,•(k ) - 18(6 + x/•). l_•i,j.k_•3 hk 


This result will allow us to give a stability condition for 
the fully discrete scheme. 


5 Time stepping 


For a practical implementation of (12)-(13) it is necessary 
to discretize in time. In [4], we have shown that in two di- 
mensions it is best to use a fourth order leap-frog time step- 
ping scheme when cubic finite elements are used in space. 


An obvious question is whether this conclusion holds in 
three dimensions. 


We shall start by presenting a second order in time 
scheme. If we number the degrees of freedom for En and 
Bn we can write the unknowns as vectors/•n and/•n, then 
(12)-(13) may be written as the following matrix ordinary 
differential equation: 


c (30) 
d•n 


(31) Ms +C• = 0, 
where (30) applies to the internal degrees of freedom of 
and the boundary degrees are determined by (11). The 
most important feature of these equations is that Me and 
Ms are diagonal matrices which is a direct result of our 
lumping strategy. The matrix C corresponds to a discrete 
cuff, and the vector f is determined form the given func- 
tion J. 


To obtain a second order time stepping scheme, we use 
a leap-flog scheme (as is standard for finite difference 
methods [22]). We let 
•((n + 1/2)At) where At is the time step. Then the 
fully discrete electric and magnetic fields are determined 
by solving successively 


+ : 0. 
These equations may be solved rapidly since 
are diagonal. 


If • = R 3, we can use the dispersion analysis to show 
that the time stepping scheme is stable provided the fol- 
lowing Courant condition is satisfied: 


At 2 
-- < m 0.13. 


where we have used (29). 
This time stepping scheme is called a "2-4" scheme since 


it is formally second order in time and the use of cubic ele- 
ments in space is expected to provide fourth order accuracy 
in space. The fourth order accuracy in space is a known 
superconvergence result if the method is not mass lumped 
[11], but has not yet been proved for the mass lumped case. 


To construct a fourth order in time scheme, we adopt 
the modified equation approach which corrects the error 
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in the leap-frog scheme. The scheme is derived in [4] and 
can be summarized as follows: if we define 


,4 = M•C r and B = -M•C 


then at interior points 


ff•+l/2 : Mi•n+l/2 q_ 


while at boundary points ff•+z/2 and ff•+•/2 are given by 
time derivatives of if. 


Using these equalities in a Taylor expansion of ff•+• - 
ff• about t = (n + 1/2)At and discarding higher order 
terms gives us the following time stepping scheme for the 
electric field 


(At)3 •+•/2 (32) ff•+• = ff=+Atff• +•/2+• tt ß 
This is a corrected leap-frog scheme. 


The time stepping scheme for the magnetic induction is 
obtained in the same way using the magnetic analogue of 
(32). Using this time stepping scheme, we have a locally 
fourth order accuracy in time. The scheme is termed a '&4' 
scheme since it is formally 4th order in time and expected 
to be 4th order in space. The stability constraint can be 
shown (again using the bound (29)) to be 


At < 0.381h. 


This is almost three times the stability limit for the 2-4 
scheme (but the work per time step is approximately three 
times the work for a single 2-4 time step). Thus the fourth 
order in time accuracy is gained at almost no extra cost 
compared to the 2-4 scheme. 


To demonstrate the improvement in phase velocity of the 
fully discrete 4-4 scheme compared to the Yee scheme we 
show a graph of phase velocity defined by h/Ikl against 
the reciprocal of the number of grid points per wavelength 
in Figure 2 for waves traveling along the x axis (ie k = 
(k•,0,0)). For the Yee scheme, we choose At/h = 1/x/-•, 
and for the 4-4 scheme we choose At/h = 0.3. The exact 
phase velocity is unity regardless of k, and both the Yee 
scheme and the cubic 4-4 scheme underestimate this phase 
velocity. However the cubic 4-4 scheme is much closer to 
the ideal. 


6 Numerical results 


In order to compare the cubic method to the standard 
Yee finite difference scheme we have performed a simple 


computational comparison of the methods. We take •q - 
[0, 2] a and mesh •q by subdividing into N x N x N cubes. 


For the Yee scheme the time step is chosen to be the 
optimal step (the maximum step consistent with stability). 
For the 2-4 cubic scheme, we choose either 


0.2h (this is approximately At • -•- 
the Courant stability limit), 
0.2h h 2 


or At m min(x/_•, 3 ) 
and for the cubic 4-4 scheme we use At • 0.3h. 


The exact solution is a Gaussian wave given by 


E = Eog(k. x- t) and B = Bog(k. x - t) 


where 


k = (cos(O) cos(½), sin(O), cos(O) sin(•b)) 


and 0 = ½ = 0.5. Also 


E0 = (- sin(O) cos((•),cos(0),- sin(O) sin((•)) 
B0 = (- sin((•), 0, cos(0)), 


Finally the function g(t) is given by 


exp(_ 10(s_ 1)2)_exp(_ 10 ) •-exp(-•0) 0 <_ t < 2 g(t) = 0 otherwise . 
The boundary data q, is computed from the exact solution 
and J = 0. The solution is not aligned with a particular 
mesh direction. 


To obtain a quantitative comparison of the error in the 
various schemes, we shall display plots of the discrete rel- 
ative L 2 error as a function of the number of degrees of 
freedom in the problem (number of unknowns). The dis- 
crete L 2 error is defined as follows. Let rr• and rr• be the 
interpolation operators for the electric and magnetic field 
spaces (obviously these operators are different for the cu- 
bic and Yee schemes). Then the relative discrete L2 error 
is defined to be 


(33) (l[aSE(t)- Ea(t)112 + libfaSB(t)- Ba(t)112)•/2 
(11fE½)112 q_ IIaB B(t)112) 


(recall e =/• = 1) and we evaluate this error at t = 3. 
When we use At = O(h) in the cubic 2-4 scheme, the 


error is almost entirely due to time stepping error (since 
this is second order rather than fourth order for the spa- 
tial error). The overall convergence rate is second order 
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Figure 2: Here we show a graph of the discrete phase velocity (defined by con/lk[) against the reciprocal number of grid 
points per wavelength for waves traveling along the x axis. In the case of the Yee scheme, we choose At/h = 1/V• 
which is optimal. For the 4-4 scheme we show the phase velocity for At/h = 0.3. These choices of Courant condition 
are the same as those used for the numerical experiments in Section 6. Ideally the phase velocity should be constant 
and equal to one independent of the number of grid points per wavelength. 
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and the results in Figure 3 show that the method has ap- [3] 
proximately the same error (for a given total number of 
degrees of freedom) as the Yee scheme. If however we use 
At - O(h 2) in the 2-4 scheme, the error in the discrete 
scheme is now O(h 4) and for a given number of degrees of 
freedom the cubic scheme is more accurate than the Yee 


scheme (provided h is small enough). This choice is not [4] 
practical in general since it results in a very small time 
step. 


For the 4-4 scheme, the choice of At = O(h) results in a 
scheme with error O(h 4) and with a reasonable time step [5] 
size. Again the results are shown in Figure 3. 


Conclusion [6] 


We have described a cubic mass-lumped edge finite ele- 
ment scheme for approximating the Maxwell system and 
have derived the dispersion relations for the semi-discrete [7] 
scheme. These show a sixth order accurate dispersion re- 
lation (although the scheme is only expected to be fourth 
order accurate in amplitude due to the use of cubic basis 
functions). We then showed how to discretize the method [8] 
in tinhe using either a second order or fourth order leapfrog 
scheme and derived the stability bound for these schemes. 


Numerical results (for propagating a Gaussian pulse a [9] 
short distance) show that the cubic method can be more 
accurate than the Yee scheme provided a sufficiently accu- 
rate time stepping scheme is used. The results also suggest 
that the fourth order in time offers substantial advantages 


over the second order in time scheme. [10] 
To be truly useful the scheme must be developed further. 


In particular we need to show how to deal with curved 
boundaries and how to implement an absorbing condition [11] 
to terminate infinite domain calculations. The problem 
of curved boundaries is the most difficult since it appears 
likely that the use of Berenger's perfectly matched absorb- 
ing layer [2] will be possible with our cubic scheme and [12] 
that this will result in a good absorbing condition. We 
are currently investigating mapping schemes to fit curved 
boundaries and hope to report on a complete method soon. 
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Figure 3: Here we show the discrete L 2 error defined by (33) against the total number of degrees of freedom for the 
Yee scheme, the cubic 2-4 scheme and the cubic 4-4 scheme. This error includes both phase and amplitude error. The 
Yee scheme and cubic 2-4 scheme with At -- O(h) converge with error O(h •) and there is not an obvious advantage to 
the cubic scheme since the error is close to the Yee scheme for a given number of unknowns. If a more accurate time 
stepping scheme is used (cubic 2-4 scheme with At -- O(h •) or the cubic 4-4 scheme) the cubic scheme now converges 
at the expected rate of O(h 4) and rapidly becomes more accurate than the Yee scheme. These results suggest that the 
cubic 4-4 scheme is to be prefered to the cubic 2-4 scheme. 
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Pinched Shells of Revolution: 


Experiments on High-Order FEM 


H. Hakula* J. Pitk/iranta i 


Abstract 


Recent theoretical error estimates predict that high-order 
finite elements have the potential of overcoming a number 
of numerical difficulties associated with shell problems. In 
this work we support the error analysis by numerical ex- 
periments on thin, "pinched" shells of revolution loaded 
by t•vo equal and opposite radial point loads. Different 
geometric categories of shells have strikingly different de- 
formation properties under the same loading and kinemat- 
ical constraints. This is illustrated by examples covering 
elliptic, parabolic, and hyperbolic shells. We demonstrate 
that elements of relatively high order (degree p - 4...6), 
indeed, give quite accurate results as compared, e.g. with 
linear or quadratic elements which often lead to poor scale 
resolution and sometimes even to total failure. In a se- 


ries of experiments we examine the impact of the degree 
p on a fixed problem for each shell category. In the hy- 
perbolic case we also give a direct comparison between the 
traditional h-version and the p-version of FEM. The rel- 
ative superiority of high-order methods in thin shells is 
confirmed by our results. 


Key words: linear elasticity, shells. 
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I Introduction 


The aim of this paper is to demonstrate the effects of the 
shell geometry in linear shell problems and to advocate the 
use of high-order finite elements in these problems instead 
of using some special case-dependent "shell elements". 
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The approach we suggest here is that of standard finite 
elements of (sufficiently) high degree. How high the degree 
should be depends on the case, but normally it is in the 
range from 2 to 8. From the programming point of view 
this requires using the "p-version" where the degree p is 
chosen by the user [13]. 


Admittedly, the high-order elements appear much more 
complicated than the traditional low-degree elements spe- 
cially tuned for shells. However, raising the degree of- 
ten has its advantages (at least within the standard FEM 
framework) as will be shown by the examples. In the prac- 
tical diversity of shell problems induced by variations of ge- 
ometry, load, and boundary conditions, high-order meth- 
ods are in general more reliable (or "robust") than low- 
order ones. In addition to this, in a given problem high- 
order methods often perform better xvith a given comput- 
ing effort. 


The basic source of numerical difficulties in shell prob- 
lems is the small dimensionless parameter; the effective 
thickness of the shell, that appears e.g. in the energy 
formulation of the problem based on any classical dimen- 
sion reduction model. The effective thickness is defined 


as t = d/L, where d is the actual thickness of the shell 
and L is the length scale one is trying to resolve with the 
numerical scheme; often the diameter but there are other 
possibilities as well [3]. 


Numerical difficulties arise when parameter t is small, 
i.e., when the shell is (effectively) thin. In fact, this must 
be assumed for the dimension reduction models to be valid. 


Why high-order methods are more reliable for thin shells 
may be seen from rather simple error analysis in the energy 
norm[3]. The result of this simplified analysis is easily 
stated: The relative error behaves as 


(1) error .• K(t)(h/L) p, 


where h is the mesh spacing in the finite element scheme, 
p is the the degree of the elements, and K(t) is a lock- 
ing factor which may diverge as t -• 0. In the worst cases 
K(t) -0 t -•, but there also are cases where the factor is not 
t-dependent, i.e., K(t) -0 1. In the latter case, the finite 
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element scheme resolves the length scale under considera- 
tion as it should in the sense of approximation theory, i.e., 
optimally. Thus, there are cases where error amplification 
by factor 1/t (as compared with the best approximation) 
occurs in the finite element model and other cases where 


the numerical scale resolution is optimal. 
The estimate (1) gives us an idea of when locking (as t -• 


0) is most severe and how we should deal with it. The most 
dramatic failure of the finite element scheme is expected in 
cases where 1) the worst locking factor 1/t arises, and 2) 
the length scale to be resolved is large compared with the 
thickness of the shell, i.e., t is small. These worst features 
are joined in the so-called membrane locking. This occurs 
in the approximation of smooth, inextensional components 
of the displacement field; see [1], [10], [11]. Numerical 
locking in boundary layers is a more hidden effect, but it 
can also cause large errors in local quantities such as stress 
maxima. 


In the model problems to be studied below, global inex- 
tensional deformations will be ruled out by the kinemat- 
ical constraints, so the overall membrane locking is not a 
problem. However, locking can still occur in the resolution 
of the scales of the layers, since the worst locking factor 
K(t) • t -• in (1) occurs also here [3], and since the dom- 
inant layer scales are relatively wide (see [3]-[9], [•1]). 


Regarding what to do with locking, we can see from 
estimate (1) that when t is small but positive, raising p 
helps to narrow the gap in between the "best" and the 
"worst" cases and thus makes the finite element scheme 


more robust. Indeed, the estimate tells us that in order 
to achieve a given accuracy at given t and p, one needs in 
the "worst" cases mesh overrefinement by factor • (I/t) •, 
as compared with the "best" cases. For example if t = 
0.01, the overrefinement required at p = 4, say, is rather 
moderate as compared with that required at p = 1. Here 
is in fact the basic reasoning that suggests higher degrees 
in cases where locking is likely to occur in some relevant 
length scale. 


In Chapter 2 we give the mathematical settings of the 
linear shell problem based on one of the familiar dimen- 
sion reduction models. In Chapter 3 we present the re- 
suits of a series of numerical experiments on the "pinched" 
shell problem, which is one of the well-known "obstacle- 
course" tests for numerical shell analysis [1]. Conclusions 
are drawn in Chapter 4. 


2 The linear shell problem 


In this work we study thin shells of revolution. They can 
formally be characterized as domains in •a of the type 


{ t (2) a- , 


where t << diam(f•) is the (constant) thickness of the shell, 
I' is a surface of revolution defined as 


(3) I • : {X • •}•3 I 371 • [--1, 1], x• + x• = q)(Xl) 2, 
o > 0}, 


and n(_x) is the unit normal to F. Here we have chosen the 
axial half-length of the shell to be the length unit. In the 
examples we set t -- 0.001, so the shells to be studied are 
quite thin. 


As is well known, there are three main categories of shell 
problems depending on the geometry of the mid-surface of 
the shell. For shells of revolution the different geomet- 
ric categories can be defined in terms of the function ½ 
in (3). The Gauss theory of surfaces states that at a given 
point a surface is called elliptic, parabolic, or hyperbolic, 
whether the Gauss curvature at that point is positive, zero, 
or negative; respectively. In the current setting, for a point 
X------ (Xl,X2,X3), r is 


[E ] elliptic, if ½"(x•) < O, 


[P ]parabolic, if (•"(•1) ----0, and, 


[H ]hyperbolic, if q)tt(Z1) > 0. 


In the cases below it is assumed that for a given shell the 
condition holds on the whole interval [-1, 1]. 


A shell is a three-dimensional body for which the stan- 
dard 3D theory of elasticity can be considered accurate 
for small deformations. Here we consider one of the clas- 


sical dimension reduction models which has gained pop- 
ularity in finite element modeling. This model is similar 
to the Reissner-Mindlin model for plate bending and is 
sometimes named after Naghdi. In this model, the dis- 
placement field u has five components u, v, w, 0, •, each a 
function defined over the mid-surface F. Here (u, v) and w 
are, respectively, the tangential and normal displacements 
of the mid-surface; and 0, ½ are the so called rotations. 


We parametrize F with the usual axial/angular (princi- 
pal curvature) coordinates so that 
F- {•(Xl,X2) I - 1 < Xl < 1, --7r < X 2 • 7r}, where 


(4) !(x•,x2) -- (xl,q}(xl)sinx2,q}(Xl)COSX2). 
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Then u, v, w are defined as the projections of the dis- 


placement on the directions (12) 
1 


--- ' •--2 , •--3 -- •1 X •--2, (5) e_ 1 A10xl A20x2 
respectively, where Ai are the so called Lam& parameters 


(6) A1 - x/1 + ,'(xl) s, A2 -- *½1), (14) 


and the rotations are defined by 
(15) I Ow u i Ow v 


(7) 0 = Z - 


where further Ri are the principal radii of curvature de- (16) 
fined as 


(8) R1 = -&/&, R2 = & •. (17) 
Note that 


Assume that the shell consists of homogeneous isotropic 
material with Young moduIus E and Poisson ratio •. Then 
the total energy of the shelI in our dimension reduction 
model is expressed as 


(18) 
(9) z(•)= !• [• •(•,•)+ •%(•,•)•_ •(•), 2 - 


where D = E/(1-• 2) is a scaIing factor, q(•)is the exter- 
nal load potential, and a(A,A) and b(A,A) represent the 
portions of total deformation energy that are stored in (19) 
membrane and transverse shear deformations and bend- 


ing deformations; respectiveIy. The latter are quadratic 
forms independent of t and defined as 


•(•,•) = •(•,•)+•(•,•) 


(10) 
i,j=l 


(11) b(_u,_u) = 


[ = __ f• s AlAs d% I "(nn +nss) s + (1 - ,) y• 12 
i,j=l 


where ]•ij, Pi, and I•ij stand for the membrane, transverse 
shear, and bending strains, respectively and a is the so- 
called shear correction factor. We shall simply choose a = 
1. The strain-displacement relations are linear and involve, 
at most, first derivatives of the displacement components. 
For shells of revolution they can be expressed as 


1 Ou w 


A10xl 


1 (10u 10v v OA2) •s = • As Oxs • Al OXl 1•s OXl ' 
1 Ou u OA2 w 


2 


i Ow u 
O, Pl = A10xl 


10w v 
½, Ps = A20x2 Rs 


I O0 
/•11 -- 


A10xl' 


I { 1 O•: I 00 • A10Xl q 
1 10A20w 


I O• 00A2 


Within the above dimension reduction model, the ex- 
act displacement field is defined as the minimizer of the 
energy (9) under the assumed (homogeneous) kinematical 
constraints on &v. Finite element approximations can then 
be derived analogously applying the same energy principle. 
Indeed, since the strains involve only first derivatives of the 
displacement field, standard C ø elements can be used. In 
this work we shall minimize the energy exactly as given by 
(9) through (11) without any numerical modifications. For 
further aspects of shell models and possible numerical tun- 
ings, the reader is referred to [11], [12] and the references 
therein. 


As model problems we consider shells of revolution of 
the canonical type 


(20) (b(Xl) = I + •xx •, 


where • • (-1, oc) is a parameter which determines the ge- 
ometric category of the shell in question. In the numerical 


• (elliptic), • - 0 (parabolic), or examples we choose • = -• 
• = 1 (hyperbolic). A "pinched" loading is assumed where 
two radial point loads act on the opposite sides of the shell 
at x = 0. The same kinematical constraints are assumed 
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Figure 1: Elliptic: ½(x•) = 1 - •x 1. 
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Figure 2: Parabolic: ½(x•) = 1. 


at both ends of the shell, so by symmetry the domain is 
reduced to the set 


(21) = {(:•l,X.:,_)IO < x, < 1, 0 < x2 < '7't'/2}, 


assuming that the point load is imposed at x• = 0, x2 -- 0. 
The load potential q in (9) is then q(_u) = Q w(O, 0). 


;Ve shall look at the performance of standard finite el- 
ement methods where each component of the displace- 
ment/rotation field is given the same finite element rep- 
resentation. This is based on triangular (cf. [13]) elements 
on •v of varying degree p. The underlying computer code 
[2], follows the standard p-version philosophy with hierar- 
chic shape functions derived from orthogonal polynomials 
[13]. 


3 Numerical results 


We present here results from numerical experiments on 
pinched shells. In Figs. (1), (2), and (3) we show the three 


2 


o 
-1 


00. 5 
1 


Figure 3: Hyperbolic: &(x•) = 1 + x2•. 


model shell geometries, each one representing one of the 
three categories defined in Chapter 2. 


In the following we first compare the differences in defor- 
mation fields of the shells under the same loading. Having 
established the general setting we examine the effect of 
the degree p of the elements in each case separately. Fi- 
nally, we compare the impact of the traditional method of 
decreasing h while using low-order elements in the •'per- 
bolic case. The w-component of the displacement field is 
shown in the figures. 


In all cases the loading and the computational domain 
are as described in Chapter 2. Additionally we define the 
Poisson ratio y = 0.3 and let t = 0.001. The kinematical 


constraints at x = I are u = v = w = 0. Unless other- 


wise stated, the mesh is a regular (aligned) 9 x 9 grid with 
128 elements, diagonals moving from the bottom-left to 
the upper-right corner of w. Thus the number of degrees 
of freedom varies depending on p as follows: 


p I 2 3 4 5 6 [d.o.f[405 [ 1445 ] 31251 5445 [ 8405 [ 12005 ] 
Note that if the Koiter shell model with vanishing shear 


strains were assumed instead of the Reissner-Mindlin type 
model of Chapter 2, the transverse deflection under the 
load would be finite. In our case, however, the "exact" 
value w(0, 0) is minus infinity. 


3.1 Geometric categories 


In Figs. (4), (5), and (6) we give a global visual compar- 
ison of the deformations at p = 6. It is evident, and also 
expected theoretically [4], [5], [9], that different geometries 
have clearly different profiles. 


In the elliptic case the pinch-through can be seen from 
the "stacked" view. The contour plot (20 levels) is some- 
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what restless. Nevertheless, the deformations are concen- 
trated in the vicinity of the load. The expected (dominant) 
scale of the range v• at the load is not well resolved due 
to the relatively coarse mesh. At x - 1, however, there is 
a trace of boundary layer. 


In Fig. (5) we see the two dominant components of the 
displacement field in a parabolic shell. First, there is a 
very large local deformation in the vicinity of the load. 
Again, the largest deformations should appear in the range 
"• v• which is within the most deformed area. Secondly, 
there is a long-range damped oscillation in the angular 
direction. This is a predicted "layer" in the scale -0 • [9]. 
In capturing this layer, it helps to have the mesh axially 
aligned as we have here (see [11]). The third possible layer 
at x = 1 is not visible at all. 


Finally, in Fig. (6) we have a drastic departure from the 
two previous cases. There is a layer decaying transversally 
from the characteristic line emanating from the origin. The 
predicted scale is • •/• [5], which is again well captured. 
Here the mesh diagonals help, since they are close to the 
characteristic line. The layer at x = 1 is also present in 
the picture. 


3.2 Elliptic profiles (Figs. 7-10) 


The deformations are all relatively small away from the 
load. As can be seen from Figs. (8), (9), and (10), at 
lower degrees of p there is some numerical oscillation. With 
higher p, we get smoother curves which has its impact 
when e.g. local stress maxima are computed. In Fig. (7) 
only the highest degree (p = 6) hints at slight bulging near 
the load. (The effect occurs within one element, so one 
cannot still be certain of the accuracy.) 


3.3 Parabolic profiles (Figs. 11-14) 


In the parabolic case the general trend is clear. Quadratic 
elements perform uniformly badly, whereas at p = 4 con- 
vergence is reached. Only at x - 0 is there any difference 
betweenp = 4 andp = 6. At p = 3 all features of the 
displacement field are captured, but the amplitudes of the 
maxima and minima are not obtained correctly. 


3.4 Hyperbolic profiles (Figs. 15-18) 


It appears that the hyperbolic case is the most challeng- 
ing one. Again the convergence is met with p = 4. This 
time, however; p - 3 does not give acceptable results, thus 
wrecking the myth of p = 3 being all that one ever needs 
when dealing with shells. 
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Figure 7: Elliptic: Profile of w at x = 0. 
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Figure 8: Elliptic: Profile of w at x = 0.25. 
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Figure 9: Elliptic: Profile of w at x -- 0.5. 
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Figure 10: Elliptic: Profile of w at x = 0.75. Figure 13: Parabolic: Profile of w at x = 0.5. 
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Figure 17: Hyperbolic: Profile of w at x = 0.5. Figure 20: Hyperbolic: Comparison at x - 0.25. 
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3.5 h-version in hyperbolic case (Figs. 19- 
21) 


Thus far we have examined the effect of varying p on a fixed 
mesh. In Figs. 19-21 we finally present results computed 
on finer grids withp = 2. The grids are regular: 9x 17, 17x 
17, and 17 x 33. We observe that even on the finest grid 
the low-order method does not compare with p - 3 on the 
coatset grid. (Note that the numbers of degrees of freedom 
are 10725 vs 3125.) Only at x -- 0, the finer grid catches 
the pinch-through better. •Ve should also recall that, as 
concluded earlier, p = 3 is not sufficient for this problem. 


4 Conclusions 


•Ve have demonstrated with our experiments the benefits 
of using standard finite elements of high order in shell 
problems. The differences in the characteristic deforma- 
tion fields of elliptic, parabolic, and hyperbolic shells have 
been shown as well. The connection between the charac- 


teristic lines and the deformation field is clear, especially 
in the hyperbolic case. In parabolic shells the axial lines 
play the same role. For elliptic shells, deformations are 
concentrated in the vicinity of the load. 


The experiments confirm the theoretical result that rais- 
ing the degree p reduces the need for mesh overrefinement 
needed to achieve a given accuracy for thin shells. It is 
evident that this effect depends only on the effective thick- 
ness and not on any other details of the problem. We have 
a consistent performance on all categories of shells of rev- 
olution. 


In summary, •ve conclude that •vhile staying within the 
standard finite element framework, raising the degree of 
the elements is a very effective way of improving the quality 
of numerical approximations to shell deformations. It is 
also a rather easy and natural way - when such an option 
in the program is available. 
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Abstract 


We introduce and analyze stable discrete spaces with quasi- 
optimal approximation properties (with respect to increas- 
ing polynomial degree). This will pertain to some general 
classes of problems: scalar and systems of elliptic as well 
as semi-elliptic (Stokes') problems. 


Key words: p version, Galerkin spectral element method, 
divergence stability. 
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1 Introduction 


High-order mixed methods for solving some classes of dif- 
fusion. elasticity and fluid-flow problems lead to some in- 
teresting questions on stability and approximability. It 
is. for some of these problems, possible to achieve high 
accuracy by using a finite element technique with high- 
order piecewise-polynomials on a subdivision of the do- 
main. These methods generally go under names such as p 
or h - p versions of the finite element method or Galerkin 
spectral element methods. 


This note will concentrate on the theory (and practice) 
of divergence stability. 


In view of the lack of stability (inf-sup constant going 
to zero as the polynomial degree tends to infinity, cf. [18]) 
for some "natural" choices of discrete spaces - and its ef- 
fects such as the extent to which the approximation of the 
velocity/pressure 'locks'- as pertaining to Stokes' (cf. [18] 
[14] [15] [16] [19] [4]) as well as scalar elliptic problems on 
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ICOSAHOM'95: Proceedings of the Third International Con- 
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a bounded, polygonal, plane domain (cf. [9] [15] [17] [13]), 
we are interested in the question of whether or not it is 
possible to define stable discrete spaces. 


In õ2 we develop some basic constructions, and we then 
introduce stable discrete spaces with quasi-optimal approx- 
imation properties (with respect to increasing polynomial 
degree). This is done for scalar elliptic problems in õ3 
and, in õ4, it is done for semi-elliptic (Stokes') systems of 
equations. 


2 Basic notation and definitions 


Let f• be a bounded, simply connected domain with either 
smooth or piecewise curvilinear boundary F (with finitely 
many segments). 


Let Sobolev spaces and the norms specifying their 
topologies, (Hk(f•), II' II•) and (HS(F), I' Is), be defined 
as in [1] or [10]. We identify Hø(9) with L2(9) and the 
L2-inner product is denoted (.,-). (We will, when conve- 
nient and hopefully without confusion, at times use the 
latter to also denote an ordered pair.) Let 


(1) H(div, f•) d__ef ([Co•(f•)]2)closure under [l'l[I-/(div), 
where we take the closure with respect to the norm defined 
by 


ii•ll 2 def HCdiv) ---- Ilxl10 + IIV, xll0 
Then we select (but not yet explicitely) two subspaces: 


(2) X(•2) c_ H(div, f•), and 


(3) 


(which axe again to be Hilbert spaces). When it is clear 
from the context we will use X and Y to denote X(f•) and 
Y(•). 


We may then define the divergence operator, div, on X: 


(4) div:X3v•V.v•Y; div•B(X,Y), 
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through the classical definition (VLx + V2,y) and density 
of C*c(Q) in L2(Q). We associate a bilinear form to the 
divergence operator: 


Definition 2.1 The bilinear form 


b. X x V • (v, q) • b(v, q) • 2• 


is given by 


b(v,'q) = - fa I7. v q dx. 


Similar to (4), we have - for completeness - the operators 
curl and grad, classically defined as 


17 x 0 = (-0y, 0x) = (170) ñ with 170 = (0x, 0y), 


extendable to 13(H•,H(div)) and 13(H•,[L212), respec- 
tively. 


Using Galerkin mixed methods we will seek weak solu- 
tions of elliptic or semi-elliptic problems in two sequences 
of closed subspaces X•v C_ X and Y•v C_ Y. The index N 
may be used as an indication of the dimension of the sub- 
spaces which is most often a function of some discretization 
parameters (such as mesh size, h, or degree of polynomials, 
k, p, or r). 


\Ve assume that the variational formulation of the el- 


liptic or semi-elliptic problem involves a separate bilinear 
form a. 


Definition 2.2 Let there, in addition, be given a bilinear 
form 


a: x x x • (u, v) • a(u, •) • 


Then, we define the class of variational problems under 
consideration to be of the following saddle-point-type: 


(6) 


Find u•¾ • Xm and vrN • YN s.t. 


a(u•¾,v)+b(v, vrN) -- fl(v) VvGXN, 
b(uzv,q) = f2(q) Vq • 


where f• • X* and f2 G y. (the dual spaces of X and Y, 
respectively) are given. [] 


The fact that the problem (6) is well-posed remains to be 
verified in the particular cases and will rely on the general 
framework in [21 and [6]. (Note that we have not excluded 
the possibility of setting (XN, YN) ---- (X,Y).) Here we 
merely consider the case when the problem (6) is semi- 
simply set: 


Definition 2.3 The variational problem (6) is said to be 
semi-simply set if, in addition, a is bounded and coercive 
(over X) and b is bounded (over (X,Y)), i.e. E c, C > 0 
such that 


la(u, v)l <_ 011ullxllvllx 
(T) +a½,v) _> cllvll} vv•x, and 


Ib(v,q)l <_ CllvllxllqllvVv e X,q e Y. 


where either the + or the - is used uniformly over X. [] 


If the problem is semi-simply set, we may concentrate on 
the second inf-sup condition of Brezzi's in order to estab- 
lish well-posedness and stability. Towards that end, we 
also merely consider the case when the family of subspaces 
{(X•v, Y•v)}•v conform to the continuous problem in a cer- 
tain sense: 


Definition 2.4 The sequence of pairs of subspaces 
{(X.¾,Y•v)}•v is called Hodge-conforming in (X, Y) if 


1. X;½ C_ X and Y;½ C_ Y, as well as 


2. 17. X•v C_ Y•v. 


