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Abstract 

We present a spectral tau method for the efficient solution 
of the incompressible Navier-Stokes equations in a planar 
channel geometry, with the Navier-Stokes equations ex- 
pressed in the vorticity-stream function formulation. The 
main innovations of the scheme are the incorporation of 
no-slip constraints in the semi-implicit time advancement 
of the vorticity field, and the efficient and accurate so- 
lution of the linear systems resulting from the numerical 
discretization Of the equations by well-conditioned integra- 
tion operators. The pressure field is calculated in a post- 
processing step by direct inversion of the gradient. The 
asymptotic stability of our scheme is analyzed, and a nu- 
merical solution of the Orr-Sommerfeld stability problem 
for plane Poiseuille flow is performed to offer a comparison 
of our method of enforcing the no-slip boundary condition 
with that of existing techniques. Results from represen- 
tative direct simulations are presented to demonstrate the 
accuracy of the scheme. 
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1 Introduction 

The dynamical generation of vorticity through boundary 
layer interactions near material walls is a fundamental 
problem in both scientific and applied fluid dynamics. 
Although many of the problems of practical interest at 
high Reynolds numbers require a full three-dimensional de- 
scription, there are important cases with moderately high 
Reynolds number in the range 100-10,000 in which a two 
dimensional assumption is justified. Experiments on com- 
plex boundary layer dynamics in which two-dimensionality 
of the flow has been emphasized have been conducted in 
stratified fluids [1, 2], rotating fluids [3] and in flows in 
which special care was taken in initially generating a two- 
dimensional disturbance [4, 5]. 

In this paper, we describe a spectral tau method for the 
solution of the incompressible Navier-Stokes equations in 
bounded geometries. Special attention is given to avoiding 
the serious accuracy degradation recently demonstrated [6] 
in high resolution polynomial approximations of high or- 
der spatial derivatives. The simplest geometry including 
rigid boundaries is the periodic channel, which will be used 
throughout. We note, however, that the method is not re- 
stricted to this geometry. We have implemented similar 
algorithms for the solution of flows in an annular geome- 
try [3, 7], and coordinate transformations based on rational 
functions may also be applied [8]. 

This paper is organized as follows: In Sec. 2, the ba- 
sic dynamical equations are introduced. We chose to solve 
the incompressible Navier-Stokes equations in the vorti- 
city-stream function (•v-•b) formulation. Compared to the 
primitive variable approach, the w-•b formulation reduces 
the number of momentum equations from two to one. It 
eliminates the pressure from the calculations, and satisfies 
the incompressibility condition, V-u = 0, by construction. 
Section 2.1 contains equations for the viscous evolution of 
the total energy and enstrophy in the flow. These equa- 
tions are used as accuracy checks of the code. 

The vorticity-stream function formulation of flows with 
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no-sIip boundary conditions leads to an overdetermined 
Poisson equation relating vorticity to the stream function. 
In Sec. 3, the solution of this problem (via the integral 
soNability constraint method by Coutsias and Lynov [9] is 
briefly discussed), and the accuracy of this method is inves- 
tigated by performing the solution of the Orr-Sommerfeld 
eigenvalue problem. 

Section 4 describes the implementation of the spectral 
scheme for dynamical equations. Special attention is given 
to the use of the invertible integration operator method [8] 
in the accurate and efficient solution of the Poisson and 

Helmholtz equations. A fully discrete stability analysis of 
the scheme concludes this section. 

The pressure does not enter the Navier-Stokes equations 
in the vorticity-stream function formulation, but an accu- 
rate determination of the pressure field is significant for the 
interpretation of the results. We have developed a method 
for determining the pressure field in a post-processing step 
based on the instantaneous vorticity field. This method, 
described in Sec. 5, avoids the traditional difficulties of 
overdeterminancy of the pressure Poisson problem and pre- 
serves the high accuracy obtained in the calculation of the 
vorticity. 

Section 6 contains two numerical tests of the code. The 

first test is an unstable Poiseuille flow with the same pa- 
rameters as in the Oft-Sommerfeld eigenvalue analysis, and 
the second test is a vortex sheet roll-up between moving 
no-slip walls at high Reynolds number used for investiga- 
tion of the overall error of the scheme. Finally, Section 7 
includes some concluding remarks. 

