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Abstract 

Several applications of spectral methods to problems re- 
lated to the relativistic astrophysics of compact objects 
are presented. Based on a proper definition of the analyti- 
cal properties of regular tensorial functions we have devel- 
oped a spectral method in a general spherical-like coordi- 
nate system. The applications include the investigation of 
spherically symmetric neutron star collapse as well as the 
solution of the coupled 2D-Einstein-Maxwell equations for 
magnetized, rapidly rotating neutron stars. In both cases 
the resulting codes are efficient and give results typically 
several orders Of magnitude more accurate than equivalent 
codes based on finite difference schemes. We further report 
the current status of a 3D-code aiming at the simulation 
of non-axisymmetric neutron star collapse where we have 
chosen a tensor based numerical scheme. 

Key words: spectral methods, numerical relativity, neu- 
tron stars, black holes, gravitational collapse. 
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I Introduction 

Compact objects in astrophysics such as neutron stars and 
black holes are subjected to the strong field regime of grav- 
itation and have hence to be treated within the framework 

of general relativity. The growing interest in the numerical 
solution of the Einstein equations for astrophysically rele- 
vant systems has given rise to a new branch of computa- 
tional physics - numerical relativity [1, 2, 3]. This develop- 
ment is due to the increasingly powerful computational re- 
sources which make these problems accessible to a numeri- 
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ca! investigation. It is further stimulated by the prospects 
of gravitational wave astronomy which will turn into an 
observational science toward the end of this decade thanks 

to gravitational wave observatories like LIGO, VIRGO and 
GEO600 that are now under construction [4, 5, 6]. 

We use the (3+1)-formalism of general relativity [7] 
which consists in foliating spacetime into a sequence of 
space-like hypersurfaces which represent curved 3-space at 
a fixed coordinate time t. The fabric of spacetime is then 
determined by the 3-metric hij and four additional quan- 
tities, the lapse function N and the shift vector N i which 
fix the propagation of the space-like hypersurfaces in time 
and the change of the spatial coordinate system between 
adjacent hypersurfaces. This Hamilton type approach to 
general relativity results in a temporal first order evolution 
scheme for the dynamical variables which is completed by 
some constraint equations which ensure the consistency of 
gravitational and matter fields. Furthermore N and N i 
have to be determined by the choice of appropriate gauge 
conditions which typically lead to elliptic equations that 
have to be solved at each time step. For stationary con- 
figurations all time derivatives vanish and one obtains a 
system of coupled elliptic equations for the gravitational 
fields. The efficient solution of elliptic equations is hence 
of central interest for us. 

Let us consider a covariant Poisson equation Nlili- $ 
in a conformally flat axisymmetric space where the line 
element reads 

(1) dl 2 -A4(r,O) (dr2+r 2 dO2+r 2 sin20 d•b2). 

The former equation can be rewritten to yield a Poisson- 
like equation for N where we have isolated the flat space 
Laplacian A! and contributed the curvature terms to the 
source. Here a denotes In A. 

1 

(2) AIN =$ with $=A45-2(OraOrN+•OoaOoN). 
This equation has to be solved by iteration. The solution 
of AIN--- • at each iteration has hence to be accomplished 
sufficiently fast in order to keep the total computation cost 
at a reasonable level. 
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After outlining the basic features of our spectral method 
[8, 9], we will proceed in a first step to the investigation 
of black hole formation due to spherically symmetric neu- 
tron star collapse which has proved the high aptitude of 
spectral methods in this field [10, 11, 12]. The second 
part is devoted to the study of axisymmetric stationary 
rotating bodies which has been applied to model rapidly 
rotating neutron stars [13, 14]. This work has been ex- 
tended recently to include strong magnetic fields for the 
first time into neutron star models [15]. Special emphasis 
in all cases has been put on the extensive use of external 
and intrinsic tests [16, 17, 18] of the self-consistency and 
the attained accuracy of the numerical results. The result- 
ing neutron star models provide us with the required initial 
value models for the investigation of 3D-gravitational col- 
lapse of neutron stars which will reveal the whole range 
of gravitational wave emission associated with this phe- 
nomenon. We give an overview about the inset of spectral 
methods in this project which is currently in work. Here 
a new method for the efficient inversion of a generalized 
3D-vector Poisson equation is a first major result. 

2 Spectral methods in general rel- 
ativity 

2.1 Coordinates and regularity conditions 

The space-like hypersurfaces stemming from the former 
choice of the (3+1)-formalism are conceived to describe 
some asymptotically flat space, containing a compact, 
mostly starlike object. The natural choice is thus a sphe- 
ricallike coordinate system (r, 0, 4'). 

The pseudo-singularities which appear in this case can 
be overcome by a proper definition of regularity conditions 
of tensorial quantities. A consequent application of parity 
rules derived from these conditions allows further to opti- 
mize code efficiency and precision. 

We consider the related Cartesian type coordinate sys- 
tem (x, y, z) = (r sin 8 cos 4', r sin 8 sin 4', r cos 8). We define 
a tensorial quantity Ti• ...iN in spherical coordinates (r, 8, 4') 
to be regular, if its components fi•...iN with respect to 
Cartesian coordinates (x, y, z) are regular in the sense that 
they can be expanded into a polynomial sum of the type 

N 

(3) 
i,j,k=O 

which can be written in terms of (r, 8, 4') as 
N 

(4) 
i,j,k----O 

x sini+J8 cos•8 cosi4' sin•4'. 

Having specified the tensor components fi•...iN with re- 
spect to the Cartesian frame we derive the components 
related to the local orthonormal frame of spherical coordi- 
nates by a non-singular coordinate transformation. 

In order to infer the analytical properties of a scalar 
function it is useful to rearrange the sum in (4). We first 
collect all the terms referring to cos m4' and sin m4' respec- 
tively. We write 

M 

(5) f(r, 8,4') = • (a,,(r, 8) cosrn4'+ b,•(r, 8) sinm4') 
rn•-O 

where am(r, 8) and bin(r, 8) behave identically in the fur- 
ther procedure. We opt for cos 18 and sin 18 as basis func- 
tions in 8 which allows the application of FFT-techniques 
for this transformation. An immediate conclusion from 

(4) and the case i-t-j even is that the coefficients a2,•(r, 8) 
and b2,• (r, 8) have to be expanded in terms of cos 18 while 
from the odd case that the expansion of a2,•+• (r, 8) and 
b2,•+i (r, 8) has to be done on the set sin 18. We therefore 
specify 

L 

((3) = coslO, 
l•. O 

L 

(?) a2m+l(r, 8) = • &•,•,•+•(r) sin18. 
l=0 

Note that due to the well defined parity of a2,• and 
these coefficients - a priori only defined for 0 < 8 < 7r - can 
be continued analytically to periodic functions of 8 on the 
interval I-w, 

In the same manner as before we find from (4) that the 
polynomials &l(r) are symmetric with respect to the inver- 
sion r -* -r for I even and antisymmetric for I odd] As 
basis function set in r we decide for Chebyshev polynomi- 
als due to their superior properties in finite approximation 
schemes of non-periodic functions and the availability of 
fast Chebyshev transforms. Simplifications of the expan- 
sion scheme in the presence of additional symmetries are 
preeised in the following paragraphs. 

