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Abstract 1 Introduction 

We present simple, banded preconditioners that transform 
linear ordinary differential operators with polynomial co- 
efficients into banded form. These are applicable to a wide 
class of Galerkin approximation problems, including ex- 
pansions in terms of all the classical orthogonal polynomi- 
als. The preconditioners are in fact the n-th order integra- 
tion operators for the polynomial families employed in the 
Galerkin approximation, with n the order of the differential 
operator. The resulting matrix problems are algorithmi- 
cally simpler, as well as better conditioned than the orig- 
inal forms. The good conditioning allows the extension of 
our ideas even to problems with arbitrary, nonsingular co- 
efficients as well as to certain quasilinear problems by the 
use of iterative methods. We also present extensions to 
partial differential operators with polynomial coefficients 
by considering preconditioners in the form of tensor prod- 
ucts of appropriate combinations of integration operators. 
The origin of the tridiagonal integration operators for arbi- 
trary classical orthogonal polynomial families is shown to 
lie with the Gauss contiguity relations for Hypergeometric 
functions. 
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The classical orthogonal polynomial bases most commonly 
used in Numerical Analysis originate as eigenfunctions of 
singular Sturm-Liouville problems. The derivatives of such 
polynomials form an orthogonal basis as well; in fact they 
are also classical orthogonal polynomials. As a result of the 
Gauss contiguity relations for Hypergeometric Functions 
[1], elements of the original basis have a simple expres- 
sion in terms of elements of the derivative basis, involving 
at most three terms of contiguous degrees. Consequently, 
although the matrices representing differentiation to vari- 
ous orders in terms of an orthogonal polynomial basis are 
almost full upper triangular matrices (only exception are 
the Hermite polynomials), those representing integration 
are banded, of bandwidth 2n + 1, with n the order of in- 
tegration. This, together with the fact that multiplication 
by a monomial is also a tridiagonal matrix leads to simple, 
banded preconditioners which simultaneously band classes 
of matrices of the form PD TM, with P the operator of mul- 
tiplication by a polynomial p(x) and D '• the operator of 
m-fold differentiation. This allows the formulation of ef- 

ficient algorithms for the solution of differential equations 
with polynomial coefficients in any of the classical poly- 
nomial bases. In Sec. 2 we establish the above facts and 

discuss how they can be used in the context of the Lanc- 
zos r-method to construct a spectrally accurate solution of 
a differential equation with general polynomial (and. ratio- 
nal) coefficients in O(M) operations with M the truncation 
order. The appeal of the method is due not only to the 
efficiency of solution, but also to the excellent conditioning 
of the resulting matrix problems [6]. This latter property, 
established under certain general assumptions in Sec. 3 
permits the extension to problems with arbitrary nonsin- 
gular coefficients as well as certain nonlinear problems by 
the use of iterative methods, and we present examples in 
Sec. 4. 

In Sec. 5 we show how the ideas can be extended 

to higher dimensional problems. The pre-conditioning 
scheme presented here has the advantage that it can be 
extended easily to treat problems in multidimensions. Ad- 
ditional dimensions are included in the banded matrix for- 

mulation through tensor products, which amounts to re- 
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placing entries in banded matrices by blocks which are 
themselves banded. A natural way of deriving such block- 
banded forms for the higher dimensional case is by inter- 
preting integration and differentiation as change of basis 
transformations among related polynomial families. Ef- 
fectively, then, we consider expansions in each variable in 
terms of a basis of derivative polynomials of order equal 
to the maximum order derivatives in that variable present 
in the given equation. The numerical solution of several 
simple test cases is presented. As an alternative to finite- 
difference based time stepping schemes for time dependent 
problems, we apply our method to problems in one space 
dimension plus time. Functions are expanded in a double 
spectral expansion, in both the space and time variables. 
The problems are solved by inversion of the block-banded 
matrix resulting from the application of integration pre- 
conditioners of appropriate order in each variable. The 
operation count for a problem discretized to a N x M res- 
olution is min(O(MSN), O(NSM)) for a single solution 
but it is lower if the same matrix is inverted several times, 
say as a result for solving with different forcing functions 
etc, in which case the cost is rnin(O(M2N),O(N2M)). 
These numbers reflect the alternatives available when de- 

riving the block-banded forms for the differential opera- 
tor. Analogous estimates also hold for higher dimensional 
problems. Finally, in Sec. 6 we present some concluding 
remarks and further connections with previous works. 

In a previous paper [6] we examined the use of the spec- 
tral integration operators as postconditioners for linear dif- 
ferential operators with polynomial coefficients in arbitrary 
bases of classical orthogonal polynomials. In that form, the 
method was a generalization of the method of treating a 
differential equation by expanding the highest derivative 
in terms of Chebyshev polynomials originally introduced 
by Clenshaw [4]. The integration preconditioner for the 
Chebyshev polynomials is also analyzed by Greengard [11], 
while the recurrence relation for the derivatives of the Ja- 

cobi polynomials has also appeared in a recent review by 
Fornberg [7]. 

2 The method 

Throughout, we assume that we are working with a family 
of polynomials {Qk }• which are orthogonal and complete 
over the interval (a, b) (here a and/or b can be infinite) with 
respect to the weight w(x). In the cases of interest, these 
are the eigenfunctions of a Sturm-Liouville (SL) problem, 

+ kw(x)Q = o, 

so that the Q[ form an orthogonal family as well, with 
weight p(x) which satisfies p{.x) • 0 as x • a, b. We 

will assume that the functions under consideration possess 
sufficient differentiability properties over (a, b) and can be 
expressed as a series involving the Q•. See [3] for a discus- 
sion of the convergence properties and the introduction of 
relevant function spaces. 

2.1 Integration operators and derivative 
bases 

We write (Q',Q.)w = f• Q.Q,w(x)dx = h.5,.•, with 
h,• the norming constants of the Q• [1]. We set Q,(x) = 
• Knox •. It is well known that all orthogonal poly- 
nomial fa•lies share a thruterm recu•ence of the form 

1 

(2) • Q&+ta&+l,& = xQ& , k = 0,1,... 

This follows since, if/ < k- 1, deg(xQt) = l+ 1 < k 
•d, by o•hogonality, {xQ•, Qt)• = {Q&,xQt)• = 0. By 
matching powers we e•ily s• that [14]: 

Kn-l,n-1 
an,n-1 - Kn,n ' an,n+l --- 

Kn.n_• Kn+•,n 
an,n Kn,n K,+•.•+• 

the second relationship following since 

= ½Q., = = 

In many important cases, including the classical orthogo- 
nal polynomials (i.e. Jacobi, Chebyshev, Legendre, Gegen- 
bauer, Hermite and Laguerre polynomials) there also holds 
a relation of the form 

1 

/4) E ' Q•,+tb&+t,k =Q• , k= 0,1,-.. 
/=-1 

Here, as well as in (2), we introduced Q_• = 0. In fact: 

Lemma 2.1 Suppose that the ei.qenfunctions of the SL 
problem (1) are polynomials. Then their derivatives, 
{ Q[ } •c also constitute an orthogonal family with respect to 
weight p(x) where it is assumed that p(x) > 0 for x • (a, b) 
and p(a) = p(b) = O. Moreover, the epression of 
(k > 1) in terms of the Q• involves at most only Ir¾ l'•klk-1• 

i.e. it has the form (J). 