The Jacobian, [w, •], is defined as 

[w' •]- Ox Oy Ox Oy 
We note that the incompressibility condition is a priori 
satisfied in the vorticity-stream function formulation. 

The normalized dynamical equations are solved in a pe- 
riodic channel, •D, with no-slip walls located at y = :t:1 and 
a periodic x-dependence of length L•. At the impermeable 
walls we assume no-slip boundary conditions 

u(x,y = :t:l,t) = Uñ(t)• , 

where U ñ (t) signifies the time dependent horizontal veloc- 
ity of the walls. In the vorticity-stream function formula- 
tion, these conditions become 

(2) u(x, y = :kl,t) = 00 y=ñ• Uñ = , 
ensuring that the fluid follows the moving wall, and 

(3) (x,y = = rñ(O , 
where F ñ (t) are arbitrary functions of time. 

As may be observed from these boundary conditions, 
we end up with a problem of an overdetermined Poisson 
equation in Eq.(1) unless proper constraints are imposed 
on the vorticity. In Sec. 3 we will return to this problem 
and devise a method for deriving the appropriate no-slip 
solvability constraints for the vorticity. 

2 Basic equations 

For two-dimensional, incompressible flows it is convenient 
to express the Navier-Stokes equations in the vorticity- 
stream function formulation; 

V2•, = -w , 

where the scalar vorticity field, w, is given as 

VXU--Wi , 

and the stream function, % is related to the velocity field 
by 

u= xiy kay' 

2.1 Energy and enstrophy evolution 

In the absence of viscosity, the Navier-Stokes equations, or 
rather the Euler equations, possess an infinite number of 

ß 

conserved quantities 

lul 2ds, a(w) dS, 
where •D is a planar domain, simply or multiply connected, 
with the velocity tangential at the boundaries. Here E is 
the energy, and Ca[w] are Casimir functionals with G(w) 
being an arbitrary measure of the vorticity. For the special 
case G(w) = w 2 we write 

• =/v w2 dS, 
with • being the enstrophy. 

For finite viscosity the temporal evolution of the energy 
may be derived for the present problem, yielding 
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dE 
= -m + ,,L.(U-(t)•- - u+(t)• +) - df 

(4) 6p /• •b dS , 
where •v + is the vorticity along the moving walls at y = -4-1, 
respectively, and 5p signifies the pressure drop along one 
periodicity length of the channel. Using Eq.(1), we find 
the temporal evolution of the enstrophy 

(5) • -- • ). fi ds - 2v (Vw) 2 dS , 
where fi is an outward pointing normal to the boundary, 
fiD. We note that all terms originating from the interior 
of the flow are always negative. Thus, the only way the 
total energy and enstrophy may increase is by production 
at the boundary. These expressions are used as accuracy 
tests for the numerical approximations. In these tests, we 
compare the time derivatives obtained directly from the 
code, based on time centered differences of E and f• over 
three consecutive time steps, with the instantaneous values 
determined by evaluation of the right hand sides of (4) and 
(5) at the center time step. 

3 Vorticity boundary conditions 

As discussed in Sec. 2, enforcing no-slip boundary condi- 
tions on the Navier-Stokes equations in the w-• formula- 
tion leads to an overdetermined Poisson equation in Eq.(1). 
This problem has been addressed by several authors (see, 
e.g., [10, 11, 12]). Here, we will apply the method by Cout- 
sias and Lynov [9]. 

The two unknown fields are expanded in Fourier series 

e(z, y) '- Z •(y) exp z 
where subscript j indicates the Fourier mode-number. 

In this framework, the Neumann boundary conditions, 
Eq. (2), become 

(0) O•(y) I { U*(t) j=0 0y = 0 j40 ' 

For the Dirichlet boundary conditions, Eq.(3), we obtain 

F*(t) j=o (7) ½•(ñ•)= 0 i4o ' 
In the following, we will split the treatment into two cases 
for j • 0 and j -- 0. 