Any regular function admits an expansion of this kind, 
but regularity furthermore implies additional constraints 
on the different coefficients. Having set up regular initial 
data •eeording to (3), regularity of the involved quantities 
is maintained during a calculation by the application of 
regular operators - we here ignore the influence of numer- 
ical effects due to aliasing or roundoff errors. 

Let us eousider the eovariant derivative of a vector in 

spherical coordinates. For the scalar potential U(r, 8, 4')- 
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r sin • cos 

(s) 
we have 

(9) (Ur, Us, U•)'- (sin 0 cos •b, cos Ocos •b,- sin •b). 

The covariant derivative Usl• which reads 

1 1 

(10) U01• = rsinO O• Us U• rtan• 

can be rewritten to yield 

1 

(11) UOlO ---- rsin• (O• Uo - cosO U•) ß 
A numerical evaluation according to (8) and (11) reveals 
a perfectly regular behavior. 

2.2 Supersymmetric case 

Additional spatial symmetries of physical systems involve 
continuous symmetry operations like rotation about a dis- 
tinct axis with an associated Killing vector field or discrete 
transformations like inversion at the equatorial plane z = 0, 
leading to distinct parity properties of the different tensor 
components. 

We define supersymmetry [19] by the following behavior 
of a scalar function: f is invariant with respect to inver- 
sion at the z-axis, hence f(-x,-y,z)= f(x,y, z), while f 
is [anti-] symmetric with respect to reflection at the equa- 
torial plane z = 0, hence f(•, y, -z) = :El(z, y, z). Conse- 
quently f can be expanded into a sum of the type 

L 2l M 

l-'O k--O m----O 

L 21 M 

(13) f_(x,y,z) -' E E E ck•"•x2•-•Y•z2"•+• odd case 
1=0 k•O m=O 

which defines subsets of the general scalar functions intro- 
duced in Sec. 2.1. A write-up in terms of (r, 0, •b) gives 

(14) 

(15) 

L 21 M 

= E E E 
l----O k----O m----O 

x sin2•O cos2'nO cos2•-k•b sink•b, 
L 21 M 

/_(,-, o,,)= E E 
1----0 k----O m----O 

x sin2• cos2m+•o cos:•-k$ 

which can be modified, replacing sin20 by (1-cos20). 

(16) 

(17) 

L 21 M 

/+(,., EE E 
!•0 k----O m----O 

x (1-cos20) t cos:"•O cos 2t-k•b sin k 
L 21 M 

!--0 k----O m--O 

x ( 1 - cos: 0)• cos:"* + • • cos 2• -k •b sin k 

According to Sec. 2.1 we conclude for the decomposition 
of a supersymmetric function: 

1. f is •r-periodic in the angular variable •b, 

2. a2,• (r, O) has to be expanded into a sum of cos lO where 
I is even in the symmetric case and odd in the anti- 
symmetric one, 

3. 5t (r) is an even polynomial in r for f symmetric and 
an odd polynomial for f antisymmetric. 

Physical problems which imply the use of supersymmetric 
functions allow to restrict the computational domain to 
[0,•r] in •b and to [0, •r/2] in 0 which leads to an overall 
reduction of the effective grid size by a factor four. 

For the components of a vector field associated with the 
case of even supersymmetry we conclude: U• can be ex- 
panded into a sum of cos 21 0, Uo into a sum of sin 210 
and U• into a sum of sin(2/+ 1)0 which means that Uo 
undergoes a change of sign by reflection at the equatorial 
plane while Ur and U• remain unchanged. The expansion 
of the radial part is done in terms of odd powers of r for 
all components. 

2.3 Axisymmetric case 

Axisymmetry restricts the set of scalar functions under 
consideration to functions according to Sec. 2.1 where the 
only remaining term in (5) is ao(r, 0). Thus f can be writ- 
ten as 

L 

(18) f(r, 0) = E ai,o(r) cos/0 
l----0 

where •l,o(r) is an even function in r for I even and an odd 
function for I odd. 

For the components Ur and Uo of a vector field compat- 
ible .with the assumption of axisymmetry we conclude: Ur 
has to be expanded in terms of cos lO where the radial part 
is even for I odd and odd for I even. Uo has to be expanded 
in terms of sin lO where we also have a parity change in r. 
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The properties of the lacking component U• which we 
need to handle N• in the models of rotating neutron stars 
can be derived from the Killing equation linked to axisym- 
merry. A short examination reveals that U• has to be 
expanded in terms of sin lO with a parity change in r - it 
behaves identically as Us. 

2.4 Spherically symmetric case 

For sake of completeness we add the spherically symmetric 
case. As a further restriction of the axisymmetric case we 
keep from (18) only a0,0(r). f(r) therefore reads 

K 

(19) f(r) = • ask r sk 

which is an ordinary even polynomial in r while U• is rep- 
resented by an odd polynomial in r. 

3 Spherically symmetric neutron 
star collapse 

3.1 Basic equations 

The investigation of neutron star equilibrium configura- 
tions in spherical symmetry was the first problem in the 
fully general relativistic regime being solved by us by 
means of the (3+1)-formalism of general relativity and a 
spectral method [10, 8, 9]. A favorable choice of the line el- 
ement ds s = 9,• dx• dx• in the case of spherical symmetry 
is given by RGPS (Radial Gauge-Polar Slicing) coordi- 
nates [20] and reads 

(20) ds s = -NSdt s + ASdr s + r s (dOS+ sinS0de. bs). 