Proof.' Integrating by parts we see 

Q•Q•p(x)dx ' • = Q•Q•p[,•- Qk(Q•p)'dx 

= A• Q•Q•wdx = )•h,5• 
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since p(x) vanishes at the end-points, and the orthogonal- 
ity of the Q• follows from that of the Qk. We introduce 
h' - •kh• for the norming constants of the Q• indexing k--I ' 

according to the degree of the corresponding polynomial, 
namely deg(Q•) = k- 1. Now, since the {Q•}•+• are 

•-•k+l independent, we have that QI• -- •,l Qlbl,l• and in or- 
der to establish (4) we must show that (QI•, Q•)p -- 0 for 
l -- 1,..., k - 2. Clearly 

t b •a b {Q•,Q•}p Q•Q•pz[a - (xQ•Q•p+ x ' ' 

= - (Q•,xQ•)p + A• (Q•,xQl)w = 0 
where the first integral vanishes due to the orthogonality 
of the Q• since deg(xQ•) = l <_ k- 2 < k- 1 = deg(Q•), 
while the second integral vanishes since deg(Qk) 
k- 1 _• l + 1 = deg(xQl). 
Note: for the classical orthogonal polynomials, the deriva- 
tives of arbitrary order are also classical orthogonal poly- 
nomials. This follows easily from general properties of the 
Hypergeometric functions F(a, b; c; z) [1]. For instance, for 
the Jacobi polynomials we have 

P?'fi)(1 - 2z) - (a+ 1).F(_n,n + a + fi + 1;a+ 1;z). 
Since 

(5) •zF(a, b; c; z) ? -•F(a.+ 1,b+ 1;c+ 1;z), 
it follows that 

(6) •d p_(mfi)(x ) _ n + dx " 2 ' n--1 \;•'} ' 

Similarly, for the Laguerre and Hermite polynomials we 
have 

dL(•')(x• r(ø+•) dx " ,---..._• (x) , H. - 2nH._•. 
In all cases, differentiation can be seen as a change of basis, 
always within the set of classical orthogonal polynomials. 
We let A, B be the coefficient matrices in (2,4) respectively. 
The relation between the two sets of coefficients is found 

from the following: 

Lemma 2.2 The coe•cients bm,n in (J) are found from 
those in (œ) as 

1 

bn+l,n -- -----•an+l,n , n+ 

bn-l,n - (1 (n - 1)An) n•n--1 an--l,n, 

and 

bn,n I I (• K1.0) -- -- al,l -- K1,'--• ' n+l an'n n(n + 1) \l----1 
Proof: Since the Q• are orthogonal, they must satisfy a 
relation of form (2): 

! 

(7) w•+•+• k+•,k = xQ•+• , k = 0,1,... 

, _ - + Since Q.+•(x) - Y]•=o t .• _ 
1)Kn+•,m+lX m, i.e. ' 1)Kn+•,m+•, K•,, = (rn + it follows 
from (3) that 

n+l t 

an+l, n -- __ n -• 2 an+2,n+l 

n 
t '-- -- )•--•n an+l ,n an-- l'n n • 1 

, n K.+L. n + 1 K.+z.+• 
a.,. --- n + 1 K.+•,.+• n -{- 2 Kn+2,n+2' 

Differentiating (2) and using (7) there results: 

and the claim follows after some algebra. 
Note: The computation of the bij from the above expres- 
sions is not very practical, and was only given to establish 
the connection to the a• d. A more direct calculation in 
the case of the Jacobi polynomials follows from their con- 
nection to the hypergeometric functions [14]. Indeed, dif- 
ferentiating (2) for the Jacobis, multiplying (6) by x and 
expressing the latter in terms of the •(ø+•'•+•) ß • using (2) 
we find 

n-F l,n -- -- • •"+•'" n+a+fi+2 ' - 

b(a,•) _ a(a,fi) _(a+l,fi+l) n,n n,n -- Un--l,n--1 , 

b(•,fi) _(•,fi) n + a + fi + 1 a(•+•.•+•) 
n--l,n = an--l,n -- n ..• t• ..• • n-2,n-1 

In Appen•x A we show that similar relations for the 
deri•tives resulting in a tridiagonM inte•ation operator 
(• well • a tridiagonM monomial multiplication) hold for 
•1 h•erg•metric •d confluent h•ergeometric functions 
• a result of the Gauss conti•ity relations, •d this can 
be used to •ve • alternative direct deri•tion of the r• 
cubenee coefficients aid and bid. 
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The nonzero elements of the matrices A, B for the clas- 
sical orthogonal polynomials are given in Table 1, together 
with other relevant quantities, using the standard notation 
[1]. The relations for the Gegenbaner polynomials C? ) can 
be constructed from those of the general Jacobis since 

= + 1)r(2 +. + 1) 
+. + 1)r(2a + 1) 

where a = •3 = v - 1/2. 

2.2 Reduction to banded form via integra- 
tion preconditioning 

Our main result can be stated as follows: 

Theorem 2.1 Consider the orthogonal polynomial family 
{Q,)• and assume that the Qk satisfy (J) for some matrix 
B = (hi j). Then, the matrix representing the differential 
operator 

(8) L = •-]pk(x)D k 
with deg(p• ) = •rk, the degree of the polynomial coefficient 
old •', becomes banded upon left multiplication by B[•] with 
bandwidth R = max•.(2•r• +2(n - k) + 1) where 0 _• k _• n. 

(In the sequel we use L both for the operator and for its 
matrix representation. Also, arrays are indexed from 0 to 
N, the maximum order of truncation. An array G whose 
first k rows have been replaced by zeroes is denoted by 
G[•]. Similarly f[i] will denote the vector f with its first i 
components set to zero.) 
Example: The following ordinary differential equation 
arises when one solves the 2-D Helmholtz equation on an 
annulus: 

u(x) - • D s+ . 1 D u(x) = - f 
x+a (x 

The inner radius of the annulus is a- 1 > 0 ,k is an integer 
(representing the Fourier mode), and the range of x is - 1 _• 
x _• 1. Multiplying through by the factor (x+a) • we arrive 
at an equation with polynomial coefficients which can be 
transformed to nine-diagonal form via left multiplication 
by the matrix B•] [5]. This example is further discussed 
in the next section, where conditioning is considered. 

Note: In conjunction with the Lanczos •--method [10], 
or alternatively by making use of proper subspaces where 
differentiation is invertible [6], the above idea can be in- 
corporated into the design of algorithms for the efficient 
and accurate solution of differential equations with poly- 
nomial coefficients. When the •--method is used, the first 

n rows which after left multiplication by B" are null, are 
replaced by row vectors associated with the •--constraints. 
These alter the matrix but do not affect the order of com- 

plexity of the solution algorithm, apart from an increase 
in the bandwidth which remains _< R + n. 

We establish the above result in a series of lemmas. We 

define the function evaluation functional at the point x, 
q,., as the row vector 

q,. = (Q0(x), 

Also we introduce 

q?) = (Q?)(x),Q?)(x),...), 
the operator of evaluating the k-th derivative. Clearly, the 
{Q?))• form an independent set of polynomials which, 
for the classical orthogonal polynomials, can be shown 
to be orthogonal with a weight related simply to w(x). 
If we write ](0) = ] = (]o,]•,"')T for the vector of 
the expansion coefficients of a function f(x) in the given 
basis and ](•) = (]o(•),]?),...) T for the vector of the 
expansion coefficients of the function f(•)(x) (denoting 
the k'th derivative of the funcion f(x)) we have that 
f(k)(x) = q?)](o) = q•](•). Then the relations (2), (4) 
can be written as 

(9) xq• = q•A and qz = q?)B = q(•)B[•] 

where A, B are the recursion coefficient matrices for (2), 
(4) respectively. 

The matrix B has the form 

(lO) B: 

b0,0 50.1 0 0 ... 
b•,0 b•,• b•,2 0 ... 
0 b2.• b2,• b2,s 0 

0 0 b•,• b•,• ". 
0 0 0 ". ". 

The very first row of B will always be set to zero. Thus 
the elements 50,0 and 50,• are irrelevant and will never be 
used. The basic recursion (4) remains unchanged regard- 
less of how the first row of B is defined since Q?(x) = 0 
for polynomial families. 