Introducing the Fourier expansion into the Poisson equa- 
tion (1) for j • 0 yields 

dy:• ' 
where we have defined the coefficient 

2•rj 
Aj = L• 

In Eq.(8) we have changed the y-derivative to an ordi- 
nary derivative, since time does not enter explicitly in the 
present discussion. 

Introducing the Dirichlet Green's function, Gj(yls), we 
may formally write the solution, •j(y), to Eq.(8) subject 
to the Dirichlet boundary conditions, Eq.(7), as 

/_, (9) •j(y) = &j(s)Gj(yls)ds . 
1 

The Neumann condition, Eq.(6), now requires 

<10> d½.• [ ' dGj(y[s> I ds = 0 
This provides necessary, as well as sufficient, conditions 
for solvability of Eq. (8) under the constraints imposed by 
Eqs.(6)-(7) for j • 0. (Note that uniqueness follows from 
the uniqueness of the Dirichlet problem.) 

Determination of the Dirichlet Green's function, 
Gi(yls), may be accomplished by numerical approxima- 
tions. Although not a complicated task, the results can 
easily be contaminated by significant numerical errors, not 
to mention the derivative of the approximation. These 
problems are further discussed in [9] and [Xa]. Here, we 
simply note that it is possible to derive solvability con- 
straints efficiently and with spectral accuracy. Expanding 
the Fourier coefficients, &j and ½•, in Chebyshev series 

(11, ('t•: )----•"( ?,:: )Ti(y, , i----0 

where Ti(y) - cos(i cos -1 y) is the i-th order Chebyshev 
polynomial of the first kind, the solvability constraints on 
the vorticity expansion coefficients tal/e the form 

o: rbz,: o. 
i---0 

The' coefficients B• are independent of time and viscosity, 
so they may be precalculated prior to a numerical simula- 
tion. In fact, the coefficients only depend on the geometry 
of the problem, i.e. L•, besides the actual truncation of 
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the expansions. Thus, one may, once and for all, calculate 
B• with a very high truncation. These coefficients may 
then be applied to all problems with lower resolution for a 
given L•. 

For the Fourier mode j = 0, we note that the vorticity 
must maintain a circulation, C, consistent with the veloc- 
ity of the walls, where 

c -- f• u-•=L.(U-(O-U+(O) 
(13) = •dS = Lx •o(y, 0 dy. 

1 

Given &o(y,t), Galilean invariance of the Naylet-Stokes 
equations allows both U+(t) and U-(t) to be shifted by 
properly choosing a frame of reference. In the following, 
the choice U- (t) = -U+(t) is made. 

By integrating the x-component of the moment equation 
in primitive variables along the walls at y = +1 one obtains 
the constraints 

(14) 0•ø I .•_15p I d Oy •=ñ• vLx --• ¸ 
where •p is the total pressure difference along a length 
of period of the channel. The two conditions in (14) are 
consistent with the circulation requirement (13), so any 
two of the three conditions can be used as constraints. We 

will return to this issue in Sec. 4.2.2. 

When solving the Poisson equation for • during the si- 
mulation, Dirichlet boundary conditions are used for j • 0 
and Neumann conditions for j = 0. This leaves us the 
freedom to choose 

•0o -- O. 

3.1 Solution of the Orr-Sommerfeld equa- 
tion 

In order to study the accuracy of the solvability constraints 
and ensure the consistency of the scheme, we now address 
the Oft-Sommerfeld equation in the vorticity-stream func- 
tion formulation. Assuming we may express that 

¾,(•,y,O = e(y) + •(x,y,O 

and 

•(x,y,t) = •(y) + z(x,y,t) , 

we obtain (by linearizing Eq.(1) around the solution) 

O•b=U(y) and vo=---=O uo = 0-• Ox ' 

the equations 

(15) 

(16) 

oz •- + U •xx + Ox = UV• ' 
V2• = -& . 