Let us define the affine manifolds (depending on f2): 


MN de___f {W • XN : b(w,q) = f2(q), Vq E Y•¾}, 
(8) M0 d•=f {wEX•v'b(w,q)=0,VqEY•v}, and 


•5[ de•___f {1/; • X'b(w, q) = f2(q), Vq G Y}. 
Then, we may reformulate part of our variational prob- 
lem (6) as: 


Find UN • 2V/N s.t. 


(9) a(u,¾, v) = f•(v) Vv 
which is useful in certain situations. 


Lemrna 2.1 (•t la Brenner &: Scott) Suppose the vari- 
ational problem (6) is semi-simply set and the sequence of 
pairs of subspa•es {(X•, •) }•½ is nodge-•onormin in (X, Y). Then the following error estimate holds 


II u-uz½llx<CJ inf II u-vllx+ inf II•r-qll¾}. -- [ v•MN q•YN 


Proof One merely, but carefully, checks that the argu- 
ments from Lemma 8.1.1 in [5] carry over to get 


cllu- uxllr 


and then one replaces a(u, w) and a(um, w) using (6) and 
(9) as well as employs that w • M0 to get the claim. [] 
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In situations where f2 is particularly simple (0!, 1, or ap- 
proximated a priori), we get the following lemma. 


Lemma 2.2 (h la Scott & Vogelius) Suppose that the 
variational problem (6) is semi-simply set, 3fN • YN 
so that f2 : Y • q •-• f•(q) - (fN,q) • lit, and that 
the sequence of pairs of subspaces {(XN, YN)}N is Hodge- 
conforming in (X, Y). Then, Ms C M and the following 
error estimate holds 


(10) Ilu- uNl}x C { inf llu- vllx} . v•Mx 


Proof by Ceg's lemma. 


In order to obtain quasi-optimal error estimates, it would 
be very convenient if we could establish: 


(11) inf ilu- vllx C N }o 
As is well-known from [22], this is in the Hodge-conforming 
case closely related to the concept of divergence-stability 
(in turn, intimately connected to the second inf-sup con- 
dition), which we generalize slightly for our benefit. 


Definition 2.5 A family of closed subspaces {WN}N C_ 
2 X is called divergence-stable with respect to (X, Y) if 


1. the spaces V. WN are closed in Y, and 


2. 3c > 0, independent of N, such that 


(i2) 
b(w, q) 


sup > cllqllY, Vq v. WN; 


cf. [22]. [] 


Lemma 2.3 Suppose (6) is semi-simply set and {XN}N 
•s divergence-stable with respect to (X, Y). Then (6) is 
well-posed on (X•, V. X•v) and (u•r, •r•v) is uniformly sta- 
ble in (X,Y). In addition, the following error estimate 
holds 


Proof k la Brezzi or Babu•ka. 


Ilu-vllx+?? II-qll} 


Proposition 2.1 (h la Scott &: Vogelius) Let the as- 
sumptions of Lemma 2.2 be fulfilled. Then the spaces MN 
and XN satisfy the estimate (11) for arbitrary u • M, with 
a constant C that is independent of u and N if, and only 
zf, {XN•N is divergence-stable with respect to (X,Y). 


Proof as in [22]. [] 


As we know from [22], this is equivalent to the existence 
of a sequence of uniformly good vib'es, i.e., right-inverses 
to the divergence operators: 


(13) vib. Y3q•v•X, V.v=q; vib•B(Y,X); 
VibN:YN3q•--•V•XN, div(vibNq) = q Vq • YN, 


with a uniform bound Ilvib,ll(/,x) _• c for c in- 
dependent of N. (We used, implicitly, the fact that 
{(X,v, YN)}s is Hodge-conforming in (X,Y) to see that 
vibN E B(YN, XN).) We are therefore interested in deriv- 
ing norm estimates for vibs• = (V.)-x[K, in the topology 
of B(Y, X). 


We will try to create analogues of the well-known 
Helmholtz decomposition in the plane. 


Theorem 2.1 (Helmholtz) 
Every function v of [L2(•)] 2 has the following orthogonal 
decomposition: 
(14) v = Vq + V x &, 


where q 6 H1/R is the only solution of 


(15) (•7q, •7/•) = (v, •7/•) V/• • H 1, 


and ½ • Ho • is the only solution of 


(16) (Vx½,Vxx)--(v-Vq, Vxx) 


A proof of the result in this form is given in [10] Thm. 3.2. 
Given X, let (I) be a vector space of stream- or (Airy) 


stress functions (read: pre-curls), i.e. V' x (I) C_ X, and ß be 
a vector space of potential functions (read: pre-gradients), 
i.e. V'• C_ X. Let there be given a sequence of pairs of 
parental spaces (I)N C_ (I) and •N C- •. 


Definition 2.6 The pair of spaces (•, •), the sequence of 
pairs of subspaces {((I)N, q•N)}N, along with the sequence 
of subspaces {XN}N is called Helmholtz-conforming in 
(X,Y) if 


1. X=Vq•+Vx(I),and 


2. (I)N C- (I) and •N C-- •, as well as 


3. X•C-Vx(I)s+ 


Next, consider function spaces that are (possibly piece- 
wise) polynomials, (sectionally defined on subsets fli C_ fl 
that are triangles, parallelograms, or at times such with 
one curved side (coinciding with a part of F)). 
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Definition 2.7 Let 


•pp _ span{x/ym .O_<l, mandl+m_<p} and 
QP - span{x ty"• '0_<l,m_<p} 


be polynomial spaces of total and separate degree at most 
p, respectively. [] 


Definition 2.8 We call fl an algebraically simple domain 
J where J < oc and each Fj is a segment of if F = LJj=iFj, 


an algebraic curve in the sense that 3p0 such that 


1. •f• {(x,y) • 1•2. p0(x,y) = 0} = F, 


2. p0 is merely a product of at most J polynomials, each 
irreducible over R, so that, defining 


der 


n__• = the separate deg(p0), and 
der 


• = the total deg(p0), 
each deg(p0) is minimal. 


(As an example, let po(x,y) - (1- x2)(1- y2) for fl - 
S = (-1, 1) 2 with n s = 2 and •s = 4.) [] 


Definition 2.9 Let PN denote the L2-projection onto Y•¾: 


P.v ' Y 9 q •-• Pwq • Y.¾, (PsTq, s) = (q, s) Vs • Y•¾. 


3 Poisson's equation 


Let U satisfy the following Poisson problem 


(17) 
-AU = f in fl 


U = g on F0 and 
o._U_.u = h on Fx On 


F = F0 UF1, F0 f•F1 = O. We assume that we may 
use linearity (or superposition) to subtract off a special 
function so that we may take vanishing Neumann-data: 
h=0. 


Let X = {v E H(div): v.n = 0onF•} andY = L 2. 
Suppose U E Y and let u = VU E X so that div u = Au 
Y. As b was defined before, we define a and 


(18) 
a(u, = -(u, v) Vu, v X, 
fX(v) = frog(V'n) ds VvX, and 
f2(q) = (f,q) VqY. 


Then, a variational formulation of (17) is given by the 
system (6). This is semi-simply set provided f • Y, g • 
HX/2(F0), which is henceforth assumed. As (X,Y) is 
Hodge-conforming in (X, Y) and X is divergence-stable 


with respect to (X, Y), the continuous problem is well- 
posed. 


We now construct a new mixed method projection AN 
with some of the same properties as the Raviart-Thomas 
projection but with better error estimates (with respect 
to p). Note that u = VU and •r = U throughout our 
discussion of Poisson's equation. 


3.1 One element Galerkin mixed method 


We will take - as a precursor to the next subsection - 
the instance of one element: let fl be a triangle, a paral- 
lelogram, or - generally - let the domain be algebraically 
simple and convex. Also, to further simplify, let g = 0 and 
rx 


Let •N C_ poQp+•-na = Qp+• • Ho•(fl) and define the 
discrete spaces Yx = A•N and Xx - V•N. Clearly 


A 
•v " , Y•v 


y 


commutes. 


Lemma 3.1 { (XN, YN) } N is Hodge-conforming in 


Proof by construction. [] 


Lemma 3.2 {XN}N is divergence-stable with respect to 
(X, •). 


Proof A simple consequence of the bijection prop- 
erty of A and the elliptic (merely energy) estimate 
IlV(a)-qllx < Cllqll. [] 


Thus the discrete problem is well-posed. As div u = AU • 
Y by assumption, we may define V to be the unique solu- 
tion to: 


(19) AV - PNAU in fl 
V = 0onF. 


Then define 


(20) ANU 
We collect a few simple properties of the projection AN: 


Lemma 3.3 Let AN : X -* XN be as defined in equa- 
tion (20). Then AN satisfies the crucial commutative prop- 
erty: 


div ANu = P•vdiv u, Vu • H(div), 
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stability in Hi: 
IIAxull• <_ Cllulll, 


as well as the quasi-optimal error estimates, in case f• is 
a triangle or a parallelogram: 


Ilu - ANulI• < Cp-•+•-Xlldiv ull•, for s - 0, 1. 


Here, if we wish, we may estimate lidiv ull• < llull•+x. We 
note the quasi-optimal L 2 estimate which improves upon 
the estimate for the Raviart-Thomas projection in [20]. 


Proof The commutative property is seen by inspection. 
Recall from (20) that ANu = VV. By elliptic estimates, 
we have the shift inequalities: 


IlVVll• • IlVll•+x 5 Cll/XVll•-x for s- o, 1, 


so that stability in H x is a consequence of: 


IlVVII1 _< cIIPlv•XUllo _< Cll•UII0 _< Cllullx, 


For the error estimates, recall also that u - VU and ob- 
serve that 


IIV•- vvIll 5 IlV- vIl• 5 C[Idiv u- P:vdiv •l[o, 


and use the L 2 estimate in the next lemma. Similarly, 


[Ivg- vrllo 5 IIU- vIl• 5 oliniv •- PNdiv 


and with another application of Lemma 3.4, the claim has 
been proved. [] 


Lemma 3.4 The following quasi-optimal estimates hold: 


IIv - P,vvll-• <_ Cp-•-•llvll•, for s = 0, 1 


for r •_ 2OZmi n where O•mi n is 7r divided by the largest inte- 
rior angle of any corner of •. 


Proof Let s = 0, and note that, with A• = v and 
AOx = v,¾ for some • • ß and •N e •IIN, IIv- PNvllo -- 
II/X(• - •s)11o < ½11•- •NII-•. This may be bounded 
from above by ½P-•11•)11•+2 -< ½p-•llvll•, provided each 
of these norms are finite, using approximation results es- 
tablished in [3] on either a standard triangle or a square. 
Given v • H • we may write the solution • as a finite sum: , 


•) ----- Ei Ci•)i 4- OR, with IICRI[•+2 4- • Ic, I < ½llvll• and 
0i PaX(P) • = Y•-j=o [ log pl j c)j (0), in local polar coordinates 
(p, 0) near a corner of f•; X and ½j are smooth with X 
vanishing outside a neighborhood of the corner. If the in- 
terior angle of the corner is w, then a is a multiple of 7r/w. 
Now, also by approximation results in [3], •½N, ½N • •N: 
I1½i- ½sll-• <- CP -'• and lien- ½NII2 _< Cp-•llCnll•+2, 


so that lie - ½N[12 -< Cp-•llvl[•, for r <_ 2amin, the latter 
being at least four. 


For s = 1, duality and the projection property yields: 


(v - e•v, w) 
IIv-PNvII-x = sup 


•H• 11•11X 


-- sup inf 
w•H• wN•YN 


(v-P•v,w-w•) 


< sup inf 


5 Cp-•[lv- PNvllo 


once more employing the L 2 approximation result. [] 


Remark 3.1 We sketch a proof of the preceding lemma 
allowing for r arbitrarily large: redefine qZ N by first em- 
bedding • C C C S in a circle C and further in a square 
- using the Stein extension [23] - on which we let qLv be 
defined over S, but solve the Poisson problem for • on C 
and then restrict functions to f•, see also [9]. One would 
use approximation results for S, but regularity results for 
C. 


We note that the collection {(•N, kI/N)}N, {(•, •It)}, and 
{XN}N{(•,q0} is Helmholtz-conforming in (X,Y)with 
the choices (I)• = 0, (I) = Ho •, and • = H•/R. 
Remark 3.2 We can sketch a proof of the preceding 
lemma for f• algebraically simple and convex: redefine 
by first embedding f• in a square S on which we perform 
the preceding constructions and then restrict functions to 
12, see also [9]. 


Proposition 3.1 For this mixed method the following er- 
ror estimates hold: 


Ilu- uNllx 
IIU- UNIIV 


Moreover• 


_< Cp-•lldivull•, and 
5 Cp-•(lldiv ull• 4- IIUIl•). 


IIU- UNIIY 5 Cp-•llUll•. 


Proof The first two inequalities follow from the Lemmas 
in this subsection coupled with Lemmas 2.2 and 2.3. The 
last inequality is a consequence of the analysis in [8]; we 
note, in particular, that hypotheses (H1)-(H3) and (Ha) 
hold. In addition, (H7) holds with Es = P,¾. Theorem 3 
and the estimates on page 275 in [8] then yield the claimed 
error estimate. [] 


A curved side of one element coinciding with F is proposed 
to be taken care of as described in [9]. 


If coupled with an appropriate method of quadrature, 
this could be used as a spectral method. 
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3.2 Multiple elements 


Let F• be a convex, polygonal domain (possibly with curvi- 
linear segments of the boundary F). Geometrically decom- 


M 
pose • = LJi=•i into triangles or parallelograms in such a 
way that a pair of distinct •i intersect only in three pos- 
sible ways: (1) O, (2) a common side, or (3) a common 
vertex. Let R = (-1,1) 2 and T- {(x,y): Ixl < 1, -1 < 
y < x} denote a reference square and triangle, respectively. 
Let Fi be an afiine, orientation preserving (i.e. the Jaco- 
bian det(DFi) > 0) mapping which maps 
is a parallelogram and onto T if •i is a triangle. 


Then we define the space of piecewise polynomials 


S p : {U • L2(•) ß for 1 • i < M, 


{ •P(R) (21) u[•, o (Fi) -1 • PP(T) if 
and we choose 


(22) •N = SP+I n H2(a) n H•(a), 
Xx=V•x, •v=V-Xx=A•. 


In the second to last identity, we understand div as defined 
on H(div). Thus •,• g C•(•) and X,• • [Cø(•)] 2, see 
[7J. The functions in Y• are allowed to be discontinuous. 


Remark 3.3 We are obviousl• overshooting with C • el- 
ements - yielding C ø ones for Xx - when it would have 
su•ced to have continuit• of the normal components of 
functions in XN across inter-element boundaries, i.e. 
continuous across O•i • O•j. We know that it is possible 
to define a space •v achieving this (algebraic conditions. t) 
with quasi-optimal approximation properties - a•er all, the 
present C • elements would be embedded. 


Definition 3.1 The mixed projection is (extended to be) 
defined as in (20)' 


ANN de• 
where we may define V to be the unique solution in H• (•) 
to: 


as div u = &U • Y by assumption. Note that V 


Instead of going through the lemm• from the previous 
section one by one, we state the main result. 


Proposition 3.2 This mi•ed method is well-posed and the 
following error estimates hold: 


II-11x Op-lldiv11, 
IIU- Uxll Op-(lldiv + IIUII). 


Proof Lemmas 3.1 and 3.2 hold as before for the new 


(XN, YN). Lemmas 3.3 and 3.4 hold - modulo an issue on 
regularity which is addressed next - as before. The prob- 
lem (23) retains the regularity properties used in Lemmas 
3.3 and 3.4 due to Thm. 2.4.3 in [12] (for H 2 regularity) 
as well as [11] (for higher regularity than H2). Finally, one 
again uses Lemma 2.3. [] 


Increasing degree finite elements of higher degree of conti- 
nuity have been considered in [29], [28], [27], [21], and [24] 
- among others. 


4 Stokes' equations 


Linearized, incompressible, and viscous flows are often 
modelled by the following Stokes problem in the velocity 
(•)- pressure (P) formulation with unit kinematic viscos- 
ity: 


-A•+VP = ff in •, 
(24) V.t• = 0 in F• 


along with some appropriate boundary conditions (no-slip 
or stress-free, e.g.) on F. 


Let X = [H•] 2 and Y = L0 2 = {q • L 2 : (q, 1) - 0} 
for no-slip boundary conditions. Let rigid body mo- 
tions be denoted 7g = {v • [H•] 2 : eij(v) = 0} where 
eij(v) = (vi,j + vj,i)/2. Then we may reflect stress-free 
boundary conditions by selecting•.• = 7g ñ (the orthogonal 
complement of 7g in [H•] 2) and Y = L 2. As b was defined 
before, we define a and fi: 


(25) 
v) = (W, Vv) W, v X, 


f•(v) = (F,v) Vv •X, and 
f2(q) = 0 Vq•Y. 


Then, a variational formulation of (24) is given by the sys- 
tem (6). This is semi-simply set provided F • X* which 
is henceforth assumed. As (X, Y) is Hodge-conforming in 
(X, Y) and X is divergence-stable with respect to (X, Y), 
the continuous problem is well-posed. The similar state• 


~ 


merit for (X,Y) also holds, cf. õ3-4 in [22] and [26]-[25], 
provided the compatibility condition (F, r) = 0, Vr • 7• is 
satisfied. Note that u = t• and •r = P throughout our dis- 
cussion of Stokes' problem. Let us, finally, define a special 
class of problems (pressures): 


(26) I?(fl) def (p • Y ' 3½ • Ho•(F•) ' p = 


4.1 One element Galerkin mixed method 


Let fl be a triangle, a parallelogram, or - modulo approx- 
imation properties of underlying polynomial spaces - let 
the domain be algebraically simple and convex. 







Divp, Gradp, Curlp, And All That 209 


First the case of no-slip b.c. Let (I)N -- •N = BP = 
po 2 Qp+l-2_n• where po and _n• are defined as in section 2. 
We now set 


XN : •7 X B p (• •7BP, (27) 


and 


(28) 


Now 


YN = A(B p) = •7. XN. 


o A 


V'• /V" •ijectiø7 
XN XN 


commute. Essentially, •7 x (I) N is used for velocity approx- 
imation and Aq•x for pressure approximation. Now, as in 
the previous discussions, the isomorphism A: q• > ¾x 
can be used to get 


(29) Ilvibll(Y;X) c 


unifornfiy. Note the new definitions of X and ¾ (as com- 
pared to the situation in Section 3) which might have made 
this task much harder, cf. [18] as compared to [9], how- 
ever now turns out not to be. Lemmas 3.1 and 3.2 hold as 


before for the new (XN, •v): 


Lemma 4.1 {(X:v,YN)}N is Hodge-conforming 
zn (X, Y). Furthermore, {X:v}•v is divergence-stable with 
respect to (X, •). 


Proof by construction. 


Lemma 3.4 for the new YN also hold but merely for P ß 
IP(f/) as we are dealing with p0 2 to handle no-slip b.c. 


Proposition 4.1 This mixed method is well-posed and the 
following error estimates hold: 


Cp-rllullr+l, and 
CP-r(IlulI++IIPII), 


provided P ß •P(•). 


Proof As the spaces are Hodge-conforming and Ms C 
M, we note that u = V x • for some • ß H02(f•) and 
that we may approximate this stream function at optimal 
rates within B p using results from [24] and [14]. One, in 
addition to the previously established facts, uses Lemma 
2.3. [] 


Thus we can create p-stable Stokes elements which possess 
quasi-optimal approximation properties; furthermore the 
exact solution is solenoidal and - of course - satisfies no- 


slip boundary conditions. The cost of this was the (old 
remedy of an) enlargement of the velocity subspace. Note 
that we have some additional freedom in the choice of what 


to put in the argument of curl (.) in Definition 2.6. One 
may also use ß = po27 •p+l-2-nn with optimal approximation 
properties, e.g. 


We note that the collection { (•N, IItN) } N, (((I>, lit) }, 
and {XN}N is Helmholtz-conforming in (X, Y) with the 
choices •s = qLv as selected, • = Ho •, and q• = H•/R. 


For stress-free b.c. we may reduce the exponent of po in 
the definition of •s and q•N leading to: 


Corollary 4.1 Let •)N = Po QP+•--•n • Lo 2 and •:v = 
P0 Q p+l-n-a. Then, this mixed method is well-posed and 
the following error estimates hold: 


Ilu-uvllx _< Cp-rllullr+x, and 
liP- P2vllY _< Cp-([lull+x q-IIPlIO. 


Proof Please note that .•x = V x •>N + V•'N C 
as divv = O, ct•rl v is constant in f• for all v ß 7•, and 
0=•=0onPforall0ß•)s and allyß 


The analysis presented here could easily be extended to the 
case that homogeneous Dirichlet data is given on a part of 
the boundary, not including a corner, and natural (stress) 
boundary conditions on the rest. 


Remark 4.1 We conjecture that, for no-slip b.c., it is still 
possible to avoid the special class P(f•). Let •N C Hol(•'•) 
and •N C_ H • /•(•) and require Oq/On - 0 for all q ß •N. 
Then v . n = 0 already for any v ß XN and we can enforce 
v . • = 0 by requiring c)• = -• on F. We exhibit the said 
construction for • a square, extending the analysis above 
to the class •(•) - {p ß Y • Cø(•) ß p(+l, +1) - 0}. 


Proof Given a • ß 62N (that may approximate the ex- 
act potential of the pressure optimally), our task is to con- 
struct a • ß (I) N SO that there is compatibility: 


(30) On Or on Of]. 
Towards this end allow us some notation: let œi be the ith 
Legendre polynomial and 


Li(t) = œi-•, for i > 1 
--1 


and L0 = œo so that 


1 


Li -- 2i - 1 (œi - i•i-2), for i > 2, 
Lx = œ0+œ•, andL0 = œ0. 
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Then, let us begin with the general description of •b: this 
function may be represented as 


p 


i,3--=0 


subject to the requirements that: 


/f• • ---- • •ij gi Lj • 0 
i.j=o 


(since ff• Li • 0 for i p 2) as well as 


-- = 0 on O•, 
On 


which can be verified to be satisfied iff, Vi, j, 
P P P P 


i=l,i odd i=1,i even j=l,i odd j=l,i even 


These constraints already imply that •(•1, •1) = 0. To 
such a • we wish to find a • 6 •N so that • = -• on 
lhe boundary of •: • can generally be expressed •: 


p 


i,j=0 


subject to the requirement that: 


a = 0 on 0•, 


which can be verified to be satisfied iff 


•0 = 0 if one or both of i and j e {0, 1}. 
Hence a general • takes the form: 


p 


i,j=2 


•e then list the identities that • must satisfy resuking 
from requiring (30) on each of the four boundary segments: 
Firsl, on x = -1, 


e• = -• 
p 


i.j=2 


j=0 


2j- 2j + 


) j=p-1 


and the expression for •b• is 


p p--1 


--•Y --- -- Z •ijLi(--•)•J-l(•J) ---- -- Z •O'j-i'l•j(•) 
i,j=0 j=0 


and we equate like terms to obtain the following final equa- 
tions. 


Onx=-l:Vj>_ 1 


1 P [p/2] 
4j + I Z(-1)iøzi'2j+x = Z 20,2•, i=2 k=j+l 


p [(p-•)/•] 


! Z(--].)'Oii,2j = • •0.2k+l, 
4j 1 i=2 k=j 


with a summation over an empty set convened to be zero 
and no single index of c• or/f larger than p allowed. One 
makes use of the fact that •-•j/•o,j = 0 to ensure that the 
two lowest-order sums above (resulting from taking j = 1) 
are not over-determined. Similarly, 


On x = +1 'Vj _> 1 
p [p/2] 


1 


4j + 1 • O•i'2j+l ---- -- Z •0,2k -]- 21.2k, i=2 k=j+l 


p [(p-I)/2] 
1 


= - + 
i=2 k=j 


To prevent the two lowest-order sums above (resulting from 
taking j = 1) from being over-determined, we now also use 
that •-•j ,3Lj = 0. Also, 


Ony=-l:Vi_>l 
p [p/2] 


1 


4i + 1 Z(-1)Jøz2i+•'J = Z ,22•,0, 
j=2 k=•-•--1 


p [(p--1)/2] 
1 


4i- I Z(-1)Jøz2i'J = Z 
j=2 k=i 


and, finally, 


On y = +1. Vi _> 1 
p [p/2] 


1 


4i + 1 y• OZ2i+l'J -- -- Z •2k,O +/•2k,1, 
j=2 k=i+l 


p [(p-I)/2] 
1 


4i- 1 Za2i,j = - Z /f2•+x,0 +/f2•+•,x, 
j=2 k=i 
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again using that certain ,8-sums vanish when one index is 
frozen at zero. It is clear that, for p > 5, we may solve this 
system for a (for p > 5, there is more than one solution, 
and interestingly, for p - 4 the system is over-determined). 
Of course, we are still restricting the function values at the 
corners, in fact V½ = V• -- 0 at the four corners, and 
also the pressure (as A•) is forced to be zero there. We 
may factor out this proviso with the help of the following 
remark. [] 


Remark 4.2 Obviously, in the present situation with no- 
slip b.c., the corners of f• are classically known to be sin- 
gular boundary vertices (with the number of elements abut- 
ting the vertex k = 1), cf. [22] and [26]. Before we pass 
on to the natural remedy: more elements, we note that it 
zs possible to remove the requirement that the continuous 
pressure (if it is smooth enough) be zero at the corners of 
f• through a slight extension of the present construction. 


Proof Let the pressures be augmented by the set of 
bilinear functions, •v = •x © Q• • Y. Also let 
the velocity space be augmented by biquartics, -•N = 
•,¾ O [Q412 CI X. (•N = A•x and •N = V X 
•¾ © y•N.) Then, the L2-orthogonal decomposition: 
Vq • YN,•q• • YN,q2 • Q• : q = q• + q2, holds as 
(q•,q2) = (A.ff;•,q2)= -(X71b•,•7q2)+ < c9•/c9n, q2 >= 
(t)•,Aq2)- < .•,Oq2/On >= 0. By results in [26], [25], 
[22], there holds the divergence-stability: ¾q2 G Q1, •u2 G 
[Q412 c•X' div u2 = q2 and Ilu2llx _< CIIq211v with C inde- 
pendent of p. Actually, bicubics would suffice due to the 
stability of ([•212 c1 X, Qo cIY). The already established 
divergence-stability of the pair (XN, YN) yields similarly a 
u• associated with q•, and we obtain, with u = u• + u2, 
that div u = q and 


es•tabli•shing combined divergence-stability of the pair 
(xx, Yx). [] 


In this manner, it is possible to give optimal convergence 
rate results also for pressures not subject to corner con- 
straints, for P & H • with s > 1 directly applying the 
above and for P • H • with s • (0, 1) by first modifying P 
near the corners. Now •N • [H•] 2. 


We note that we could just as well have used harmonic 
q9.'s then needing to cook up corresponding velocities (why 
not gradients plus curls of A-•q2?), but instead we'll go 
on to the more natural remedy. 


4.2 Multiple elements 


We refer, first, to the definitions at the beginning of section 
3.2. Let f• be a convex, polygonal domain (perhaps with 
piecewise curvilinear boundary F). We choose (for no-slip 
B.C.) given $P defined in (21): 


(31) •N : •ItN: Sp+I f') H02(f•), and then 
X:v = V x •:v E• V•:v, Y:v = V ß X:v = A•. 


In the second to last identity, we understand div as defined 
on H(div). Thus the discrete velocities XN _C [Cø(•)] 2, see 
[7]. The discrete pressures are allowed to be discontinuous. 


Remark 4.3 We may be overshooting with C • elements 
for both •N and qtN - yielding C O ones for XN - when 
it would have sufficed to have continuity of the normal 
components of the combined functions in XN across inter- 
element boundaries. We do not know if this is possible for 
general elements with quasi-optimal approximation proper- 
ties when we impose the additional constraint that •- - W• 
be continuous across Of•i 91 Of•j. It is possible, however, 
through a similar construction as in Remark ,•.1 for el- 
ement divisions consisting solely of parallelograms. We 
can also handle the compatibility constraint (30) across the 
two catheres in the standard triangle, which may suffice for 
many divisions. 


We state next the main result in this subsection for no-slip 
b.c. 


Proposition 4.2 This mixed method is well-posed and the 
following error estimates hold: 


provided P E ?(f•). 


_< Op-llull+, and 
-< CP-(IlulI++ IIPII), 


Proof As in Prop. 4.1 noting that Lemma 4.1 holds as 
before for the new (XN, YN). [] 


For stress-free b.c. we may redefine (I) N and •I/N: 


Corollary 4.2 Let •)N = •N = S p+ • F1 Ho • (fl). Then, 
this mixed method is well-posed and the following error es- 
timates hold: 


Ilu- ullx 
lip- P11¾ 


_< cp-llull+x, and 
<- CP-(IlulI+ + IIPII0. 


Remark 4.4 We conjecture that, for no-slip b.c., it is still 
possible to avoid the special class ?(f•) - and not only by 
the means mentioned in Remarks 4.1 and 4.2. It might 
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be possible now to approximate quasi-optimally by using 
solutions to Poisson problems with homogeneous Cauchy 
data on the boundary F in the elements abutting F, which 
are chosen to preclude the existence of singular boundary 
vertices. This is merely a conjecture. 


Remark 4.5 We have actually not taken advantage of the 
freedom in selecting •N • krN, allowing for some inter- 
esting possibilities (de-emphasizing pressure approximation 
for example). 


[8] 


[9] 


[10] 


Elements with one curved side coinciding with F are, once [11] 
more, proposed to be taken care of as described in [9]. 


Finally, we refer to [29], [28], [27], [21], and [24] among 
others for treatments of C • increasing degree finite ele- [12] 
ments. 


ß 


5 Concluding remarks [13] 


A number of very interesting open questions immediately 
present themselves. The main one is probably how well 
such methods would perform in practice. In a joint project 
with Tad Janik of University of Alabama in Huntsville we [14] 
hope to address these issues. 
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Estimates of Type 
for the Condition Number of Matrices 


in the p-Version of the Finite Element Method 


J. F. Maitre* O. Pourquier t 


Abstract 


•Ve give general results on condition numbers of matrices in 
the p-version of the finite element method for elliptic prob- 
lems. For the conform p-version approximation of 
f] C _•d, general m, we use a basis generalizing that used 
for m--l, and study the condition number •(.) of the 
elementary matrices A• 'k corresponding to the Sobolev 
scalar product (., .)k,a, k _• m, and to the internal modes. 
•Ve prove (theorem 2.1) that •(Ay '•) - O(p 4(md-•)) for 
every (d, m, k), 0 _• k _• m. For m = 1, 2, we prove more- 
over that these estimations are optimal and that the con- 
dition number after diagonal preconditioning is equivalent 
to p20•d-k)). Finally, we compare these results with those 
obtained •vith the spectral element method associated with 
Gauss-Lobatto quadrature. 


Key words: condition number, finite element, high de- 
gree. 


AMS subject classifications: 65F35, 65M60, 65N22, 
65N35. 


1 Introduction 


For problems of order 2m, we can use similar resolution 
methods as for problems of order 2 (see [1, 3]): Gaussian 
internal modes elimination or block diagonal precondition- 
ing where each block corresponds to a geometrical part 
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of the mesh (for example in 2 dimension: vertices, sides, 
interiors). In each case, it appears internal systems cor- 
responding to an homogeneous Dirichlet problem on the 
reference element • =] - 1, 1[ d, the condition number of 
which we study here. 