We stress the particular nature of this problem where the 
field variable A is not really a dynamical quantity. In fact it 
is uniquely determined at any moment as well as the lapse 
function N by the matter fields which have to be evolved by 
means of the hydrodynamical equations. Since the solution 
outside the star is known in advance to coincide with the 

static Schwarzschild solution of a point mass of the same 
size according to the Birkhoff theorem, we benefit from a 
double simplification. First the whole time evolution is yet 
determined by propagating the hydrodynamical variables 
and further the calculation can be restricted to the stellar 

interior. The interior solution for the gravitational field 
has then to be matched to the analytical exterior one. We 
further note that due to the static character of the exterior 

solution no gravitational waves - which otherwise would be 
an observable of most importance - are emitted. 

Concerning the hydrodynamical part we employ a set 
of particular variables which lead to equations ressembling 
very closely their Newtonian counterparts including a gen- 
eral relativistic generalization of the classical Euler equa- 
tion. We note the privileged role of the Eulerian or local 
rest observer O0 in this formulation. The hydrodynamical 
equations read 

1 

(21) Otœ q- •'• O• (rS(e+p)V •) -- O, 

(22) O, Uq-V•O•U - I (N œ+p •O•p+ uotp 

Fs q- 4•rrp , 
1 

(2a) O,D + ;• O•(rSDW) = 0, 
(24) Otsr + V•O•sr = 0 

where we have introduced the energy density • and the 
fluid velocity U measured by O0, the coordinate baryon 
density D and the entropy per baryon ss while V r de- 
notes the fluid coordinate velocity. The Lorentz factor F 
is defined as F= (1 - US)-«. In addition one has to solve 

(25) Om(r,t) = s œ(r,t), 

(26) Orff9(r,t)= As (m(r't) U s ) r• q- 4 7r r [ p q- ( e q- P ) ] 
where A(r, t) is related to m(r, t) through 

(27) A(r,t) - (1 2ra(r't) ) -« 
The neutron star matter is modeled as a perfect fluid, 
adopting a realistic dense matter equation of state. 

3.2 Numerical method 

The initial value model for the dynamical calculations 
is provided by solving the Tolman-Oppenheimer-Volkoff 
equations describing a spherically symmetric static star 
where each model is determined by the central value of 
the pseudo-enthalpy Hc. A first solution is obtained by in- 
tegration of this system of ordinary differential equations 
while an overall numerical accuracy of the order of 10 -•4, 
adapted to the subsequent use of a spectral method, is 
achieved by iteration of the approximate solution. 

The computational domain is identical with the stellar 
interior during the whole calculation, thanks to a comoving 
grid whose outer boundary coincides with the star surface. 
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Figure 1: Relative variation of the stellar radius with elaps- 
ing time for a stable equilibrium model with nB< n• rit and 
[AM/Mmax [ = -5 x 10 -5. The hydrodynamical timescale 
is indicated on the lower left. 

Figure 2: Profiles of the lapse function N for t ranging from 
0 to 7.296 ms. The location of the Schwarzschild radius Rs 
is indicated by a vertical bar. Direction of increasing time 
is downward. 

This maintains a constant spatial resolution during the col- 
lapse and a fine sampling of the steepening gradients near 
the star surface thanks to the accumulation of the Gaufi- 

Lobatto points in this region. It furthermore minimizes 
the advective terms, hence improving the numerical accu- 
racy. All quantities are expanded in terms of Chebyshev 
polynomials in r mapping the interval [0, R,(t)] onto [0, 1] 
taking into account their analytical properties according to 
Sec. 2.4. The 2 nd order semi-implicit time integration en- 
sures the stability of the code which allows us to perform 
simulations of a duration of many dynamical timescales. 
This ability is very important when studying the effects 
of perturbations on equilibrium configurations. This task 
is also favored by the fact that we integrate the original 
system of equations without any artificial viscosity to sta- 
bilize the code while in addition the intrinsic viscosity of 
spectral methods is negligible. The ingoing characteristic 
of the hydrodynamical system at r--R, gives rise to one 
boundary condition which is chosen to fix the baryon den- 
sity at the star boundary. It is imposed by means of a 
•-Lanczos procedure [21] on the system as a whole which 
is the well posed mathematical procedure. 

3.3 Results 

Among the various tests we have imposed on our code one 
describes the collapse of a homogeneous dust sphere whose 
solution was given by Oppenheimer and Snyder [22]. From 

the beginning of the collapse until the moment where the 
whole configuration is highly relativistic and practically 
frozen we observed the different variables to reproduce the 
analytical values within an error of better than 10 -5 [10], 
while the errors related to previous studies based on finite 
difference methods are of the order of 10 -5 [23]. 

Neutron star models near the maximum mass config- 
uration - Mmax - 1.924Mo and R -- 10.678 km for the 
employed EOS - are interesting with respect to their sta- 
bility against radial perturbations. Configurations with a 
central baryon density approaching the critical one exhibit 
an oscillatory behavior which is dominated by the funda- 
mental mode of oscillation of increasing period length. It 
represents a uniform growing and shrinking of the entire 
star which is modulated by less important harmonics of 
higher order. Fig. 1 shows this temporal variation for a 
stable configuration. We stress that these oscillations are 
entirely driven by roundoff and discretization errors of a 
total order of 10 -•ø - no external force has been applied 
to trigger this variability. Increasing the central baryon 
density beyond the critical value one enters the branch of 
unstable configurations. This time the fundamental mode 
starts a contraction of the star which results in an unlim- 

ited collapse. Though the actual coordinate choice is not 
capable to properly capture the formation of an appar- 
ent horizon which would clearly reveal the formation of a 
black hole the evolution of metric potentials and matter 
variables gives a distinct indication of this event. Take for 
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Figure 3: Relative variation of the total baryon number 
during the collapse. 

instance Fig. 2 which shows the time development of the 
lapse function N, measuring the elapsed proper time of 
the local Eulerian observer Oo. Inside the Schwarzschild 
radius it tends toward zero for increasing coordinate time t. 
This behavior - called the 'lapse of the lapse' - is related to 
the singularity avoidance property of the chosen coordinate 
gauge which keeps the spatial hypersurfaces from propa- 
gating into a forming singularity. The dynamical timescale 
of the collapse is the time elapsed from the beginning of 
the collapse until the moment where the evolution appears 
to be frozen to a distant observer and has the value t = 7.4 

ms for the considered configuration. Fig. 3 illustrates the 
relative error committed on the total baryon number which 
is a conserved global quantity. In the early phase it is con- 
served with a relative accuracy of 2x10 -s and with 4x10 -6 
during the violent stages of the collapse. The deviation 
increases up to 5 x 10 -5 in the final phase where sharp 
gradients form near the horizon. The proper working of 
the code in the perturbative regime has been recently con- 
firreed by direct comparison with a linear adiabatic code 
[12]. The calculations have shown a very good agreement 
of the frequencies of the fundamental modes for the two 
opposite approaches. The original version of our code has 
been extended later on to include the processes of neutrino 
production and transport during neutron star collapse in 
order to compute the observable neutrino emission for a 
distant observer [11]. A multi-domain extension of this 
code is in use in order to simulate type II supernovae in 
spherical symmetry. It is particularly well suited to prop- 
erly capture the high contrast up to _• 106 of the mean 

densities in the individual subdomains which appears dur- 
ing the collapse. Four to five zones are typically needed 
to cover the dense central core forming the new born neu- 
tron star and the outer layers of much lower density with 
the desired resolution. In contrast with the original code 
boundary conditions are imposed in this case by means of 
a modified •--Lanczos scheme applied in coefficient space. 