We have 

Lemma 2.3 The operator Pn of multiplication by a poly- 
nomial Pn (x) is expressed in the basis Qn by a banded ma- 
trix, of bandwidth 2•rn + 1. 
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Proof: Consider an expansion f(x) = qz] (ø). Multiply- 
ing by x, one obtains xf(x) = xqz] (ø) where xqz denotes 
xqz = (xQo(x),xQ•(x),...). Invoking (9) one can substi- 
tute for xqz to obtain xf(x) = qzA] (ø). Thus A is the ma- 
trix which transforms the vector of expansion coefficients 
for f(x) into the vector of expansion coefficients for xf(x). 
The matrix A is tridiagonal since the recurrence relation 
(2) is a three-term recurrence relationß Extending this ar- 
gument, it is evident that A n is the matrix that transforms 
the vector of expansion coefficients for f (x) into the vector 
of expansion coefficients for xnf(x). Since A was trialiago- 
hal A n is obviousIy banded with bandwidth 2n + 1. Thus 
multiplication by a polynomial Pn (x) becomes the opera- 
tion of multiplication by pn (A). 
Note: If the family has a simple convolution, as is the 
case for the Chebyshev polynomials for which 2TroT, = 
Tin+, + •,n-nl, then it is convenient to expand the poly- 
nomial p, (x) in terms of the basis thus simplifying the con- 
struction of the matrix Pn. Specifically, one first expands 

= •k=0 caTa. For purposes of implementation, let 
us consider a truncated Chebyshev expansion of order N, 
that is f(x) = T•] (ø) where T• is the row vector T• = 
(To(x),T•(x),...,TN(x)). The product is p,(x)f(x) = 

•-•;• caTaT&i(ø) where TkT• represents the vector TaT• = (Ta(x)To(x),Ta(x)T•(x),...,Ta(x)TN(x)). The 
vector TkT• can be expressed in the form (TaT•) = 
T•ATk (accurate up to the N+l'th coefficient) where ATk 
is the N + 1 by N + 1 matrix 

0 

0 

1 2 

AT• • 0 

0 

-.. 0 I 0 ...... O' 
ß . ß 

0 I 0 .. .. 

I 0 '. '. .. 
, . 

0 '. '. 0 
ß . 

I '. '. 1 
ß o 

ß o o 

...... 0 I 0 .-- O. 

where a•0 = 1, a0• = 1/2 etc, which follows from 
2TrnTn = Trn+, + Tim-, q. Note ATe reduces to the iden- 
tity matrix. As expected, ATk has a bandwidth of 2k + 1. 
Thus p,(x)f(x) •=" - •k=0 c•T•T•] (ø) can be written as 
pn(x)f(x) = Tff (•--• c•AT•) ](o) where •_-_-• c•AT• 
is sum of matrices AT• each with bandwidth less or equal 
to 2n + 1. This equation illustrates that multiplication by 
p, (x) translates into multiplication by a banded matrix for 
Chebyshev polynomials. 

We also have the related obvious consequence of Leib- 
nitz's rule: 

Lemma 2.4 The commutator of the operator D • with the 
operator P of multiplication by a polynomial p(x) is given 
by 

• ( k )Dk_mp(m). [P'D•] = PD• - DkP= Y•" (-1)m m 
k 

The properties of the B[•] are established in lemmas (2.5- 
2.6): 

Lemma 2.5 Let f•(x) = •]•)Q•(x); then B[•]] (•) = 
1[•) and the first element of ](0), ]o(o), is undeterrnined. 
Proof: We have that f(x)= q•](o)and f'(x)= q(•)](0)= 
qz](•). Also, by assumption, q?)B = q•. Combining we 
find 

Since the Q• •e independent and orthogonal, the relation 
claimed follows. Cle•ly, the first element of ] remains 
undeter•ned, since Q• • O. 

Corollary 2.1 A similar relationship holds for the n-th 
derivative coefficients of f(x). 

Recall that q?)B = q• from (9). Similarly, one has 
qz(i+a) r• q(•i) One can generate, using repeated appli- 
cations of ..(i+a) r• q? and recursive substitutions, 

where p _• n. Setting n = k and p = k, in (11) one obtains 
k k 

q•B = q•. Arguing as in Lemma 2.5 it is seen that 

using • • q•B = qz for the last equalityß Using the second 
and last expression in the above equation, one obtains 

and, again, this relation gives the coefficients of f(x) in 
terms of those of its k-th derivative, with the components 
]0 through ]•_• remaining undefined. Recall that the first 
k components of q?) are zero, since the k'th derivative 
annihilates the polynomials of order first through k - 1. 
We then have 

Lemma 2.6 If D is the matrix of differentiation in the 
family, then B[•]D -- I[1], the identity with its first row set 
to zero. 
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Proof: Indeed, by definition, D] (ø) = fO), so that 
q•](•) = qzD] (ø) from which •z [•] - 
0 nsing (9). hns = 0 or 
q?)(f•)- B[•]Df (ø)) = 0 by Lemma 2.5. One c• now 
•te (Ip] - Bp]D)] (ø) = 0 thus conclud•g the proof. 

It then follows that: 

Corollary 2.2 If D n is the matrix representing n-fold dif- 
Dl+ n r)n l ferentiation in the family Qn, then '"It+n]'" = B[l+n]' 

Proof: By the definition of the differentiation matrix D. 

(12) q?) ](o) __ q•D • ](o) 

Settingp = n in (11), one has q(•n)Bn = qz. Substituting 
this expression for q• into (12), one obtains 

(13) = 

Setting p - n- k _• 0 in (11), one has q?)B n-• - q?). 
Substituting this expression for q?) in (13), one obtains 

(14) 

Now the first n components of q(•") are zero. However, the 
remaining components of q?) are composed of orthogonal 
polynomials and are therefore independent. Thus, one has 
Bn-k] (ø) = BnD•] (ø) except for the first n components. 
Since f(o) is an arbitrary vector, one has B "-k -- BnD • 
except for the first n rows. This equation can be stated 
concisely in the form B n-• n • [.1 =B[.iD or lettingn=n+l 

l•l+ n F)n l and k = n, in the form •[t+-l• = By+•]. 
We now give the proof of our main assertion: 

Proof of theorem: Following lemma (2.4) we rewrite the 
differential operator L as 

L 

k----0 m=O 

r 
r=0 k----r 

= •-•.D •& 
r----O 

with deg(S•) = a• = max•<•<.(•rk - k + r). Then, since 
n r Bn-r by cor.(2.2) B[•]D = [•l ' 

n 

r•0 

and the bandwidth is obviously 

2 max ((n-r)+ar)+l=R. 
O_<r_<n 

Replacing the first n-rows (containing zeroes) by appropri- 
ate constraint coefficients, originating from the boundary, 
initial or other conditions imposed on the solution of the 
ODE Lu = f, will transform the matrix into a banded form 
with n additional (generally nonzero) rows. This matrix 
still factors similarly to a banded matrix, with bandwidth 
R+n. 

3 Conditioning and convergence 

It is well known that spectral differentiation operators suf- 
fer the dual defects of full upper triangular matrix repre- 
sentations with very poor conditioning. Above we have 
shown how integration preconditioners band spectral dif- 
ferentiation matrices. In this section we show that they 
produce well-conditioned linear systems, and exploit that 
fact to give good error estimates for general ordinary differ- 
ential equations. In the following section we will show that 
the favorable conditioning properties lead to the rapid con- 
vergence of iterative methods for spectral approximations 
to general variable coefficient and nonlinear equations. In 
particular we study the preconditioned, discrete system: 

(15) TN•'- b, 

(16) I[ n] q- Z n-j n - Bin I $j O---- 
j=0 

under the simplifying assumption that the lead coefficient 
is 1. Here TN9 '- Tv and the matrices Sj are Galerkin ap- 
proximations to multiplication by the polynomials, sj (x). 
Throughout we assume that the polynomial family is one 
of the symmetric Jacobi (Gegenbauer) families scaled so 
that: 

(17) sup• 
ß 

. 

We denote by A•v the coefficient matrix of this system 
and assume that P•v is computed by interpolation of f 
at the Gauss or Gauss-Lobatto points associated with the 
truncated orthogonal system. 

In '[6] a post-conditioning scheme based on the integra- 
tion operators is analyzed. The main difference here is the 
inclusion of the T-conditions in the matrix. As the T- 

conditions typically involve point evaluations of functions 
and their derivatives, we cannot expect T•v to be bounded 
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in 12. Therefore, we introduce the space hr of infinite vec- 
tors satisfying: 

(28) IIZlIL -- • IZt12( l + 1) 2r < o•. 