We consider an elliptic problem of order 2m with 
0 3 u 


homogeneous boundary conditions ß •7 = 0 on • for all 
j, 0 _• j _• m- 1. The functional space associated with 
this problem is 


' •-Ylo• -- - - ' 


We define by Q•,O(fi) = Qp(fi) • H•(fi) the approxi- 
mation space of polynomials of degree p in each variable 
which vanish on 0fl. 


Definition 1.1 For Q•'ø(•2), we choose the basis 
{T/i• © ... © T/ir• }2,-•_<i• ..... ia<_p' which is made up 
of tensorial products of the 1-d basis {7'•?}2rn_<i<_ p where 
the T/p, deduced from the Legendre polynomials by 


-• L,-,-r,(s) dsdtm-•...dtl, T/•(t) - f_t 1 f_tl 1 ... f_•T 
are orthonormal for the Sobolev scalar product (., 


These m tn Legendre polynomial integrals induce very 
sparse matrices and generalize the most used basis for 
problem of order 2 (m-1)(see [2, 3, 8, 10] for example). 


Definition 1.2 Denoting by Da the derivation operator 


D• = o•...o• for c• = (c•t, ..., c•d) and I r• I- Ei510•i' 
we consider for 0 _< k _< m, the Sobolev scalar product: 


(u, v)•,• -- y•r,,l•l__k(Dr, u, D,•V)L2(n), and the associated 
matrix A: '• for the basis {T/iT © © T/.m }2m_<i• "' *d ..... id•_p of 
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Definition 1.3 With a tensorial numbering, we define the 
canonical scalar product of/• (p+l-2m)d by: 


p 


(•, U)d : • •il ..... idvil ..... id' [] 
il ,...•id•2ra 


Definition 1.4 For any matrix M, similar to a symmetric 
positive definite one, we define n(M) by n(M) = Xmas(M) )•min(M) ' 


2 Majoration of condition num- 
bers 


XVe begin by a short lemma showing that the matrices A• 'k 
of the d-dimensional case can be expressed in function of 
the only A•" of the 1-dimensional case. 


A m'k associated with the (.)•,n Lemma 2.1 The matrix d ,' 
scalar product can be deduced from the A• '• matrices, for 
0 •_ c• • k, associated with the (.• ')-,]-xA[ scalar product, 
by: 


d 


Proof We have 


: • (D.(X• •X•), .(%• •)) 


a f_• d-•m d"• _ • dt which proves (1). • - • H dt• dt• ' 


Now, we can give the main result on the condition num- 
bers •(.): 


Theorem 2.1 


For Ad the matrix associated with the (.,.)•,• 
(0 _• k _• m) scalar product and corresponding to the basis 
(definition 1.1) built for the homogeneous elliptic problems 
of order 2m on ] - 1, lf, we have: 


r•,k •(A d ) -- O(p4(md-k)),V(d,m,]c),O _• k • m. 


Proof The following inverse inequality ([5]) and Poincare 
type inequality 


(2) 


Vv e Q},0([_l, 
II • 


and 


Ilvl • {z,<-1,1) 


, V(•,l),0_•_•l 


< ClP 4(l-k) II v ]12 _ •,(-•,•) 


give for the matrices (l=m): 


VX • /r•p+l--2m, (A•,kx, X) •__ C2(A7,mx, x) 
and (A•'mx, x) _• Clp4(m-k)(A•'•x,x). 


Since A• 'm - I, we deduce Amin(A• '•) •_ C•-•p 4(•-m) 
h [A m'• • C• so that n(A• 'k) • Cp 4(m-•) and max\ 1 ] -- -- ' 


This proves the result for d=l which can be extended to 
general d thanks to lemma 2.1 and to the following result, 
the proof of which will be given in the appendix. 


Lemma 2.2 Let (B•)•<•<• be d symmetric definite ma- 
trices of dimension n, then we have for all 0 • Rn: 


d 


k----1 
d 


Oi 1 ..... i4 H (J•k)i•'J• Ojx ..... j•t 
k=l 


d 


-< H•=• xm•(•k)( 0,0)• 


d 


>_ H•=• 


We apply this lemma to each term of the sum 
• 1-[ d (Am,a•. . . /-"a,l-I=• •n=X• • •,3• Then, we obtain for A•in for 
example: 


d d 


•min(A1 )(O,O)d. 
n=l n=l 


X . (A m,a• _ Since ,,•n •--• ) > CP 4(" •-m), 
d 


m,k and h•in(Aa ) • • • h•in(A•'"•) , xve have 
d 


•. (A m'kq • C • •p4(a•--m) : Cp4(k-md) 
m,k so that A•i•(A a ) ) C(k)p 4(•-•a). 


x (A •'• < C, and the theorem is proved We get also •,• a • - 


3 Cases m--1 and m--2 


3.1 Equivalence of condition numbers 
We have proved for m-1 (see [6]) and for m=2 (see [7]), 
that the condition numbers n(A• '•) are equivalent to 
p4(ma-k). We precise these results in the following the- 
orere. 


Theorem 3.1 


For •m,• the matrix associated with the (.)•,• '•d ' " 


(0 _• k _• m) scalar product and corresponding to the basis 
(definition 1.1) built for the homogeneous elliptic problems 
of order 2m, m=l or m-2, on ] - 1, 1[ •, we have: 


m,k p4(md-k) _ _ ,•(.4• )• ), V(d, •), o < • < ,,•. 
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Proof For m=l, we have simple relations between the 
extreme eigenvalues of A• 'k and All 'ø, given below without 
proof 


Lemma 3.1 For re=l, the extreme eigenvalues of the d- 
dimensional mass and stiffness matrices can be expressed 
in function of those of the only 1-dimensional mass matrix 
by: 


1,0 •x(•ct ) = •x(•'ø) ct 
/• / A1,0] 1,0 d .•i•,--ct : = •.•i•(A1 ) 
•(•,•) • •,0•a-• 
A [ AI.1] 1,0 d-1 •i•.-• • = •i•(A• ) 


Thanks to these results, the proof of the optimality of 
the bounds in theorem 2.1 has only to be done for the 1-d 


1,0 
mass matrix A• . For that we have to find a particular 
vector for which the Raleigh quotient attains the bound. 


For the maximal eigenvalue, we have A,•x(A} 'ø) _< C (C 
independent of p) from the proof of theorem 2.1, and we 
have for the particular vector - corresponding to the first 
basis function (the same for every p due to the hierarchical 
character of the basis): 


1,0 (•1%•)1 = c(%•)1, 


where C is independent of p. 
For the minimal eigenvalue, we give without proof the 


following result: 


Lemma 3.2 The function •p --- L•+ 2 (P+3)4(P'+-4) L•o+l of 
Qp•.ø([-1, 1]) satisfies: 


401Q p 121,(_1,1)..• p4 II •p I1•,<-1,1) 
This lemma shows that there exists a particular vector 


• in R p-• such that: 


(A•'ø•,•)l _• Cp-4(•,•)1, 
that is A,•i•(A• 'ø) -• p-4 thanks to theorem 2.1, which 
proves theorem 3.1 for m=l thanks to lemma 3.1. 


For the maximal eigenvalue (m-2), we 
2,k 


have Am•(Act ) _• C (independent of p) from the proof 
of theorem 2.1, and we have for the particular vector 'y 
corresponding to the basis function 7-/4 2' 


2k 
(AI' ',')1 = C(k)(%'y)1,k=1,2, 


where C(k) is independent ofp. So, from Rayleigh quotient 
of F associated to 7-/4 2 © ... © 7-/4 2, we obtain 
• •A 2'k• > C(k). maxk d ! -- 


2,k 
For the minimal eigenvalue of (Act), it is more technical. 


We give the following lemma without proof: 


Lemma 3.3 The function 


,,, (p+5)(p+6) (p+3)(p+4)(p+5)(p+6) L•o+ 1 •P = Lp+3 4 L•+2 -•' 48 ' 
of Qp2,ø([-1, 1]) satisfies: 


12(_1,1) p8 2 11o,(-1,1) , 
l% 2 p4 2 • lo,(-1,1) , I1,(-1,1) II (•p I 


II 0pl 2 • plO 1o,<-1,1) ß 


This lemma proves that there exists a particular vector 
in/•p-3 such that: 


(A•'ø•,•)l _• Cp -8 , (A12'l•,•)l _• Cp -4 . 


Considering the Rayleigh quotient of the vector 


and using theorem 2.1, we can prove the equivalences of 
theorem 3.1. 


3.2 Equivalence of condition numbers 
with diagonal preconditioning 


Definition 3.1 We note ct , the scaled matrix: 


~ ß ra,k -1/2 ra,k ß ra,k -1/2 A•'•=diag(Act ) Act dtag(Act ) 


and n(Aa' ) = i.•(Act )/Xmin(A• 'k) the condition 
number of .•'•. [] 


We prove for m--1 (see [6]) and for m--2 (see [7]), 
that the condition number after diagonal preconditioning 
~ rr•k n(Act ' ) of A• 'k is equivalent to p2(,•ct-•). We precise this 
result in the following theorem. 


Theorem 3.2 


m,k 
For A a , the matrix associated with the (.,.)•,n 


(0 < k < m) scalar product and corresponding to the basis 
(definition 1.1) built for the homogeneous elliptic problems 
of order 2m, m=l or m=2, on ] - 1, 1 f, we have: 


•(A•,•) ,• p2(ma-•)), V(d, k), 0 _• k •_ m. 


Proof For m=l, we have again simple relations between 
~1 k ~1,0 ß ß 


the extreme eigenvalues of Act' and A 1 , given in the fol- 
lowing lemma: 







218 ICOSAHOM 95 


Lemma 3.4 For re=l, the extreme eigenvalues of the d- 
dimensional diagonal preconditioned mass and stiffness 
matrix can be expressed in function of those of the only 
1-dimensional diagonal preconditioned mass matrix by: 


Xmax 1,0 (Ad) = •x(A•'ø) d 
~ 1,0 ~ 1,0 d X•n(A• ) = X•n(A• ) 
imax 1,1 (A•) = 5•x(n},ø) •-• 
- 1,1 • {Al,O,•d--1 Arnin(Ad ) = .,rnin•.-1 ! . 


Proof The scaled matrix ,,• is the mass matrix cor- 


responding to the L 2 normalized basis {•} with 2<_i_<p 


• •' . Thus we can apply lemma 3.1 here too 


and obtain the result for the mass matrices Aa . 
From 


ß 


d d 


= . (Ax')it,j•, 
k=l /=l,l•k 


where 5 is the Kronecker symbol, we see that (A•'X0,0)d 
is made up of d terms. Each term is of the type 
(•,o • 3)•_• where 3 is for example •i2 ..... i• - 0• i .... i• •d_l •, , -- , ... , 


and can be bounded as follows: 


- 1.0 ß 1,0 (A•'•O,O)a _< A.•:(AaLx)(dzag(Ac•_•)•,•)d-•, 


, 1 o _•A•,O• ~•,o since dzag(A•Z•) _ and A•_ 1 have the same eigen- 
values. 


Summing the d terms and identifying the diagonal of 
1,1 


A• , we obtain: 


(Ad'•)(diag(A• '• )0, 0)a. 


In the same xvay, we can prove: 


~ 1,o ß 1,1 (A•'10, O)•t _• Amin(A•t_l)(dtag(A•t )0, 0)•t . 


The preceding inequalities imply an upper (resp. lower) 
~ bound for Ama.•(A• ) (resp. •min(A}'ø)). To prove that 


these bounds are attained, we exhibit the special • defined 
by: 


d 


• .... i• = H Vi• tax/2 
k=l 


where v is an eigenvector of the matrix •},o associated 
- • o (A•,O• with A•x(Ax' ) (resp. - 1,o X•in(Ax )) and mi• = • • ]i•,i•' 


Thus we have for example: 


•d , ) d : ' 


For the one dimensional scaled mass matrix, we have 
(m=l)' • 


Lemma 3.5 For re=l, the extreme eigenvalues of the 1-d 
mass matrix preconditioned by its diagonal satisfy 


•x(A} ,ø) • • 
•rnin(D-1A},O) • p-2 


Proof The explicit knowledge of the mass matrix A• 'ø 
permits to explicit •x,o ,,x as follows: 


(.•,oh.. _ _ I ]t,t • 1,V2<i<p 


(Ax,o• -1 •(2i- 3) (2i + 5) • ji,i+2 -- 2 (2i-1)(2i+3) ' V2_<i<_p-2 
1 )i,i--2 : (Ax )i-2,i , V 4 < i < p- 2 


By Gerschgorin theorem one has: 


(A•')•,•1 <•- 4<i<p--2 -- (2p- 1)(2p + 9) 
-- - j----2,j•i 


and then Ar•x(D-•A} 'ø) < 2. ß •oZ- 
The scaled matrm A•' •s diagonal dominant, although 


AI 'ø is not, since: 


-•,o 1 3 1 
I(A1 )•,•+• I_ < •- (•i_•)(•+•) < {. 


Thus we can use again Gerschgorin theorem to obtain: 
~ •,o 6 3 
Xr•i•(A• ) > (2p- 1)(2p- 9) > _ _ 2p2' 


Since X•(A} 'ø) > max•_<•_<• (•1)•,• = •, we have 
the lower bound of 


For •,•i•(.•},o), we have the following upper bound: 
1,0 


)•min(A1 ) ~ 10 


x•(nx' ) _< 
Ar•in(Diag(A}'ø)) 


where 


A•in(Diag(A},O)) I 0 2 = (A•')p,p-- (2p+l)(2p--3) 
and 


)•rnin(A},O) • p-4. [] 


We have given the proof of theorem 3.2 only for the case 
m=l. 


For m=2, the proof can be done with similar techniques 
(see [7])ß 
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Figure 1: Comparison in 2-D Figure 2: Comparison in 3-D 


4 Comparison with the spectral 
element matrices 


For the spectral element method, the condition number 
for the matrix built with bubble functions on the reference 


element [-1, 1] d have been studied by C. Bernardi and Y. 
Mada•v, which have given the following result: 


Theorem 4.1 


For d = 1 to $, the condition number of the stiffness ma- 
nsPeC' obtained with Gauss-Lobatto numerical quadra- trix • 


ture, and built with the Lagrangian interpolants on p-1 
Gauss-Lobatto interior points satisfies 


/% r •l spec. \ p3 k /"l- d ) •'• 


For nspec. "d , •ve have no theoretical results for the diagonal 
preconditioning. 


Following figures give, in 2-d and 3-d, a numerical com- 
parison between p-version (p-v) and spectral (spec.) ele- 
ment for the condition number of the stiffness matrix with 


(DA) or without (A) diagonal preconditioning. 


Remark 4.1 In 2-d, we see that, the condition number of 
the stiffness matrix for the p-version is better (resp. worse) 
with (resp. without) diagonal preconditioning than for the 
spectral element. Moreover we note that diagonal precondi- 
twning is efficient for all degrees in p-version, but only for 
degrees greater than ten for the spectral element method. 


Remark 4.2 In S-d, we remark that the condition number 
of the spectral element method is lower than that of the p- 
version with or without diagonal preconditioning. 


Conclusion 


We have proved that in the p-version of the finite element 
method, the condition numbers grow as a power op the 
degree p, the power of p depending of the dimension d 
of the problem. Moreover, we have proved that for all 
matrices obtained for problem of order 2 or 4• the diagonal 
preconditioning divides by 2 the power of p in the condition 
numb ers. 


Appendix 


We present a proof of lemma 2.2 which can be considered 
as a generalization of one given in [9]. 


We shall denote by I the identity matrix on R n and use 
for the sums the convention of the repeated indices. 


We make d successive linear variable transformations by 
(BJ) •/2 in order to simplify the central term of lemma 2.2, 
and note •9(k) the vector obtained after k such transforma- 
tions. 


With 


{9(1).,j• ..... j• -- (B1)I/2•.,j• .... ,j• , Vl _< j•,...,jd _• n, 


we obtain: 
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d 


k----1 
d 


((J•l)-l/2)il,cO(1)r,i2 ..... ia H (J•k)ik'Jk ((Zl)--l/2)jl's 
k----1 


o(1)8,• ..... •. . 
Since 


we have 


d 


k=l 


(B x ) 


--- 


(B •) i•.•0•1 ..... •et 


d 


k----2 


because of the identity 


0(1)r.i2 .... ietls.rO(1) s,j2 .... jet = 0(1)ix,i2 .... iaO(1)i•,j2 .... ja ' 


For 0(2), we have for all I • j•, ...,ja • n , 


0(•)•,.,• ..... •. = (z•)•/•0(•)•,.,• ..... •., 


d 


= .... ,. H (zk)ik'JkO(2)il'i2'J3 .... jd' 
k=3 


We obtain finally: 
d 


k=l 


Now, we return successively to (0, 0)•: 


(O(d),O(d))d = O(d)ix,...,i,O(d)ix .... 


((z•)•/•)i,,•o(•- x)• ..... i,_•,•, 


which gives ß 


(O(d) , 


so that 


A•i•(Ba)(O(d - 1),O(d- 1))a 
X•x(B•)(O(d- 1), 0(d- 1))• 


The final result follows recursively. 


0(d))• = 
(B•)r,sO(d- 1)il ..... i•_1,•0( d- 1)il ..... ia_l,s 
((Z•)0(d - 1),1 .... ,•_l,.,0(d- 1)•1 ..... 


_< (o, o)•, 
> (o,o)a. 
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Fast Algorithms for Solving High-Order Finite 
Element Equations for Incompressible Flow 


L. Ridgway Scott* Andrew Ilin t Ralph W. Metcalfe* Babak Bagheri t 


Abstract 


•Ve discuss high-order finite element methods to simulate 
the flow of incompressible viscous fluids. We focus on algo- 
rithms for solving the related algebraic equations efficiently 
using the iterated penalty method for resolving the incom- 
pressibility constraint. We show that direct methods may 
be a suitable choice for solving the resulting linear equa- 
tions, at least in the t•vo-dimensional case. 


Key words: finite element method, incompressible vis- 
cous fluids, iterated penalty method, Navier-Stokes 
problem. 


AMS subject classifications: 65M60, 65F05, 65F10. 


1 Introduction 


High-order finite element methods provide very accurate 
simulations of the flow of incompressible viscous fluids [7]. 
Here xve focus on various algorithms for solving the related 
algebraic equations ef•ciently in the context of NewtonJan 
fluids, that is, ones solving the Navier-Stokes equations [8] 
which appear subsequently in equation (9). 


•Ve discuss the iterated penalty method for resolving 
the incompressibility constraint [4]. This method allows 
one to replace an indefinite linear-algebraic system with 
a positive-definite linear system in many cases. One key 
observation we make is that it is necessary in some cases 
to do only a very small number of penalty iterations after 
an initial start-up phase. This leads to a very ef•cient 
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algorithm. We also extend the algorithm and analysis in 
[4] to the case of inhomogeneous boundary conditions. 


Another observation we make is that direct methods 


may be a suitable choice for solving the resulting linear 
equations, at least in the two-dimensional case. We show 
that the relative fill-in due to Gaussian elimination is quite 
small for high-order methods, and decreases with increas- 
ing degree. This allows one to solve non-symmetric prob- 
lems with comparable ef•ciency to the symmetric case, al- 
lowing complex time-stepping schemes to be used. 


2 Mixed method formulation 


In all of the cases considered here, the formulation will 
reduce to solving a general mixed method of the form 


(1) a(uh, v) + b(v,ph) - F(v) Vv • V• b(u•,q) = G(q) Vq • II•, 


where F • V • and G • II • (the "primes" indicate dual 
spaces [4]). Here V and II are two Hilbert spaces with 
subspaces V• C V and IIh C II, respectively; u• • V• and 
p• • IIa are unknowns, a(., .) and b(-, .) are bilinear forms, 
which satisfy conditions introduced later. 


The main new ingredient in the variational formulation 
of mixed methods with inhomogeneous boundary condi- 
tions is that the term G is not zero. In [4], complete details 
are given only in the case that G -- 0. 


The variational problem (1) is only a slight generaliza- 
tion of (11.1.1) in [4], which had b(uh, q) -- (g,q)n as the 
second equation, if we make the translation g = PnhG 
where Pnh denotes the Riesz representation of G in II•,, 
that is 


(2) (PnhG, q)n = G(q) Vq • II•. 
We will assume that/>: V -• II is continuous and that 


(3) b(v,p) = (/)v,p)n Vp, 


where (., ')n denotes the inner product in II. Note that the 
second equation in (1) says that 


(4) Pnh/•un = Pn• G 
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where we also use Pnh g to denote the II-projection of g • II 
onto Ha. 


We assume that the bilinear forms satisfy the continuity 
conditions 


a(u,v) _< c•11ullv[IVllv Vu, v • v 
(5) b(v,p) ! CbllvllvIIPlln Vv • V, p • II 
and the coercivity conditions 


•11vll•_<a(v,v) Vv•ZUZa 
b(v,p) 


(6) 211p[ln < sup Vp • Ila. 
-v•vh IIvllv 


Here Z and Za are defined by 


(7) Z = {v • V ß b(v,q) = O Vq•ii) 


and 


(8) Za = {v G Va ' b(v,q) =0 Vq e ila} 


respectively. 


3 The Navier-Stokes equations 


The Navier-Stokes equations for the flow of a viscous, in- 
compressible, Newtonian fluid can be written 


-5u + Vp = -R (•u. V•u + •t) (9) • div u = O. 


for •x • • C IR•, t • [0, T], where •u(t, •x) denotes the fluid 
velocity, p(t. x•) denotes the pressure, and R denotes the 
Reynolds number [8]. These equations must be supple- 
mented by appropriate boundary conditions, such as the 
Dirichlet boundary conditions, u• = • on 0•, and initial 
condition •u(0, •x) = •u0(•x). 


A complete variational formulation of (9) takes the form: 
Find •u such that •u(t, .) - • • V and p(t, .) • II such that 
vt • I0, r] 


a(u,v)+b(v,p)+ 
+ = 0 v, 


b(•u,q) -0 Vq•ii, 


where e.g. a(., .), b(., .) and c(.,., .) are given by 


f• • Oui Ovi (11) a(•u, v•):= ----dx, 
i,j=l OXj Xj ~ 


(12) of• •-• O v i b(v•, q) := - •x/q d•x, 
i=1 


[ 
Comparison of different time stepping schemes, JHFIow 


10ø I ..... , ..... 


1100 2-nd Order Implicit 1-st Order Implicit 


1-st Order Implicit-explicit 


10 


1-st Order Explicit 


10 -4 ........ • ........ 
10 0 10 • 10 2 


Iog(hO/h) 


Figure 1: Empirically determined maximum time step size 
for different time stepping schemes for Jeffrey-Hamel flow 
for Reynolds number R = 240. The explicit scheme is (14), 
the implicit-explicit scheme is (15), the implicit scheme is 
(21). To utilize an implicit scheme for nonlinear equation, 
the fixed-point iterative method has been used. 


(13) 4•u, •, •w) := f• Lu. rs) .•w •, 
and (.,.)A2 denotes the L2(•)a-inner-product, •V = 
fil(•)d and II = {q• L2(•): fnqd•x=O}. For more 
details about notation see [4]. 


One of the simplest first-order time-stepping schemes is 


(14) 
a (•u '-x, v•) + b(v•,p t) 


b (•ue, q) 


•-RC (U œ--1 U •--1 V ] k• ' • ' •] 


- = o, 
'--0, 


where, here and below, v• varies over all V (or Va) and 
q varies over all II (or Ha) and At denotes the time-step 
size. The scheme is only explicit with respect to the veloc- 
ity. There is an equation for the pressure and the zero- 
divergence constraint. The major drawback of explicit 
schemes such as (14) is the severe limitation on the time 
step as depicted in Figure 1. 


Time-stepping schemes that are implicit with respect to 
the linear terms and explicit with respect to the nonlinear 
terms can be more efficient even though a linear system 
involving a(., .) form must be solved. The simplest of these 
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(15) 
a (•u •, v•) + b(v•, pt) 


b(•u•,q) 


A more complex time-stepping scheme could be based 
on the variational equations 


(16) 


a (?, v•) + b (v•,p •) +Rc 7g g--l, U g, V 
2i-•tt (•g -- • ug--I'•)L 2 '-- 0, 


b(•u•,q) :0, 


in which the nonlinear term has been approximated in such 
a way that the linear algebraic problem changes at each 
time step. It takes the form (1) with a form a(.,.) given 
by 


(17) a (s. s; F): (s, + 


where •U = R? arises from linearizing the nonlinear term. 
Even though the addition of the •U term makes it non- 


symmetric, 5(., .) will be coercive for •tt sufficiently large. 
In fact, when div •U _= 0 then integrating by parts yields 


(lS) 


--- --Vj dx = 0 2 Oxi •' 
i.j----1 


for all v • V so that 


(19) o• • •z-<•(v•,v•) 'v'v•(•V 
for the same choice of c• > 0 as before. Of course, •(., .) is 
continuous: 


(20) 5(v•, •W) _• Ca • V •W V 'V'•, •W (• V 


but now Ca depends on both •tt and •U. 
The main disadvantage of the time-stepping scheme (16) 


is that it has a time-dependent system of algebraic equa- 
tions. To avoid this time-dependence and to keep implicit- 
ness of the non-linear term approximation, fixed-point it- 
erations have been introduced in the following variational 


form 


a(•ut'm,v•) +b•~,p' } 


(21) 
b {u t,'• q) 


+ R c (•ue,m- l , •ue,m- l , v•) 
• ' ,-.d L 2 ---- O, 


: O, 


where m - 1, 2, ..., M is the fixed-point iteration index. We 
write •u e for •u e'M. The following convergence criterion has 
been used in our calculations for the fixed-point method: 


(22) •ut,.• __ •œ,m--1 _• efp •t,m . 
The simplest initial guess for fixed-point iterations is •u t'ø - 
U t-1 To reduce the number of fixed-point iterations, the 
initial guess was calculated using linear interpolation of the 
solution at two previous time steps: 


(23) •u t'ø -- 2•/-1 -- •U t-2. 


In practice, higher order time-stepping schemes can be 
used, including the second-order approximation of the time 
derivative ([6]): 


•. 3? -- 4u t-1 + •u g-2 (24) c9u (t•) Ot 2At ' 


but the main issues related to solving the resulting linear 
equations remain the same. 


All time-stepping schemes may be written as a problem 
for (•ul,p t) which is nearly of the form (1), for example, 
equation (15) may now be written as 


(25) +7' (•U/•--I•v•)L• 
b(•u•,q) =0 


with the more general form 5(., .), namely 


(26) 


where the constant 7' = R/At for the first-order time- 
stepping scheme and 7' = 1.5R/At for the second-order 
time-stepping scheme. Numerical experiments will be pre- 
sented subsequently for such a problem. Note that the 
linear algebraic problem to be solved at each time step is 
the same. 


Note that we have •u 
where •u • V. The variational problem (25) for •u • can 
then be written: Find •u • V and p • II such that 


5 (u, v) + b(v•,p) = -a (•[, v•) 
(2,) -a c s) + vs v 


b (•u, q) = -b (:, q) Vq • II. 







224 ICOSAHOM 95 


This is of the form (1) with 


Fe) := -a (•, •) - nc (•-•, •-', •) (35) 


a (q):= -• (•q) Vq • n. 
Note that the inhomogeneous boundary data • appears in 


both right-hand sides, F and G. Thus we are forced to (36) 
deal with a nonzero G. 


A finite element discretization of (10), (15) or (27) is 
obtained by replacing V by Vn and • by •n satis•ing (6). where 
Since the notation is identical if we let V denote either V 


(•) 
or V• (and similarly with •) we drop all h subscripts from 
now on. 


4 Iterated penalty method 
ß 


Consider a general mixed method of the form (1). Let 
p' • IR and p > 0. The iterated penalty method (IPM) 
defines u • • V and p'* by 


(29) = F(v) - b(v,?) + p'G(T)v) Vv • V 
p•+• = p• + p (•u • - Pn, G) 


where Pn•G is defined in (2). Recall also that (4) says 
that Pn•u = Pn•G. 


The algorithm does not require Pn, G to be computed, 
only 


(30) 


for v • V. Suppose that G(q):= -b(%q). Then 


(31) G(Pn, Dv) = -b(7, Pn• Vv) = -(Vv, Pn• Vv)n. 


If further H = DV, then 


(32) b(v, Pn•G) = G(Pn•Vv) = 


for v • V. 


One key point of the iterated penalty method is that 
the system of equations represented by the first equation 
in (29) for u ", namely 


(33) = F(v) - b(v,p •) + p' G(Dv) Vv • V, 
will be symmetric if a(., .) is symmetric, and it will be 
positive definite if a(., .) is coercive and p• > 0. 


Suppose that H = DV. Then since G(q):= -b(% q), 


(Pn• G, q)n = G(q) = 
(34) -(D% q)n = -(Pn• 


that is, Pn•G = -Pn•T)'. Then 


P•+• = P• + PPn• T) (u • + 


since Pn•T)u • = T)u •. 
If we begin with p0 = 0 then, for all n > 0, 


Note that 


pn = p Prl• T) • ( u i + • ) - Prl • T)w n, 
i=0 


.• 
•=0 


b(v,p•) - (•Dv,p•)n = 
(38) (Vv, •n•Vw•)n = (Vv, Vw•)n 
since Pri,•Dv • •v. 


Thus, the iterated penalty method implicitly becomes 


a(u n, v) + p' (Vu n, Vv)n = F(v) 
(39) -(Vv, Vw•)n-p'(Vv, Vt)n Vv•V 


w•+• = w • + p (u • + •/). 


In the c•e p• = p this simplifies to 


•(•, v) + p (m •, V•)n = r(v) 
(4O) -(re, V( w• + P•))n Vv • • 


w-• = w -+p(u • +•). 


Thus we see that the introduction of inhomogeneous 
boundary conditions does not lead to a dramatic change to 
the formulation of the iterated penalty method. The main 
difference is that the "pressure" term 


(41) p = •n• Vw, 


where w := w • for the value of n at which the iteration 


is terminated, cannot be computed directly since w ½ • 
That is, •w ½ H. On the other hand, p is not needed at 
all for the computation of u and can be computed only as 
required. For example, in a time-stepping scheme it need 
not be computed every time step. 


The "pressure" term can be calculated in various ways. 
It satisfies the system 


(42) (p, Vv)n = (Vw, Vv)• Vv • •. 


We can write p = •z for various z • V, with z satisfying 
the under-determined system 


(4a) (Vz, Vv)n = (Vw, m)n Vv • •. 
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Several techniques could be used to specify z, but one sim- 
ple one is to use the system (1), namely, to find z e V and 
r • [i such that 


(44) a(:, v) + b(v, •) = 0 Vv e V 
b(z, q) = (Vw, q)• Vq e n 


which is (1) with F -=0 and G(q):- (/)w, q)rI. 
The iterated penalty method can be used to solve (44), 


yielding an algorithm of the form 


(45) 
a(z n , v) + p (Vz n, Vv). -- 


- (Z)v, Z)(C - pw))n Vv e V 
C+l = C + p (z• - w) 


in the case p' - p. This involves inverting the same alge- 
braic system as in (40), so very little extra work or storage 
is involved. 


Note that w n in (40) as well as (n in (45) do not converge 
to any finite functions and they might have arbitrarily large 
values. On the other hand, the iterative penalty method 
does not require calculation of those variables explicitly 
since the first equations in (40) and in (45) use 
and (/)('•,/)v). To avoid the calculation of variables with 
large entries and to reduce floating-point error, it is useful 
to rewrite the second equation in (40) and (45) in terms of 
(•w •, •v) and (•'•,/)v), which can be calculated with 
less error: 


(46) 
a(u '•, v) + p (/)u '•,/)v)n = F(v) 
-(Vv, V(w n + P•))n Vv e v 


(Vv, Vw•+ 1): (Vv, Vw •) + p(Vv, V(u • +•)). 