4 Axisymmetric rotating relativi- 
stic bodies 

4.1 Basic equations 

In order to study rapidly rotating neutron stars we have 
made the assumptions of spacetime being axisymmetric, 
stationary and asymptotically .flat. We have further sup- 
posed spacetime to be circular, thus the absence of merid- 
ional currents in the sources of the gravitational field. In 
this case spacetime can be described by MSQI (Maximal 
Slicing-Quasi Isotropic) coordinates [13] which have a line 
element ds 2 = g• dx• dx • of the form: 

(28) ds • = -N•dt • + A4B -• (drY+ r2dO •) 
+A4B2r • sin20 (d4• - N•dt) •. 

Spacetime is hence fully determined by the four metric po- 
tentials N, N •, A and B. MSQI-coordinates are global 
coordinates and lead to elliptic operators which admit a 
consistent treatment of boundary conditions and an effi- 
cient solution by spectral methods. The matter fields are 
chosen to model a perfect fluid where first a polytropic, 
hence analytical, equation of state was used. The assump- 
tion of a perfect fluid reduces the equations of motion to 
an algebraic equation for the heat function H. From the 
Einstein equations one derives four elliptic equations for 
the variables v = In N, N • and 

(29) G(r,O)-- N(r,O)A2(r,O)B(r,O), 

(30) ½(r, 0) = v(r, + 2(r, - 
whose final form reads 

A 4 

(31) As y -- •-•[4•r(E-FSii)-F2(k•-Fk•)]-O•O(•-F2a+•), 

(32) •3•--167rBN--- 7 J• -rsint•ON•O(6e•-F3•-•), r sin 

_ NA • 

(33) 
A 4 

(34) 
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where we have introduced •=ln A, •=ln B and 

(35) •(r, O) = r sinO(•(r,O), 

(36) J•r•(r,O) = rsin0 N•(r,O) 
as well as the abridged notation 

1 

(37) = + ao. 
Further employed quantities are the total energy density 
E, the stress tensor Sij, the momentum density Ji and k•, 
ks which are related to the extrinsic curvature tensor K•j. 
A2, As and as denote scalar Laplacians in two and three 
dimensions and a vector Laplacian in three dimensions re- 
spectively. 

Existence and uniqueness of the solution of these elliptic 
equations are ensured for physically relevant cases [24, 25, 
20]. 

Note that (33) and (34) can be continued analytically 
to yield genuine 2D-Poisson equations in the entire (r, 0)- 
plane. One infers immediately that • exhibits a logarith- 
mic divergence for r • o• unless the total integral over 
the source of (34) vanishes identically whereas we require 
•[ r=• = 0. This 2D-virial theorem of general relativity 
{GHV2) [16] is in some sense related to the classical New- 
tonian virial theorem and furnishes a consistency condition 
for any solution of the Einstein equations which is compat- 
ible with our basic assumptions. It has to be taken into 
account during the calculation and provides a strong con- 
sistency check of the numerical solution. 

4.2 Numerical method 

The mathematical problem involves (31)-(34) and an al- 
gebraic first integral equation for the matter fields. Our 
numerical solutions are exact in the sense that the gov- 
erning equations are derived from the full theory of gen- 
eral relativity without any analytical approximation while 
the numerical code solves these equations in all space ex- 
tending the numerical integration to spatial infinity which 
allows to impose the exact boundary conditions of asymp- 
totical flatness on the gravitational fields as well as the 
proper calculation of the source terms of (31)-(34) which 
fill all space. 

This is accomplished by the use of two grids, where the 
first one covers the stellar interior using the radial variable 
r in the interval [0, R], while the outer space is compactified 
thanks to the variable transform u = r -• and in this way 
mapping [R, o•] onto the finite interval [R -•, 0]. While in 
the O-variable a Fourier expansion according to Sec. 2.1 
is used, the radial part is expanded in terms of Chebyshev 

polynomials. The inner zone is mapped onto half the def- 
inition interval [0, 1] which allows to take into account the 
parity properties of regular functions with respect to the 
origin according to Sec. 2.3. In the compactified zone the 
expansion has been done in the usual manner on the whole 
definition interval [-1, 1] of Chebyshev polynomials. 

The effective scheme which is based on a relaxation 

method works as follows. We consider rigidly rotating neu- 
tron stars with a polytropic equation of state. A particular 
configuration is hence determined by fixing the value H• 
of the heat function at the centre of the star and its angu- 
lar velocity •. We start from very crude initial conditions 
where all the metric quantities are set to their flat space 
values (c,, •, •, ½ and N • = 0; G = 1) and the matter 
distribution is determined by a first approximate guess. 

While the GRV2 identity related to (34) holds for an 
exact solution of the Einstein equations we have to enforce 
this consistency relation at each iteration step in order 
to avoid a logarithmic divergence of the approximate one. 
This can be accomplished by modifying (34) according to 

(38) A2 
A 4 

(39) cr• = 8•rBA---• S•'•,, o'• = •--•.[3(k•-.Fk•)]- ((:%,)2. 
At each iteration step A is chosen in such a way that the 
total source integral vanishes. The final solution has to 
satisfy (34) exactly which is equivalent to A = 1. The de- 
viation of A from unity during the iteration measures the 
violation of self-consistency of the approximate solution 
and can be used to monitor convergence. 