As boundary conditions we obtain 

(17) 0•[ =0 , = 
assuming that we consider only stream-wise perturbations 
with non-zero wave-numbers. Following the standard pro- 
cedure for temporal stability analysis we express the per- 
turbations as 

• = eXt[wC(y) cos(akx) + uS(y)sin(akx)] , 
• = eX•[•hC(y)cos(akx) + •S(y)sin(akx)] , 

where k 6 N + is the wave number along the channel, a = 
2•r/L• is the aspect ratio and A = A• + i A• 6 C expresses 
the complex frequency of the initial perturbation. For A• > 
0 we have temporal instability, and for A• < 0 we have 
temporal stability of the initial perturbation. 

Introducing these expressions into Eqs.(15)-(17) gives 
the Oft-Sommerfeld eigenvalue problem. By using this 
procedure the eigenvalue problem is expressed as two cou- 
pled second order differential equations. This form is dif- 
ferent from the single fourth-order equation obtained in 
the classical pure stream function formulation (see, e.g., 
[14]). Our formulation offers the opportunity to compare 
results obtained either by applying the four boundary con- 
ditions on the stream function (as in the usual approach), 
or by applying the Dirichlet boundary conditions on the 
stream function and applying the solvability constraints 
on the vorticity. 

In order to solve the Oft-Sommerfeld equation, we follow 
the pioneering work by Orszag [14]. Thus, we approximate 
all unknowns by truncated Chebyshev series as 

T,(y) . 

Due to the even-odd symmetry of the Orr-Sommerfeld 
equation it is sufficient to consider the even Chebyshev 
modes, only. However, for simplicity we have have chosen 
not to take advantage of this property. 

Introducing these expansions yields the following set of 
equations for each Chebyshev mode (i); 
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(18) 

where k is the stream-wise mode-number. For convenience, 
we have introduced the symbols 

M 

Ci ' 
p----*i+2 

pq-• eve• 

for the second order spectral differential operator, D 2, [16], 
and 

c,(], •0) = 
M 

m---M 

for the convolution operator [14]. Here ] ---- (]o,..., ]M)T, 
õ ---- (õ0,... ,õM) T, and co -- 2, ci = 0 for i < 0 and ci - 1 
for i > 0. 

In this context, the four boundary conditions (17) on 
the stream function become 

M M 

09) •(+•)',• = o i , =0, 
i--0 i•-0 

M M 

,+1.2 -c •(*1) , •, = o , (20) •-](*1) • •, = o , ,+1.• ', 
ira0 

Alternatively, we may enforce the vorticity constraints (7) 
and (12) as 

M M 

(21) i , =0, 
i=0 i--O 

M M 

02) • •? = 0, • • = 0. 
i=0 i=0 

De•ing the eigenvector of the problem 

x = (z•,...,•,•0, ,•, ., ... ** 

Eq.(18) may be rec•t • a generaliz• eigenv•ue problem; 

Ax= ABx , 

where A and B are 4 x 4 general block-matrices of order 
M + 1, given as 

4 q• o qs ] _Q• Q4 _Q3 0 
A = I 0 Q1 0 ' 

0 I 0 Q1 

-I 0 0 0] 0 -I 0 0 

(25) B = 0 0 0 0 
0 0 0 0 

Here I is the identity matrix and the block matrices are 
defined by row, i, as 

Q•: D• - (•k):I, Q•: •kC,(D•gr, .) 
Q,• = ,,kc,(O, .) Q,• = -•,Q,• 

The boundary conditions are applied as tau-conditions, in- 
cluded in the two bottom rows of the submatrices. 

Applying the boundary conditions on the stream func- 
tion only is done by putting the Neumann conditions, 
Eq.(20), in the bottom rows of submatrix A13 and A24. 
The Dirichlet conditions, Eq.(19), are applied in the sub- 
matrices Aa3 and A44. 

Alternatively, enforcing the vorticity constraints is per- 
formed. by applying the Dirichlet boundary conditions 
on the stream function, Eq.(21), in the submatrices Ass 
and A44, and the solvability constraints on the vorticity, 
Eq.(22), in the submatrices An and A22. 

The actual eigenvalue calculations are performed using 
the QZ-algorithm [15] on a SUN Sparc 2 in double precision 
and a floating point accuracy of 10 -•6. To select actual 
eigenvalues from spurious ones, the calculation is done for 
increasing number of modes in the expansions, and only 
eigenvalues which vary by a small amount, O(10-4), when 
increasing M are considered as being adequately resolved. 