(47) 
a(•, v) + p(Vz•, Vv)n = 


-(m,z)(C-pw)) n Vve v 
(v•,,z)C +•) = (Z)v,Z)C) + p(Z)v,Z)(z • - w)). 


The variables /)u., '• and /)('• are incremented directly in 
our implementation. 


5 Application to Navier-Stokes 


The iterated penalty method (39) (with p' = p) for (15) 
takes the form 


(48) 


where either pl,O = 0 (i.e. ?,o = 0) or •w/'ø = •W l--l'N where 
N is the final value of n at time-step • - 1. If for some 


reason pt = pi,• = -Pndiv •w •"• were desired, it could be 
computed separately. 


For example, algorithm (40) could be used to compute 


z • (div '• div v) = 
(49) -(div ({n- p.w•'•), div v.)œa V•6y 


C +•: C + p (? - •'•) 


starting with, say, {o • 0. Then ? will converge to ! 6 • 
satisfying div• = Pndiv?'• = -?'•. Note that (49) 
requires the same system to be solved as for computing 
ff,n in (48), so very little extra code or data-storage is 
required. 


The potential difficulty caused by having inhomogeneous 
boundary data can be seen for high-order finite elements. 
For simplicity, consider the two-dimensional case (d = 2). 
Let W• denote piecewise polynomials of degree k on a 
triangular mesh, and let V• denote the subspace of W• 
consisting of functions that vanish on the boundary. Let 


(•o) • = v• • v•, 


and let •n = div •n. Then each q • •n is constrained 
at all boundary singular [4] vertices, •i, in the mesh. 
On the other hand, inhomogeneous boundary conditions 
will require the introduction of some • • W• x •. It 
is known [10] that div (W• x W•) consists of all piece- 
wise polynomials of degree k - 1, a larger space than 
•n if boundary singular vertices are present in the mesh. 
On the other hand, if there are no boundary singular 
vertices, there is no need to form the projection since 
Hn={q6div(W•xW•) ß fn q(x) dx = O} in this c•e. 


6 Convergence of IPM 


The convergence properties of (29) follow from [4]. 


Theorem 6.1 Suppose that the forms (1) satisfy (5) and 
(6) for Vn and Ha = I)Vn. Then the algorithm ('29) con- 
verges to the solution of (1) for any 0 < p < 2p • for ff 
suJficiently large. For the choice p = if, (29) converges 
geometrically with a rate given by 


The following stopping criterion follows from [4]. 


Theorem 6.2 Suppose that the forms (1) satisfy (5) and 
(6) for Vn and [In = I)Vn. Then the errors in algorithm 
(29) can be estimated by 
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and 


Ill - phllrz -< + + >'Cb - Prz,, Gllrz- 
When G(q) - -b(*/, q), then Pr•h G = -ProbeD*/and since 


•Du • E 1-lb, 


(51) 


The latter norm is easier to compute, avoiding the need 
to compute Pr•hG. We formalize this observation in the 
following result. 


Corollary 6.1 Under the conditions of Theorem (6.2) the 
errors in algorithm (29) can be estimated by 


and 


The corollary gives a natural convergence criterion of the 
iterated penalty method: 


(52) 


7 Computational examples 


All numerical experiments reported in this paper were con- 
ducted using the code Albert [1]. The space V/• is chosen 
to be (50) with degree k _> 4. As a test problem we con- 
sider the well-studied Jeffrey-Hamel flow in a converging 
duct [8]. For this flow, a semi-analytical solution is known 
which is a similarity solution of the form 


(53) •u(x,y):= 6v u(atan(y/x)) 
where 


(54) u"+4u+6u 2=C, u(O)=u(a)=O, 


and differentiation is with respect to the polar angle q) and 
c• is the angle (in radians) made by the two walls of the 
channel. Figure 2 shows the profile (for a = •r/4) of the 
radial velocity u at r - I for two choices of C, 100 and 
10,000. These correspond to Reynolds' numbers of 20 and 
240, respectively, with R calculated by formula R = max [•[ 
for r = 1. 


radial velocity amplitude for Jeffrey-Hamd flow at r=l 
10 • , , , , , 


10 0 


R=240 


i I i 


angular variable 


Figure 2: The profile of the angular velocity u at r -- 1 
for two choices of C, 100 and 10,000. These correspond to 
Reynolds' numbers of 20 and 240, respectively. 


The profiles are plotted for 0.01 <_ &/c• <_ 0.99. This 
allows an assessment of the behavior of the solution in the 


boundary layer. For example, the angular displacement 
thickness 6•, which can be defined in this case by 


f/2 (55) := i J0 


* 


has values 6•0 = 0.110 and 6240 - 0.046. 
For the domain, we consider a slice of a wedge with 


opening c• = •'/4 radians made perpendicular to one of 
the wedge sides, as shown in Figure 3. This provides a 
flow with no particular symmetry. 


Figure 3 shows the pressure relative "error" in the case 
of C = 100 if the projection Prx• in (41) is not included in 
the calculation (left). Note that the error is concentrated 
around the one boundary-singular vertex. When the pro- 
jection is included (right), the relative error drops by five 
orders of magnitude, to about 0.05 percent. 


Figure 1 shows the maximum time-step size for stabil- 
ity of the different time-stepping schemes. The implicit 
schemes are unconditionally stable if one solves the non- 
linear equation exactly, but any algorithm used to solve 
them, such as fixed point iterations, introduces implicitly a 
stability limit. Our simulations were initialized with u - 0. 
Note that the time-dependent numerical solution converges 
to the steady state. A set of subsequently refined meshes 
was used, starting with the coarsest one from Figure 3. 
Numerical experiments have shown that the second-order 
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Maximum pressure error = 2.3245 
Maximum pressure error = 0.0005 


Figure 3: The pressure relative "error" due to a boundary- 
singular vertex in the case of C = 100 if the projection 
Pm• is not included in the calculation (left) and if it is 
included (right). The vertices of the trapezoid are (1, 0), 
(1,1), (2,2), (2,0), in clockwise order starting from the 
lower-left corner. 


100 
Maximum time-step size for the implicit schemes, JHFIow 


2-nd order 


1-st order 


10 -2 ........ , , 
10 • 10 • 10 • 10 '• 


Figure 4: Maximum time-step size for the implicit time 
stepping schemes using fixed-point iterations as in (48) for 
Jeffrey-Hamel flow vs Reynolds number. The maximum 
mesh-step size h = 0.35 (two subdivisions of the mesh 
displayed on Figure 3). 


implicit-explicit scheme with 3 fixed-point iterations (21) 
is the most efficient of the ones we tested. 


Figure 4 shows the maximum time-step size for the im- 
plicit time-stepping schemes as a function of the Reynolds 
number. The mesh was generated by twice refining the 
coarse mesh shown in Figure 3. The number of unknowns 
N = 1202. 


8 Using an initial pressure 


It is possible to use a good initial guess for w ø in the it- 
erated penalty method (40). For example, we can use the 
final w • from the previous time step or other "outer iter- 
ation." Figure 5 shows the reduction in number of itera- 
tions needed as a function of time using an initial w n from 
the previous time step, for two different Reynolds numbers 
and for a moderate penalty parameter (p = 100). Nu- 
merical experiments were conducted for the Jeffrey-Hamel 
problem with zero initial guess. The number of penalty 
iterations approaches one because the solution approaches 
steady state. 


Figure 6 shows the effect of varying the penalty param- 
eter for Reynolds numbers 20 and 240. Shown are the 
pressure and velocity error after convergence (at a time of 
t = 5) for the Jeffrey-Hamel problem. We see that if the 


20 
R = 240 


,•15 • 
._ 


0 / i I i i I i 0 0.5 1 1.5 2 2.5 3 315 
time 


4 45 5 


Figure 5: Reduction in number of iterations needed to 
satisfy (52) as a function of time for two different Reynolds 
numbers and for penalty parameter p = 100 using initial 
w n from the previous time step for Jeffrey-Hamel flow. 
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Convergence of iterated penalty method vs penalty parameter, R = 20 
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Figure 6: Effect of varying the penalty parameter for Reynolds numbers 20 (a) and 240 (b). Shown are the pressure 
and velocity error after convergence (at a time of t = 5) and the number of iterations in the penalty method at the first 
time step. plotted as a function of the penalty parameter, p. Number of penalty iterations for small value of the penalty 


1 


parameter p is proportional to • (b). 


penalty parameter becomes too large, then first the pres- 
sure degrades and finally so does the velocity. Also shown 
is the number of penalty iterations at the first time step 
when there is no initial guess for w ø. We see that it is 
large for a small penalty parameter but decreases rapidly 
to just one iteration for larger penalty parameters. The 
errors quoted in figures were in the Loc norm. We have 
obtained quantitatively similar error estimates in the L2 
norm. 


For truly time-dependent problems, the number of 
penalty iterations also approaches one for each fixed- 
point iteration, when the value of penalty parameter is 
big enough. The uniform flow around a cylinder is a 
classical time-dependent problem which has been investi- 
gated by many researchers (see [3] and references reported 
therein). For Reynolds numbers larger than some critical 
value (around 40) vortex shedding occurs behind the cylin- 
der (Figure 7). The time-dependent horizontal component 
of velocity is given in Figure 8. Plotted are velocity val- 
ues at six points along the line through the center of the 
cylinder cross-section at the angle of 0 = 153 ø with direc- 
tion of flow for a Reynolds number R = 100, a time step 
size At = 0.05 and a computational mesh with 2831 nodal 
points. The frequency of the oscillations in terms of the 
dimensionless Strouhal number is found to be St = 0.177. 


Figure 7: Velocity field for the uniform flow around a cylin- 
der. R = 100, t = 100, At = 0.05. Computational domain 
f• = [-10, 30] x [-20, 20]. Radius of the cylinder r = 1. 
Center of the cylinder is at (0, 0). Plotted is part of the 
domain [-3,9] x [-6,6]. Computational mesh has 2831 
nodal points. Initial flow at t = 0 was uniform flow except 
on the cylinder, where it was set to zero. 
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Authors of [3] found the dimensionless Strouhal number 
to be St = 0.16 (only two digits were reported). The 
difference in observed St could be a result of the finite 


computation domain used f] -[-10,30] x [-20,20] or by 
the polygonal approximation of the cylinder (24 sides). A 
calculation on the domain f] = [-20, 60] x [-40, 40], using 
a 36-edge polygon for the cylinder representation, a mesh 
with 12943 nodal points and a time step size At -- 0.02, 
yielded a the dimensionless Strouhal number St - 0.169. 


The initial time steps need a large number of fixed-point 
and penalty iterations but when the solution becomes pe- 
riodic (t > 50), each time step requires approximately the 
same number of fixed-point and penalty iterations. Fig- 
ure 9 shows the total number of penalty iterations per 
time step as function of the penalty parameter at time 
100. Two different iteration strategies were used. One re- 
quires penalty iterations reach convergence according to 


the criterion (52) with tolerance eip = 10 -?. Another 
sets the number of penalty iterations per fixed-point iter- 
ation to one and the iterations are forced to satisfy both 


convergence criteria (22) with tolerance efp = 10 -4 and 
(52). The second strategy requires fewer total number of 
penalty iterations for high values of the penalty parameter 
and therefore minimizes the number of linear-system solves 
required. We did simulation of the same flow for higher 
values of the Reynolds number (R = 200). For penalty 
parameter p = 10 s and time step At = 0.02 number of 
fixed-point iterations equal 3 with one penalty iteration 
per fixed-point iteration. Like for steady-state flows the 
value of penalty parameter can not arbitrary large due to 
the big numerical error. 


Since it appears that it is often possible to do only one 
penalty iteration per fixed-point iteration, it is interest- 
ing to compare this method with other methods. Alge- 
braically, the system of equations for a mixed method (1) 
can be written in the form 


(56) ( A B U 0) 0) 
The iterated penalty method avoids the need to even calcu- 
late the matrix B, and only requires the solution of equa- 
tions of the form 


(A+pD)V=G, 


which involve only the velocity degrees-of-freedom, where 
D = BB t and B t represents the matrix associated with the 
divergence operator. Since this is a much smaller system 
of equations than (56), the iterated penalty method can 
provide a much more efficient algorithm than ones like (56) 
which explicitly involve the pressure degrees-of-freedom, 
such as the Taylor-Hood method [7]. 


Uniform flow around a cyhnder, R - 100 
1.4 ...... 


1.2 t 


0.4 


0.2 i i• 9• 
r/D =0. 


0 • r/D=0.• 


-0,2 r/D=0.5• 
0 5 10 15 20 25 30 35 


Time 


Figure 8: Time-dependent horizontal component of veloc- 
ity field at six points along the line through the center of 
the cylinder cross-section at the angle of 0 - 153 ø with di- 
rection of flow. Simulations were for uniform flow around 


cylinder with diameter D = 2, R - 100. 


9 Direct versus iterative solvers 


Iterative solvers are often used to solve the linear- 


algebraic problem that arises in implicit and implicit- 
explicit schemes for time-dependent partial differential 
equations. However, direct solvers have various nice fea- 
tures. For example they allow one to solve non-symmetric 
problems with the same amount of work as for symmetric 
problems. Thus it is natural to ask what is the relative 
amount of work for direct versus iterative solvers. •Ve will 


see that for high-order methods, at least in two dimensions, 
direct methods have an interesting range of applicability. 


Using an ordering strategy related to the "minimum de- 
gree" algorithm [9] in the case of symmetric matrices, the 
growth in the number of fill-ins is as depicted in Figure 10. 
What is plotted is the ratio of the number of non-zeros 
in the factored matrix to the number of non-zeros in the 


original matrix, as a function of the former. The number 
of non-zeros in the factored matrix is a good measure of 
the computational complexity for time-stepping problems 
where the matrix can be factored once and then re-used 


many times. We see that for a large range of problems, 
the number of non-zeros in the factored matrix will be less 


than twice that of the original matrix. This means that 
using the factored matrix for a direct solution will take less 
than two steps of typical iterative methods. 


The relative cost of solving is made even more apparent 
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Figure 11: Relative cost of solver and form evaluations for finite elements order p = 4 (a) and p - 6 (b). D denotes the 
divergence term and C the nonlinear term. 


in Figure 11. Shown is the relative cost of the solver and 
the form evaluations for the 4-th and 6-th order finite- 


element method. The data reported in Figures 10 and 
11 does not change very much as we vary the geometry 
of the domain and other problem parameters. The line 
marked D denotes the work for computing the divergence 
form b(v,p) and the line marked C denotes the work for 
computing the nonlinear form c(u, v, w). We see that for 
the 6-th order finite-element method, the nonlinear form 
dominates the solver by a substantial factor, although the 
cost for the latter is growing at a faster rate (the forms 
can be computed in an amount of work that is linear in 
the number of matrix entries, but the cost of the solver 
grows supra-linearly). 


An interesting question is the effectiveness of increasing 
the degree of approximation versus decreasing the mesh 
size. To investigate the dependence of the numerical error 
on the degree of approximation and number of unknowns, 
we simulate Jeffrey-Hamel flow. A set of subsequently re- 
fined meshes was used, starting with the coarsest one from 
Figure 3. Figure 12 compares the accuracy gained as a 
function of the number of non-zeros in the factored matrix, 
a measure of the dominant part of the computation. For 
smaller Reynolds numbers, higher degree approximations 
are more efficient. However, for larger Reynolds numbers, 
less difference in efficiency is seen as the degree is varied. 


Since the forward- and back-solve is so efficient, it is rea- 


sonable to study the efficiency as a function of an estimate 
of the entire work for a complete time step for the overall 
algorithm. Figure 13 shows this data for Reynolds numbers 
20 and 240. We see that basing the plots on an estimate 
of the work for a complete time-step tends to make low- 
order and high-order methods look much more similar in 
terms of accuracy achieved as a function of work expended. 
There is a noticeable increase in cost as the Reynolds num- 
ber increases, due to the increased information content of 
the solution. 


We note that we have omitted plots of the efficiency as 
a function of run time [2], as the latter is highly dependent 
on the computer architecture. For cache architectures, run 
time correlates well with the number of nonzeros in the 


factorized matrix. 


For very large problem sizes, iterative methods will be 
more efficient. However, the standard multigrid method 
requires a number of smoothing steps proportional to the 
penalty parameter [5]. The data in Figures 6 and ?? indi- 
cates penalty parameter should be very large. 


10 Conclusions 


We showed that high-order finite element methods can sim- 
ulate the flow of incompressible viscous fluids efficiently 
using the iterated penalty method for resolving the incom- 
pressibility constraint. We gave a description of the iter- 
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Figure 12: Accuracy in the maximum norm as a function of the number of non-zeros in the factored matrix for Reynolds 
number = 20 (a) and 240 (b). Numerical solution was computed for Jeffrey-Hamel flow on a set of subsequently refined 
meshes. 


Computational error vs floating point operations per iteration, R = 20 
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ated penalty method in the case of inhomogeneous bound- 
ary conditions. We showed that direct methods may be a 
suitable choice for many simulations, at least in the two- 
dimensional case. 


Current work extending the results of this paper involves 
mesh optimization using error estimators and an extension 
of these results to three dimensions. 
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Efcient Chebyshev-Legendre Galerkin Methods 
for Elliptic Problems 
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Abstract 


We introduce a new and efficient Chebyshev-Legendre 
Galerkin method for elliptic problems. The new method 
is based on a Legendre-Galerkin formulation, but only the 
Chebyshev-Gauss-Lobatto points are used in the compu- 
tation. Hence, it enjoys advantages of both the Legendre- 
Galerkin and Chebyshev-Galerkin methods. 


Key words: Chebyshev polynomial, Legendre polyno- 
mial, spectral-Galerkin method. 
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i Introduction 


The Legendre-Galerkin method [13] for self-adjoint ellip- 
tic equations leads to symmetric and simpler linear sys- 
tems, but its efficiency is limited by the lack of fast trans- 
form between the physical space (values at the Legendre- 
Gauss-Lobatto points) and the spectral space (coefficients 
of the Legendre polynomials). Furthermore, the Legendre- 
Gauss-Lobatto (LGL) points are not available in an ex- 
plicit form and their evaluations for large N (N be- 
ing the order of polynomial space) may introduce signif- 
icant roundoff errors (cf. [1]). On the other hand, the 
Chebyshev-Gauss-Lobatto (CGL) points are given explic- 
itly and the transform between the physical space and 
the spectral space can be efficiently performed by using 
the Fast Fourier Transform (FFT). However, due to the 
non-uniform weight associated with the Chebyshev poly- 
nomials, the Chebyshev-Galerkin method [14] leads to non- 
symmetric (even for self-adjoint elliptic equations) and 
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more complex linear systems. We introduce in this paper 
a very efficient Chebyshev-Legendre Galerkin method that 
has the advantages of both the Legendre- and Chebyshev- 
Galerkin methods. Our method has two essential features: 


ß It is based on a Legendre-Galerkin formulation which 
preserves the symmetry of the underlying problem. 
The basis functions of the approximation space are 
compact combinations of Legendre polynomials, deter- 
mined by the order of the principle elliptic operator 
and the underlying boundary conditions. For prob- 
lems with constant coefficients, the linear systems re- 
sulted from these compact basis functions are banded 
sparse matrices, similar to those arising from a finite 
difference discretization, which can be efficiently in- 
verted. 


ß Only the coefficients of Legendre expansions and the 
values at the CGL points are used in the computation. 
Efficient algorithms are available to transform from 
the coefficients of Legendre expansions to the values 
at the CGL points and vice versa. 


In the next section, we describe the Legendre- and 
Chebyshev-Galerkin methods for an one-dimensional 
model problem. In Section 3, we introduce the 
Chebyshev-Legendre Galerkin method and describe the 
fast Chebyshev-Legendre transform between the values at 
CGL points and the coefficients of Legendre expansion. In 
Section 4, we present some numerical results which demon- 
strate the efficiency of the new method. 


2 Legendre-Galerkin and Cheby- 
shev-Galerkin methods 


To simplify the presentation, we consider the following one 
dimensional model problem: 


(1) au- uxx ---- f, in I---- (-1, 1), 


with the Robin type boundary condition 


(2) a_u(-1) + b_u•(-1) - 0, a+u(1) + b+u•(1) -- 0. 
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The problem(1-2) has a unique solution if 


(3) a• + b• • 0, a_b_ _< 0; a•_ + b•_ • 0, a+b+ _> O. 


Let S.¾ be the space of polynomials of degree less than or 
equal to N, and 


X.¾ ={vG SN: añv(4-1)+bñvx(4-1)----0}. 


We denote I.• the operator of interpolation at the LGL 
points {•i}05i51¾ (•i are the roots of the polynomial 
(1 - x2)L'.¾(x), where LN(X) is the Legendre polynomial 
of degree N), i.e. IlNf • SN and 


= 0 _< i _< 


Let (,u,v) = f_• uv dx. Then, the pseudo-spectral 
Legendre-Galerkin method for (1-2) is: find UN • XN s.t. 
V vN • X•¾, 


(4) c•(Us;V.¾)--(D•UN,VN)=(I}vf, VN ). 


Remark 2.1 The above formulation is slightly different 
from the usual Calerkin method in the following aspects: 


f is replaced by its interpolant I•f to allow faster 
evaluation; 


ß the boundary condition (2) in all cases is strongly 
enforced as in a collocation scheme, while in case 
b• -+-b• • 0 the boundary condition (2) will only be 
satisfied as N -• +•c in a usual Galerkin method (cf. 


The actual solution procedure for (4) depends on the 
choice of basis functions for X5 •. It is essential for the 
sake of efficiency to use compact combinations of orthog- 
onal polynomials (with respect to the inner product (., .)) 
as basis functions. To this end, we set 


O•(x) = L•(x) +a•Li+•(x) +biLi+2(x), k =0,1,2,... 


We will choose {ai, bi } such that Oi(x) verifies the bound- 
ary condition (2). Since Lu(-[-1) = (-[-1) • and L[(-[-1) = 
• •- 1) the boundary condition (2) leads to the .•(-1)•-lk(k + , 
following system for {a•, b•}: 


(5), 


The determinant of the above system is 


DET• -- 2a+a_ + a_b+(k + 2) 2 -a+b_(k + 2) 2 
1 


- •b_b+(k + 1)(k + 2)2(k + 3) 
We then conclude from (3) that DETu • 0 for any k. 
Hence, {au,bu) can be uniquely determined from (5). 


It is obvious that {0u(x)) are linearly independent. 
Therefore by dimension argument we have 


XN =span{½u(x) ' k:0,1,2,...,N-2). 


Let us denote 


and 


$ = = , M = 


Then the equation (4) is equivalent to the following linear 
system: 


(6) (o•M + S)v = f. 


By integration by parts and taking into account the bound- 
ary condition (2), xve find that 


-- (d•O• 
a+ a_ 


= (DxO•:,DxOj) + •O•(1)Oj(1) - •O•(-1)Oj(-1) 


dx2 / • 


where • (resp. •) should be replaced by zero when b+ 


b+ = 0 (resp. b_ = 0). Hence, using the orthogonality 
of the Legendre polynomials, it is easy to veri• that the 
stiffness matrix S is a diagonal matrix with 


suu = -(4k + 6)bu, k = O, 1,2,... 


and the mass matrix M is symmetric penta-diagonal whose 
nonzero elements are 


2 2 2 2 
•-• + a•--• + b• j = k, 


2 b• 2 (7) ra•j-- a•+a•+• •+s, j=k+l, 


b• •_s, j = k + 2, 
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and mjk - mkj. 
In summary: given the values of f at LGL points 


{(i}0<i<N, we determine the values of US (solution of (4)) 
at these LGL points as follows: 


1. (pre-computation) Compute LGL points, {ak, bk) and 
nonzero elements of $ and M; 


2. Evaluate the Legendre coefficients of I•f(x) from 
{f(•i)}•v=0 (backward Legendre transform); 


3. Evaluate f and solve v from (6); 
N-2 


4. Evaluate u•¾((j) = Ei=0 vi½i((j), j = 0,1,...,N 
(forward Legendre transform). 


It is clear that step 3 can be done in O(N) operations. 
However, each Legendre transform in steps 2 and 4 involves 
a matrix-by-vector product which will take about 2N 2 
arithmetic operations. To reduce the cost of the transforms 
between physical and spectral spaces, a natural choice is 
to use Chebyshev polynomials. We now describe briefly 
below the Chebyshev-Galerkin method for (1). 


Let I c be the interpolation operator at the CGL points N 


{r?i = cos(i•/N)}o<i<•, i.e. I•v f • SN and 


I•,f(rli) = f(r]i), 0 _< i _< N. 


The pseudo-spectral Chebyshev-Galerkin method for (1-2) 
is: find ux • X•v s.t. V v.¾ • XN, 


(s) - = 


,,'here = (1 - and ½, = &. As 
before, there exist unique {a•, b•} such that 


V•(x) = T•(x) + akT•+•(x) + b•T•+2(x) e XN, 


(where T• (x) is the Chebyshev polynomial of degree k) and 


XN = span(•hk(x) ß k = 0, 1,2,...,N- 2}. 


It is easy to see that the stiffness matrix S (si• = 
(-D•vg•', ½i)•) is a upper triangular matrix and the mass 
matrix M (m• = (%, ½i)•) is a symmetric positive defi- 
nite penta-diagonal matrix. Although the matrix aM + S 
in (8) is not sparse, it can still be inverted at a cost com- 
parable to invert a seven-diagonal matrix by exploiting 
the special structures of S [14]. Therefore, thanks to the 
fast transforms available to the Chebyshev expansions, the 
Chebyshev-Galerkin method is preferable for this specific 
problem. However, the Chebyshev-Galerkin method may 
not be the best choice due to the non-symmetry (which 
introduces considerable difficulties for its analysis and ex- 
cludes the use of conjugate gradient type methods for 


problems with variable coefficients) and non-sparseness of 
the stiffness matrix (which excludes more efficient direct 
solvers such as the cyclic reduction [15] for problems in 
multi-dimensional domains). 


Remark 2.2 In case of the homogeneous Dirichlet bound- 
ary condition {i.e. bñ = O) or the homogeneous Neumann 
boundary condition {i.e. añ = 0), we have a• = 0, k = 
0, 1,2,... These special cases are discussed in detail in 
[13, 


For differential equations of order 2m, we should choose 
the basis functions for the Legendre- and Chebyshev- 
Calerkin method to be of the form 


•k(x) = Pk(x) + ak.lPk+l(X) +... + ak,2mPk+2m(x) 


where Pi(x) are Legendre or Chebyshev polynomials and 
ai,j should be determined by the underlying boundary con- 
ditions. See [13, 1,4] for the treatment of fourth-order prob- 
lems. 


For multi-dimensional problems, tensor products of one 
dimensional basis functions should be used. The resulting 
linear systems can be efficiently solved, for instance, by the 
matrix decomposition method [11, 9]. We refer to [13, 1,4] 
for more details. 


3 Chebyshev-Legendre Galerkin 
method 


To overcome the shortcomings of both the Legendre- and 
Chebyshev-Galerkin methods, we propose the follo;ving 
Chebyshev-Legendre Galerkin method for (1-2): find u• 6 
XN s.t. V v N • XN, 


(9) a(U:v,V:v)-(D•uN,v:v)=(I•f,v:v). 


The only difference with (4) is that the Chebyshev interpo- 
lation operator I•v is used instead of the Legendre interpo- 
lation operator I•v. Hence, the solution procedure of (9) is 
essentially the same as that of (4) except that Chebyshev- 
Legendre transforms (between the value of a function at 
CGL points and the coefficients of its Legendre expansion) 
are needed instead of the Legendre transforms. 


Recently Don and Gottlieb [6] introduced also a 
Chebyshev-Legendre collocation method for hyperbolic 
and parabolic equations. Their work is motivated by the 
fact that the hyperbolic equations are no.t well-posed in 
Chebyshev norm. in their method, the forcing term is ap- 
propriately penalized so that L 2 norm estimates can be ob- 
tained for the collocation method using Chebyshev points. 
Although the two methods share the same spirit which is 
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to take advantages of both the Chebyshev and Legendre 
methods, the motivation and the implementation of the 
two methods are entirely different. 


We now describe how the Chebyshev-Legendre trans- 
forms can be efficiently implemented. We split each 
Chebyshev-Legendre transform into two steps: 


1. The transform between its values at CGL points and 
the coefficients of its Chebyshev expansion. This can 


s log 2 N + 4N operations (cf. P. be done by FFT in • 
502 in [2]). 


2. The transform between the coefficients of the Cheby- 
shev expansion and of the Legendre expansion. 


This second transform has been addressed by Alpert and 
Rohklin [1]. They developed an O(N) algorithm for the 
second transform for a prescribed precision. Their algo- 


ß 


rithm, as most algorithms based on the fast multipole 
method [7], is most attractive for very large N. For mod- 
erate N, the algorithm we describe below appears to be 
more competitive. 


Let us write 


N N 


i=0 i=O 


and 


f = (f0, f!,)T a = (g0,g 


What we need is to transform between f and g. The rela- 
tion between f and g can be easily obtained by computing 
(p. Tg),: and (p, L2). In fact, let us denote 


2 (ri, Lj)•, bij (i + •)(Li Tj), aij = Ci 7r 
where co = 2 and ci = 1 for i > 1, and 


A -- (aij)i.j=o,1 ..... N, B -- (bij)i,j=o,1 ..... N. 


Then we have 


(10) f=Ag, g= By, AB= BA= I. 


By the orthogonality and parity of the Chebyshev and Leg- 
endre polynomials, we observe immediately that 


aij ---- bij -- 0, for i > j or i + j odd. 
I 2 


Hence, both A and B only have about •N nonzero el- 
ements, and the cost of each transform between f and 


1 2 g is about •N operations. Consequently, the cost of 
each Chebyshev-Legendre transform is about log 2 N+ 


• 2 operations as opposed to 2N 2 operations for 4N) + 5N 
the Legendre transform. In •ure operational counts, the 
cost of the two transforms is about the same at N = 8, and 
the Chebyshev-Legendre transform costs about one third 
of the Legendre transform at N = 128 (see Table I for 
computational results). 


In summary, the one-dimensional Chebyshev-Legendre 
transform can be done in about 


(5•N log2 N + 4N)+ min(•N 2, CN) •- O(N log 2 N) 
operations, where C is a large constant in Alpert 
and Rohklin's algorithm [1]. Since multi-dimensional 
transforms in the tensor product form are performed 
through a sequence of one-dimensional transforms, the d- 
dimensional Chebyshev-Legendre transform can be done 
in O(N • log 2 N) operations and it has the same speedup 
as in the 1-D case, when compared with the d-dimensional 
Legendre transform. 


The nonzero elements of A and B can be easily deter- 
mined by the recurrence relations: 


Ti+•(x) -- 2zTi(z)- Ti_•(z), i _> 1, 


Li+l(X) : 2i+ lxLi(x) _ i Li_•(x) i > 1. i+1 i+1 ' - 


Indeed, let aij = (T,, Lj)•, then for j >_ i > 1, 


= 


(Ti 2j + lxL j J L•-i) 'j+l 


2j + i (xT•,L•)• J ~ j + 1 - 
2j+1 j 


= 2j + 2 (Ti+l 4- Ti-I,Lj)• - •ij-• ß j+ 
2j+1 j 


= 2j +2 (ai+•j +ai-•j) - j+ laij-• ß 
Similarly, let Dij = (Li, Tj), we have for j >_ i > 1, 


~ 2i + 2 ~ 2i •i-lj •ij bij+• -- 2i + lbi+•J + 2--•-• - -•' 
Thus, each nonzero element of A and B can be obtained 
by just a few operations. Furthermore, the Chebyshev- 
Legendre transform (10) is extremely easy to implement, 
while the algorithm in [1] requires considerable program- 
ming effort. 