The sources of (31)-(34) exhibit some terms involving 
simple operators like r, sinS, 0•, etc. which are accurately 
computed in coefficient space before evaluating the entire 
expressions in configuration space. Expansion of the total 
sources in terms of the angular eigenfunctions of the differ- 
ent Laplacians (P•ø (cos 0), P• (sin 0) and (cos 18, sin • 8) for 
As, as, and A• respectively) leads to a system of ODEs in 
the radial variable. The unique global solution is obtained 
by appropriate linear combinations of the corresponding 
particular and homogeneous solutions in order to match 
the piecewise solutions at the grid interface and to satisfy- 
the boundary conditions at r-o•. The new values of the 
gravitational field variables are then used to update the 
matter distribution by means of the first integral equation 
and the iteration can go on. 

4.3 Tests 

We have subjected our code to two different kinds of tests 
which ensure the reliability of the numerical results. 
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Figure 4: Comparison between numerical and analytical 
solution for the Schwarzschild interior and exterior incom- 

pressible solution. The location of the star surface is indi- 
cated by an asterisk. The plotted quantities are the relative 
error in the pressure with respect to the central pressure 
inside the star and the absolute error in N (solid line) and 
A s (dashed line) outside the star. 

External tests consist in the comparison with previ- 
ous solutions, either analytical or numerical ones. Such 
a test of the code has been performed for an analytically 
known Schwarzschild type solution of a non-rotating ho- 
mogeneous sphere with the corresponding numerical one. 
Relative errors committed on global quantities such as to- 
tal gravitational mass and circumferential radius are of the 
order of 10 -14 . This accuracy holds also for local quanti- 
ties as shown in Fig. 4 for the pressure p inside the star and 
the metric coefficients outside the star - none of the errors 

exceeding 10 -14. A recent project of systematic calibra- 
tion and comparison of the numerical results of different 
groups working in this field has yielded an agreement of 
characteristic quantities of realistic neutron star models at 
a level of about 10 -3. 

Internal tests represent the second important class of 
tests and are derived from some relations of global or local 
character which are related to the Einstein equations but 
not automatically enforced during the calculation. These 
tests are very powerful, since they do not only verify the 
proper working of the numerical scheme for some simple - 
usually degenerate - test problem, but apply to any cal- 
culation and supply an intrinsic estimate of the numeri- 
cal error involved. In the following neutron star matter 

-10 0 10 

x [km] 

Figure 5: Level contour E(r, 8) in the case of a polytropic 
EOS with -• = 2 for fi = 

20 40 "60 

Number of iterations 

Figure 6: Convergence of the error indicator ]1-,•] during 
the iteration process for f = 0. 

was modeled by a perfect fluid with a '• = 2 polytropic 
EOS. The angular velocity has been varied between f = 0 
for the static case and f = fie for the maximum rotat- 
ing case where for a further increase of f mass shedding 
along the equator occurs. Fig. 5 shows the flattened shape 
of a neutron star rotating at fiE. A simple test makes 
use of the known analytical expansion of B according to 
B = l+r 2 sin28 f. It showed B to coincide with the ana- 
lyrical value 1 on the polar axis within 10 -6 in the most 
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Figure 7: Convergence of the error indicator I1-A[ during 
the iteration process for f• = fiK. The spike at N = 10 is 
due to switching on the rotation. 
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Figure 8: Internal error indicator as a function of Nr in the 
compressible spherically symmetric case (polytropic EOS). 

unfavorable case of maximal angular velocity. The princi- 
pal test is provided by the GRV2 identity. An examination 
of the Schwarzschild type solution has revealed that 
is very closely related to the global errors derived from 
the numerical solution for variable N•. This observation, 
though obtained for the static case, is supposed to hold in 
the rotating case as well. [1-A[ can thus be considered as 
an estimator of the global numerical accuracy. Figs. 6, 7 
show the convergence of [1-A[ during the iteration for f• = 0 
and fi =fiK. While in the first case the exponential decay 
of I1-AI continues until roundoff errors of 10 -14 mark a 
lower limit, the total error in the rotating case is about 
10 -6 . This difference is due to the deviation of the fiat- 
tened stellar shape from the spherical numerical grid which 
leads to a discontinuity in the derivatives across the step 
lar surface located inside the inner zone, where the diverse 
quantities hence are no more analytical functions. The 
attainable accuracy in dependence of the number of grid 
points is illustrated in Fig. 8. The exponential decrease, 
usually called evanescent error and characteristic for spec- 
tral methods, is clearly visible. This property is lost in the 
rotating case where we observe a power law decay of the 
committed error oc N• -4'5 as found from Fig. 9. This in- 
convenience will be overcome by the implementation of an 
adaptive ellipsoidal grid which aligns the domain boundary 
to the star surface. We finally conclude that we have com- 
puted neutron star models with an analytic EOS achieving 
a precision of 10-]4 in the static case to some 10 -6 in the 
maxim,,m rotation case which has to be compared with 

o 

o 

o oo 

o o 

i i i i i • i i i i 

5 10 20 50 

Figure 9: Same as Fig. 8 but for maximal angular veloc- 
ity f•. Pay attention to the log- log scale; the spectral 
properties are lost here and one observes a power law con- 
vergence. 

previous results based on finite difference methods of the 
order of 10 -2 [27, 28, 29, 30]. 

It is further interesting to note that for typical values of 
N• = 32 and N• = 16 one iteration is performed in 480 ms 
on a VAX 4500. For an average number of 50 iterations per 
model the whole calculation is finished in about 24 s. The 

code efficiency has enabled us to carry out extensive studies 
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of neutron star samples under employment of numerous 
realistic EOS of neutron star matter [14]. 

4.4 Rotating neutron stars with magnetic 
field 

A further step toward a realistic description of rapidly ro- 
tating neutron stars has been recently achieved by the fully 
self-consistent inclusion of magnetic fields into our models 
[15]. These calculations represent the first numerical so- 
lutions of the coupled 2D-Einstein-Maxwell equations for 
rotating neutron stars which are hence fully relativistic, 
taking into account any kind of interaction of the electro- 
magnetic field with the star and the gravitational field. 