For finite truneations, the norm is simply defined by the 
truncated sum. It is associated with the inner product 
(¾,Z)h. = YTD•Z, where Dr is the diagonal matrix 
whose jth diagonal entry is jr. Oiven any matrix C we 
have: 

(19) IICllh• --IIDrCD7;II:. 
Note that for integer r _> 0, and Z the expansion coeffi- 
cients of a function, z, we have, for positive constants Go, 
G•, 

Co(:,(L + 1)r=) % IlZllL % c,(:,(L + 1)%) 
z 2 (20) < O;I 

where 12 = -DpD. (Here, (., .) is the unweighted L • in- 
ner product.) We now state our assumption on the 7'- 
conditions: 

Assumption $.1 There exists ro _> 0 and a constant, Ca', 
such that, for all N, r _> to, and N + I.vectors V, 

IzNvI _< CrllVllhr- 

Moreover, for some integer r _> to, r - n _< 1. 

We illustrate Assumption 3.1 with the standard exam- 
ples of Chebyshev approximations and Dirichlet or Neu- 
mann boundary conditions. In the former case, 

(21) TNV= E(-1)'•'I•, 

where r/t = I or ;It = 0, depending on the boundary. Choos- 
ing ro > 1/2 we have, for all r _> to: 

(22) {•Nv{ _< (z + 1) -2•o {{Vll•r. 

For Neumann conditions, 

(23) rNv = 
l 

Choosing ro > 5/2 we have, for all r _> to: 

(24) IZ•vVl _< (l q- 1) 4-2rø IlVlln. 
l--O 

We now state a number of results concerning the indi- 
vidual operators in (16). In many cases the proofs can be 
found in [6, Sec. 4] or constructed in obvious analogy with 
proofs given there, We will avoid repeating the details of 
the arguments in [6]. The primary additional facts we will 
use are: 

Lemma 3.1 For any r > 0 and integer k there exists a 
constant K(k, r) independent of N such that, for any N x 
N matrix, C, with bandwidth k, 

IlClln• _< g(•,r)11CIl•. 

Proof. We need only consider the matrix DrCD[ •. Its 
nonzero elements are multiplied by (i + 1)•(j + 1) -r with 
i- j _< k. Clearly this factor is uniformly bounded above 
by a function of k and r, completing the proof. 

Lemma 3.2 For any r _> O, s > r, Z • hs and ZN the 
infinite vector obtained by setting all but the first N + 1 
components of Z to O, we have: 

Proof. We have: 

k=N+l 
oc 

(25) _< (N+ 2) 2(•-•) y] (k + 1)2•lZ•l 2, 
k=N+l 

which implies the stated estimate. 
We note that by (20) we can replace the right-hand side 

by a multiple of the Hs,• norm of z. This inequality is, 
then, stronger than can be obtained for the H•,• norm of 
z = ZN. (See [3, Ch. 9].) However, we must generally 
use a larger r than Sobolev's inequality would require to 
bound T. The example of Neumann conditions illustrates 
this. 

Theorem 3.1 

a. For any r > 0 the operators Bin ] : hr -• hr, 1 = 
1,..., n, are compact and, for some constants, gt,r, 

IIBl. lUllh• < •t,rllUll•_,. 

b. For any r > 0, I1%11•, J = o,... ,.- 1 are uniformly 
bounded in N. 

Proof. The matrices BI, ] and S• are banded. Bounds on 
their 12 norms are given in [6] and, by Lemma 3.1, extend 
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to their hr norms. As the compactness is proved by al> 

proximating B•,] by its finite truncations, it can also be 
extended. We also have an estimate for the entries of 

(26) 
Therefore, 

from which the desired estimate follows. 

We are now in a position to prove: 

Theorem 3.2 Suppose that w = 0 is the only solution of 
the hommjeneous system, Lw = O, Tw = 0 and that T 
satisfies Assumption 3.1. Let r be an integer satisfying 
r _> ro andr-n < 1. Further suppose that, for some 
p >_ 1, f 6 CP((a,O)). Then: 

a. There exist constants, Co and C1, and an integer, No 
such that for any N > No and vector, y, with [lY[[r = 
1: 

Co _< IIANYlI, < 

b. The matrix A2• - I approaches a compact operator on 
hr. 

½. There ezists a constant, C, and an integer No, such 
that, for all N > No: 

((u v•x-),(œ + 1)"(u v2v)> _< CN -2u 2 - - IIfL.p, 

# = p- (1/2)max(O,r - n). 

Proof. The upper bound on AN and the compactness of 
A• -I follow directly from Theorem 3.1. The lower bound 
follows from the analysis in [6, Sec. 4], which we outline 
here for completeness. First, define the compact operator, 
•: h• -. h•, in the following way. Given Z 6 h• let 
Z -- •k ZkQk, SjZ -- •'•k 2(k j)Qk' Then 

{ (•'g)i- Zi, i = O,...,n- 1 (28)(RZ)• = tv '"-• •'•-52 (5)•. i > n. 
x•-,j=o ""In] ,'•' -- 

If, for some Z • 0, (I + •)Z = 0, it can be easily shown 
that a nontrivial solution of the homogeneous problem ex- 
ists, violating the hypot.heses of the theorem. By the Riesz- 
Schauder theory, il (I+K)-•11• is bounded. We next show 
that A•v - I approximates K. In particular, let 

{((A• - •)z•)•, i = 0,...,N, (29) (R•z)• = o, . i > N. 

Here, Z• is the N + 1-vector containing the first N + 1 
components of Z. Let • > 0 be given. Given any vector, Z, 
IIZlla• = 1, and positive integer M, let ZM now denote the 
infinite vector obtained by setting all but the first M + 1 
components of Z to zero. Now, for M = M(•) sufficiently 
large, we have, for all N, 

(30) IIR(Z- ZM)ll• < •, 
Moreover, if N > M + n + q: where q is the maximum 
degree of the polynomials, sj, KZM -- •'NZM. Therefore, 
for N > M(e) + n + q, 

Choosing ½ sufficiently small, and, hence, No sufficiently 
large, we conclude using the Banach lemma that (A2v) -• 
is uniformly bounded for N > No. 

Standard ode theory implies the existence of a solution, 
U • cp+n((a,b)). Set e = u- VN, EN = UN -- VN, 
AF = FN -- PN and UN the polynomial whose expansion 
coefficients are given by UN. We then have: 

(32) ANE• = RN, 

(33) T•UN - Tu ) RN = B•, •(AF) + W• ' [1, 

n--I 

(34) WN = - E(B•.•/NS• NUN - "-J , (Bi• 1 S•U)N). 

From our bounds on AN and A• • and Assumption 3.1 we 
conclude, 

I IInNIl•, (35) IIENIln• 

where in U - UN, UN denotes the infinite vector obtained 
by extending the finite vector by 0. By Lemma 3.2 and 
(20) we have: 

(37) [IU- 

Using (20) •d the properties of the inte•ation operators 
we obtain: 

(38) IIBt•I,•(AF)Ila• 
(39) l = max(O, r- n) _< 1. 

By the results of Bernardi and Marlay on interpolation 
error, [2], we have: 

(40) IIfN- fllm,• < 
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Truncation Poisson Helmholtz Helical 
8 12.6 1264 229 
16 20.6 3788 300 
32 31.9 9550 399 
64 ' 51.2 19580 537 
128 90.0 39320 737 
256 156. 78700 1020 

Table 1: ho Condition Numbers: Preconditioned 

Truncation Poisson' Helmholtz 'Helical 
8 11.4 1321 1110 
16 11.7 2777 1108 
32 11.9 3844 1108 
64 12.0 4084 1108 

128 12.1 4133 1108 

256 12.1 4154 1108 

Table 2: hi Condition Numbers: Preconditioned 

Therefore, since 

combining these inequalities and applying (20) yields the 
error estimate. This completes the proof. 

We note that these results fall short of those proved in 
[6] for the post-conditioning scheme, both in terms of the 
restrictive assumptions on the coefficients and in the con- 
vergence rates. We hope to improve these in future work. 
Numerical experiments show that the results on condition- 
ing hold for a number of important operators with variable 
lead coefficients. In the following tables we display the con- 
dition numbers in the norms h0, h• and ha, of truncated 
approximations to the Dirichlet problem for the cylindrical 
Poisson, cylindrical Helmholtz and helical Poisson opera- 
tors: 

Poisson Operator: 

r 2 + , 

Helmholtz Operator: 

- 

Helical Operator: 

(•2T4 q- T2) •2 q-(--•2T3 q-T)•-k2(1 q-2Q•2T 2 q- C•4T4). 
Here, k = 3, e = .001, a = 1.5, and 1 g r < 3. 