For comparing the two different types of boundary con- 
ditions, we consider the standard test case of a Poiseuil]e 
flow with a velocity profile given as 

(24) U(y) = U0(1 - y2) . 
We set the channel length, Lx = 2•r (i.e. c• = 1.0), k = 1, 
Uo = 1.0 and Re = 1/y = 10000. For this case, it is well 
known that only one linearly unstable mode exists. Orszag 
[14] found the frequency and the growth rate of this mode 
to be 

0.23752649 A• = 0.00373967 , 

to within one part in l0 s. He approached the problem in a 
way similar to what is done here, but kept the fourth-order 
operator in the stream function formulation. 
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M A• A,. e 
28 0.2375725805 0.0037438270 2E,-03 
32 0.2375578883 0.0037060035 4E,-05 
36 0.2375268225 0.0037340707 4E,-05 
40 0.2375259476 0.0037391415 5E-06 
44 0.2375264073 0.0037396184 6E,-07 
48 0.2375264823 0.0037396728 9E,-08 
52 0.2375264879 0.0037396698 6E-09 
56 0.2375264888 0.0037396708 1E,-09 
60 0.2375264888 0.0037396706 1E-10 
64 0.2375264888 0.0037396706 3E,-11 
68 0.2375264888 0.0037396706 5E-10 
72 0.2375264888 0.0037396706 5E-10 
76 0.2375264888 0.0037396706 1E,-11 
80 0.2375264859 0.0037396727 4E,-09 
84 0.2375264882 0.0037396710 3E-09 
88 0.2375264905 0.0037396694 3E,-09 

_ 

28 0.2375702251 0.0037455732 2E,-03 
32 0.2375586386 0.0037057074 4E,-05 
36 0.2375267517 0.0037342618 4E,-05 
40 0.2375259549 0.0037390797 5F_,-06 
44 0.2375264096 0.0037396332 7E,-07 
48 0.2375264811 0.0037396693 8E-08 
52 0.2375264882 0.0037396706 7E,-09 
56 0.2375264888 0.0037396706 5E,-10 
60 0.2375264888 0.0037396706 2E,-11 
64 0.2375264888 0.0037396706 3E,-11 
68 0.2375264888 0.0037396706 7E,-11 
72 0.2375264888 0.0037396706 4E-11 
76 0.2375264888 0.0037396706 2E,-10 
80 0.2375264889 0.0037396706 3E,-10 
84 0.2375264888 0.0037396705 1E,-10 
88 0.2375264887 0.0037396706 1E,-10 

Table 1: Frequency, Ai, and growth rate, At, for the Orr- 
Sommerfeld problem at Re = 1Iv = 10000, k = 1, c• = 1.0 
and U0 = 1.0 As boundary conditions are used the four 
conditions on the stream function. e = IAM --AM_212 
shows the convergence of the eigenvalue corresponding to 
the first unstable mode for increasing M. 

In Table 1 we show the result of the eigenvalue calcula- 
tion with the boundary conditions given by Eqs.(19)-(20). 
We observe excellent agreement with the results reported 
in [14], but also note that for M > 76 the solution is con- 
taminated by round-off errors. 

In Table 2 we show the results of stability calculations 
with the boundary conditions enforced through the vor- 
ticity constraints. Again, we observe excellent agreement 
with previously published results. This clearly proves the 
consistency between the two types of boundary conditions. 
It seems that enforcing the solvability constraints leads to 
slightly more accurate results for large number of modes 
(M). This may be due to better conditioned matrices when 
the solvability constraints are applied as opposed to the 
Neumann-type boundary conditions, thereby reducing the 
effects of round-off errors. We are able to calculate the 

unstable eigenvalues with an accuracy of O(10-1ø). 

4 Implementation 

Having developed consistent solvability constraints for the 
vorticity, we proceed now by presenting a full implemen- 
tation of a spectral scheme for solving Navier-Stokes equa- 
tions in a two-dimensional channel. Additionally, we will 
address the issues of solution of implicit problems, the de- 
termination of the initial vorticity distribution, and the 
question of full discrete stability of the proposed scheme. 