We now turn our attention to problems with variable 
coefficients. Let us consider for instance the following non- 
separable equation: 


{ -div½(•)Vu) + b(•)u = f, • • • = [-1,1] •, ß 


ulon = o, 
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where d = 1, 2 or 3, a(x) > 0 and b(x) > 0 for x • [-1, 1] a. 
We can apply the spectral-Galerkin method directly to this 
equation, but it is more efficient in most cases to make a 
change of dependent variable v = gru [4] which reduces 
(11) to: 


(12) Av -= -Av +p(x)v ---- q, x • f• ---- [-1, 1] d, vlo• = 0, 


where p(x) - i b(x) and q(x)= . a(v"5) + f 
The unmodified spectral-Galerkin method is usually 


impractical for this type of problems. We propose in- 
stead the following pseudo-spectral Chebyshev-Legendre 
Calerkin method for (12): find VN • XN = {w • $N : 
w[ap. ---- O} s.t. 


(13) IC , (Aspvv, w) = ( w) Vw e 


where Asp is defined 


(Asp,, w) = (w, Vw) + w), 


and S.v is the space of polynomials of degree _< N in each 
variable. It is clear that the matrix corresponding to Asp 
is full. Hence, the system (13) must be solved by using an 
iterative method. Preconditioned iterative methods have 


been successfully applied to the spectral-collocation sys- 
tems with pre-conditioners based on either the finite dif- 
ference approximations [12, 10] or finite elements approxi- 
mations [5, 3]. Here we propose to use 7/sp defined by 


-= (Vv, Vw) + w) 


(for an appropriate c• _> 0) as the preconditioner for Asp. 
This type of pre-conditioners was used in the finite differ- 
ence context by Concus and Golub [4], and the convergence 
rate of a iterative scheme for (13) with this type of pre- 
conditioners is independent of the discretization parameter 
N. The preconditioning equation (i.e. TlspV = g) can be 
efficiently solved in O(N) operations for d = I (see Sec- 
tion 2) and in O(Nd(log2 N) d-l) operations for d =2 and 
3 (see [15]). Since the evaluation of AspW for w • XN can 
be done in O(N • log 2 N) operations (see below), the equa- 
tion (11) can be solved in general in O(Nd(log2N) •-•) 
operations. 


Because of the pseudo-spectral treatment of the term 
pv•, Asp is not exactly symmetric. However, it is indeed a 
spectrally accurate approximation to the symmetric spec- 
tral operator •sp defined by 


(AspU, W) ----- (VV, VW) + (p(3•)V, W), V V, W • X N. 


The numerical experiments indicate that preconditioned 
conjugate gradient type methods (see for instance [8]) 
can be applied to Asp and converge significantly faster 
than preconditioned Richardson or preconditioned mini- 
mum residual methods. 


The sacrifice for the exact symmetry is compensated by 
the fact that AspW can be efficiently evaluated. More pre- 
cisely, given the coefficients of w • X•, we evaluate the 
action of A•pW in XN as follows (with the operation counts 
of each step in parentheses): 


1. Compute the Legendre coefficients of -Aw; (O(Nd)) 


2. Perform the forward Chebyshev-Legendre transform 
(from the Legendre coefficients to the values at the 
CGL points) of w; (O(Ndlog2 N)) 


3. Compute p(x)w(x) at the CGL points and then 
take the backward Chebyshev-Legendre transform of 
Zfv(p(z)w(z)); log 


4. Compute the action of AspW = -Aw + I•(p(x)w(x)) 
in XN. (O(Nd)) 


The total cost, dominated by the cost of the two 
Chebyshev-Legendre transforms, is of order O(N • log 2 N). 


4 Numerical results 


In this section, we present and compare some numeri- 
cal experiments on Legendre-Galerkin (LG), Chebyshev- 
Galerkin (CG) and Chebyshev-Legendre Galerkin (CLG) 
methods. All computations are performed in double pre- 
cision on a SUN-Sparc10 workstation Model-30 with stan- 
dard optimization option "-O". All CPU times listed are 
in seconds. We first compare the costs of four different 
transforms: 


1. Chebyshev transform (CT). 


2. Legendre transform (LT). This is done in an optimal 
way: we pre-compute and store the transform matrix, 
and then use Fortran BLAS routine dgemm.f for the 
matrix-matrix product. 


3. Chebyshev-Legendre transform I (CLT-I) by the 
• N 2 algorithm in Section 3. (• log 2 N + 4N) + • 


4. Chebyshev-Legendre transform II (CLT-II) by the 
(• log 2 N + 4N)+O(N)algorithm in [1] with 16-digit 
accuracy. 


FFTPACK routine cost.f (available at NETLIB) is used for 
the real cosine transform in CT, CLT-I and CLT-II. The 
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N CT LT CLT-I CLT-II 


1-D transform 


32 (1000) .09 '.23 0.17 * 
64 /1000) .16 1.04 0.59 .95 
128 (1000) .31 4.05 1.87 2.38 
256 (1000) .60 15.92 6.49 "5.61 
512 (100) .13 6.32 2.41 1.46 
1024 (100) .36 25.81 9.51 3.36 


2-D transform 


16 (100) .11 .21 .18 * 
32 (100) .43 1.45 0.93 * 
64 (100) 2.47 14.74 6.59 12.29 
128 (10) .91 11.26 4.15 6.29 
256 (10) 3.99 88.33 29.06 30.36 
512 (1) 2.08 69.94 21.67 16.07 


Table 1: CPU time for the three transforms. 


N LG CLG CG 


32 0.04 (0.01) 0.04 (0.01) o.oa (0.04) 
64 0.36 (0.06) 0.2 (0.06) 0.14 (0.19) 
128 2,75 (0.14) 1.39 (0.14) 1.64 (1.99) 
256 20.13 (0.54) 8.53 (0.54) 11.93 (17.99) 
512 151.87 (2.04) 45.27 (2.04) 118.13 (167.36) 


Table 2: CPU time for the three Poisson solvers. 


CPU time for the three transforms (excluding the initial- 
ization process) are tabulated in Table I where the number 
in parentheses is the number of transforms made. Notice 
that in the 2-D case, CLT-I is more efficient than LT for N 
as low as 16 and is three times faster than LT for N = 256, 
and CLT-I is more efficient than CLT-II for N _< 256 (CLT- 
II may become more competitive if single precision is used 
[1]). Furthermore, CLT are more accurate than LT for N 
large, since LT may suffer from the round-off errors from 
the computation of LGL points (see Table 6 in [1] for more 
details). The CPU time for 3-D transforms behaves simi- 
larly as the 2-D transforms. 


We now compare the costs of solving a 2-D Poisson equa- 
tion by using the CG, LG and CLG methods. The CPU 
time for the initialization process (such as computing the 
eigenvectors of the 1-D second-order problem) is given in 
the parentheses. Evidently, CLG is more efficient than 
LG in all cases. Furthermore, CLG is comparable to the 
very efficient CG method for N < 64 and CLG becomes 
significantly more efficient than CG for N > 128. 


Next, we report on the computational results for the 
2-D non-separable equation (11). Two test problems are 
considered: 


Example 1. a(x,y) = (1 + a((x + 1) 4 q- (y q- 1)4)) 2 
and b(x, y) = 0. The function a(x, y) has very large vari- 
ation over the domain but after the change of depedent 
variable v = v/-Su, the function p(x,y) in (12) is still non- 
negative and has much less variation than a(x, y). Hence, 
fast convergence rate is expected for a wide range of a. 


Example 2. a(x,y) = (1.5 + sin(a(x + y)))2 and 
b(x,y) = 0. In this case, p(x,y) in (12) is no longer a 


4 2 < p(x,y) < 4c• 2 The positive function and we have -•c• . 
system (12) is still positive definite because (11) is. But 
the convergence rate may deteorate for large c• due to the 
nonpositivity of p(x, y). 


The two problems are solved by three different schemes: 


1. (CL-PCG) the preconditioned conjugate gradient 
method applied to (13); 


2. (CL-PCGS) the preconditioned conjugate gradient 
squared method [16] applied to (13); 


3. (C-PCGS) the preconditioned conjugate gradient 
squared method applied to a Chebyshev-Galerkin ap- 
proximation to (12)(similar to (13), but is formulated 
with a weighted inner product). 


In Table 3, we list the number of iterations needed for 7- 
digit accuracy. A few remarks are in order. Firstly, all 
three schemes for the first example converge very rapidly, 
even with a very large a. The slower convergence for 
Example 2 with a = 5 is attributed to the nonpositiv- 
ity of p(x,y). Note however that even though -20 <_ 
p(x, y) _< 100 at a = 5, the three schemes still converge 
with a relatively small number of interations. This is a 
strong indication that these interative schemes applied to 
spectral-Galerkin formulations are very robust. Secondly, 
even though the system (13) is not exactly symmetric, CL- 
PCG still converges very rapidly, although at a rate slower 
than that of CL-PCGS. However, the slower convergence 
rate is more than compensated by the fact that one itera- 
tion of PCGS costs twice as much as one iteration of PCG. 


Finally, the cost of one iteration of PCG (resp. PCGS) is 
about the same as the cost of solving one (resp. two) Pois- 
son equation(s) by the respective method (cf. Table 2). 


In summary, we have developed a very efficient 
Chebyshev-Legendre Galerkin method with quasi-optimal 
operation counts for solving elliptic equations. 


Acknowledgments. The author would like to thank 
Dr. Alpert for providing his program for the Chebyshev- 
Legendre transform. 
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CL-PCG CL-PCGS C-PCGS 


N Example 1: c• = 10, 1000 
16 8, 10 5, 6 5, 7 
32 8, 9 5, 6 5, 7 
64 8, 8 5, 6 5, 7 


Example 2: c• = 2, 5 
16 8, 23 5, 13 5, 14 
32 8, 18 5, 13 5, 13 
64 8, 17 5, 13 5, 13 


Table 3: Number of iterations required for 7-digit accuracy. 
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Figure on reverse: 
Weight matrix for Dubiner's modified basis. (From 
:•'Triangular Spectral Element Methods for Geophysi- 
cal Fluid Dynamics Applications" by B. A. Wingate 
and J.P. Boyd, page 305) 








Some Tools for Adaptivity 
in the Spectral Element Method 
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Abstract 


Mesh adaptivity in the spectral element framework consists 
either in refining the decomposition into subdomains or in 
increasing the degree of the polynomials, so its numerical 
analysis relies on the h- N version of the method. Two 
different tools for adaptivity are presented and studied: er- 
ror indicators and decomposition by the mortar technique. 
Some numerical experiments are given. 


Key words: spectral elements. adaptivity, domain de- 
composition. 


AMS subject classifications: 65N30, 65N35, 65N55. 


1 Introduction 


Mesh adaptivity has become an essential tool in the frame- 
work of finite element methods since it plays an important 
role for the efficiency of the discretization and the relia- 
bility of the numerical results. The aim of this paper is 
to present a tentative extension to the spectral element 
method. This one consists in approximating the solution 
of a partial differential equation by functions which are 
high degree polynomials on each rectangle of a nonover- 
lapping decomposition of the initial domain, by using ten- 
sorized polynomial bases that are associated with ten- 
sorized Gauss-type formulas. 


From this description, it can easily be seen that the spec- 
tral element mesh is constructed on two levels: the domain 


decomposition and the choice of the quadrature formula on 
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each rectangle since its nodes form the grid on this rect- 
angle. So, two levels of adaptivity exist: the decomposition 
adaptivity consists in cutting up the initial rectangles, the 
degree adaptivity in increasing the degree of the polynomials 
on a fixed rectangle. resulting in a refinement of the local 
grid. 


With the two levels, we associate two paralneters: the 
first one, denoted by h. represents the lengths of the largest 
edge of each rectangle, the second one, denoted bv N, is 
the set of the maximal degrees of polynomials inside each 
rectangle. So, we are led to work with the so-called h - N 
version of the spectral element method. 


We work with the model problem of a Laplace equa- 
tion with homogeneous Dirichlet boundary conditions. As 
a first tool, we describe several families of error indicators 
which should allow for an efficient refinement of the decom- 


position and an optimized choice of the degree. We recall 
the concluding results of their numerical analysis which is 
performed in [2], in one and two dimensions. As a second 
tool, we propose a way of working on the cut up rectangles. 
even if the new mesh is not conforming, by the mortar ele- 
ment method in h - N version. in analogy to the study of 
[5] for finite elements. Some numerical results are given, 
for the error indicators in order to compare them with the 
local error between the exact and discrete solutions and 


for the domain adaptivity in order to check its efficiency. 
An outline of the paper is as follows. In Section 2, we 


make some basic assumptions on the initial decomposition 
of the domain, and we introduce the exact and discrete 
problems. In Section 3, we describe the error indicators 
and present some numerical experiments. Section 4 is de- 
voted to decomposition adaptivity by the mortar method. 
The results of a first numerical test about adaptivity are 
given in Section 5. In Section 6, we propose some possible 
extensions of our analysis. 
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2 The geometry and the model 
problem. 


Let f• be a bounded open polygon in I• 2 (sometimes a 
bounded open interval in I•). From now on, we assume 
that it admits a family of decompositions into disjoint rect- 
angles (intervals), only for the sake of simplicity since most 
results extend to straight or curved quadrilaterals. More 
precisely, there exists a finite number of open rectangles 
(intervals) flk, 1 _< k _< K, such that 


(1) •= U•k and flkDFte=O, k•l. 
k=l 


The decomposition is characterized by a K-tuple h = 
(hk)•<k<a-, where hu is the length of the largest edge of 
f•t.. In the txvo-dimensional case, we choose to make the 
following hypotheses on this decomposition, although more 
technical arguments would allow to avoid them. 
Conformity hypothesis: The intersection of f/u and i2e, 
1 < k • f $ _K, is either empty or a corner or an edge of 


-- -- 


both i2k and fit. 
First regularity hypothesis: The ratio of the length of 
the largest edge of each flk to the length of the smallest one 
is bounded independently of k and of the decomposition, 
i.e. ofh. 


On the domain 9. and on each subdomain, we use the 
standard notation for the Hilbertian Sobolev spaces. their 
usual norms and seminorms. 


In this paper, we limit ourselves to the model problem 


(2) { -Au = f in •, u = 0 on 0fl. 


In view of the discretization. the function f is supposed to 
-- 


be continuous on fl. 


Next, in order to define the discrete problem, we intro- 
duce on each 94. and for a positive integer Nk the space 
IP.vk (i2k) of restrictions to flu of all polynomials of degree 
_< Nk with respect to each variable. In the two-dimensional 
case, we make the last hypothesis (which can be skipped 
out. see [2] for the details). 
Second regularity hypothesis: The ratio Nu/Nt for 
all pairs of rectangles flu and Ctt that share one edge is 
bounded independently of k and œ and of the decomposi- 
tion, i.e. of h. 


Denoting by N the K-tuple (Nu)•<k<K, we are going to 
work with the global parameter (h, N). And we introduce 
the discrete spaces 


ZhN = 


(3) X6,¾ = Z•5,• H•(f•). 


Note that the functions of X•N are continuous. In all that 
follows, c stands for a generic constant independent of h 
and N. 


Finally, on the open reference interval ] - 1, 1[, we in- 
troduce the nodes •j and the weights pj, 0 _< j i n, of 
the standard Gauss-Lobatto formula which is exact on all 


polynomials with degree < 2n- 1. Taking n equal to 
Nk allows for defining by affine transformation and ten- 


k 
sorization the corresponding nodes m•j and weights 
0 • i,j • Nk, on each domain flu (forget the index j 
in the one-dimensional case). This leads to the discrete 
product, for all continuous functions v and w on •: 


K Nk Nu 


(4) (v, w)h5 •: Z Z Z v(xCj) w(xCj) 
k=l •=0 j=0 


We also denote by Iax the usual Lagrange interpolation 
operator at these nodes, with values in 


Now, the discrete problem reads: and UhN in XhN such 
that 


(5) (gradu•v, gradt¾,•-)•.v = (f, v•.¾)•v, 
Vv•x • X•N. 


The positivity property of the Gauss-Lobatto quadrature 
formula (see [4. Rein. 13.3]) yields that it has a unique 
solution u•n, And using the standard spectral arguments 
on a reference square leads to the 
A priori estimate: There exists a positive constant c 
independent of h and N such that. if the solution u (resp. 
the function f) of problmn (2) is such that ,Ul• •. (resp. fl•.) 
belongs to H•'(•k), sk • 1 (resp. to H•'(•k). ak > 1) 
for 1 • k S K, the following estimate holds between u and 
the solution u•N of problem (5): 


K 


(6) 5 c 


3 Error indicators. 


On the present decomposition of the domain, a family of 
error indicators will be a K-tuple (r/u)•<k<•: satisfying for 
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some positive constants •lhN and •2hN, 


K 


__• I'glh N c + C IIf -- 
k•l 


(s) 


where wv stands for the union of the f•e which share at 
least an edge (an endpoint in the one-dimensional case) 
with f•k and c is independent of h and N. 


A family of error indicators is said to be optimal if both 
constants nXhN and ne•,¾ are bounded independently of 
h and N. For the indicators that we present here, the 
optimality is proven in the one-dimensional case but not 
in higher dimensions. 


The following indicators are derived from analogous 
residual type indicators in the finite element method, see 
ES! and [9] for instance, however weights are introduced in 
order to improve the optimality. more precisely to obtain 
better bounds for •x•,v and n2•:v (in the one-dimensional 
case. the results would not be optimal without weight). 
We refer to [2] for the proof of the estimates stated below. 
One-dimensional indicators: Here, we set 


(9) 
1 


where dk stands for the product of the distances to both 
endpoints of 


With definition (9), estimates (7) and (8) hold with con- 
stants nxh,¾ and •2h•v independent of h and N (more pre- 
cisely with •.¾ = 1 and ne•,N = • for instance). 


Note however that, in the one-dimensional c•e, the reg- 
ularity of the solution u only depends on the function f; as 
a consequence, the leading error in (7) and (8) comes from 
the term f -Zn•'f = -u" +Z•N(U"). So, to verify numer- 
ically the independence of the constants nlaN and 
with respect to the discretization parameters, xve have to 
make this contribution negligible. This is done by using 
the following modifications: solving problem (5) with the 
discrete product replaced by (., .)aM and computing the 
by (9) with the interpolate term ZaNf replaced by JaM f, 
•vhere M is a K-tuple of integers 2%(k larger than Nk. 
Bidimensional indicators: Let us denote by Fk.•, 1 
( • L(k), the edges of •k which are not contained in 
Introducing a parameter •, 0 • • S 1, we set 


k 


•(•) 


t=l 


where d• is now the product of the distances to the four 
edges of f• and d•,•. stands for the product of the distances 
to both endpoints of F•,•.. Clearly, [(%•m,N] denotes the 
jump of the normal derivative of the discrete solution UhN 
through each F•./. We only state the results for the basic 


• and a = 1, we refer to [2] for their cases O• • 0, O• • • 
extension to general values of a between 0 and 1. 


Let • stand for the maximum of the N•, 1 < k _< K. 
Let also • be any positive real number. For a = 0, with 
the further assumption that the product h•N• (log N•) -• 
for any ft• that contains a re-entrant corner of ft is larger 
than a constant independent of h and N, estimates (7) and 
(8) hold with 


(11) •xh•v _< c and <2hN _< cN •+•. 
1 


For a: •, estimates (7) and (8) hold with 


(12) •xa•' _< c•¬+• and •2•v _< c;½ «+*. 


For a = 1, estimates (7) and (8) hold with 


(13) •hx < c•;•+• and •2•x < c. 


It can be noted that these constants are always indepen- 
dent of h (this allows for proving that the indicators defined 
in (10) are optimal for quadrilateral finite elements on a 
structured mesh), but they depend on N. However, the 
product nlhNn2hN is always smaller than _•;•+*. Also, the 
first inequality in (11) which is optimal allows for comput- 
ing an explicit upper bound for the error. 


•Ve present some numerical experiments in order to test 
and compare the previous indicators, firstly in the case of 
one subdomain in one or two dimensions: then, the index 
k is skipped over and the discretization parameter is the 
maximal degree N of the polynomials in this domain. For 
already explained reasons, we replace N by 3I = 48 x 48 in 
the right-hand side of problem (5) and in the interpolate 
of the function f in definition (9) or (10). 


Each of the four following figures represent, in logarith- 
mic scale, the "exact" error E = I u - u•.•lH•(Xz) (evaluated 
by replacing u by ZNU) and the indicator r• in the one- 
dimensional case, the three indicators r/ø, r/}• and r/1 in the 
two-dimensional case, as a function of N for 8 _< N _< 64. 


In Figure 1 and Figure 2, the domain • is ] - 1, 1[, and 
the two solutions u are respectively 


•I(X) : (1 -- 12) • , tt2(ir ) -- (1 -- 12)]. 


The theoretical slopes for the exact error E, given by 
the usual arguments of polynomial approximation (see [4, 
Rein. 6.4]), are respectively- 4 and - 3.5. The numerical 
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slopes for the error are respectively - 4.05 and - 3.4:2, the 
slopes for the indicators are respectively - 3.94 and - 3.49. 


In Figure 3 and Figure 4, the domain Sq is ] - 1, 1[ 2, and 
the two solutions u are respectively 


tta(.r, y) = (l -a'•) • (• - 


,4(x,9)=(1 ."~)•(1-S 2 • 
The slopes are given in Table 1. 


In Figure 5, the domain •q is now 1- 1,3[x]- 1, 1[, with 
the decomposition into •q• =]- 1, l[x]- 1, It and •q2 = 
11,3[x]- 1, 1[, and the solution tt iS given by 


U(x,y) = (1 q- x) '7 (3 -- x) 3 (l -- y') , 


so it is less regular in the left subdomain than in the right 
one. The following figure represents, in 1ogari[hmic scales, 
the local errors E• = lu - tthN[Ht(fl}) and the three indi- 


1 


cat ors '1•, 'lj and '1}. for/,'= 1 and 2. 


The results are in good coherency with estimates (11) 
to (13), up to a multiplicative constant on the indicators. 
In particular, in Figure 5, the indicators clearly show the 
lack of regularity of the solution on the left subdomain. 
Comparing [he indicators and their slopes to the exact 
error and its slope would lead to choose a = 1, however the 
difference between the three indicators is relatively small. 
Degree adaptivity: In the definition of the r/•, the term 
IaNf + Arran can be expanded in the tensorized basis of 
Jacobi polynomials that are orthogonal for the measure 
d•.(x, y)dz dy: the Legendre polynomials for a = 0, the 
Chebyshev polynomials of the second kind for a = «, t, he 
derivatives of the Legendre polynomials for a = 1. Of 
course, each coefficient of the expansion can be evaluated 
by an appropriate quadrature formula. 


This leads to insert the equality 


N 2)3 
rn=l n-'-i 


in (7). Conversely, it can be proven that each r/•.,,, is 
bounded by a combination of the coefficients of order 
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E (tileor.) E (nulner.) rl0 ri« ri1 


Function u 3 -4 -3.52 -3.35 -3.44 -3.48 


Function u4 -3.5 -3.18 -3.06 --3.13 -3.16 


Table 1: 


.2- 


4 
0.:• 


Figure 5.1 Figure 5.2 


(ra, n) and (m -4- 1, n -4- 1) of the error grad (u - UhN) on 
f•k in an orthogonal basis, in the same spirit as (8). Then, 
the general algorithm for adaptivity could be: 
ß computing the rik, 


C• . 


ß for each k such that ri• is large, computing some 
ß if the • for large values of m + n are small or decrease 
with m • n, cutting up the element f•.; if not, increasing 
the maximal degree Nk. 


4 Decomposition by the mortar 
technique. 


In the two-dimensional case, cutting up the rectangles into 
subrectangles in adequation with the previously computed 
error indicators is very easy, however preserving the con- 
formity property (as stated in the conformity hypothesis) 
could lead to highly increasing the number of degrees of 
freedom in the new discrete problem. The following Figure 
6 presents a basic example, where only the three rectan- 
gles containing the re-entrant corner have to be cut up into 


four subrectangles for adaptivity but six further rectangle• 
have to be cut up in two for conformity reasons. 


However, the mortar element method [6, 7] is known for 
efficiently handling the nonconforming decomposition and 
was used in [5] to treat nonconforming refinements in the 
finite element case, we now describe the analogous proce- 
dure for the spectral element •nethod. So, let us assume 
that, among the rectangles f•, 1 •_ k •_ K, only the /x '• 
first ones f•x, f•2, ... and f•K' must be cut up into rn • 
open subrectangles f•k•,, 1 •_ k • •_ rn 2 (only for the sake of 
brevity, we take the same m for all rectangles). We define 
the open subdomains A,• and A• by 


K* K* m 2 


(14)•m-- U•-- U U •', A•--•m- 
k--1 k----I k'----1 


We introduce new integers N• _• Nk, K* + 1 •_ k •_ K, 
and N•, _• N•, 1 •_ k_• K* and 1 _• k' _• m •, in orde• 
to take into account the possible degree adaptivity. On 
A•, the discrete functions are restrictions of continuous 
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i 


Figure 6 


functions in Zh•' for a modified value of N: 


XhN(--•l) -•- 


while on A,,, they now are polynomials on the subrectan- 
gles: 


l!k<_ N*, 1<_ k'!m-"}. 
Next, let. Ft, I _< t" •_ L, denote the edges of the •k, 
A'* + </,- < A', that are contained in 0Az (• OA,,. Each 
1'• is the edge of two rectangles •kt(e) and •,•(•), with 
A'* + / < /,'t(•) _< I•' and / <_ /,',,,(/•) _< N*. Thus, on this 


edge, we define a. trace subspace [[•v(Ft) in one of the 
two following ways: 
- in the first case, Wn•v(Fe) coincides with 
(which is a subspace of traces on Ft of functions in 
Xa,•,(A•)); then Fe is said to be of type 1; 
- in the second case, •VnN(Fe) is the subspace of traces on 
Ft of functions in Xh•(A,,,)', made of functions that are 
polynomial with degree N•, - 1 on the edges of the two 
•, which contain the endpoints of Ft, with k = k•(t); 
then, Fe is said to be of type m. 


k'* is defined as the Finally, the mortar discrete space • 
space of all functions vn• satisfying' 
(i) t, hNlat belongs to XhN(A1) and vhNla• belongs to 
X•(A.•), 
(ii) v•,• vanishes on 
(iii) there exists a function •, called mortar function, such 
that 


- on all Fe of type 1, • coincides with the trace of 
and 


(15) fr (v•N•a• --•)(r)•'(r)dr=O, V½• 
- on all Fe of type m., • coincides with the trace of 
and 


(16) •t(vh•[•,,, - •)(r)½(r)dr = 0, V½ • 
It can be noted that the space X• is never contained in 
H•(•), so the discretization is nonconforming. 


With obvious extensions of the notation for nodes and 
weights, the new discrete product is now defined, for all 
continuous functions v and w on •, by: 


Z E Z . .) ) 
k=K*+l i=0j=0 


K* m 2 N• N• 


k=l k•=l i=0 


And the new discrete problem reads: find u• in X• such 
that 


(18) (gradu•,gradvn•)• = (f, 
VvnN • X•N. 


The end of this section is devoted to the numerical analysis 
of problem (18), in order to prove that it has the same 
properties as problem (5) in spite of its nonconformity. 
Wellposedness: Problem (18) can equivalently be writ- 
ten as a linear system with as many unknowns as equa- 
tions, so we only have to check that for null data its only 
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solution is 0. This is a consequence of the following ar- 
gument: if (gradu•N, grad u;N)• N is 0, the positivity of 
the quadrature formulas implies that grad U•N is 0, so that 
u;x is a constant on each subdomain At and A• where it 
is continuous. Then, the matching conditions (15) and (16) 
are sufficient to enforce that the two constants are equal 
and, thanks to the boundary conditions on u[N , they are 
0. Hence, problem (18) has a unique solution. 


Next, in order to work with discontinuous functions in 
Xjx, we introduce the broken seminorm and norm on •: 


1 


From the previous lines, we derive that there exists a pos- 
itive constant •a•, possibly depending on h and N, such 
that the following ellipticity property holds: 


(20) (grad v•x,gradv•.•)• N > ahN Ill, Nil 2 


Then, the following estimate holds for any function vh•v 
in X•x and any function fhN which are polynonfial of 
degree _< N• - 1 on each •2k, K* + 1 < k <_ K, and of 
degree _< Nk•, - 1 on each •2•,, 1 <_ k _< K*, 1 _< k' _< m 2' 


. -1 ( 
L 


5-•f=l fFr (On•)(T)[WhN](T) dT 
+ sup 


where/7• x. stands for the Lagrange interpolation operator 
on the new mesh. The last term being evaluated from stan- 
dard arguments [4, õ 7 and õ 14], we only study the behav- 
ior of the ellipticity constant c•v and we briefly explain 
the analysis of the approximation error and consistency 
error that appear in the right-hand side. 
Uniform ellipticity: Here, we prove the following basic 
property: there exists a constant 2 independent of h and 
:Y such that 


(22) Ilv•Nll•.•(•) 5 • Ivhzv[1., VuhN • X•x. 


Indeed, it can be assumed without restriction that Q is a 
rectangle ]a, a•[x]b, b•[ (since both the mesh and functions 
in X• v can obviously be extended to a larger rectangle). 
The line of fixed coordinate y crosses OA• • OAm at a 


a y finite number of points of edges Ft,i, denoted by ( i, Y), 
i < i <_ I, in increasing order of x coordinate. So, we can 


y y write (with a i < x •_ ) ai+l 


y) = + 


+ (O•va•v)(t,y)dt +...+ (OxVax)(t,y)dt. 


Next, we integrate on •2 the square of this equation: with 
a0 y=aanda•+• =a •, 


II,h.llZ(n) <- 2 Jrz(y f (Ovh)(t,y)dt) 2 dxdy i=1 Ja• x 


I 


Using Cauchy-Schwarz inequalities leads to 


II•',,vll•=(•> 5 2(a'-a) 2 (11a•.•11•(•) 


+2½' - 
/=1 i=l 


where he.i is the length of P•.i. From the first regularity 
hypothesis, we observe that the length of the rectangle 
with edge F•.i in &• is bounded by c times its width. so 
that 


I 


• h•.i 5 c (a' - a). 
i=1 


On the other hand, it follows from the orthogonality of the 
jump [vh•] to the constants in L2(F•.i) that 


Inserting these estimates in the previous lines implies (22) 
with 3 only depending on the first regularity hypothesis 
and the diameter of •. 


As a consequence of (22), the ellipticity constant 
can be chosen independent of h and N. 
Approximation error: As detailed in [6], the construc- 
tion relies on the following result [3, Thm 3.g.10]: there 
exists a lifting operator R• which associates with a poly- 
nomial • in P• (-1, 1) which vanishes at •!. a polynomial 
in P•(]- 1,1[ 2) such that its trace is eqm,( to ½, on one 
edge of the square, to 0 on the three other edges and such 
that its norm in H•(]- 1, 1[ =) is bounded by a constant 


(independent of n) times So the idea for 
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exhibiting a function in X•; which approximates the so- 
lution u is: starting from the interpolate Z•NU , next lifting 
the jumps at the nonconforming points of 0A1 F1 cqA m by 
multiplying them by a low degree function, and finally lift- 
ing the jumps through the edges thanks to the previous 
operator transported on each rectangle and subrectangle. 
Consistency error: From conditions (15) and (16) to- 
gether with the definition of p, it can be observed that 


( 


where •%.¾.•_ is the orthogonal projection operator from 
L2(Fe) onto }V•:v(F•). So the desired estimates follow 
from the properties of the analogous projection operator 
in L-•(-1, 1), see [6, Lemma 2.1]. 