Clearly, the condition numbers grow with N in the ho 
norm but remain bounded in hi and ha. This is consistent 
with the analysis above. Finally, we display the growth of 
the condition numbers in these norms for the unprecon- 
ditioned systems, demonstrating dramatic effects of the 
preconditioning. 

Truncation Poisson Helmholtz Helical 
8 47.9 3,568 10,870 
16 47.9 7,678 10,700 
32 47.9 10,070 10,700 
64 47.9 10,570 10,700 
128 47.9 10,610 10,700 
256 47.9 10,620 10,700 

Table 3: ha Condition Numbers: Preconditioned 

Truncation Poisson Helmholtz Helical 

8 3.774 x 10 • 9'.584 5.886 X 104 
16 5.533 x 104 59.98 8.948 x 10 • 
32 8.427 x 10 • 922.4 '1.374 x 107 
64 1.314 x 107 14,400 2.148 x 10 s 
128 2.075 x 10 • 2.273 •'10 a 3.393 x 10 s 
256 3.298 x 10 s 3.613 x 10 • 5.393 x 10 TM 

Table 4:h0 Condition Numbers: Unpreconditioned 

'Truncation Poisson Helmholtz .... Helical 
8 .... 4.293"X 10 • 80.8! 9.098 x 10 • 
16 4.978 x 104 '66.20 - 1.102 x 10 • 

, ,, 

32 6.480 x 10 • 867.4 1.450 x 107 

64 9.225 x 10 • 12,400 2.070 x 10 • 
128 1.387 x 10 • '1.865 x 10 a 3.114 x l0 s 
256 2.150 x 10 • 2.891 x 10 • 4.827 x 10 TM 

Table 5: hi Condition Numbers: Unpreconditioned 
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Truncation ' Poisson Helmholtz Helical 
8 .... 6.409 x 10 • 2,269 2.335 x 10 • 
16 6.469 x 104 906.4 2.362 x 10 ø 

32" 7.802 x 10 • 3,887 2.885 x 107 
64 ..... 1.068 x 107 53,750 3.961 x 10 s 
128 1.575 x 10 • 7.931 x 10 • 5.844 x 10" 256 2.417 x 10 • 1.217 x 107 8.968 x 10 TM 

Table 6:h2 Condition Numbers: Unpreconditioned 

4 General variable coefficients 

A well-known difficulty with spectral methods is that mul- 
tiplication by arbitrary functions is represented by full ma- 
trices. Therefore, direct solution of the linear systems fol- 
lowing from the Galerkin approximation to general differ- 
ential equations may be expensive. Similar considerations 
apply to the solution of nonlinear equations. On the other 
hand, multiplication in point space may be accomplished in 
O(/•) operations, where .• is the number of points where 
the product is required. This fact is exploited by pseu- 
dospectral methods. In this section we show how to com- 
bine the integration preconditioners with pseudospectral 
approximations to multiplication by smooth functions to 
iteratively compute approximate solutions to variable co- 
efficient and nonlinear equations. For families with a fast 
interpolation algorithm, such as the Chebyshev family, the 
complexity of the algorithm will be O(Nln N), where N 
is spectral truncation order. 

We consider: 

(42) Lu-- D" + Z D3c3 (x) u= f, x e (a,b), 
j=0 

subject to the constraints, 

(43) Tu=d. 

Here, the functions c 3 are assumed to be smooth (C a for 
convenience). As before, we approximate u by a finite 
expansion, 

N 

(44) u 
i=0 

Multiplication by cj (x) is.approximated, in spectral space, 
by the following recipe: first, evaluate the expansion at 
some interpolation points, xk, k = 0,...,/•. Second, mul- 
tiply at the interpolation points by cj (xk). Finally, use the 
new data at the interpolation points to construct expan- 
sion coefficients. We denote by Cj,N the matrix represent- 
ing this process. Note that Cjdv is usually never formed. 

For our examples, its action is computed by fast trans- 
forms in O(• In/•) operations. We may choose/• • N to 
avoid aliasing errors, but always/• _• 7N for some fixed 
7 as N -• o•. Interpolation points will be at Gauss or 
Gauss-Lobatto points associated with the family. We as- 
sume the following result on the uniform boundedhess of 
the matrices, C•3v: 

Assumption 4.1 There exists a constant, G, and an in- 
teger r • to, r - n •_ 1, such that: 

j,N 

We expect that this assumption can be proven under ap- 
propriate assumptions on the functions cj and the choice 
of nodes. 

Our final specification of the discrete system is: 

(45) TN9 = d, 

(46) I[,] + • B[,•'iCi,• • = B[,]F•. 
j--0 

Let A• denote the coefficient matrix of the system above. 
Note that its first n rows contain approximations to the 
constraints and its final N + 1 - n rows contain the ap- 
proximation to the differential equation. Using Lemma 
4.1, we can prove the following result on conditioning and 
convergence. As the proof is essentially identical to the 
proof of Theorem 3.2, we omit it here. 

Theorem 4.1 Suppose that w = 0 is the only solution of 
the homogeneous system, Lw = O, Tw = 0 and that T 
satisfies Assumption 3.1. Let r be an integer satisfying 
r _• ro and r - n •_ I and suppose that Assumption •.1 
holds for this choice of r. Further suppose that, for some 
p _• 1, f e C p ((a, b)). Then: 

a. There exist constants, Co and C1, and an integer, No 
such that for any N • No and vector, y, with ]]y[]• - 
1: 

Co _< IIAyII,- _< 

b. The matrix AN -- I approaches a compact operator on 
hr. 

c. There exists a constant, C, and an integer No, such 
that, for all N > No: 

-2# 2 + < N IIfL,, 

lz - p - (1/2) max(O, r - n). 
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4.1 Solution by iteration 

Although Theorem 4.1 establishes the good conditioning 
of the discretization matrices and the rapid convergence 
of the approximations for smooth f, the matrix AN is full 
so its factorization requires O(N 3) operations. However, 
ff a fast transform is available, multiplication by AN can 
be carried out in O(N In N) operations. In this section we 
exploit this feature along with the conclusions of Theorem 
4.1 to develop an efficient iterative solution algorithm. 

Here we consider Broyden's method, due to its ease of 
implementation for both linear and nonlinear problems and 
to the availability of convergence results which are directly 
applicable to our problem [15]. For completeness we list 
the algorithm as we use it, which involves only storage of 
and computation with a small number of vectors of dimen- 
sion N + 1 [16]: 
Broyden's Method for the Linear System, AN0 = I>N: 

1. Initialize: 

2. Until X/'(r•, r•) < • do: 

•(1) rk = •'N -- AN•k, 'q•+l = r•, 

For j = 2,...,k do: 

z(J) = (I + •-1 sj • S•_l)Z(•+? k+l j-1 , 

•(•) 

Choose O•+l • (0,2) such that %-O•+lvk+• :• O, 

8k+l • •k -- Ok+lPk+l •k+l• 

•+• = • + s•+•. 

Here, (-, .) denotes some inner product and © is the outer 
product of vectors defined by the inner product. We choose 
0•+• -- 1 unless 'rk- ,•+• is small. Note that ifp iterations 
are needed the total work is O(pN In N + p2N). 

Hwang and Kelley [15] have shown that if an operator, 
A, is such that A - I is compact, then Broyden's method 
as described above produces a q-superlinearly convergent 
sequence of iterates. By part b of Theorem 4.1, this applies 
(uniformly in N) to our operators AN if we use the hr inner 
product with r _> r0. Therefore, for any • > 0, the number 
of iterations required to produce a residual with hr norm 
smaller than • is bounded independent of N. Hence, the 
system can be solved in O(N In N) operations. 

I 1V IJ No. of Its. Max. Error .. , 

64 33 1.1 x 10 • 
128 23 1.2 

256 23 2.5 x 10 -• 
5i2 23 1.0 x 10 -• 

Table 7: Linear Test Problem 

To illustrate this result we use Chebyshev expansions to 
solve: 

(47) D2u+sinx.u=f(x), x•(-1,1). 