To complete the physical specification of our neutron 
star models as described in Sec. 4.2 we assume a perfect 
conductor behavior of neutron stax matter - the star inte- 

rior is thus free of electric fields - and add the electromag- 
netic field variables At, A,, the current variables jt and j, 
and a structure function f which determines the current 
distribution inside the star. The additional free parame- 
ter which fixes a unique neutron star configuration is the 
total electric charge Q. A derived global quantity is the 
magnetic dipole moment A4 which characterizes the mag- 
netic properties of the neutron star. The Maxwell equa- 
tions lead to a set of coupled elliptic partial differential 
equations which exhibits a similar structure as (31)-(34). 
They involve a scalar Poisson equation for At and a vector 
Poisson equation for A• which read 

A 4 

(4o) zxa At = (g.f + gtJ 
A4B 2 

- --N•r • sin s 0 x OAt 0N • 

- l+•(rsin0N•) 2 xOA•0N • 
-(OAt + 2N•OA•) 0(2a+/•-v) 

-2 -- OrA• + O•A• r rt--•'•O ' 

(41) 

where we define 

(42) 

-/zoA s (j•-N4j t) rsinO 
A4B :• 

+-•-•- r sin 0 ONe(OAt + N•OA•) 
1 

+ r s--i-n 0.% 

r sin 0' 

In this extended formulation the determination of At and 

Relative error on electric field 

5xlO -4 10 -• 1.õxlO -• 

Coordinate tadram [km] 

Relative error on magnetic field 

0 5xlO -4 10 -3 1.Sx 10 -3 

Coordinate rad•us [km] 

Figure 10: Comparison between the exact and the numer- 
ical solution in the case of a rotating conducting sphere 
with a magnetic point dipole at its centre. The asterisks 
indicate the sphere's surface. 

A• precedes the solution of the former set of equations. A 0 
is a smooth function in all space - we recall that/•r-• 1 for 
neutron star matter - and can therefore be uniquely solved 
by imposing the asymptotic boundary condition A• -• 0 for 
r-• oo. The treatment of At is slightly more complicated 
due to its non-smoothness across the stellar surface - a 

behavior caused by the surface charges which are charac- 
teristic for ideal conductors. Since At is linked to A• by a 
linear relation in the star interior, the exterior solution has 
to be matched to the latter one, respecting the condition 
At- 0 at infinity. We note that, once more, this is a task 
which is easily performed thanks to the use of a spectral 
method. After solution of the whole system we can update 
the electromagnetic contributions to the stress-energy ten- 
sor and proceed with the solution of the Einstein equations 
according to Sec. 4.2. 

Test calculations of the electromagnetic part have been 
performed for some simple cases, where analytical solutions 
are known, among these one involving a rotating magnetic 
dipole where an infinitesimal current loop at the origin is 
surrounded by some rotating perfectly conducting sphere. 
This testbed calculation mimics the configuration of a ro- 
tating neutron star with surface charges. Fig. 10 shows 
the relative error committed on the electric and the mag- 
netic field for a conducting sphere of 1 m radius rotating 
at ft = 3000 s -• with a central current loop of j0 = 10 • 
Am -2. Apart from the origin where the model current dif- 
fers from the theoretical 5-distribution the relative error is 
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Figure 11: Comparison between Ferraro's analytical so- 
lution and the numerical one in the case of a Newtonian 

incompressible fluid endowed with a magnetic field corre- 
sponding to a constant current function f(x) = to- The 
plotted quantity is the relative difference between the two 
values of A• as a function of the radial coordinate r for 
three values of 0. Asterisks indicate the star surface. 

very small: about 10 -5 at half the radius and reaching its 
minimal value of 10 -9 outside the sphere. An analytical 
solution for a Newtonian incompressible fluid [31] endowed 
with a particular current distribution under the - simpli- 
fying - assumption of spherical symmetry was adopted as 
a more sophisticated test. Also in this case the agreement 
was quite good with a relative error of better than 10 -3, 
shown in Fig. 11. The deterioration with respect to the 
dipole problem is due to some simplifying assumptions of 
the analytical model. 

The accuracy of solutions of the complete Einstein- 
Maxwell equations was estimated as in Sec. 4.2 by use of 
the virial identity GRV2 [17] as well as by a more general 
three dimensional integral identity valid for any station- 
ary and asymptotically fiat spacetime which we call GRV3 
[18]. It is the general relativistic generalization of the clas- 
sical NewtonJan virial theorem. The actual values of [1-A[ 
showed about 10 -5 for analytical EOS and some 10 -4 for 
the tabulated ones which agree with those of calculations 
without magnetic field. Throughout all the calculations 
we chose a grid resolution of 41 points in r and 21 points 
in (9. 

In the following we studied configurations of static neu- 
tron stars endowed with a magnetic field. The absence of 
kinematical effects allows an unambignous interpretation 

I I I I I I I I ' ' I .... I , , I I i 
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Figure 12: Fluid proper density isocontours in the (r, (9)- 
plane for the M = 4.06M o maximum mass static magne- 
tized star built upon a polytropic EOS for '• = 2. The thick 
line indicates the star surface. 

I 
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Figure 13: Magnetic field lines in the (r, (9)-plane for the 
maximum mass configuration corresponding to Fig. 12. 
The thick line indicates the star surface. The magnetic 
field amplitude amounts to Bc = 9 x 104 GT at the star's 
centre. 

of the effects of the magnetic field. In the static case the 
electric charge vanishes identically, leaving alone a mag- 
netic field. Since the stress-energy tensor is not isotropic, 
we observe a deformation of the star already in the static 
case. Fig. 12 shows a maximum field configuration and 
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Figure 14: a. Magnetic field lines in the (r, 0)-plane for the 
configuration specified in the text. The thick line indicates 
the star surface. b. Electric isopotential lines At=const. 

Fig. 13 the corresponding distribution of the magnetic 
field. In the rotatin9 case the magnetic field is accom- 
panied by an additional electric field. The both field dis- 
tributions for a Po12 M=3.37Mc• model at fi=3x103 rad 
s -I and a constant current function are given in Fig. 14. 
Note that the field lines of At and A• coincide in the star 
interior due to the perfect conductor assumption. The 
non-smoothness of At across the star boundary properly 
reflects the discontinuity of the electric field due to the 
existing surface charges. 

5 3D-gravitational neutron star 
collapse 

5.1 Basic equations 

The investigation of the 3D-gravitational collapse of rotat- 
ing neutron stars requires the solution of the general time- 
dependent field equations of general relativity. We stress 
that already in the Newtonian case a fully three dimen- 
sional simulation of stellar collapse is a highly demanding 
and non-trivial problem. Indeed up to this day there ex- 
ists only one corresponding investigation which aimed at 
the study of gravitational wave emission associated with 
type II supernovae [32]. While in the presence of symme- 
tries like stationarity or axisymmetry the field equations 
are greatly simplified when evaluated explicitly for some 
appropriate coordinates the situation is quite contrary for 
a three dimensional dynamical problem. It is therefore 
favorable to solve the Einstein equations in their original 
coordinate independent (covariant) form. This choice al- 
lows us to adopt elliptic equations for the gauge variables 
N and N • which have a direct geometrical signification. 
The maximal slicing-minimal distortion gauge [24, 7] is 

highly singularity avoiding and neatly captures the propa- 
gation of gravitational waves in the far field zone. This is 
a very important feature, since the study of gravitational 
wave emission is the principal goal of this investigation. 