Inserting all these results in (21), we derive the final 
tilnates: if the solution u (resp. the function f) of problem 
(2) is such that its restriction to • belongs to H • (•), 


s (resp. to H •(•.), • > 1) for K*+I < k < K s•.>• _ _ 
3 


and its restriction to •, belongs to H •' (•:•). s•, > 
(resp. to H•'(•.,), e•, > •)for • 5 k 5 K *, 
1 • k • • m 2. the following estimate holds between u and 
the solution u•.¾ of problem (18)' 


(23) 


This estimate is fully optimal with respect to any param- 
eter but rather complicated. When all the h• are equal to 
h and all the N•, N•, are equal to N, and if moreover the 
function f is assumed to be very regular and N is large 
enough, this estimate is easier to read: for any solution u 


such that Ul& belongs to Hs•(A1) and Ul•, belongs to 
. 


(24) Ilu - u•Nlll, < c (•s•--i Nl-,s• ilullHs;(•xx ) 


Moreover, let s be any positive real number. Taking ac- 
count of the corner singular hnctions leads to a modified 
estimate: if all the • containing a re-entrant corner of • 
are included in A• as in Figure 6 (so that A• only contains 
convex corners), 


Ilu - u•lll, 5 c(f)(h 2-• Ns-4 + •-• h•-e N s-• ) 


So, taking m = h-2• r4 would optimize this estimate. This 
could be an argument for the choice of the initial mesh. 


5 First experiment in adaptivity. 


As a first test for the efficiency of the adaptivity. we present 
some numerical results in the one-dimensional case of the 


domain gt =]0, 1[, when the solution u of problem (2) is 


Note that it is smooth except in the left part of the domain. 
Here, the function f is interpolated by InN f with the same 
N as for the discrete solution. so that the leading part of 
the error comes from this interpolation. 


The first computation is performed on a decomposition 
of i2 in ten equal subdomains i2•: =] •, •[, 1 <_ k _< 10. 
Tables 2 and 3 present, for N equal to 16, 32, 64, the 
local errors E• = [u- UhN[H'(9.•) and the correspond- 
ing indicators r/• in the left five subdomains (the more 
interesting ones). Next, the discrete solution is computed 
with a decomposition of f• in twenty equal subdomains 
•t t-• t [, I < • < 20. Table 4 presents, for Nequal -] .-•-6-, • - - 
to 16, 32, 64, the errors E•. on each i2•, 1 _< k _< 5, com- 
puted as the square root of the sum of the [u- 
for the two •t contained in 


In a final step, the discrete solution is computed with 
a decomposition of f• in twenty "adapted" sub domains 
which, according to the previous indicators, are chosen as 
follows: the first interval i2• is divided into 11 equal el- 
ements, the other nine ones are left unchanged. Table 5 
present, for N equal to 16, 32, 64, the errors E•' on each 
f•, I _< k <_ 5: the first one is the square root of the sum of 


the [u - unN[•(a•,) on the first eleven subdomains 
contained in i2•, the other ones are the new error on the 
nonrefined intervals. 
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N = 16 0.1 X 10 -4 0.9 x 10 -• 0.9 x 10 -• 0.9 x 10 -• 0.9 x 10 -• 


N - 32 0.1 x l0 -5 0.9 x l0 -7 0.9 x l0 -7 0.9 x l0 -v 0.9 x l0 -v 


N = 64 0.7 x l0 -• 0.9 x l0 -v 0.9 x 10 -7 0.9 x 10 -7 0.9 x l0 -7 


Table 2: 


r]l 112 


N - 16 0.4 x 10 -5 0.5 x 10 -•ø 0.3 x 10 -•ø 0.1 x 10 -•ø 0.6 x 10 -• 


N -- 32 0.9 x 10 -e 0.1 x 10 -9 0.2 x 10 -9 0.3 x 10 -9 0.2 x 10 -• 


N -- 64 0.4 x 10 -* 0.2 x 10 -8 0.3 x 10 -8 0.4 x 10 -8 0.7 x 10 -8 


Table 3: 


-2 


-8 
0.5 


20 equal triangle• 
I I•'•'•'•ted tria tngles 
I 1.5 2 


Figure 7 


The efficiency of the adaptivity already appears in these 
tables. It. can also be checked that the local refinement 
yields a small improvement of the error in all subdomains. 
In Figure 7, we present, in logarithmic scales and for N 
between 8 and 64, the global error lu- u•vls•(r•l cot- 


responding respectively to the ten equal intervals, to the 
twenty equal intervals and to the twenty adapted intervals. 


6 Possible extensions. 


In analogy to the finite element case [8, 9], it can be checked 
that the arguments for estimating the constants t•lh N and 
t•2•v hold for any elliptic problem of type: find u in V such 
that 


¾v • V, a(u, v) =/rl f(•)v(•.)dx, 
for any polygonal domain • with angles • and -• and any 
closed subspace [' of œ2(•) or HI(•), •vhen t.l•e bilinear 
form a(. ) is continuous and elliptic in V. Moreover, it 
also holds when this form satisfies an inf-sup condition of 
Babu.•ka and Brezzi type: this is the case for the Stokes 
problem. So the estimates (11) to (13) should hold, with 
slight modifications, for any standard second-order prob- 
lem with Dirichlet. Neumann or mixed boundary condi- 
tions. 
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N = 16 0.1 x 10 -s 0.[ X 10 -6 0.1 X 10 -6 0.1 X 10 -6 0.1 X 10 -6 


N = 32 0.1 x 10 -s 0.7 x 10 -7 0.7 x 10 -7 0.7 x 10 -7 0.7 x 10 -7 


N = 64 0.1 x 10 -6 0.1 x 10 -7 0.1 x 10 -7 0.1 x 10 -7 0.1 x 10 -7 


Table 4: 


N = 16 0.1 X 10 -6 0.2 X 10 -7 0.2 X 10 -7 0.2 X 10 -7 0.2 X 10 -7 


N = 32 0.4 x 10 -7 0.5 x 10 -8 0.5 x 10 -8 0.5 x 10 -8 0.5 x 10 -s 


N = 64 0.4 x 10 -s 0.8 x 10 -9 0.7 x 10 -9 0.1 x 10 -8 0.1 x 10 -8 


Table 5: 


As already explained. the initial problem (5) can be 
solved xvith the decomposition into rectangles replaced by 
a more complex one, tnade of convex quadrilaterals and 
quadrilaterals with curved edges to treat the geometry of 
the initial domain. Since the discretization on these ele- 


nlents is built by using a one-to-one transformation that 
•naps the reference square onto the element, transporting 
the problem onto the square and approximating the result- 
ing problem on the square (with nonconstant coefficients) 
by polynomials. So there is no problem in extending the 
previous results to this geometry. 


However, handling fourth-order problems or three- 
dimensional geometries or nonlinear equations would re- 
quire further work in order to derive the analogues of 
estimates (11) to (13). And even in the simplest two- 
dimensional example, these esti•nates are not fully opti- 


real. 


The mortar elelnent discretization on the new mesh can 


easily be extended to Inore complex second-order prob- 
lenis and decompositions into convex quadrilaterals and 
quadrilaterals with curved edges. Also using the three- 
dimensional mortar technique as studied in [1], would al- 
low to analyze this discretization in the three-dimensional 
case. 
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Legendre-Tau Spectral Elements 
for Incompressible Navier-Stokes Flow 


Kelly Black* 


Abstract 


A spectral multi-domain method is introduced and exam- 
ined. After dividing the computational domain into non- 
overlapping subdomains a Legendre-Tau approximation is 
constructed within each subdomain. Unlike the standard 


Legendre-Tau approximation a variational approximation 
is constructed and the result is that only simple continuity 
is required at the interfaces between the subdomains. The 
method is introduced for a simple 1D Helmholtz equation 
and two examples are given: a 1D Burger's Equation with a 
small viscosity and Navier-Stokes incompressible flow over 
a backstep. 


Key words: spectral elements, Helmholtz equation, 
Burger's equation, Navier-Stokes equation. 


AMS subject .classifications: 65N30, 65N35, 76D05. 


I Introduction 


A spectral multi-domain approximation using a Lanczos- 
Tau approximation [4, p. 79] is examined and is imple- 
mented by enforcing a variational approximation. The 
method is constructed so as to construct a local spectral 
basis within each subdomain [3]. The method is first in- 
troduced for a simple Helmholtz equation, a 1D Burger's 
equation with a small viscosity, and finally the Navier- 
Stokes incompressible flow over a backstep is examined. 


Another technique which yields an approximation in the 
Fourier domain has been proposed by Israeli, et al in [8], 
however the approach proposed here has more in common 
with the collocation method proposed by Patera [11]. A 
collocation method using the same test functions for the 


'Department of Mathematics, University of New Hampshire, 
blackCvidalia.unh.edu 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. (•)1996 Houston 
Journal of Mathematics, University of Houston. 


variational form that is examined here has been proposed 
in [2]. Because a variational approach is employed the 
method has the advantage that the interface can be easily 
calculated by requiring only C O continuity. 


Unlike other variational approaches an approximation is 
found in the Spectral domain. This approach easily takes 
advantage of the accuracy of the spectral multi-domain 
methods as well as an advantage in the robustness of 
the Galerkin schemes. The numerical schemes generated 
from such an approach can easily accommodate compli- 
cated boundary conditions that depend on the spectrum. 
One disadvantage is that any nonlinear terms are more 
expensive to compute xvhen compared to the collocation 
approach. Because this approach is designed for use with 
multiple computational subdomains the size of the approx- 
imating space on each subdomain is kept small. and the 
expense of calculating the nonlinear terms can be kept low. 


Because the scheme is essentially a Legendre-Tau 
method, the system of equations is constructed in the same 
manner as is done with Galerkin methods. Since the ap- 
proximating functions do not necessarily satism,the bound- 
ary conditions the boundaries are directly enforced. This 
is done either by enforcing the boundaries at specific grid 
points or by a minimization of the difference between the 
true boundaries and the approximation. 


2 Multi-domain tau method 


To take advantage of the high accuracy and relatively 
course discretizations offered by spectral methods and 
avoid restrictions placed on the computational domain, the 
domain is subdivided into non-overlapping subdomains. 
On each subdomain an approximation is found that is a 
linear combination of the Legendre polynomials up to a 
given degree. To present the method without the burden 
of too many technical details, first a simple 1D Helmholtz 
equation is exanfined, 


uxx + Au = f, x • (0,1). 
u(0) = u(1) = 0. 
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The approximation is constructed by integrating against 
a sequence of test functions and building a system of al- 
gebraic equations. In the standard implementation of the 
Tau method the test functions are chosen to be the same 


as the trim functions. In such a case both the test func- 


tions and the trim functions are found from the sequence 
of Legendre polynomials. Since a multi-domain approxi- 
mation is sought the test functions, •j(x), are defined in 
a different xvay, 


(2) ½j(x) = (1- x2)Lj(x), 
l+x 


Viv-(x) = 2 ' 
1--x 


½N(X) : 
2 


O_<j<N-1, 


As defined the test functions are zero on the endpoints 
for j = 0...N-2. For j = N- 1 andj = N the test 
functions are linear polynomials, and the span of all of the 
test functions is 


I I I 
L • R • = L • R*' 


Figure 1: A Multi-Domain Example in 1-D for subdomains 
1 and r. 


The computational domain is to be divided into M non- 
overlapping subdomains. For a given subdomain, r, the 
approximation is written as u'/v(x ) 6 P2v and the left and 
right endpoints are L" and R •, respectively (see Figure 
1). On each subdomain the domain is mapped to the unit 
square [-1,1] using a simple linear transformation: 


X-- L r 


(3) 
The approximation on subdomain r is written as a linear 
combination of the Legendre polynomials and has support 
only on subdomain r: 


(4) u*•(x) -- { Y]•i5øct}'Li(•r)' x • [Lr,• r] 0 otherwise. 


In this example x is in the computational domain defined 
in equation (1) and • is found from equation (3). For 
0 _< j <_ N, the test functions for subdomain r are define, 


x otherwise. 


L t R t = L ,' R ,- 


Figure 2: Trial functions •_•(x) and ¾'•;v(x) combine on 
adjacent subdomains to assemble an "hat" function. 


With these definitions the variational approximation can 
be examined. Except for the linear functions, the test func- 
tions are zero on the subdomain boundaries. and each test 


function has support on only one subdomain. When inte- 
grating against the approximation the only integral that 
need be found is that part within the individual subdo- 
•nain. The linear test functions, however, do not have zero 
boundaries on each subdomain. If the linear functions on 


adjacent subdomains are examined the result is a simple 
hat function (see Figure 2). This composite test function 
is used to insure that the flux is balanced across the sub- 


domain interface. 


By splitting the trial functions into the polynomials that 
are zero at the boundaries and those that are not, the 
method is a p-version finite element method. Unlike more 
conventional p-version schemes, by constructing the ap- 
proximation as a linear combination of the Legendre poly- 
nomials it becomes quite easy to increase the order of 
the approximation xvithin each subdomain (p-refinement). 
Moreover, the resulting matrices share a similar struc- 
ture to those found in the conventional single subdomain 
Legendre-Tau method[4]. For example, within each subdo- 
man the entries for the stiffness •natrix cooresponding to 
trial functions ;vhich are zero at the boundaries represesent 
a sparse upper-triangular matrix. 


Once the approximation and the test functions are de- 
fined on the two subdomains the variational approximation 
of equation (1) is constructed. For j = 0,..., N - 2 the 
following equations are enforced on each subdomain: 


Assuming that subdomain I is the subdomain to the left 
and adjacent to subdomain r, the equations for the linear 
test functions are constructed by integrating against the 
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hat function: 


R* d l 


R • R r 


The boundary conditions are enforced as they are done 
in the standard Tau techniques. Assuming that subdo- 
main 0 is the far left subdomain and M is the subdomain 


on the far right, the boundaries are directly enforced in a 
pointwise manner, 


tt o N o = (-1)' = o, 
(s) u:¾(1) '¾ = •=o = 0. 


The subdomain interfaces are enforced by simply requiring 
C ø continuity: 


(9) 


UN 
N N 


I ' 


•=0 i=O 


The solution to the system of equations in equations (6) 
through (9) is the approximation to equation (1). 


2.1 The stiffness matrix 


Equations (6) through (9) are used to construct an ap- 
proximation to equation (1). By substituting U•v(X ) from 
equation (4) the stiffness and the mass matrices can be con- 
structed. Here we will concentrate on the second derivative 


operator and find the entries for the stiffness matrix. The 
entries for the stiffness matrix are derived and the mass 


matrix can be found in a similar process. 
The stiffness matrix is found by examining the varia- 


riohal form for the second derivative. After a substitu- 


tion to allow for integration across [-1, 1] the variational 
form of the second derivative in equation (6) is derived for 
;=0...N-2: 


-2 


R" - L • 


First, the sum of Legendre polynomials is substituted for 
the approximation U•v (x). For j = 0... N- 2 the result is 


(10) 


ai R• _--L• 
i----O 


((1 - 1 d• 


The system of equations can be constructed through the 
use of a stiffness matrix, $N, by setting 


- L•i(x) ((1 - x2)Lj(x)) dx ($.•')ji - R•- L'• 1 


2( 2j(1- j) 6ji) ' (11) = R•_L • 4%•+ 2j+l 
forO_<j<N-1, andO<i<N%,isgivenbv 


1 i+jeven, i_>j+2 (12) eji = 0 otherwise. 


This yields a sparse upper-triangular matrix and is similar 
to the result for the standard single domain tau method 
[4]. 


The equations for the interface are found by integrating 
against the hat function over the two subdomains as given 
in equation (7), 


(13) 
R• d l 


n• d d • 


N N 


ai R l _ L t + % R,• _ L ,• 
i----1 i=1 


i odd i odd 


The entries for the stiffness matrix are found by enforc- 
ing the variational form of the second derivative as well 
as the boundaries. The mass matrix, A42v, can be con- 
structed using the same approach. 







258 Kelly Black 


Burger's equation with a small 
viscosity 


An example of the discretization for Burger's equation with 
a small viscosity is examined, 


ut q- uu• - unix, x • (-1, 1), t>0, 
•(+l,t) = 0, t>0, 
u(x,O) = -sin(7rx). 


This equation develops a steep gradient around x = 0 and 
has been examined in Basdevant, et al [1]. The temporal 
discretizations employed here closely parallel those found 
in [1]. 


The previously described spatial discretization is em- 
ployed in the approximation to equation (14). The tem- 
poral discretization is constructed from a finite difference 
approximation and employs an Adams-Bashforth/Crank- 
Nicholson Scheme (ABCN) [1]. The approximation at the 
n th time step is denoted tt•v. The convective term is ap- 
proximated using the explicit Adams-Bashforth discretiza- 
tion and the diffusive term is approximated using the im- 
plicit Crank-Nicholson discretization, 


(14) UN 


N N 


At 


n •n 


1 ^•--1 


and the resulting •natrix equations are given by 


(15) •" = u•(u•)x, 


The nonlinear terms can be calculated as a convolution 


sum [4. p. 82] or using collocation on the abscissa kom 
the Gauss-Lobatto quadrature as was done here [4, p. 83]. 


A comparison between three different methods is exam- 
ined. The first is a single domain Chebychev-Tau scheme 
[4. p. 80], a Chebychev-Galerkin-Collocation •h•n• [11], 
and a multi-domain Legendre-Tan scheme. (A comparison 
between a finite difference approximation and the spec- 
tral techniques can be found in [1].) For the two spectral 
element approximations four equally spaced subdomains 


1 


are implemented. In the examples the values v - •00=, 
1 


At = 2• are employed. 


The true solution that is used for reference is ap- 
proximated from the convolution product given in Cole's 
transformation[5]. An approximation of the true solution 
;vas calculated using Gauss-Hermite integration with 9 dig- 


• the gradient achieves its of accuracy [6, 12]. (For v = i5-67 
its maximum near t = 0.5 [1].) 


The L • errors for these values are given in Figures 3 
through 5. For this test case the L 2 errors are presented 
for the times t= 1/•, t= 2/•. and t= 3/7r [1]. For each 
of the three trials the error reported is not the percentage 
error. In the test case a steep gradient occurs around x = 0 
and once this gradient is resolved the two multi-domain 
methods offer a more accurate approximation. 


Figures 3 through 5 demonstrate that the multi-domain 
techniques can yield a more accurate approximation when 
compared to a single domain approximation. Because the 
steep gradient occurs around a subdomain interface the 
two multi-domain techniques are better able to resolve the 
gradient. The approximations at the times 2,/7r and 3/7r 
demonstrates the robustness of the Tan approximations. 
When the gradient is not adequately resolved the collo- 
cation scheme actually diverges while both Tau methods 
maintain their stability. The multi-domain Tau method 
maintains the advantages of both the Tan method and the 
multi-domain method. 


4 Navier-Stokes 


flow 
incompressible 


The incompressible Navier-Stokes flow equation. 


(16) ut + (u ' V)• + Vp = i V2u, 
Re 


subject to V.• = O. 


with no slip boundaries are examined [7]. The geoxnetries 
examined are for flow within a driven cavity as well as flow 
over a backstep. The spatial discretization mnployed is the 
same as examined in section 2. The temporal discretization 
is based on the the splitting method [10] and the methods 
proposed by Karniadakis, et al [9]. The splitting method 
is a convenient scheme to separate the actions of the two 
spatial operators acting on the velocity, 


(17) 
1 


= 5 (½. + v. 
1 Van. œ(u) = Re 


(The implementation employs the skew-symmetric form of 
the nonlinear operator). 
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Approximation to Burger's Equation - L 2 Errors 
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Figure 3: The L 2 errors for the approximation to Burger's Equation with a small viscosity at the time 


(is) - 


Following the method proposed by Karniadakis, et al 
[9], the pressure is not calculated, rather the time aver- 
aged pressure is approximated. The three relavent spatial 
operators can then be isolated in three separate steps, 


= - [t'•+•jV(UN) dt, 
dtn 


= -X7i0 , subject to K7.•N =0, 


= œ(uN) dt. 


In the first time step the nonlinear term is integrated 
through the use of an explicit method such as those from 
the Adams-Bashforth family of schemes while the third 
step employs an implicit step such as those found in the 
Adams-Moulton family of schemes. Because an explicit 
step is taken there is a restriction on the time step. How- 
ever, the more stringent restriction on the time step comes 


from the Stokes operator. This is mitigated through the 
use of the implicit step in the final equation. 


For the 2D equations the both the approximating and 
trial functions are taken as tensor products of those found 
in the 1D case. Within each subdomain an approxima- 
tion is constructed which is a linear combination of the 


Legendre polynomials, for (•, !/) in subdomain r, 
N N 


(19) u•(x, y) = E E øzi• Li(•)Lj(•r)' 
j=0 i=0 


The test functions are also found as a simple tensor prod- 


uct, 
Continuity across the subomain interfaces are enforced 


by minimizing the difference between the approximations 
on adjacent subdomains. For example, if subdomain r is to 
the right of subdomain 1 then on subdomain r the bound- 
ary • ---- -1 is adjacent to the boundary on subdomain 1 
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Approximation to Burger's Equation - L Errors 
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Figure 4: The L 2 errors for the approximation to Burger's Equation with a small viscosity at the time t - 2 -- w' 


when .• : 1. The continuity across this interface is en- and, 
forced bv requiring that the difference between the two 
approximations be orthogonal to the space of polynomials (22) 
of degree N - 2, 


1 (20) (u%(1, y)- u•(-1, y)) Lj(y)dy --- 0, 
1 


j=0...N-2. 


Continuity is ensured with the final requirement that the 
subdomains be continuous at the corners which is directly 
enforced as it is done with collocation type methods, 


(21) 
l 


UN(1,1) = u•(-1,1), 
N N N N 


•=0 j=O i=0 j=0 


4.1 Flow over a Backstep 


In the second trial, the Navier-Stokes incompressible flow 
over a backstep, the domain is divided into 30 subdomains 
(see Figure 7). On each subdomain the approximation 
utilizes a polynomial of degree 6 in both the x and the 
y-directions. The initial condition is zero velocity with a 
time step of At = 10 -3. The height of the backstep is 1 
and the maximum velocity at the inlet is 1. The implicit 
step that is taken in equation (18) is inverted through the 
use of the GMRES method [13, 14]. 
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Approximation to Burger's Equation - L 2 Errors 
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Figure 5: The L 2 errors for the approximation to Burger's Equation with a small viscosity at the time t - 3. 71' 


In this example two different Reynolds numbers are ex- 
amined, Re= t and Re=4-•0 and the velocity fields are 


__ 1 
shown in Figure 8. For the situation for Re-2-- • the ini- 
tial velocity was taken to be zero and the velocity field 
shown was found after 6000 time steps. For the situation 


__ 1 
for Re-4-•-• the initial condition employed was the velocity 
field obtained in the previous situation. The velocity field 
shown was found after 2300 time steps. 


Figures 8 and 9 show the velocity fields for both trials. 
The first figure, Figure 8, demonstrates the velocity field 
for the area around the inlet and the backstep. The sec- 
ond figure, Figure 9, is a more detailed view of the area 
directly behind the backstep itself and shows the area of 
recirculation. 
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Figure 7: Graph of the geometry for the backstep. The backstep has height 1 and the maximum velocity at the inlet 
is 1. The domain is divided into 30 subdomains and a spectral approximation is constructed within each subdomain. 
Within each subdomain a Legendre polynomial approximation is employed with the degree of the polynomial 6 in the 
.r-direction and 6 in the y-direction. 
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Figure 8: Vector plot for the inlets for two simulations. The top si•nulation is from the test case Re=200 and the bottom 
simulation is from the test case Re;400. 
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Figure 9: Vector plot focusing on the region behind the backstep for two simulations. The top simulation is from the 
test case Re-200 and the bottom simulation is from the test case Re=400. 
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The Erf½-Log Filter and the Asymptotics of the 
Euler and Vandeven Sequence Accelerations 


J. P. Boyd* 


Abstract 


We introduce a new filter or sum acceleration method 


which is the complementary error function with a logarith- 
mic argument. It was inspired by the large order asymp- 
totics of the Euler and Vandeven accelerations, which we 
show are both proportional to the erfc function also. We 
also show the relationship between Vandeven's filter, the 
Erfc-Log filter and the "lagged-Euler" method. The theory 
for the last of these is used to predict a spatially-varying 
optimal order for filtering of a Fourier or Chebyshev series 
for a function with a discontinuity, front or shock. 


Key words: sequence acceleration, filtering, Fourier 
spectral, Chebyshev spectral. 


AMS subject .classifications: 41A60, 42A24, 65B10, 
76L05. 


1 Introduction 


When the solution u(x,t) develops a shock or other region 
of very rapid variation, the convergence of all types of spec- 
tral series is slowed to a crawl. Chebyshev, Fourier and 
Legendre exhibit Gibbs' Phenomenon: the N-term trun- 
cation of the series has O(1) errors with rapid, unphysical 
oscillations in a boundary layer of width O(1/N) centered 
on the shock or frontal zone [5, 9, 3]. "Filtering" or"sum 
acceleration" is an important tool for reducing Gibbs' os- 
cillations. If the original unfiltered (and slowly converging) 
series is 


•Department of Atmospheric, Oceanic and Space Science and 
Laboratory for Scientific Computation, University of Michigan, 2455 
Hayward Avenue, Ann Arbor MI 48109 (jpboyd•engin.umich. 


ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. (•)1996 Houston 
Journal of Mathematics, University of Houston. 


N 


(1) UN(X) = y•, aj ½j(x) 
j=0 


where the ½j(x) are the basis functions, then a smoother 
and more physical approximation is the filtered partial sum 


(2) 
N 


U(X) = • •(j/N) aj qSj(x) 
j=0 


where •r is symmetric with respect to 0 = 0, that is, 
rr(-0) = rr(0) for all 0. Unfortunately, there is as yet no 
theory that identifies a unique, optimum filtering function 
rr(0) for each situation. However, some general considera- 
tions are known. 


One is the concept of the "order" p of a filter, which will 
be made more precise in the next section. A high order fil- 
ter is one which modifies u(x) only slightly in the smooth 
regions away from the shock. Almost by definition, large p 
is desirable far from the frontal zone. Majda, McDonough 
and Osher [11] show that it is possible to recover spectral 
accuracy away from the shock. even when u(x) is discon- 
tinuous, by filtering of sufficiently large order. 


In the vicinity of the front, however, low filtering or- 
der is desirable because large p gives a filtered function 
u•(x) which is very oscillatory and in the limit p -* oc 
displays Gibbs' Phenomenon even worse than the unfil- 
tered series. It follows the Holy Grail of filtering is one 
which is spatially-adaptive with an order p(x) that varies 
from small values around the shock to large values in the 
smooth regions far away from the discontinuity in u(x). 


To carry out such adapative filtering, we need a tool for 
identifying shocks or regions of very high gradient. Lo- 
cal error estimates have been well-developed for spatially- 
adaptive finite difference, finite element and finite volume 
codes, so we shall not discuss them further here. We shall 
instead simply assume that we have identified the points 
where low order filtering is needed. 


It is beyond the scope of this article to apply a filter with 
a spatially-adaptive p to a real fluid flow. Our goal is more 
modest: to define a new filter, the "Erfc-Log" acceleration, 
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and to derive a theory for how the order p should vary with 
nearness to the front. As a kind of extended prologue, we 
shall derive asymptotic approximations to two widely used 
filters, due to Vandeven and Euler, to show that these are 
asymptotically equivalent to each other and to the Erfc- 
Log filter in the limit p • oc. This asymptotic equality 
allows us to connect the theory of the Erfc-Log filter with 
earlier work of Boyd on the "lag-averaged Euler" acceler- 
ation, which supplies a theory for optimizing p(x). Simple 
numerical experiments show that the theory is quite effec- 
tive. 


For simplicity, our illustrations use only Fourier series. 
In the next to last section, we show how the Fourier results 
generalize almost trivially to Chebyshev and Legendre ex- 
pansions, too. 


2 Vandeven's theorem 


Theorem 2.1 (Vandeven Filter Order) 
(Simplified from the original). If or(O) is a sufficient smooth 
function such that 


or(O) = 1 


(3) or(m)(0) : 0, m=l,2,...,(p-1) 
-- 0, 0, x .... , (p- 


u, herecr ("•) denotes the m-th derivative of or, then the filter 
function or(O) is of "order p in Vandeven's sense" and he 
proved the following: 


1. If u(x) is smooth in the sense of possessing at least p 
continuous derivatives, then 


1 
(4) iu(x)- u•(x)l < constant Np-•/2 


2. If u(x) has a jump discontinuity at one or more points 
X -- Cm, i. e., 


then 


lira [u(c,• + e) - u(cm - e)] = j,• • 0, 
e•0 


1 
(6) lu(x)- u•(x)l < constant 


where d(x) is the distance from x to the nearest sin- 
gularity, that is, 


(7) d(x): inf {I x - (c• + 2k7rl), 


for all m and any integer k. 


0'8 f 0.6 


0.4[ 0.2 


0 • • 
0 0.2 0.4 0.6 0.8 ! 


0 


Figure 1: The Vandeven filter for different orders p. Cir- 
cles: p = 4. Plus signs: p = 10. Asterisks: p = 40 (steepest 
slope). 


The first part of the theorem implies that prior to the 
development of front. we can drive the error to zero faster 
than any finite power of N (i.e., achieve %pectral accu- 
racy") by using a filter of sufficiently high order p. The 
second part of the theorem shows, in a more precise reaf- 
firmation of Madja et al. [11], that spectral accuracy is still 
possible even with a discontinuity in u(x) provided x is not 
too close to the shock. The factor of d(x) shows that the 
error estimate fails apart - to O(1) errors - when d(x) is 
O(1/N). Sadly, this is not a flaw in the proof, but rather 
an intrinsic limitation of the class of filters described by 
Eq.(2). 


The conditions for small cr were known long before Van- 
deven, but the need to impose conditions on the filter func- 
tion for 0 m 1, that is, near the truncation or aliasing limit, 
was new and surprising. 


Vandeven's Theorem provides some constraints on fil- 
ters, but not specify a unique form. In the next section, 
we shall describe a filter first proposed by Vandeven him- 
self. 


3 Vandeven's filter 


This acceleration is defined [12] by 


(8) cry(O) = 1 F(2p) fo ø iF(p)] 2 It(1 - t)] p-• dt 
and illustrated in Figure 1. For integer order p, this can 
be alternatively defined as the unique Hermite interpolat- 
ing polynomial of degree (2p - 1) which satisfies the 2p 
conditions to be a filter of order p in Vandeven's sense. 