The function f and the Dirichlet boundary conditions are 
chosen so that, 

(48) u = ----• e -(z-zø?/*, 
is an exact solution. No dealiasing was used. The results 
tabulated are for 5 = 5 x 10 -4 and x0 = 1/2 and, for 
N _> 128, • = 10 -14. (The solution for N = 64 was so 
large that an absolute residual of 10 -14 was unattainable. 
In that case only we use • = 5 x 10-•4.) 

Clearly, the number of iterations is independent of N 
while the error rapidly decreases. We note that the re- 
sults presented are for the 12 inner product. The conver- 
gence does not follow directly from the theory discussed 
above, because the T-conditions are unbounded in this 
norm. However, due to their low rank, this did not harm 
the convergence. Tests with the h• inner product show 
similar behavior. We expect that the properties of AN 
will lead to rapid convergence of other iterative schemes. 
For GMRES, this follows from [17]. 

4.2 Nonlinear problems 

The method may also be generalized to solve semilinear 
equations. In particular we consider: 

(49) D"u + F(u, Du,...,D"-•u,x) = O, x • (a,O), 

with nonlinear constraints: 

(50) 

The discrete equations are formulated in spectral space by 
a•pproximating F via the same recipe as above. That is, 
F(6) is computed by first evaluating v and its derivatives in 
point space, then evaluating F at these points, and finally 
interpolating the point values to obtain •. Similarly, TN 
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is computed by evaluating T(v). The discrete system after 
preconditioning is given by: 

(51) 

(52) l.1, + = 0. 
Broyden's method may be applied to the nonlinear dis- 

crete problem by simply defining the residuals, rk, using 
equations (51-52). Generally, a good initial approxima- 
tion, •o, is needed. Linearizing about a smooth solution, 
the discrete system has the same properties as for the lin- 
ear variable coefficient equations discussed above. There- 
fore, the results of Hwang and Kelley [15] imply local, q- 
superlinear convergence of the iterates with the number of 
iterations required to attain a given tolerance bounded in- 
dependent of N. That is, the nonlinear discrete problem 
can be solved in O(NlnN) operations for a sufficiently 
good initial approximation and assuming that I is a suf- 
ficiently good approximation to the Jacobian. (Of course, 
different initial approximations to the Jacobian, which are 
low rank perturbations to I, could also be used.) 

To illustrate these results we solve the well-known 

reaction-diffusion equation: 

(53) D:•u + he"'- O, xE(-1,1), u(-4-1)=0. 

For h < he two solutions exist. Here, .87 < he < .88. 
In our example we chose h = .87 and an initial guess of 
• = 0. The exact solution which we are approximating is 
•iven by: 

(54) u = In (A (1 - (tanh yf•x) 2) ), 
(55) A = 2.801710482773216533343 .... 
We solved the problem for N -- 16,32,64,128,256,512 
with • -- 10 -•4. Again, no dealiasing was employed. In 
all cases the iterates converged in 67 to 70 iterations, con- 
firming the N-independence of the iterative scheme. As 
the solution is smooth, the error was already 1.8 x 10 -9 
for N - 16 and on the order of 10 -•4 for finer discretiza- 
tions. 

5 Higher dimensional problems 

The complexity of the spectral differentiation operator has 
made the direct use of spectral methods in more than one 
dimension impractical. Standard treatments of commonly 
occuring problems, such as the Poisson [12] and Helmholtz 

[13] problems have been approached through diagonaliza- 
tion methods. These techniques perform well but have 
the disadvantage that an expensive matrix multiplication 
must be performed to transform from eigenvectors of the 
operators back to physical variables which is necessary, 
e.g. for the solution of nonlinear problems. Also, the 
treatment of time dependent problems is typically pursued 
through a finite-difference discretization in time, which in- 
rtoduces stability problems and limits the time-accuracy of 
the method. As an exeption to the latter we must mention 
the work of Tal-Ezer et al. [18] who employ a Chebyshev 
discretization of the time-evolution operator. As discussed 
in the monograph by Canuto et al. [3], the extension to 
multidimensions is open for several interesting problems in 
more than two space dimensions. 

The simplicity and generality of the integration precon- 
ditioner method can be exploited to produce block-banded 
forms and improve the conditioning of problems in higher 
dimensions treated by spectral •--methods. The straight- 
forward extension is based on the use of preconditioners 
constructed by tensor products of integration operators in 
each variable, and it allows for the use of different basis 
functions in each variable. We consider a problem in a rect- 
angle in R m. For simplicity we will only consider boundary 
conditions of Dirichlet type. We let x = (x•,... ,Xm) be a 
coordinate system such that the sides of the domain under 
consideration are parallel to coordinate planes. We will 
consider expansions of the form 

where the expansion basis is formed as a product of (pos- 
sibly different) rn orthogonal polynomial bases and i - 
(i•,..., C,,) is a multi-index, 

i(x) = 

We now let œ = •-•k œ• be a linear differential operator in 
the xi , i --- 1,...,m with polynomial coefficients in the 
independent variables. As before, rational function coef- 
ficients can also be allowed, provided no singularities are 
present in the domain and we reduce to polynomials by 
multiplying by the least common multiple of the denomi- 
nators. 

The œt have the form 

ffk ---- • Lki, 
i--1 

with the Lki a linear differential operator with polynomial 
coefficients in the variable xi, i.e. an operator of the form 
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assumed in Theorem (2.1). Let 

ni -- max order(Lki) . 
k 

Then the extension of theorem (2.1) to multidimensions 
can be stated as follows: 

Theorem 5.1 The Galerkin representation of the differ- 
ential operator œ in the basis Q is transformed into block- 
banded form via left multiplication by the operator 

m 

where B[•i,i /s the operator of integration .for the .family 
{Qki}•__o . The resullting operator has the form 

m 

k i=1 

The proof follows from repeated application of theorem 
(2.1). 

We illustrate the use of theorem (5.1) by some simple 
examples. We limit the discussion to two space dimen- 
sions or one space dimension plus time, as we are basically 
interested in demonstrating the tensor product technique. 
Questions of conditioning and efficient implementation by 
the use of sparse matrix solvers will be pursued elsewhere. 
In the following examples we use exclusively Chebyshev 
polynomial expansions, again for simplicity of exposition. 
Other bases could have been employed in principle, and the 
only added complication would have been the loss of the 
fast cosine transform. Thus, the preconditioners employed 
will be tensor products based on powers of the Chebyshev 
integration operator 

B[• l = 

Here Bill is a M x M matrix. 
Example 1: the uni-directional wave equation 

We consider the problem 

(56) Ou Ou [-1,17 , 

Truncation Abs error 
8 x 8 1.2 x 10 -z 

16 x 16 4.6 x 10 -• 

32 x 32 1.0 x 10 -•4 

Table 8: Wave equation - Exact solution: e (2(x-t))• 

where u = u(x, t) and the boundary conditions are given 

(57) = , t) = ,.,(t) . 

Here œ• -- L•,•L•,2 and œ2 = L2,1L2,2 assume the forms 
L•,• = I, L•,2 - Dr, L2,• = Dx, and L2,2 -- I. The 
integrator for œ is BIll (• B[•]. 

The matrix 15/] for the wave equation is 

0 0 0 0 ... 0 

I•a •.•? -Ilq 0 0 ] 2 '" 
--Ill] 0 ß . . 0 4 B[•] 4 

ß . . . ß 
. . . 

ß . . 

' 2i B[•] 
ß . ß 

ß ß ß 

0 ... 

Note that the entries are (N+I) x (N+I) blocks. The same 
will apply to the matrix operators given in both subsequent 
examples. 

The tau conditions are 

M 

•'](-1)iuij = 
i=0 

vj, j -- O,...,N, 

N 

Z(-1)Jui) -- hi , i -- 0,...,M, 
j=0 

with one redundant condition at the point (-1,-1). 
Table 5 lists the absolute error for the uni-direction wave 

equation for various truncations. In this, as in the two 
subsequent examples, a homogeneous solution is chosen, 
and the boundary conditions are constructed by evaluating 
that function at the appropriate boundaries. 

Example 2: the Laplace equation in a rectangle 
Consider now the problem 

O2u O2u 

(5s) + =0, [-1,17 , 
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where u = u(x,y), f = f(x,y) and the boundary condi- 
tions are given as 

(5o) = h(x) , u(ñl,y): v(y) . 