The governing equations then have the following form: 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

This system of coupled partial differential equations is 
characterized by the following properties: 

The system includes a time first order hyperbolic system 
(43) and (44) of the spatial metric tensor h O and its con- 
jugate momentum variable K 0 which reduces to a wave 
equation for h 0 in the far field zone. The evolution of the 
matter fields E and Ji is governed by the parabolic system 
(47) and (48). These equations constitute the dynamical 
part of our problem. N and N i are subjected to the Pois- 
son type equations (49) and (50) where the matter fields 
act as source terms. Further involved quantities are the 
stress tensor S 0 and the Ricci tensor R 0 where S = 
and R=Rii. The additional constraint equations (45) and 
(46) which establish some consistency relations between 
gravitational and matter fields are satisfied identically for 
the exact solution. They may be used to reduce the num- 
ber of the dynamical variables, an approach that would 
result in a constrained evolution scheme. Indeed this pro- 
cedure guarantees that the numerical solution represents 
at any moment some solution of the Einstein equations 
but not necessarily the correct one. We prefer an uncon- 
strained scheme where the constraint equations can serve 
to estimate the involved numerical errors. 

5.2 Numerical method 

In the spirit of the analytical approach of Sec. 5.1 we have 
opted for a numerical scheme which is based on a one-to- 
one adaptation of common tensor calculus, where elemen- 
tary operations like contraction and covariant derivation 
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are performed by specific subroutines acting on entire ten- 
sor q•_mntities. We further introduce a fiat background 
metric which enables us to separate the contributions re- 
lated to the curvature of space and to carry out the numer- 
ical operations with respect to fiat space spherical coordi- 
nates and the corresponding metric tensor f•j [33]. For a 
given three metric h•j we then have the following relations: 

We first introduce a tensor A•k defined as 

where [[ denotes covariant differentiation with respect to 
•at space spherical coordinates. The covariant derivative 

ß 

USlJ of a vector U • in curved three-space can then be re- 
expressed as 
(52) U•i• - U•iij + 
where the generalization to tensors of higher order is obvi- 
ous. We can further rewrite the Ricci tensor Rij in terms 
of the A•jk. 

The effective use of our scheme is clarified by inspection of 
the already familiar scalar Poisson equation. 

(54) /Vl•l• = S -', :- h•(Nil•11• - Z•m•Nil•) = S. 
Defining a new tensor field r as h •j = ?L•r •j we can isolate 
the (f•)-related covariant Laplacian and find the biomet- 
tic equivalent of the covariant scalar Poisson equation 

(55) /Vll•11• = S+ (?J+r 

In the case of a conformally fiat metric h• = A4f•j with 
f,j being the usual metric tensor of fiat space spherical 
coordinates we obtain r • = (A-4-1) ?J and the following 
equation where Ai represents the usual fiat space scalar 
Laplacian ((• denotes In A). 

1 

(50) din = S- 2A-4(OaON 
0N) - (A - ) A f N. -• r • sin • 0 

The linear contributions on the right can be eliminated, 
if we slightly change the definition of r to describe the 
deviation of the conformal metric • = -•-•/• from the fiat 
space metric 
we have r = 0 and 

1 

(57) •V 
1 

Though this result has been derived for a conformally fiat 
metric we conclude that for any three-space the separation 
of the conformal factor is a first improvement compared to 
the fiat space approximation. 

Following our reasoning in Sec. 2.1 we restrict ourselves 
to the exclusive use of pseudophysical components of tensor 
quantities related to the standard local orthonormal frame 
of flat space spherical coordinates in our numerical scheme. 
The subroutines which calculate the covariant derivatives 

of tensors of order zero to three appearing in our equa- 
tions show the typical relative errors of the order of 10 -14 
due to roundoff errors when using simple test functions. 
For a successive derivation of a scalar function down to 

a tensor of order four the relative error still does not ex- 

ceed 10 -•. While the computation of the lapse equation 
can be reduced to the iterative solution of a scalar Poisson- 

like equation as demonstrated in Sec. 4.2, there remain two 
other problems of higher demand. The first one concerns 
the solution of the general shift vector equation involving 
a linear vector operator which comprises a vector Lapla- 
cian and the gradient of a divergence applied to the shift 
vector N •. In Sec. 5.3 we present a decomposition scheme 
based on the Clebsch-Gordan theorem which leads to an 

equivalent system of three scalar Poisson equations that 
can be solved successively. The other one is related to the 
semi-implicit time integration of the evolution eq.uations 
of the metric potentials. Here P•j includes a tensor Lapla- 
cian Ah•j which has to be treated implicitly. An equivalent 
approach as in the vector case is in work. 

5.3 Vector Poisson equation 

The numerical inversion of a 3D-vector Poisson equation is 
necessary to solve the general shift vector equation which 
is an equation of the following type 

(58) •V + •V(V.V)= S 

where a is a constant. In order to facilitate the solution 

of (58) we decompose V and $ into its divergence-free 
and its irrotational part. We introduce vector fields V 
and • which we suppose to be divergence-free as well as 
two scalar potentials ß and •. We thus have a unique 
decomposition 

(59) V = •r + V• 
(60) s = + 

after specifying the appropriate boundary conditions for ß 
and •. In a first step we solve the Poisson equation for ß 
which we obtain by taking the divergence of (60). 

= V.S. 
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Rewriting (58) in terms of the new variables we infer the 
equivalent equation 

(62) •f" + V((I+,•) ,• - •) = ,•. 

Taking the divergence of (62) where we make use of the 
commutativity of differential operators in flat space, we 
find a Poisson equation linking A• to the already known 
potential •. 
(63) (1+,•) ,•,• = •,. 

The solution of (63) is a priori determined up to an addi- 
tional potential • with A•H- 0. We fix •H to be zero 
according to the boundary conditions and obtain a Poisson 
equation for •. 
(64) (1+,•) • =•'. 

We turn now to (62). Taking into account (64) we derive 
the final equation that governs the divergence-free fraction 
of V. 