The filter can be evaluated for general p by exploiting 
the fact that it is a special case of the incomplete beta- 
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function. which in turn is a special case of the hypergeo- 
metric function: 


(9) o-v - 1 - œo(P,P) 


= 1 r(2p) 0p F(p, 1 - p; p + 1; 0) 
[r(p)] 2 P 


in the notation of the The NB$ Handbook of Functions [1]. 
Because of the identity 


(10) œo(P,P) = 


it is only necessary to apply the hypergeometric poxver se- 
ries, which has a unit radius of convergence, for 0 < 1/2: 


(11) 
OP(1-O)PF(2p) 


p[F(p)] 2 


1 + y• r(p + 1)I-(2p + n + 1) ,,=0 r(2p)r(p + n 7- •-) 


4 Steepest descent approximations 
for large order p 


4.1 Nonuniform approximation 


Figure 2 shows the integrand of the integral in cry for dif- 
ferent orders. The most striking conclusion is that the 
integrand becomes narrower and narrower as the order p 
increases. This suggests that the integrand can be more 
and more accurately approximated for large p by writing 
the integrand as an exponential and then making a Taylor 
approximation. To simplify, let P --- (p- 1) and change the 
integration variable to y _= (t - 1/2) so that the integrand 
is centered on y=O. Then, without approximation, 


t P (1 - t) p = exp(Plog(t[1 - t])) 


(12) : exp {Plog (1 -:Y2) } 
= 2 -2r' exp {P log(1 - 4y 2) } 


If we expand the logarithm as a Taylor series, then the 
integrand is approximated by the Gaussian so that 


crv(O'p) 


(13) 


F(2p) [0-1/2 exp(-4Py2)dy • 1- 22P[r(p)]2 
• 1-(1/2)erf {2pl/2(101 - 1/2)} 
• (1/2)erfc {2p•/2(101 - 1/2)}, p >> 1 


1 


0.8 


0.6 


0.4 


0.2 


, , 


0.4 0.6 
0 


Figure 2: The integrand of the integral in Vandeven's filter, 
scaled to have unit maximum, for three different p (solid) 
compared with corresponding approximation by the Gaus- 
sian function exp(-4p[t- 1/2] 2) (dashed) 


No approximations have been made in Eq. 13 except for 
the Tavlor expansion of the argument of the logarithm. 
and also the replacement of P(= p - 1) by p. consistent 
with p >> 1. Unfortunately, the erfc approximation is 
not uniformly valid as evident from Figure 2 because the 
expansion is about t = 1/2, but the integration is only over 
a small range of t far from this point when 0 is small. 


4.2 Uniform, improved approximation 


A uniform approximation can be derived by consistently 
applying the method of steepest descent. The first step is 
to make an exact change of variable so that the argument 
of the exponential is quadratic in the new variable z(y): 


(14) -z 2 •Plog(1 - 4y 2) 


Expanding the metric factor dy/dz in the transformed in- 
tegrand and retaining only the lowest order in lip gives the 
approximation, uniformly valid in 0 E [0, 1] for p > > 1, 


(15) crv(O;p) 


•erfc 2p •/2 IOl- •) -log(l- 410- 1/2] 4[o- 1/21 


The error in approximating the Vandeven filter by these 
two approximations is shown (on a logarithmic scale) in 
Figure 3. The maximum error for various orders is illus- 
trated in Table 1 and is roughly 0.045/p - quite small even 
for low order p. 







270 ICOSAHOM 95 


5 Euler acceleration 


The Euler filter of order M is defined by I4. 6. 7] 


o 


O 0.2 0.4 0.6 0.8 
O 


Figure 3: Solid crv(0, p = 3). Circles' Absolute value of the 
error in the Erfc approximation. Pluses: Error in Erfc-Log 
approximation. 


Order p maxl•v(O;p)-•Erf•._Log(O:p)l 
1 0.0787 


2 0.0287 


3 0.0170 


4 0.0120 


5 O.OO93 


6 0.0076 


7 0.0064 


8 0.0055 


9 0.0049 


10 O.OO43 


Table 1' Maximum error for 0 6 [0, 1] of the Erfc-Log 
approximation to Vandeven's filter 


(16) erE(0)- 1 


O'E • ]g Mk , 


erE(l) - 0 


j = 1,2 .... M 


where the "partial sum weights" are 


M• 1 


(17) 
The summation from k = j to M is analogous to the indef- 
inite intnegral in Vandeven's method while the partial sum 
weight p• plays the role of the integrand tP-•(1 - t) p-1. 
In sharp contrast, however, the Euler acceleration is de- 
fined only for discrete values of 0. 


Like Vandeven's integrand, the partial sum weights be- 
come increasingly concentrated with respect to the nfid- 
die of the range as the order increases. By applying the 
method of steepest descent for sums [2], we find 


(18) CrE(O;M)•lerfc V/2M+4 IO[- 5 . Mr>> 1 2 


This has exactly the same form as the large-order approx- 
imation to the Vandeven filter. Indeed, the two filters are 
asymptotically identical if the orders of the two methods 
are related by 


(19) M = 2p- 2 


Table 2 shows that the erfc-approximation is very accu- 
rate. The maximum error in any of the weights for a given 
order is roughly 0.03/M. 


The Euler acceleration does have one major weakness 
compared to Vandeven's: because the filter of order :V/is 
defined only at (M + 2) discrete points, the Euler filter can 
only be applied to (M + 2) terms of a series. In contrast, 
one has the option (a useful one, it turns out) of applying 
crv for fixed order p to an arbitrarily large number of terms. 


The lag-averaged Euler acceleration, described in the 
section after next, generalizes the classical Euler filter to 
obtain most of the advantages of Vandeven's acceleration. 


6 The Erfc and Erfc-log filters 


Asymptotic approximations are usually only imperfect re- 
flections of an underlying reality. Filters, however, are only 
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Order •I maxle(O; 
1 0.0416 


2 0.0223 


3 0.0127 


4 0.0083 


5 0.0076 


6 0.0061 


7 0.0044 


8 0.0043 


9 0.0038 


10 0.0030 


15 0.00205 


20 0.00151 


25 0.00119 


30 0.00097 


Table 2: Maximum error for 0 E [0, 1] of the Erfc-Log 
approximation to rr(j/(M + 1)), Euler's acceleration 


a means to an end, a tool for itnproving other approxima- 
tions. In the absence of a theory to identif•v "the" optimum 
filter, a slavish affection for a particular filter, such as Van- 
deven's, seems silly. The Vandeven Filter Theorem does 
not identify a unique filter, but only suggests a whole class 
of filters. In practice, some filters which nearly but not 
exactly satisf•v the conditions of the theorem work well in 
applications [11]. 


Consequently, it is sensible to regard the Erfc and Erfc- 
Log formulas as something more than mere approxima- 
tions. These expressions themselves define new filters, co- 
equal in status with the Euler and Vandeven filters: 


1 


(20) •--= 101- • 


(21) CrEr7•(O;p) _= (1/2)erfc {2p 1/2 •} 


(22) rrE•7•._•oa(0; p) =-- 


•erfc{2pl/2•/--1øg(1--4•2) } 4• 2 


The Erfc filter is simple, but it does not satisfy the con- 
ditions of Vandeven's theorem. Does it matter? 


To test this, we applied the Erfc, Erfc-Log and Vande- 
ven filters to accelerate the Fourier series for the piecexvise 
linear or "sawtooth" function, which is defined by 


ß (23) Sw(x) -= Sw(x + m- integer 


10 -5 


10 -10 


10 -15 
0 


Erfc-Log '. 
o'.s • 1'.s •, 2'.s •- 


d 


Figure 4: Absolute value of the error in the sine series for 
the sawtooth function, truncated at N -- 100, after ap- 
plication of the Vandeven filter (solid). the Erfc-Log filter 
(dashed) and the Erfc filter (dotted) for order p = 8. The 
abscissa is d(x), the distance to the nearest jmnp discon- 
tinuity. 


or equivalently by 


2 (-1) (24) Sw(x) _= - - sin(jx) V x 
j=l 


This function has a jump discontinuity at +7r and is thus a 
good model of a function with a shock wave, or of a frontal 
zone too narrow to be resolved by N Fourier terms. 


Fig. 4 shows that in the vicinity of the front, all three 
methods are about equally bad. Away from the front, how- 
ever, the Erfc filter is awful compared to both the Vande- 
ven and Erfc-Log filters, whose results are indistinguish- 
able. With regret, we must abandon the Erfc filter, in 
spite of its highly desirable simplicity, because it is too 
inaccurate in consequence of its violation of Vandeven's 
Theorem. 


The Erfc-Log filter, however. is just as good as Vande- 
ven's, but simpler. The numerical results of later sections 
will all be generated using the Erfc-Log filter. 


The Euler, Vandeven, and Erfc-Log filters are identical 
triplets with in the sense of asymptotic equivalence. (Re- 
call that the asymptotic approximations of the Euler and 
Vandeven filters by the Erfc-Log filter are accurate even 
for order p or M as small as 2.) The filters are not ex- 
actly the same, but then, identical triplets have individual 
personalities. We can pick whichever personality is conve- 
nient. 


For computation, the Erfc-Log filter is the most conve- 
nient. For theoretical purposes, the Euler filter has some 
advantages because •ve can tap into a couple of centuries 
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0.2 0.4 0.6 0.8 
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Figure 5: Solid: crv(O;p) for p = 3. Dashed: crœE([(M + 
1)/M)]O; 4), the lag-averaged Euler scheme derived from 
the standard Euler method of order 4. The argmnent of 0 
in crL E has been scaled so its graph touches the Vandeven 
filter at the edge of each "step". 


of analysis that has grown around it, as we shall do in the 
next section. 


7 Lag-averaged Euler acceleration 


The lag-averaged Euler method is a very simple (one might 
unkindly say "simple-minded") generalization of Euler's 
method. Since the latter (at order M) is defined only at 
(•ll + 2) discrete points, extend it to a larger number of 
terms by applying each of the M "non-trivial" weights to A 
terms in succession where A is the "lag parameter". (The 
"non-trivial" weights are those which are not equal to 1 
or 0.) The ordinary Euler acceleration is the special case 
A = 1. The weight function is [8]: 


rrœE(0;A,N= I+MA)= { 1 0=0 • ' -- M' 


as illustrated schematically in Fig. 5. 
For M = 4, for example, a0 is weighted by 1, 


{a• .... ,ax} are multiplied by 15/16, {ax+•,...,a2x} by 
11/16, the next quarter of the series is multiplied by 5/16, 
and final fourth of the terms is weighted by 1/16. 


The reason this seemingly obvious generalization is in- 
teresting is that both it and the Euler acceleration can be 
derived from averaging successive partial sums. The par- 
tial sums are 


(26) Sk --= Z aj 
j--o 


Suppose the coefficients aj oscillate in degree j with pe- 
riod P. The shortest possible period is P = 2 which cor- 
responds to a strictly alternating series: if aj is positive, 
then aj+ 1 is negative, aj+ 2 is positive, a j+3 is negative and 
so on. An elementary theorem of first-year calculus shows 
that the partial sums will successively overshoot and un- 
dershoot the true sum S. 


In this case, the sequenc• of "once-averaged" partial 
sums 


(27) T• --- (& + S•_•)/2 


should be a better approximation, for each j, than either 
of the two partial sums from which it was formed. The 
overshoot of Sj+• is largely cancelled by the undershoot 
Sj_• when the two are averaged. 


The once-averaged partial sums often oscillate. too. In 
this case, the rate of convergence to S can be further ac- 
celerated by averaging the averages T• to form a sequence 
of twice-averaged sums. Continuing this "averaging-of- 
averages" until all M + 1 terms in a given series have been 
exhausted gives the standard Euler acceleration. 


If the coefficients oscillate with a different period P. then 
Boyd [8] suggested lag-averaging of partial sums, that is. 
generalizing the fundamental averaging by averaging par- 
tial sums which differ in degree by an integer •. i.e.. 


(2s) -- (& + &-x)/2 


where the optimal lag is 


(29) • = [P/2] 


where [P/2] denotes the integer nearest half the period in 
degree. With this choice of h, the "crest" of a •"wave" in a• 
is averaged with the "trough" for maximum cancellation. 
It is shown in [8] that repeating the lag-averaging until all 
N terms in the truncated series have been exhausted gives 
the weight in Eq. 25. 


8 Optimizing filter order 


The reason the lag-averaged Euler theory is intriguing is 
that at least for some classes of functions, it is possible to 
determine how the period-in-degree varies with d(x), the 
distance to the nearest singularity of u(x), and thereby 
optimize the lag • as a function of x. Because of the close 
connection between the Euler and lag-Euler methods and 
the Vandeven and Erfc-Log filters, i. e., asymptotically 
these methods are all described by a single formula, the lag- 
averaged Euler theory should work equally well for cry (0; p) 
and cr•f•_•oa(0;p) as well. 
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The sawtooth function, defined earlier, is the simplest 
function with a jump discoutinuity. However, it is more 
than a mere exemplar. If we adjust the strength and loca- 
tion of the singularity, the difference between the shifted- 
and-scaled sawtooth function and an arbitrary u(x) with 
a single discontinuity per period is continuous. It follows 
that the Fourier series of the difference converges more 
rapidly than that of the sawtooth function, implying in 
turn that the Fourier coefficients of the sawtooth function 


asymptotically approximate those of u(x), aj, as degree 
3 --• co. It follows that what is optimum for the sawtooth 
function should also be optimum for other functions with 
one discontinuity, at least for sufficiently large N where N 
is the truncation of the Fourier series. 


Boyd [8] shows, in an analysis not repeated here, that 


2v 


(30) P(x) = d(x) 
where d(x), as in Vandeven's Theorem, is the difference 
between x and the singularity. Thus, the period of the 
Fourier coefficients aj in j varies from P=2 at the point far- 
thest from the singularity (and its periodic images) where 
d(x) = •, its maximum value, to cc where x = xs, the 
location of the discontinuity in u(x). 


The optimum lag A in the lag-averaged Euler method 
is simply the integer nearest P(x)/2. Translating this to 
the Euler and Erfc-Log filters so these filters, applied to 
N = i + MA tdrms, are the envelope of the lag-averaged 
Euler method gives 


(31) Poptimura(X) ---- i + N • 


9 Numerical tests 


Figure 6 illustrates how the error in approximating a func- 
tion with a discontinuity varies with both nearness to the 
singularity d(x) and filter order p. Along the left edge of 
the figure where d(x) is small, i.e., close to the discon- 
tinuity, the error is mediocre (O(10 -2) • O(1/N)) for all 
orders p. Very close to the discontinuity in Sw(x), filtering 
helps little. 


On the right of Figure 6, far from the singularity, we 
see confirmation of Madja, McDonough and Osher's con- 
tention [11] that it is possible to retrieve spectral accu- 
racy: for sufficiently large p, we obtain errors smaller than 
O(10 -•ø-) [to the upper right of the contour labelled "-12"] 
in spite of the nasty singularity in Sw(x). Further, for fixed 
d(x), the error decreases roughly geometrically with p. 


Close to the singularity, Figure 6 shows little except that 
no filter works particularly well. Figure ? is a blowup of 


7 ' 0 -lO 
6 -9 


0.5 1 1.5 2 2,5 3 


Figure 6: Contours of the logarithm (base 10) of the error 
as a function of order p (vertical) and distance d(x) to the 
discontinuity in the function (horizontal). Erfc-Log filter 
applied to the first 100 terms of the sine series for the 
sawtooth function. 
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Figure 7: Comparison of the sawtooth function (straight 
line without symbols) with Erfc-Log filtered 100-term sine 
series for various orders p. Circles: p-2. x's: p - 4. 
Pluses: p = 10. Asterisks: p - 50. 
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Figure 8: The error in approximating Sw(x) by 100 terms 
of its Fourier series after application of the Erfc-Log filter 
of various orders p at five different distances d(x) from the 
singularity of the sawtooth function. The large x-in-circle 
symbols mark the predicted optimal order. 


a comparison between the filtered sine series and the saxv- 
tooth function. showing only a small portion of the peri- 
odicity interval near the discontinuity at x = r•. All of 
the filtered series are way off for x > 3.1. For smaller x, 
however, low order (p = 2) is best because the approxima- 
tion is nearly monotonic with only a slight overshoot. In 
contrast, p = 50 gives back the wild oscillations of Gibbs' 
oscillation. The approxi•nation is poor for x < 3.1, too. 


Neither the high accuracy possible far from the singu- 
larity for high order p, nor the desirability of low order 
p in the neighborhood of the jump, are novelties; Figs. 6 
and 7 have been included merely for completeness. The in- 
triguing question is: how well does our theory predict the 
optimal p as a function of nearest to the singularity? 


Figure 8 shows the answer is: pretty well. For each value 
of d, the distance to the singularity, there is a minimum in 
the error as a function of filter order p. The minimum is 
very fiat so that the error is insensitive to the choice of p 
within a factor of (3/2) either too large or too small. The 
predictions of Eq. 31 are at the low-p edge of the fiat part 
of each curve, but this is quite acceptable. It seems likely 
that for actual fluid dynamics calculations, which will be 
much more contaminated by aliasing and other noise than 
the sawtooth function, that erring on the side of low order 
- stronger filtering - is desirable anyway. 


Figure 9: A graphical interpretation of the Chebyshev 
--, Fourier mapping. Each point on the Chebyshev grid 
(crosses on the horizontal line bisecting the circle is 
mapped by t=arccos(x) into two points on the correspond- 
ing evenly spaced Fourier grid (circles on the unit circle) 
as indicated by the arroxvs. The Fourier theory for opti- 
nilzing filter order can be applied to the Chebyshev case if 
distance d to the singularity is measured on the circle, not 
on the Chebyshev grid itself. 


10 Chebyshev and Legendre series 


A Chebyshev polynomial expansion on x E [-1.1] is 
mapped into a Fourier cosine series in r E [-r•, r•] by the 
change-of-variable 


(32) x = cos(r) 4•- r = arccos(x) 
as shown schematically in Fig. 9. Because a Chebyshev 
series is just a Fourier series in disguise, all earlier results 
carry over to Chebyshev polynomials with only minor mod- 
ifications. 


The important change is that in order to borrow the 
Fourier theory that relates optimal order p(x) to distance 
from the front d(x), this distance to the singularity should 
now be measure in terms of the trigonometric argument r 
instead of x, the argument of the Chebyshev polynomials: 


(33) d(x) =_ arccos(x) - arccos(x,•) [Chebyshev] 


where x.• is the location of the singularity. (For multiple 
singularities, take the minimum of the difference of arc- 
cosines over all the singularities of u(x).) 


Legendre polynomials are very popular in spectral ele- 
ments [3, 10]. Unfortunately, no simple transformation is 
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known to turn a Legendre expansion into a Fourier series. 
However, the Legendre grid is very similar to the Cheby- 
shev grid and the two types of series converge within the 
sanhe region in the complex-plane. It seems likely, though 
we offer no proof, that p(x) can be optimized for Legendre 
series by the same formulas as for Chebyshev. 


11 Conclusions 
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Iterative Methods with Dynamic Preconditioning 
for Moving Spectral Element Technique 
Applied to the Journal Bearing Problem 


D. Rh. Gwynllyw* T. N. Phillips t 


Abstract 


A moving spectral element method is described for solving 
the dynamically loaded journal bearing problem. In this 
problem a lubricant occupies the region between an inner 
cylinder which rotates and moves under a time-dependent 
load and an outer cylinder which is stationary. The path 
of the journal is tracked in time in order to determine the 
stability of the bearing and the minimum oil film thick- 
ness of the lubricant. Particular emphasis is given to the 
choice of efficient preconditioners for both the statically 
and dynamically loaded problems. The effects of cavita- 
tion and variable viscosity on the stability of the bearing 
are discussed. 


Key words: moving spectral element method, dynami- 
cally loaded journal bearing problem, preconditioners, 
cavitation, variable viscosity. 


AMS subject classifications: 65N35, 65N22, 76A05. 


I Introduction 


The journal bearing is an essential part of all internal 
combustion engines as a means of transferring the energy 
from the piston rods to the rotating crankshaft. The main 
journal bearing consists of a journal which is part of the 
crankshaft and a bearing which is fixed to the engine cas- 
ing. In general, the two cylinders are eccentrically posi- 
tioned with a film of lubricating oil separating the two sur- 
faces. The system is subject to dynamic loading in which 
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the journal is allowed to move under the force the fluid 
imparts on it and the force applied by the engine. Under 
these forces the centre of the journal traces out a nontrivial 
locus in space. A knowledge of the path of the journal is 
important if lubrication engineers are to predict and un- 
derstand bearing fatigue. Lubrication engineers are inter- 
ested in determining the global minimum oil film thickness 
as the journal moves in time in order to assess the role of 
viscosity on bearing wear. 


The traditional approach to the study of journal bear- 
ing lubrication has been via the lubrication approximation 
introduced by Reynolds [18]. This enables an equation for 
the pressure within the thin film region of the geometry to 
be written separately from the kinematical and constitu- 
tire equations describing the flow of the lubricant, thereby 
simplifying greatly the calculation of the reaction forces en- 
gendered by the lubricant. Whereas the effectiveness of the 
lubrication approximation has been supported by experi- 
mental evidence in a very wide range of lubrication studies, 
there are at least two contexts in which the approximation 
may be open to question. The first is in predicting the fine 
details of the nonlinear dynamics of the journal bearing. 
Here the precise pressure boundary conditions exploited in 
the Reynolds equation can have a profound effect on the 
dynamics of the journal. The second context is in study- 
ing the role of viscoelasticity in journal bearing lubrication. 
Within the lubrication approximation, normal stresses are 
viscosity dominated, making it difficult to accommodate 
elastic effects in the analysis. However, when the relax- 
ation time of a viscoelastic lubricant is sufficiently high, 
for example due to pressure thickening, enhanced normal 
stresses are possible when the lubrication approximation 
is not employed [8]. 


If the lubrication approximation is not invoked, there is 
no option but to solve the full set of coupled equations gov- 
erning the flow of the lubricant, taking proper account of 
the moving parts of the geometry. Until recently this task 
has proved too formidable a calculation, but with current 
computing power combined with efficient and accurate nu- 
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merical methods, the calculation may be attempted. 
In this paper we concentrate on the development of accu- 


rate and efficient numerical techniques for solving journal 
bearing problems. A comprehensive physical interpreta- 
tion of the results generated by our numerical algorithm is 
beyond the scope of this paper and will be reported else- 
where. We consider the long bearing approximation in this 
paper, i.e. we assume that everything is constant along the 
axis of the bearing. The extension of this work to the finite 
bearing which is a fully 3-D problem is in progress. 


We consider the flow of a non-Newtonian lubricant un- 


der dynamic loading conditions. The locus of the centre of 
the journal is determined by solving the equation of mo- 
tion of the journal. This calculation requires a knowledge 
of the force exerted on the journal by the lubricant. There- 
fore the motion of the journal is coupled to the solution of 
the governing equations for the flow of a lubricant. Since 
the journal moves in time the flow geometry for the lubri- 
cant also changes in time and therefore a new discretisation 
mesh is required at each new time step. A spectral element 
method is used to solve the fluid equations at each time 
step. The discretised equations are solved by a nested pre- 
conditioned conjugate gradient method. A comprehensive 
discussion of which are the most efficient preconditioners 
in the journal bearing context is given. For realistic jour- 
nal bearings the radii of the journal and bearing are very 
similar. i.e. the clearance between the two is very small. 
This has severe consequences for the iterative solution of 
the algebraic equations defined in such geometries and pro- 
foundly affects the choice of preconditioner. The effect 
of cavitation and variable viscosity on the stability of the 
journal is discussed. 


2 Formulation of the problem 


2.1 The geometry 


Consider the two-dimensional geometry shown schemati- 
cally in Fig. 1. The journal of radius R• rotates with a 
constant angular velocity •v in a stationary bearing of ra- 
dius Rs. Both the journal and the bearing are assumed to 
be of infinite extent in the axial z-direction. The distance 


between the axes of the journal and the bearing is given 
by e. 


The eccentricity ratio is defined by e = e/c, where c = 
Rs -Rj is the average gap so that 0 _< e _< 1. The 
region between the journal and the bearing is occupied by 
a lubricant. The journal is free to move under the action 
of an applied load which may be variable, its own weight 
and the reaction force exerted on it by the lubricant. This 


Figure 1: A spectral element discretisation of the journal 
bearing problem with Ea = 4, Er = 2 and N = 7. 


means that the centre of the journal traces out a nontrivial 
path in space. 


2.2 The governing equations 


The governing equations for a Generalised Newtonian fluid 
comprise the conservation of momentum 


(1) p •+v. X7v =-X7p+X7.T, 
the conservation of mass 


(2) V.v=O, 


and the constitutive equation 


(3) T-- 2r•(•, p)d, 


where p is the density, r/ is the variable viscosity, 5 • = 
, • (Vv + •2 tr(d) 2 T is the extra-stress tensor and d = • 


(Vv) T) is the rate of deformation tensor. Here tr(A) de- 
notes the trace of a tensor A. The constitutive equation 
(3) is a modification of the usual Generalised Newtonian 
model to include pressure dependence of the viscosity. 


The viscosity law that we have used was proposed by 
Li and Davies [8]. It is shear-thinning and pressure- 
thickening. The various parameters in the model are de- 
termined empirically. The dependence of viscosity on • 
and pressure is given by 


{ } (4) v= V•+[i+(K•) •] xexp(-atr(a)/3+F) 







Moving Spectral Element Technique 279 


where K is a function of pressure 


K - K(p) = exp(-&tr(er)/3 4- E) 


er = -pI 4- T is the Cauchy stress tensor and 
z/0, z/•c, m, n, a, &, E and F are material parameters which 
are estimated by best-fitting experimental data. This 
model describes the shear-thinning behaviour of the viscos- 
ity by a Cross-type formula. Pressure-thickening is mod- 
elled by a simple exponential law [1]. It is important to 
note that the viscosity law (4) is consistent with experi- 
ments [2] which span only limited ranges of the pressures 
which the lubricants experience under general operating 
conditions. 


2.3 Cavitation 


The assumption that a complete lubricating film is main- 
tained throughout the operation of a journal bearing is 
well-known to be false in many realistic situations. Un- 
der certain conditions the lubricating film ruptures and 
a cavity is formed. Indeed the very presence of a cavi- 
rating region has been shown to be sufficient to stabilise 
the motion of the journal. Many investigators ([14],[17]) 
suggest that in the case of a journal operating under the 
assumption of full-film conditions and without an applied 
load instability is universal. In this case the journal moves 
from its equilibr. ium position, under static loading condi- 
tions, in an orbit of growing size until the bearing fails, i.e. 
the journal and bearing surfaces touch one another. This 
phenomena is known as whirl instability [13]. In practice 
the full-film condition is not realistic since in many jour- 
nal bearing models the large negative pressures produced 
in the oil cause the oil to vapourise leading to cavitation. 
There are many ways of modelling cavitation (see Cameron 
[7], for example), some of which are more sophisticated 
than others. However, they may all be viewed as ways 
of circumventing the rather complex two-phase oil-vapour 
flow problem. Brindley et al. ([3], [4], [5]) have consid- 
ered a •r-film model within the lubrication approximation 
in the case of a constant applied load. They showed that 
with the inclusion of a cavitation model there were con- 


ditions under which the motion of the journal was stable 
where previously it was unstable. 


In this paper we shall consider two cavitation models. 
The first is a dual phase variant of the so-called •r-film or 
half-Sommerfeld condition. In the •r-film cavitation model 


it is assumed that the lubricant cavitates in the diverging 
part of the journal bearing geometry. In its dual phase 
variant the viscosity of the fluid in the cavitating region 
is set to be very low while the viscosity of the fluid in the 
non-cavitating region is kept as that of the lubricant. The 


second model which we call the single-phase variable-film 
cavitation model makes no assumption about the size of 
the cavitating region. The governing equations for the 
lubricant are solved subject to the full-film assumption 
and the cavitating region is then determined by the re- 
gion of subambient pressures. The reaction force on the 
journal is calculated by integrating the pressure over the 
non-cavitating region. We shall refer to these models as 
cavitation models (A) and (B), respectively. 


3 Motion of the journal 


This is by far the greatest computational challenge in the 
present study. A single computer run tracking the journal 
from rest to a periodic equilibrium state takes many hours 
of DEC-alpha CPU time, under realistic running condi- 
tions. Two factors are primarily responsible for the high 
CPU time. These are the use of small time steps which 
are required for stability and accuracy of the numerical ap- 
proximation, typically O(10 -s) seconds, and the dynamic 
remeshing due to the translational motion of the journal. 


We assume that the centre of mass of the journal behaves 
as a particle of effective mass fk/e situated at the centre of 
the journal. The equation of motion of the journal is given 
by 
(5) Mei; = F 4- R, 


where r is the position vector of the centre of the journal 
with respect to a coordinate system fixed in space. The 
applied load, F, in this paper, is taken to be 


(6) F = (0, F), F = Fpsin(•t)-Meg+Fc, 


where the parameters Fp and Fe allow one to specify the 
amplitude and mean level of the applied load. The reaction 
force R is the force the fluid exerts on the journal and is 
determined from the solution of the governing equations of 
motion for the lubricant. 


The journal is tracked in time by integrating (5) in the 
following manner. The flow of the lubricant at each time 
step is computed using what is known as a quasi-steady ap- 
proximation. At a given time t = nat, say, the steady flow 
equations are solved for the current position of the journal 
using the spectral element method. The force which the 
fluid exerts on the journal is then calculated by integrating 
the stresses around the journal, 


R = -/r er.fids, J 


where Fj is the surface of the journal and fi is the outward 
unit normal vector to the journal. The right-hand side of 
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(5) is then updated and the equation integrated in time 
using the forward Euler method to obtain the new posi- 
tion of the journal at time t = (n + 1)At. The process is 
repeated by solving the steady flow equations in the new 
region between the journal and the bearing. Note that 
in this approximation the solutions to the fluid equations 
at successive time steps are independent of one another. 
However, in many situations this appears to be a reason- 
able approximation due to the size of the time step. 


4 Moving spectral element algo- 
rithm 


The region f• between the journal and bearing is parti- 
tioned into a number of spectral elements, f•k, 1 _• k •_ K, 


K - • and f•k •f•! 0 for allk • 1 as such that U•=•ft• = -- , 
shown in Fig. 1. Let E• and Ea denote the number of 
spectral elements in the radial and azimuthal directions, 
respectively. We also assume that the decomposition is 
geometrically conforming in the sense that the intersec- 
tion of two adjacent elements is either a common vertex or 
an entire edge. Each physical element is mapped onto the 
parent dement [-1, 1] x [-1, 1] on which a Legendre Gauss- 
Lobatto grid is used. The transfinite mapping technique of 
Gordon and Hall [10] is used to perform this mapping. The 
Px - P.v-2 spectral dement method ([15], [16]) is used in 
xvhich the velocity and pressure approximations are of de- 
grees N and N-2, respectively. The velocity and pressure 
approximations corresponding to element k are therefore 


(7) 
N N 


V•,(•, 7]) = E E Vik'$ 
i=0 j=0 


N-1 N-1 


k (8) 
i=• j=• 


respectively. %V•th the velocity and pressure approxima- 
tion spaces thus chosen the Babu•ka-Brezzi compatibil- 
ity condition •s sat•s•ed. There are no spurious pressure 
modes •u the pressure approximation. 


The discrete variational formulation of (1)-(2) leads to 
an algebraic system of the form 


(9) Any- DZp = g, 
(10) = 


where A• represents the discrete weak form of the diffu- 
sion operator r]A and D is the discrete divergence opera- 
tor. Block Gaussian elimination yields a symmetric posi- 
tive definite system for the pressure 


(11) Sp-c 


where S = DA•'•D • and c = -DA•-•g + h. The system 
(11) is solved for the vector of pressure unknowns using the 
preconditioned conjugate gradient (PCG) method. Since 
the system is solved iteratively the stiffness matrices do 
not need to be set up. Instead they are kept in elemental 
form. The particular way in which the spectral element 
grid is constructed ensures that the entries of the pressure 
matrix $ are dependent only on the eccentricity ratio e 
and not on the orientation of the journal. We denote this 
dependence by S•. 