For Laplace's equation E 1 ---- L•,1L1,2 and œ2 -- L2,1L2,2 
become L1,1 = I, L1,2 = D•, L2,1 --::Dy 2, and L2,2 -- I and 
integrator is B[2] •)B[21. 

For Laplace's equation Bœ is the sum of the following 
two matrices 

0 0 0 0 0 -.. 
0 0 0 0 0 --- 

o o o o 
• o •'-• o -• o 4-6 6.8 

0 Z[•] 0 --Z[•] 0 '' •[•] 
(2i)(2i+2) 2(i)(i+2) 

0 0 '. 0 '. 0 

0 0 0 0 0 0 0 ... 
0 0 0 0 0 0 0 ..- 

0 0 B•_] 0 0 0 0 -.- 
0 0 0 B•_] 0 0 0 ..- 
0 0 0 0 B•2 ] 0 0 o 
0 0 0 0 0 B•2 ] o 0 
0 0 o 0 o 0 B•2 ] 0 

ß 

0 0 0 0 0 0 0 ' 

The tau conditions can now be inserted: 

n=N 

E urn.(-1)" = •, 
n----0 

n=N 

n=0 

rn=M 

Z Um"(-1)m -- 

m=M 

Z Brnn --' ̂ + I) n ß 

Again, the number of tau conditions exceeds the number 
of zero rows in Bœ. However, the tau conditions are not 
all independent, and four of them need to be discarded, 
corresponding to redundant specifications at the four cor- 
ners of the domain. This leaves 2(M + 1) + 2(N + 1) - 4 
conditions which matches the number of zero rows in BL. 

Table 5 lists the computed errors using this matrix for- 
mulation of Poisson's equation. 

Truncation Abs error (k = 2) Abs error (k = 8) 
8 x 8 3.2 x 10 -• 84.6 

16 x 16 5.8 x 10 -•4 8.5 x 10 -z 
32 x 32 4.3 x 10 -•4 1.8 x 10 -• 

Table 9: Laplace's equation - Exact solution: ei•sin(kx) 

Example 3: the advection-diffusion equation 
Finally we consider the problem 

Ou Ou 02u 

(60) O-•+C•xx=.Ox 2 , (x,t)•[-1,1] 2 , 
where u -- u(x,y), f = f(x,y) and the boundary condi- 
tions are given as 

(61) u(x,-1)- h(x) , u(ñl,t)- vñ(t) . 

For this equation œ• = Ll,lL1,2 and •2 --- L2,1L2,2 be- 
come L•,• = I, L•,2 = D•, L2,• - cD•:-yD•, and L2.2 - I 
and integrator is B[•] (•)B[2]. 

The composite matrix Bœ is the sum of the following 
three matrices 

0 0 0 0 0 0 0 ... 

0 0 0 0 0 0 0 ... 

0 cS?] 0 -•Bp] 0 0 0 .-- 4 

o o ?] o -71 o o ... 
0 0 0 cSp] 0 -cBIu 0 0 

8 8 

0 0 0 0 c•Pl 0 _ c•[q 0 
10 10 

ß , 

0 0 0 0 0 '. 0 '. 

, 

0 0 0 0 0 0 '. 0 

-p 

o o o o o o o o ... 
o o o o o 0 o o ... 

o o B[1] 0 0 o 0 o ... 
0 0 0 B[1] 0 0 0 0 ... 
0 0 0 0 B[U 0 0 0 ... 
0 0 0 0 0 B[•] 0 0 0 
0 0 0 0 0 0 B[U 0 0 
0 0 0 0 0 0 0 B[1 ] 0 

ß 

0 0 0 0 0 0 0 0 '. 

0 0 0 0 --- 0 
0 0 0 0 ... 0 

o o o o 
h.u. o •.•.• o •u o 4.6 6.8 

0 •'P] 0 -zp] 0 z[•] 
(2i) (2i+2) 2(i) (i+2) (2i+ 2) (2i+4) 

0 0 '- 0 '. 0 
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.cation (c = 2, v = 1.3) .(c = 5, v = .5) 
8 x 8 5.6 x 10 -• .12 
16 x 16 3.6 x 10 -• 2.7 x 10 -u 
32'x 32 1.5 x 10 -• 2.1 x 10 -• 

, 

Table 10: Advection-diffusion with x0 = -0.8, t0 -- -1.05 
___! Exact solution: •-•-- 4•(t-t0) )/(t - to)« 

The tau conditions that must be imposed are: 

n=N 

Z Um,(-1)" -- •m, 

rn= M 

Z Um"(-1)m = 6•, 
rn--0 

m--M 

m-'O 

and, again, there are two redundant tau conditions at the 
points x -- 4-1 , t -- -1. 

Table 5 gives the absolute errors computed for the 
advection-diffusion equation. 

6 Conclusions 

The methods discussed in this article are quite useful in 
deriving efficient, spectrally accurate algorithms for the 
treatment of initial-boundary value problems in simple ge- 
ometries with more than one nonperiodic directions. Sely 
aration of variables e.g. for the Laplace operator, leads 
to equations, which can be easily transformed to form (8). 
As one may require the repeated solution of such equations 
high accuracy and efficiency are clearly essential. The bad 
conditioning0f spectral differentiation operators is avoided 
by the integration preconditioning method, and this per- 
mits the treatment of problems at very high order of trun- 
cation that may otherwise be impractical. More complex 
geometries may be accessible as well: if a rational map 
to a rectangle is available, then the essential features of 
the method are preserved. Even if that is not feasible, the 
good conditioning of the resulting problems allows efficient 
iterative treatments to be applicable. 

We must remark, however, that the preconditioners dis- 
cussed in this note, although quite general, might prove 
inappropriate for certain problems with singular behav- 
ior. The specific structure of a given differential oper- 
ator might lead to simpler preconditioners and to more 

natural reduced forms for the system. An example is of- 
fered by the Laplace operator in disk geometry; indeed, 
in solving /•u = f in 0 _< r _< 2 , 0 _< O <_ 2•r, using 
a Fourier/Chebyshev expansion in the azimuthal and ra- 
dial directions respectively (with -1 _< x = r- 1 _< 1), 
we are led to the equation for the n-th Fourier mode 

[((x + 1)D) 2 - n 2] • = (x + •)2f,. The method discussed 
above would lead to a pentadiagonal, ill-conditioned oper- 
ator. However, closer examination of the matrix elements 
reveals that under left-multiplication by a certain tridiag- 
onal preconditioner [19] (see also [3]) we get a tridiago- 
hal system which can be solved quite naturally by using 
techniques developed for the study of 3-term recurrence 
relations [9], and difficulties relating to the coordinate sin- 
gularity at x = -1 are easily bypassed. 

We note that Tuckerman [19] gives a theorem on the 
transformation of matrices into banded form through left 
multiplication by preconditioners whose form depends on 
certain properties of the matrix elements. As is also men- 
tioned in [3], preconditioners that lead to banded form have 
not been readily available, and have had to be searched for 
in a case-by-case basis. The main appeal of the method 
presented here is its generality, achieved through the con- 
struction of the preconditioner from the basic recursions 
of a family, and its identification with integration opera- 
tors. Indeed, the preconditioner depends only on the basis 
used and the order of the differential operator L, not on its 
special explicit form, which can be quite complex. Also, 
if the coefficients (or the solution) exhibit rapid variation 
over small neighborhoods, a rational coordinate mapping 
can be introduced to handle the situation with no substan- 

tial increase in algorithmic complexity while avoiding the 
need for considering very high-order truncations. In [6] 
we employed a variant of the present method, using inte- 
gration postconditioning, to efficiently resolve shock-layer 
behavior through a low-order rational map. Naturally, as 
the Poisson equation in the disk suggests, problems with 
an underlying singularity may necessitate exploiting fur- 
ther properties of a given problem and special, tailor-made 
methods may need to be invented in place of the general- 
purpose technique presented here. 
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A Hypergeometric recurrence re- 
lations 

Hypergeometric functions satisfy the differential equation 

(62) z(1 - z) d2F • q- [c- (a q- bq- 1)z] dF •zz - ab F = 0 
where a, b, and c are parameters and F represents 
F(a,b;c; z). We show that the hypergeometric family 
[.Jk F(a q- k, b - k, c; z) satisfies the following recurrence 
relationships: 

(63) F(a,b;c;z) = aF'(aq-l,b-1;c;z) 
q-3F'(a,b;c;z) q- 'yF'(a- l, bq-1;c;z), 

[2(1 - z) - 1]F(a, b; c; z) = &F(a + 1, b - 1; c; z) 
(64) + •F(a, b; c; z) + •F(a- 1, b+ 1;c;z). 