(•5) •f• = •. 
We specify the components V• to be the physical comp• 
nents of the vector V related to the local orthonormal basis 

of spherical coordinates. We further drop the tildes on the 
vector quantities. The explicit write-up of (65) then reads 

(66) 
2 

r 2 sin 0 O•V• = 

(67) 
I 2 

r 2 sin2-• • V# + • aS Vr 
2 

r • sinetan • O•V• -- Ss, 

I 2 

(68) A[V• r2 si112• V• + r2 sin•-• •r 
2 

• r 2 sin 0 tan 00, Vs = S• 
where Ai denotes the ordinary scal• Laplacian 

I I 1 

(69) a f = • + 2 O• + r• Oe + O• + • Og. ; t• 0 • r 2 sin20 

We further recall the representation of the covariant diver- 
gence •7.$ in spherical coordinates 

_ I 1 (70) •7.$ = OrSr + 2 S• + - OoSs + rt•-'•n• So 
1 

We adopt the following notation where we introduce two 
auxiliary scalar potentials U and W in order to obtain a 
set of decoupled equations which is equivalent to (66)-(68). 

(71) = 1 r rsinO O•0W, 
1 I OaW+ O4•U. (72) V, =; r s--•n• 

From •7. V = 0 we get 

(73) • + 2 V, + 1 I •sU ; • • U + r2 tan• 
1 a•U = 0. • r2 sin2• 

Combining (73) with (66) leads us to a sc•ar Poisson equa- 
tion for V where we have defined •=rV•. 

(74) =r&. 

Proceeding in the same manner with (67) and (68) we 
derive the following line• combinations of the resulting 
equations with (73). 

(75) sinOOo(O•U-O•V•) - O• (AW- • O•W) 
= r sin 0 S•, 

I O•(O•U-OrVr)+O•(•W-20rW) 
= rS•. 

Derivation of (75) with respect to 0 and of (76) with respect 
to 4 and adding the both equations allows us to recover a 
sc• Poisson equation for (O•U-V•) which only involves 
the angular variables (0, •) where we have inte•ated over 
r •d set the implied inte•ation constant to zero to •sure 
a v•ishing behavior of the source terms at r = •. ' 

(w) = 

Here •, denotes the •ar fraction of AI multiplied by 
•2, 

At this point we c• determine U by me•s of V• which 
h• akeady been •ed by (74). In order to calculate the 
lacking potentiM W we t•e up (76). An ordin•y int• 
gation over 0 where we require vanishing behavior of the 
so•ce terms at i•nit• • for (O•U-V•) results in a scalar 
Poisson equation for W defined by W = r•, 

ifs) = - as. 
This scheme hence Mlows to compute the required poten- 
tials successively for a given source distribution starting 
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Figure 15: N • for a rapidly rotating Kerr black hole at 
aim = 0.99 where r• denotes the radius of the horizon. 
The different curves correspond to various values of • rang- 
ing from 0 ø to 90 ø. The asterisks indicate the subdomain 
boundaries. 
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Figure 16: Absolute error in N • corresponding to Fig. 15. 

from the ordinary Poisson equation for •, solving then the 
equation involving (Or U-V•) and thus fixing U while in 
a last step W can be determined as a quantity depending 
on V• and U. Note that $e does not appear in the source 
terms of the final equations. This is due to the constraint 
equation •.$ = 0 removing one degree of freedom. 

5.4 Tests 

The routines we have built based on this computation 
scheme and on our spectral method library enable us to 
solve a vector Poisson equation in a multidomain config- 
uration including an exterior compactified zone - if de- 
sired - which covers all space and thus allows to impose 
proper boundary conditions for asymptotically flat space 
where for the time being we restrict ourselves to the su- 
persymmetric case. Numerical tests have been performed 
on simple test functions and on problems where the ana- 
lytical solution was known in advance. For test functions 
we found once more the numerical error to be governed 
by the roundoff limit of the employed machine of the or- 
der of 10 -14 . As an advanced test problem we solved the 
shift vector equation in the Kerr metric of a rotating black 
hole. The presented configuration corresponds to a rapidly 
rotating Kerr hole - aim - 0.99 - close to maximum an- 
gular velocity where the relativistic effects involving the 
shift vector component N e are strongly pronounced. The 
entire space outside the black hole is covered by three zones 
where the outer compactified one extends to spatial infin- 
ity. The grid resolution is chosen to be Nr = 33 in each 
zone and N• = 9. Note the quite small number of nodes 
in •. Thanks to taking into account the even symmetry 
of the problem with respect to reflection at the equatorial 
plane according to Sec. 2.2 this corresponds to an effective 
value of 17 in the whole interval [0, •r]. Fig. 15 shows the 
course of N • in the vicinity of the black hole while Fig. 16 
illustrates the absolute error committed on the shift vec- 

tor component N •. The numerical error nowhere exceeds 
10 -lø. For a higher value of Nr it even goes down to about 
10 -13. As expected the numerical errors are most elevated 
at the boundaries of the different subdomains where the 

piecewise solutions of adjacent shells are matched. The 
GRV2 identity which had already proved its usefulness in 
the study of axisymmetric stationary neutron stars was 
applied to estimate the total error of the numerically com- 
puted Kerr spacetime. The error estimator I1- A{ turned 
out to be closely related to the numerical errors derived 
above from comparison with the analytical solution and 
confirmed in this highly relativistic problem to be a sensi- 
tive indicator of the global numerical accuracy. 

6 Conclusion 

We have presented the application of spectral methods 
to several problems of numerical relativity. In each case 
they proved to be a highly valuable tool which lead to 
results typically several orders of magnitude more accu- 
rate than corresponding codes based on finite difference 
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schemes. Especially in spherical-like coordinates the ad- [9] 
vantages of a spectral method which allows a rigorous 
treatment of the associated regularity conditions, while im- 
proving the efficiency of the code at the same time, are re- 
markable. Particularly important properties for our prob- [10] 
lems are the negligible numerical viscosity in temporal evo- 
lution schemes which enabled us to capture subtle details 
in the time-dependence of evolved variables as observed 

for equilibrium configurations of neutron stars in Sec. 3.3, [11] 
as well as the very natural treatment of boundary condi- 
tions aad the efficient solution of elliptic equations which 
is a frequently encountered task in our investigations. Our 
so far very positive experiences with spectral methods give [12] 
us confidence to dispose of the appropriate numerical tool 
to tackle the exciting problem of black hole formation by 
3D-gravitational collapse of neutron stars. 
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