The solution of systems of algebraic equations of this 
form, derived from a spectral element discretisation of the 
constant viscosity Stokes problem, is well-documented in 
the literature (see [15], for example) and suitable precondi- 
tioners have been advocated which yield efficient numerical 
algorithms. However, for the solution of realistic journal 
bearing problems in which Rs - R• is small and e is near 
unity the system of equations is extremely ill-conditioned 
and the spectrum of S• is not so well-behaved. We shall 
give an example in the next section, for a constant viscos- 
ity lubricant in a statically loaded journal bearing, which 
shows that this is a result of the extremely large physi- 
cal aspect ratio for this geometry. The spectral element 
mesh for geometries of this type comprises elements that 
are highly distorted. A comprehensive study of precondi- 
tioners for this problem is given in [11] in the case of the 
statically loaded bearing. 


For the dynamically loaded bearing the preconditioner 
is changed dynamically in time taking into account the 
current eccentricity ratio of the journal and the number 
of PCG iterations required for convergence at each time 
step. The preconditioner is based on the pressure matrix 
evaluated at a given eccentricity ratio. The preconditioner 
is updated dynamically if a prescribed maximum number 
of PCG iterations is exceeded [12]. 


5 Eicient preconditioners 


A good preconditioner, P, for S should be an approxima- 
tion to S, in some sense, which meet the following criteria: 


(a) P is easier and cheaper to invert than S; 


(b) P is sparse so that it is efficient to construct and 
store; 


(c) the eigenvalues of P-•S are more clustered than 
those of S. 


The last criterion ensures that convergence of the iterative 
method is rapid. The preconditioner is decomposed in the 
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form P = QQT and the transformed system written as 


(12) Q-•SQ-T(QTp) = Q-lb. 


The condition number, n, of the preconditioned system is 
defined by 


(13) n = 


where A,•ax and A•i• are the largest and smallest eigen- 
values of the preconditioned matrix L where 


(14) L = Q-•SQ -T. 


In practice the steps of the conjugate gradient method are 
rewritten so that the preconditioner is applied in its en- 
tirety. 


5.1 Static loading 


Initially efficient preconditioners are sought for the stat- 
ically loaded journal bearing. In this problem the jour- 
nal rotates about its own axis but is not allowed to move 


translationally. This means that the geometry is fixed and 
$ remains constant in time. In addition we shall restrict 


ourselves to a constant viscosity lubricant. In particular 
the following preconditioners are considered: 


(a) P = B where B is the pressure mass matrix. 


(b) P =/• where/• is the diagonal of B. 
(c) P = $•. where $•. is the matrix $• evaluated at 


• •_• •*. 


The pressure mass matrix B is not diagonal because the 
quadrature rule used in setting up this discrete variational 
formulation requires extrapolated values of the pressure 
on the elemental boundaries. Note that for a spectral ele- 
ment discretisation the pressure mass matrix is not sparse 
at the elemental level. This choice, given by (a), is widely 
advocated in the spectral element literature. However, we 
demonstrate that for the journal bearing problem with re- 
alistic values of the parameters this choice does not provide 
a well-conditioned preconditioned matrix. This means that 
not only will the resulting algorithm converge slowly but 
also that the numerical approximation will not be partic- 
ularly accurate. 


The geometry of a car engine journal bearing is such 
that the typical physical aspect ratio, proportional to 
a ---- c/27rRj, is very small where c _= Rs -Rj is the 
average gap of the fluid region. Typical values are much 
less than 1/100. Therefore not even a significant redefini- 
tion of the spectral element discretisation would overcome 
this problem. 


We show that the eigenvalue spectrum is very much de- 
pendent on the physical aspect ratio. In Figs. 2 and 3 we 
choose e--0.5 and keep (N,E•Ea) fixed at (7,2,2)which 
gives M -- 196, where M=Er x E• x N 2 is the size of the 
pressure matrix $, and show the eigenvalue spectra of the 
preconditioned system when the preconditioner is the pres- 
sure mass matrix i.e. P -- B. The outer radius in both 


Figure 2: Eigenvalue spectrum of preconditioned system 
with P=B with (N, Er, E•) = (7,2,2) and illustration of 
model for the case of a = 5.3 x 10 --ø e-0.5 The result is a , ß 


condition number n=188.3 and number of PCG iterations 
= 28 


-8 -7 -6 -5 -4 -3 - - 0 


1og(•i/•max) 


Figure 3: Eigenvalue spectrum of preconditioned system 
with P=B and (N, E•, E•) - (?, 2, 2) together with illus- 
tration of model for the case of a = 2.04x 10 -4, e--0.5. The 
result is a condition number n - 9.35 x 106 and number of 
PCG iterations = 40 
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figures is the same (RB=0.03129) and the inner radius is 
varied so as to vary c•. In Fig. 2, c•=0.053 whilst in Fig. 3, 
a = 2.04 x 10 -4. The result is that the condition number 


increases as c• decreases with a cluster of very small eigen- 
values appearing in the latter figure. In terms of conjugate 
gradient iterations the model with c•=0.053 takes 28 itera- 
tions to converge whilst with c• = 2.04 x 10 -4, 40 iterations 
are required. The position is much worse for the precondi- 
rioher P =/• for which the PCG method fails to converge 
within the theoretical maximum number of M iterations 


for a = 2.04 x 10 -4, indicating that round-off errors dom- 
inate. Changing the number of elements or the number of 
nodes whilst keeping the elemental aspect ratio fixed does 
not alter the condition number of the preconditioned sys- 
tem with P = B. The resulting condition number for both 
these examples is • - 9.36 x 106. 


Thus we have shown conclusively that the condition 
number of the preconditioned system is dependent on the 
preconditioner and the physical aspect ratio, c•, but not on 
the elemental aspect ratio. 


Table 1 compares the condition number and the number 
of preconditioned conjugate gradient iterations for differ- 
ent preconditioners of $ with e=0.5 . It is clear that the 
most successful preconditioner is $o.o in terms of the num- 
ber of iterations. This preconditioner needs to be calcu- 
lated only once and can be applied to systems with differ- 
ent eccentricities. 


(.v, œa), ?=z 
(7,2,2), 196 284 (4.30x10 s) 164 (1.79x 10 s) 
(10,2,2), 400 1162 (8.50x10 s) 395 (3.31x10 s) 
(13.2,2), 676 >2000 (1.39x109) 727 (5.24x10 s) 


(N. E,, Ea). M P=B P=So.o 
(7,2,2), 196 40 (9.35x106) 29 (55.84) 
(10,2,2), 400 63 (9.35x106) 34 (55.84) 
(13,2,2), 676 95 (9.35x106) 37 (55.84) 


Table 1: The number of PCG iterations of the precon- 
ditioned system with e=0.5 for different preconditioners, 
P, together with, in brackets, the corresponding condition 
number. The results are for different numerical parameters 
based upon the p-method analysis. c• = 2.04 x 10 -4. 


The inversion of the pressure mass matrix also requires 
a nontrivial amount of work. In addition it needs to be 


recomputed for different eccentricities. The other two pre- 


conditioners (I and/•) although trivial to calculate and in- 
vert are very poor preconditioners in terms of the number 
of PCG iterations required for convergence. In practice, 
however, we are not limited to using the preconditioner 
based on the concentric pressure coefficient matrix So.o. It 
is possible to construct and store a set of preconditioners 
S•i, 1 <_ i _< I, for different eccentricities ei and to use the 
preconditioner S• for which ej is closest to e. This ap- 
proach will be explored further for the dynamically loaded 
journal bearing. 


Note that the condition number of the preconditioned 
system is independent of N for the two cases P=B and 
P=So.o. In this sense we say that both preconditioners are 
optimal and that we can expect the number of PCG iter- 
ations to be proportional to M. However, as can be seen 
from the table the number of iterations using both these 
preconditioners increases less than proportionally with N. 
This effect is more pronounced in the case P=So.0 where 
the number of iterations required for N=10 and N=13 is 
almost the same. Note, however, that the condition num- 
ber using P - B remains high and therefore numerical 
results generated using this preconditioner may not be as 
accurate as those obtained using P = S0.0. 


5.2 Dynamic loading 


The major challenge in this problem in which the journal 
is free to move translationally in response to an applied 
load and a force exerted on it by the lubricant is that the 
geometry is changing in time. The aim is to develop a code 
which can be used to determine the response of the bearing 
due to various inputs such as applied load, viscosity of the 
lubricant, initial position of the journal, speed of rotation 
of the journal and choice of cavitation model. It is im- 
portant to determine under which conditions the journal 
traverses a path that will ultimately bring it into contact 
with the bearing, thereby causing bearing failure. For our 
purposes bearing failure occurs when e > 0.98 in which 
case there is metal-to-metal contact. A typical run takes 
many thousands of iterations with time steps of O(10 -s) 
seconds. 


We propose using a preconditioner which changes dy- 
namically in time taking into account the current eccen- 
tricity ratio of the journal and the number of PCG iter- 
ations required for convergence at each time step. The 
preconditioner is based on the pressure matrix evaluated 
at either the present or a previous value of the eccentric- 
ity ratio. A given preconditioner may be used for many 
time steps for which the actual eccentricity ratio will be 
different to that used to compute the preconditioner. The 
current preconditioner is changed when the number of it- 
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erations required for convergence of the outer conjugate 
gradient iteration exceeds a prescribed maximum number 
of iterations. In the results which we present this number 
was set to be twelve. Once this number has been exceeded 


a new preconditioner is constructed corresponding to the 
current eccentricity ratio. The work involved in setting up 
a new preconditioner is negligible compared with the time 
taken to track the motion of the journal from its initial 
state until either the bearing fails or a stable equilibrium 
point or closed orbit is found. The amount of time spent 
on the construction of preconditioners is always less than 
5% of the total CPU time. 


6 Numerical results 


In this section we shall present a selection of results show- 
ing the influence of cavitation and variable viscosity on the 
path of the journal. The results which we present are for 
the choice of discretisation parameters given by Er = 1, 
Ea = 4 and N -- 8. Variation of the number of elements, 
the degree of approximation and the time step has been 
performed to ensure that the final paths are independent 
of these numerical parameters. The initial position of the 


Figure 4: Eigenvalue spectrum of preconditioned system 
with P=S0.0 and (N,E,Ea) = (7,2,2), a -- 2.04 x 10 -4 
and e=0.5. The result is a condition number n = 55.8 and 


number of PCG iterations = 27. 


journal is specified by an eccentricity eo and an attitude 
angle •o. In Fig. 5 we compare the paths resulting from 
the use of cavitation models (A) and (B). In this example 
we have a variable applied load given by Fp = 2 x 10 • 
N/m, Fc = 0 N/m, a journal of mass per unit length 
Me = 1.75 x 10 4 kg/m and an angular velocity • = 350 
rad/s. In figures of this type the motion of the journal 


....... (b) 


Figure 5: Comparison of the paths of (a) variable-film 
single-phase and (b) •r-film double-phase cavitation mod- 
els for a journal of 3//e = 1.75 x 10 4 kg/m, •=350rad/s, 
(eo,•o)=(0.10,0.35), Fp = 2 x 10 • N/m, Fe=0 N/m with 
time t• [0,0.15]. 


is given in eccentricity ratio/attitude angle space. So, for 
example, if the path travels through the centre of the ref- 
erence circle then e = 0.0 which means that the journal 
and bearing are concentric and if the path touches the ref- 
erence circle then e = 1.0 and so the journal touches the 
bearing. For each of the models a different closed path is 
found as the limiting motion of the journal. With reference 
to Figs. 6 and 7 which are plots of the eccentricity ratio 
and attitude angle of the journal against time, respectively, 
we see that the final closed path solution is reached after 
no more than a handful of orbits of the journal around 
the bearing. For cavitation model (A) a minimum oil film 
thickness is attained corresponding to an eccentricity ratio 
of 0.62 whereas for model (B) it occurs at an eccentric- 
ity ratio of 0.90. Even for large magnitude applied loads, 
such as that used in the present example, the choice of 
cavitation model is important. Clearly the minimum oil 
film thickness is sensitive to the choice of cavitation model 


that is used in the numerical calculations. The rather sim- 


plistic •r-film model which is used extensively in practice 
cannot be relied upon to give definitive results although it 
may well be useful in predicting trends for journal bear- 
ing stability. A study of the whirl speed from Fig. 7 shows 
that the periods of both paths are identical to that of the 
variable applied load. 


Finally, we consider the effect of variable viscosity on 
the stability of the journal bearing. We consider a journal 
with 3//• = 7 x 10 4 kg/m rotating with an angular veloc- 
ity of 250 pad/s, and subject to an applied load which is 
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Figure 6' Plot of (a),(b) the eccentricity of the two journal 
paths shown in Figure 5a,b respectively. 


just its oxvn weight. The initial position of the journal is 
specified by •o = 0.1, and 0o = 0.0. The following param- 
eters were used in the viscosity law (4): r/o = 9.352 x 10 -4, 
r•,c : 4.5 x 10 -4, c• -- 1.119 x 10 -8, & = 2.39 x 10 -8, 
E = -13.527. F = 2.297 and m = 0.545. These values 


are taken from experimental measurements of typical non- 
Newtonian lubricants. We assume that full-film conditions 


hold. i.e.. the lubricant does not cavitate. The resulting 
path is shown in Fig.8. The corresponding evolution of the 
eccentricity and attitude angie are shown in Figs. 9 and 
10. respectively. The journal moves from its initial posi- 
tion until it reaches an equilibrium point. At this point 
the weight of the journal balances the reaction force of the 
lubricant on the journal. This example shows that it is 
possible to obtain stable trajectories of the journal with- 
out the inclusion of a cavitation model. Variable viscosity 
is sufficient to produce a pressure field that is not exactly 
anti-symmetric and this is responsible for the stabilising 
effect. In the case of constant viscosity the pressure field is 
anti-symmetric and therefore without cavitation the bear- 
ing always fails. Further work needs to be done on the role 
of variable viscosity. 


7 Concluding remarks 


A moving spectral element method has been described for 
solving a problem of tremendous industrial importance. 
Some of the key modelling aspects have been described. 
The position of the journal has been tracked by solving 
an equation of motion for the journal. The preconditioner 
for the PCG method is chosen dynamically in time to en- 


(a) 
(b) 


........ (c) 
COS 


0.0 


-0,5. 


0.0 0•025 0.05 0,075 0.1 0.125 0.15 


Figure 7: Plot of (a),(b) the cosine of the attitude an- 
gie of the journal paths shown in Figure 5a,b respectively 
together with (c) k• +k2 sin(•t) for reference with the jour- 
nal's angular velocity. 


sure that the solution for the flow of the lubricant at each 


time step is performed efficiently and within a prescribed 
number of iterations. 
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Figure 10: Plot of (a) the cosine of the attitude angle of 
the journals path shown in Figure 8 together with (b) k• + 
k2 sin(u/) for reference with the journal's angular velocity. 


[19 i Correspondence with Shell Ltd, Thornton Research 
Centre, Cheshire, U.K. 








Decoupled Spectral Element Methods 
for Steady Viscoelastic Flow Past a Sphere 


Robert G. Owens * Timothy N. Phillips 


Abstract 


A spectral element method is described for the flow of a 
viscoelastic fluid past a sphere in a tube. An approximate 
Jacobian is used to solve the system of nonlinear algebraic 
equations derived from the spectral element discretization 
as a cost-effective alternative to the full Newton method. 


The linearized equations are solved using a preconditioned 
generalised minimal residual (GMRES) method. Numeri- 
cal results showing the behaviour of the drag on the sphere 
as a function of the elasticity of the fluid are presented. A 
comparison with other methods is made and shows good 
agreement with the results of the proposed method. 


Key words: viscoelastic flow, drag factor, spectral ele- 
ments, GMRES method. 


AMS subject classifications: 76A10, 76M25, 65F10, 
65X35. 


I Introduction 


The mathematical solution for the flow field generated by 
a particle moving at low speed through an infinite expanse 
of NewtonJan fluid was produced by Stokes [24] as long 
ago as 1851. The problem of determining the influence of 
the walls of a nearby container on the drag force experi- 
enced by the particle was not solved until much later. The 
determination of the drag force, or equivalently the set- 
tling velocity, of a spherical particle in a viscoelastic fluid 
has attracted much attention in recent years for a num- 
ber of reasons. The first concerns the experimentally ob- 
served changes in behaviour from Newtonian flow. Jones 
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et al [14] investigated experimentally the dependence of 
the normalised drag on the sphere on the Deborah num- 
ber and on the ratio 3 of the radius of the sphere to that 
of the containing cylinder. Their experiments with a mal- 
tose syrup/water based Boger fluid and a Newtonian fluid 
of equivalent yiscosity showed that a substantially higher 
drag could be observed for the Boger fluid in the limit- 
ing cases of 3 very small or almost unity. Much smaller 
drag values were observed for some intermediate values 
of 3. Secondly, there is the practical importance of the 
problem as seen in its use as a simple rheological test for 
industrial fluids (see [1], for example). Thirdly, the prob- 
lem is useful in gaining insights into settling in particle 
suspensions. Finally, this problem has been chosen as a 
benchmark problem in computational rheology [12] for the 
comparison of different numerical methods since it gener- 
ates a complex flow field without introducing the problems 
associated with corner singularities. 


At the present time finite element methods, streamline 
upwinded finite element methods and boundary element 
methods (see [5], [8], [13], [15], [21], [25], [30] for example) 
have been used to solve the system of coupled non-linear 
partial differential equations that arise from viscoelastic 
flow problems, and good agreement has been obtained al- 
beit for small (< 2.0) values of the Deborah number when 
the Maxwell and Oldroyd B constitutive models have been 
used. In 1994, Debae et al [9] did a comparison of four 
stress-velocity-pressure algorithms to calculate solutions 
to benchmark problems, including that of the flow of a 
Maxwell fluid around a sphere. These algorithms were 
tested with three different methods of integration of the 
constitutive equations: the Streamline-Upwinded/Petrov- 
Galerkin (SUPG) and Streamline-Upwind (non-consistent) 
(SU) methods introduced by Brooks and Hughes [4], as 
well as a Galerkin method. In the Galerkin formulation 


the largest Deborah numbers were obtained for the Elastic- 
Viscous Split Stress (EVSS) method of Rajagopalan et al 
[20]. 


The application of spectral methods to viscoelastic flow 
problems is comparatively recent, having first been used 
in this way in 1987 by Beris et al [3] to solve the flow of 
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a Maxwell fluid through eccentrically rotating cylinders. 
Since this time spectral methods have enjoyed extensive 
application to viscoelastic flow problems. The importance 
of the present paper is in its contribution to the growing 
literature on the numerical simulation of viscoelastic flow 


past a sphere in a cylinder and the opportunity that this 
presents for a comparison of spectral methods with other 
numerical techniques. The use of spectral methods with 
domain decomposition techniques combines the flexibility 
of the finite element method with highly-accurate spec- 
tral methods. The spectral element method is based on a 
variational formulation of the problem in which the inte- 
grals are approximated using Gaussian quadrature rules. 
The choice of compatible velocity and pressure approxi- 
mation spaces ensures that there are no spurious modes 
in the pressure representation. Spectral element methods 
have been used in the viscoelastic context by Van Keme- 
nude and Deville [27] who compared the results of their 
spectral element method with the 4 x 4 SUPG finite ele- 
ment method on the perturbed channel flow problem with 
a Maxwell B fluid. Their spectral element method was 
also compared with other numerical methods for the flow 
of the Maxwell B fluid in a wavy tube. In another paper, 
Van Kemenade and Deville [28] compared their method 
with the EVSS method on slightly perturbed viscometric 
flows in a channel. They found that the computational 
cost of the spectral element method was less than for the 
EVSS method. The method was also used to study flow 
resistance in a periodically constricted tube. Spectral el- 
ement methods xvere used recently by the present authors 
I18] in order to solve for the flow of an Oldroyd B fluid 
past a sphere in a tube. 


Numerical methods for solving viscoelastic flow prob- 
lems may be divided into two classes - coupled and de- 
coupled ,nethods. In the coupled approach the system of 
partial differential equations is linearised using Newton's 
Inethod. The linearised equations are discretised and then 
solved simultaneously using a sparse matrix solver, for ex- 
ample. In the decoupled approach time-splitting meth- 
ods are generally used to march the system forward in 
time to a steady state solution, if one exists. Decoupled 
methods have the advantage of being able to solve prob- 
lems with finer discretisations since they break the prob- 
lem down into a number of smaller subproblems. They are 
ideal, therefore, for simulating computationally intensive 
3-D transient flows. Coupled methods are prohibitively 
expensive for these types of problem. The disadvantage of 
decoupled methods would seem to be that, at least at the 
present time, it is not possible to reach as high a limiting 
value of the Deborah number as for corresponding coupled 
methods. 


The main disadvantage of Newton's method, seen par- 
ticularly in three dimensional applications, is the size of 
the JacobJan matrix that needs to be computed at each 
step. As a cost effective alternative to the full Newton 
method the present paper uses a modified generalised min- 
imal residual (GMRES) method and this is explained in 
section 4. The GMRES method was originally proposed 
by Saad and Schultz [22] and developed for viscoelastic 
flow simulations by Fortin and Zine [10]. The method is 
used with an approximate Jacobian in each Newton step 
and allows us to decouple the computation of the velocity 
and pressure from that of the stress tensor. The time split- 
ting method originally proposed by Chorin [7] and Temam 
[26] and used by the present authors in conjunction with 
spectral elements for the flow of an Oldroyd B fluid past a 
sphere in a cylinder (see [17], [18]) is outlined in section 3. 
This latter scheme completely decouples the velocity and 
pressure computations. The upper bound encountered on 
the Deborah number De in [17] and [18] was approximately 
0.6 and this is typical of decoupled methods. The results 
from the GMRES method are compared with those ob- 
tained in [18] in section 5. 


2 Geometry and governing equa- 
tions 


The governing equations are those of continuity, momen- 
tum and the constitutive equation for the stresses. Within 
a flow of a fluid of Maxwell or Oldroyd type, with velocity 
everywhere finite, there may exist infinite stresses exerted 
by supposedly infinitely extended polymers. In the numer- 
ical simulations using these models a build up of large poly- 
mer extensions may be observed which gives rise to large 
elastic stresses and eventual numerical breakdown. The 


difficulty of infinite extensibility may be obviated by us- 
ing, for example, the Chilcott-Rallison constitutive model 
[6] which incorporates a finite degree of extensibility for the 
polymers. In this model a single parameter, the maximum 
extensibility of the dumbbells, L, controls the plateau of 
the extensional viscosity at high extension rates. 


The equations of motion and continuity for unsteady, 
inertialess flow are 


0v 


(1) P at - -vp + 2v2v + v. (A - I), 
(2) v.¾ = o, 


where p is an arbitrary isotropic pressure, •]1 is a polymeric 
viscosity, •2 is a solvent viscosity, • is a characteristic 
relaxation time for the fluid, p is the fluid density, v is the 
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velocity vector and the tensor A represents an ensemble 
average over the distribution space of the dyadic product 
RR of the dumbbell configuration vector R. The function 
f(R) is a nonlinear force law, dependent upon the length, 
R. of the dulnbbell configuration vector. 


The evolution equation for A is 


(3) A + f-•-•A(1)= I, 
where the subscript "(1)" in (3) denotes the upper- 
convected derivative. 


The problem geometry is shown in Fig.1. A rigid sphere 
of radius a falls with terminal velocity U along the cen- 
treline of a cylindrical tube of radius R. In the numerical 


simulation of this problem it is assumed that the flow is ax- 
isymmetric and creeping and that the sphere is motionless 
with the tube wall moving with speed U instead. 


Figure 1: The problem geometry 


The Deborah number for this problem is defined by 


• U 
De - 


The nonlinear set of equations (1).(2),(3) is the one that 
is solved. 


3 A time splitting scheme. 


Time splitting schmnes have the advantage of enabling the 
different operators in a system of partial differential equa- 
tions to be treated by appropriate methods of solution. 
In the present context time splitting methods are used as 
a means of deternfining the solution of the corresponding 
steady problem. In this respect they may be viewed as it- 
erative techniques. In general. nonlinear operators such as 
the convection operator are treated explicitly while linear 
operators such as the diffusion, gradient and divergence 
operators may be treated implicitly. 


The four components of the constitutive equation (3) 
are discretised in time using the backward Euler scheme on 
the full system of equations by freezing the velocity field at 
the previous time step. In order to solve the momentum 


and continuity equations the time-splitting or projection 
scheme of Chorin [7] and Temam [26] is used. This scheme 
completely decouples the diffusion and pressure compu- 
tations. The diffusion term is treated implicitly in the 
current formulation. The pressure is determined so that 
the velocity field at the end of the current time step is 
divergence-free in a weak sense. 


The superscript on a variable denotes the time incre- 
ment. We denote by At the time step. Let (vø,p ø, A ø) 
be the initial approximation at time t = 0. The approx- 
imation at time t = (r• + 1)At is determined from the 
approximation (v",p ", A '•) at the previous time t - nat 
by the following scheme: 


Stage 1. 


(1+ -- 


(4) 


Atf(R))A•+ • + At (v •- X7A •*+• - 57v •. A "+• 


Atf(R) -A •+• . (X7v•) r) = 2rh--I + 


Stage 2. 


V '• __ V n 


At 
: 57. rhf(R)(A• _ I), 


Stage 3a. 


V n+l -- V* 


(6) P( At ) = -57p•+• + r/2572v '•+l, 


Stage 3b. 
(7) 57 ß v '•+• = 0. 


The spectral element method is applied to Stage 3 of 
the backward Euler scheme. The velocity field is chosen to 
belong to the space X = H0• (f2) x H0• (9.) and the pressm'e 
to the space L2(f2). The variational formulation of (6)-(7) 
is therefore: Find (v,p) ( X x L:(f2), such that 


/Jfo. P /jf•,(v . w)r dr dz 
- (pv.w). = X7 (v*.w). &. 


(s) v w x, 


(9) //o.(57 . vq)r dr dz = O, 
where we have dropped the time level n + 1 from the su- 
perscript on v and p. The vector of test functions w is 
taken to be either (w•, 0) or (0, tv•) where w, and u': are 
test functions in H•(f•). 
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4 A modified GMRES method. 


The variational formulation for the steady form of (1)-(3) 
is: Find (v,p,A) • X x L2(Q) x L/t(Q), such that 


-- -h• (f(R)(A - I)' Vw)rdrdz, 
10) V w • X, 


11) /f•(V.vq)rdrdz=O, V q • L2(f•), 


/f.o. (A + ' d"dz= /ft' O ddz, 
(12) 


where LA (f•) is the space of symmetric tensors whose com- 
ponents are square integrable. 


For a given tensor A equations (10) and (11) represent a 
steady Stokes problem. The solution of this problem may 
then be regarded as a function of A, i.e. the velocity v 
and the pressure p depend on A. Therefore, we can write 
(12) in the matrix form 


(13) Ev(A)A = by(A), 
where the subscript v(A) indicates that the matrix E and 
the right hand side vector b depend upon v. This is a 
nonlinear system of equations for A. We can write this 
system in the form 


=o, 


and then solve it using Newton's method: 
1. Let Ao be an initial guess. 
2. For n _> 0, solve J•6A = -F(A•) 
3. Set An+l: An + 5A 
4. Continue until convergence. 
In the above J• is the Jacobian matrix of F. 


The GMRES method is applied to the solution of step 
2 for 6A: 


(14) Jnt•2•k -- --•(2•kn). 


Rather than compute and store the full JacobJan J• the 
approximation 


Jn•A • F(An + hSA) - F(An) 
h ' 


where h is some small number, will be used. For good 
preconditioning the choice of F is taken to be 


(15) = E Vo (by(A) - Ev(A)A), 


where v0 is the velocity field at some lower value of the 
Deborah number. To solve (14) using the GMRES algo- 
rithm we perform the following steps: 
1. Let 5A © be an initial guess for 5A 
2. Solve the two Stokes problems (10) and (11) with given 
stress fields An and A• = An + hSA © 
3. Compute the initial residual r0 from 


r0:_F(An)_F(A•) -F(An) 
h 


At the ith iteration, an orthonormal basis 
{v(•),..., v © } is constructed for the Krylov subspace 


/C• (r0) -= {r0, J7 •r0 } 


This is usually done using a modified Gram-Schmidt 
procedure. However, noting the observation of Walker [29] 
that the modified Gram-Schmidt procedure can fail to per- 
form well if the vectors on which it acts are not sufficiently 
independent, the basic GMRES code [2] has been modified 
by the authors so that the orthogonalization is based on 
the use of Householder transformations. 


At the ith iteration in the GMRES algorithm a correc- 
tion zi is determined in < v(1),..., v © > which solves the 
least squares problem 


MIN 
(16) 


z E/Ci(r0) 
II- - Jn(A(0) '"lg- z) IIo. 


If (16) is small enough then 5A - 5A © + zi. The GM- 
RES algorithm may thus be seen to be an inner iteration 
loop for every outer Newton step. Once convergence is ob- 
tained new velocity and pressure fields are computed from 
(10) and (11) and the procedure continued until all the 
variables have converged. 


In both the time splitting scheme and the GMRES 
method the flow domain • is divided into several spec- 
tral elements. These axe shown in Figure 2. Each of 
these elements is then mapped onto the parent element 
D = [-1, 1] x [-1, 1] using the transfinite mapping tech- 
nique of Gordon and Hall [11]. The variables are approxi- 
mated by finite sums of Legendre Lagrangian interpolants. 
The approximation spaces for the velocities and the pres- 
sure are chosen to be compatible, and there are no spu- 
rious pressure modes. The basis set for the components 
of stress is the same as that used for the velocities. The 


discrete variational problem is set up by approximating 
the integrals in the variational forms by Gauss-Legendre 
quadrature rules. 
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Figure 5: rrr contour plot. De = 0.3. 


• -1.50 • 
0,00 - • 0,00 


Figure 6: rrz contour plot. De -- 0.3. 


5.2 Cost 


Table 2 shows the cost in CPU s on a SPARCstation 5 


and number of iterations required for convergence when 
the two schemes were used in order to compute flow at 
De = 0.3 for N = 4 and N = 6, starting from a NewtonJan 
flow field as the initial guess. A time step of At = 0.01 
was used with the time stepping scheme. It may be seen 
that the GMRES scheme is significantly faster than the 
time stepping scheme, even allowing for further efficiencies 
which could be incorporated into the time stepping code 
so as to speed up the execution time. For each of the outer 
Newton Raphson steps (9 for N = 4 and 6 for N = 6) in the 
GMRES scheme. the number of inner GMRES iterations 


required for the residual to be less than a pre-set tolerance 
(in this case 1 x 10 -16) decreased monotonically after the 
first few Newton steps, as is to be expected. For example, 
for the N = 4 calculation the number of GMRES iterations 


was 37, 41, 40, 38, 37, 34, 25, 14 and 12. This makes the 
GMRES iterative method an efficient solver for equation 
(14). 


N TSS [18] GMRES Scheme 
4 721.97s, 803 126.36s, 9 
6 2624.75s, 503 337.96s, 6 


Table 2: Comparison of the CPU times (s) on a SPARC- 
station 5 and number of iterations required in simulation 
of viscoelastic flow at De = 0.3 for the two schemes. 


Figure 7: rzz contour plot. De - 0.3. 


Figure 8:r00 contour plot. De = 0.3. 


6 Conclusions 


A GMRES spectral dement method has been used to com- 
pute the flow of a viscoelastic fluid past a sphere in a tube. 
The GMRES method is an affordable solution method for 


large systems of coupled nonlinear PDEs and the exces- 
sive expense of computing and inverting the full JacobJan 
in Newton's method has been avoided. Better agreement 
with the results of Lunsmann et al [15] has been obtained 
for Deborah numbers up to 0.6 when the GMRES- rather 
than the time splitting method is used on the same grid. 
The GMRES method is shown to be significantly faster 
than the time splitting method, although, disappointingly 
the limiting values of the Deborah number are modest. 
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