Here F' dF and a, •, 7, &, •, and •, are all coefficients =•- 
that depend on a,b, and c. 

The properties of the hypergeometric function that we 
use are 

(65) zF<a,b;c;z) -- F<a+ 1, bq- 1;cq- 1;z) 
(b - a)(1 - z)r(a, b; c; z) - (c - a)F(a - 1, b; c; z) 

(66) + (c - b)r(a, b - 1; c; z) = 0 

and the Gauss contiguity relations 

(67) (c-a-1)F(a,b;c;z)+aF(a+ l,b;c;z) 
-(c- 1)F(a,b;c- 1;z) = 0 , 
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(68) (b-a)F(a,b;c;z)+aF(a+ 1, b;c;z) 
-bF(a, b + 1; c; z) = 0 

The following equations are required in the derivation of 
equation (63): Equation (68) evaluated the points (a, b, c), 
(a+ 1, b, c), and (a,b+ 1, c); Equation (65) evaluated at the 
points (a+ 1, b-l, c-l), (a,b,c-1), and (a-l, b+ 1, c-l); 
and Equation (67). After involved algebra, one obtains the 
first recurrence relation (63) with 

a(c-b) 
(b - 1)(b- a)(b - a - 1)' 

(a + b + 1) - 2c 
(b - a - 1)(b - a -4- 1)' 

b(c-a) 
3 - (a - 1)(b - a)(b - a q- 1)' 

The derivation of the second recurrence relation (64) 
requires the following equations: Equation (68) evaluated 
at the points (a-1,b,c) and (a,b-1, c) and Equation (66). 

After some involved algebra, one can generate the second 
recurrence relation (64) with 

2(c-b)a 
(b-a)(b-a-1)' 

(a -4- b - 1)(a q- b q- 1 - 2c) 
(b - a + 1)(b- a - 1) 

2(c-a)b 
5/- (b-a)(b-aq- 1)' 

B Confluent hypergeometric re- 
currence relations 

Confluent hypergeometric functions satisfy the differential 
equation 

dau du 

z•-• + (•- z)•-•. = 0 
We show that the confluent hypergeometric functions 

satisfy recurrence relations analogous to the recurrence re- 
lations for hypergeometric functions. There are two types 
of confluent hypergeometric functions. Each one is treated 
separately. 

We start with the first confluent hypergeometric func- 
tion. It satisfies the following equations: 

(69) dz 7;z)= •(a+l,7+l;z), 

(70) (• - a - •)•(a, •; z) + a•(• + •, 3; •) 
-(-y - 1)•(a,-y - 1; z) = 0 

Using Equation (70) evaluated at (a + 1,7 + 1), (a + 1,7), 
•d (a, 7), •d Equation (69), one can derive 

• -- • •t• Z). (7•) •(•,•;•) = •'(•,•;•)+ •• •- •,•; 
A simil• reckfence relation can be derived for con flu- 

em hypergeometric functions of the second kind. These 
•nctions sati• the following two equations 

(72) d• d•( a, 7; z) = -a•(a + 1, • + 1; z), 
(73) •(a, 7; z) - a•(a + 1,7; z) - •(a, 7 - 1; z) = 0. 

Using (73)e•uated at points (a+ 1,7+ 1) and (a+ 1, 7) 
•d Equation (72), one c• generate 

1 

(74) •(•,,;•) = • _ •'(•- •,,;,) + •'(•,,;•). 
!n addition to the recurrence equations developed above, 

both t•es of confluent hypergeometrics satisfy a recur- 
rence of the form 

•f(•,,;•) = c,f(•- 

+ c2f(a, 7, z)+c3f(a+ 1, q,z). 

The •st confluent hypergeometric functions satisfy 

(75) (, - •)•(• - •,,; •) + (2• -, + •)•(•, •; ,) 
-a•(a+ 1,7;z) = 0. 

This equation can be rearranged into the form 

(76) •(•,,; •) = (• - •)•(• - •, •; ,) + 
(• - 2a)•(a, 7; z) + a•(a + 1, •; z). 

The confluent h•ergeometric •ctions of the second kind 
satis• 

ß (•-•,,;•)- (2•-•+•)•(•,,;•) 
(77) + a(a-7+l)•(a+l,7;z)=0, 

w•ch c• be re•ged into the form 

(7s) •(•,a;•) = •(•-•,,;•)- 
(2• - ,)•(•,,; •) + •(• -, + •)•(• + •,,; •). 
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Faxnily Chebyshev T• Legendre P• Gegenbauer C(• ") Jacobi P(•'•) Hypergeometric F(a + k, b - k; c) 
Qo 1 1 1 1 - 

Q• = x 2•x •((• - *3) + (• + .3 + 2)x) - 
1 k k + 2p -- 1 2(k + a)(k + *3) 2(c - a - k)(b - k) 

m,-l,k • 2k + 1 2(k + •) (2k + a + .3 + 1)(2_k + a + *3) (b - a - 2k)(b - a - 2k + 1) 
ak,i 0 0 0 (a2 - .32) (a + b - 1)(a + b + 1 - 2c) 

(2k+ a +.3+ 2)(2k + a +.3) (b- a- 2k + 1)(b- a - 2k- 1) 
1 k + 1 k + 1 2(k + 1)(k + a +,3 + 1) 2(c- b+k)(a + k) 

ak+l,• • 2k+l 2(k+ •) (2k+a+t•+2)(2k+a+fl+l I (b-a-2k)(b-a-2k-1) 
1 1 -1 --ak_l,k --ak-l,k 

2(k- 1) 2k + 1 2(k +r,) k +a+ *3 k +a- 1 
--2a•,• -2a•,• 

b• • 0 0 0 
' a+*3 a+b-1 

1 1 1 a•+•,• a•+•,• 

b•.+•.• 2(k + 1) 2k + 1 2(k + v) k -I- 1 k + 1 - b 
w(•) (•- •)-•/• • (•- x•)"-« 0-•)•(1+•) • (• + •)•-•(• - •)•+•-• 
r(•) (• - •)•/• (• - •) (• - x•) •+« (• - x•)w( x) -(• + x)•( • - x) •+•-•+• 
(a,b) (-1,1) (-1, 1) (-1,1) (-1,1) (-1, 1) 

2 •r21-2VF(k + 2•) 2•+O+•F(k + a + 1)F(k + .3 + 1) 
hk •r/2(•r,k = 0) 2k+l k!(k+v)[r(v)? (2k+o+*3+ •)k!r(k+o+•+ •) - 
Ak k 2 k(k + 1) k(k + 2v) k(k + a + • + 1) (a + k)(b - k) 

Table 11: Recursions for polynomial families of Hypergeometric type (ao.k = O; for the Tk, a•,o = b•.o = 1) 

Family Hermite Hk Laguerre L(• •) Confluent (first) •(a, b) Confluent (second) q•(a, b) 
Qo 1 1 - 

Q• 2x 1 + a - x - 

a•-l.k k -(k + a) a- b+ k 1 

ak.• 0 2k + a + 1 b- 2a- 2k b- 2a - 2k 
1 

ak+•,k • --(k + 1) a + k (a + k)(a - b + k + 1) 
b--a--k 1 

b•_•,• 0 0 
a+k-1 1-a-k 

b•,• 0 1 1 1 
1 

bk+•,k 2(k + 1) -1 0 0 
W(X ) e --x2 xC• e -x xb-l e -x xb-- l e -x 
p(z) e -- x2 x c•+l e - x xb e --x xb e --x 
( a , b) ( - •x• , •x• ) (0, oo ) (0, •x• ) (0, 

h•, Vr•2kk! F(a + k + 1) . 
k• 

)'k 2k k -(a + k) -(a + k) 

Table 12: Recursions for Confluent Hypergeometric functions 