Table 2: Frequency, Ai, and growth rate, At, for the Orr- 
Sommerfeld problem at Re = 1/v = 10000, k - 1, a = 1.0 
and Uo = 1.0. As boundary conditions are used the Dirich- 
let boundary conditions for the stream function and the 
solvability constraint for the vorticity. • = {AM -- AM-2{ • 
shows the convergence of the eigenvalue corresponding to 
the first unstable mode for increasing M. 

4.1 General description 

We approximate the two unknown variables, w and 8, by 
a truncated Fourier-Chebyshev expansion, i.e. 

) 
M N/2 

•=o •=o 'Pf• cos\ L• ,/+ 

where •i•, ,j, •i• •d • •e the expansion coefficients. 
In the rem•ning pm we wffi use, 6i} •d ½0 • symbols 

for both cosine •d sin•modes, • their treatment will be 
equivalent. Also, we will use • and ½ • symbols for the 
•1 matrices of •own exposion coefficients. 

T•s recurs Eq. (1) into 

V2• = -• , 

with boundary conditions given by Eqs. (6)-(7). The Ja- 
cobian, [., .], becomes a two-dimensional convolution in 
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m6de space. However, in order to avoid the significant 
computational load required to calculate the convolution, 
the derivatives are calculated in mode space; whereas the 
convolution is done in point-space, where it amounts to 
a pointwise multiplication. Immediately after trsm.•form- 
ing the Jacobian back to mode-space, it is fully de-aliased 
using the 2/3-rule. 

For time integration of the spectral equation, the pres- 
ence of a nonlinear convective term and a linear diffusive 

term offers itself to semi-implicit time integration. We 
have chosen to apply a fully corrected 3rd order predictor- 
corrector Adamn-Bashforth scheme for the convective term 
and a backward Euler for the diffusive term. This leads to 

a full scheme for advancing one time step, (n), as 

•7•n ._ _•,n 
(P): (1 - vary •) •* = 

At (9.3Fn _ 16Fn_x -I- 5F n-e) 
(26) v2• * = -•* 

(c): (• - •v •) •"+• = 

• (•r' + sr • - r •-') , 
where P and C denote the predictor and the corrector step, 
respectively; At is the time step and 

Fn=_[&n, •n] . 

In the next two sections we will address the problems 
of how to solve the two implicit equations and discuss the 
stability of the full discrete scheme. 

4.2 Solution of the implicit problems 

As seen in the previous section, our scheme requires a Pois- 
son and Helmholtz equation to be solved twice in every 
time step. This puts significant requirements on the effl- 
ciency and accuracy of the methods applied to solve these 
implicit equations. 

For the present scheme we have applied some recent re- 
suits by Coutsias et al. [8] by which both problems may be 
reduced to operations on well-conditioned tri-diagonal ma- 
trices. In order to understand the idea behind the schemes, 
we leave for a moment the full two-dimensional problems 
and consider the simple one-dimensional Poisson equation 

(27) 0x 2--/ , u(-I-1)=0 , 
where. = •(x), ! = f(x) and x • I-i, 1]. 

In constructing an approximate solution to this problem, 
using a Chebyshev tau method, we look for solutions to 

where 

LM2 = ] , 

i----0 

such that a = (a0,...,a.) T • Qo • _= •p•(T•)•o •.a 
] = (]o,...,]u) • 6 Q•-2. In this c•e Lu = D •, 
which is the second order differentiation matrix • •ven 
• e.g. [16]. This operator h•, in the absence of boundary 
conditions, a strict upper triangnl• form. Applying the 
bo•d• conditions • tau conditions in the lowest two 
r•s results in a non-sin• matr• problem. Solution of 
th• problem by dkect methods, e.g. Gaussi• elimination, 
req•res O(M a) operations. AdditionMly, for incre•ing 
resolution, M, this problem becomes ill-conditioned and, 
thus; •troduces si•ificant numerical egors, which may 
i•ibit dyn•ic• studies where the Poisson equation is 
solved repeatedly. 

For these re,ohs, we approach the problem differently. 
Following [8], we •sume that Q• = N(D •) • Q• where 
•(D 2) si•ifies the null-space of the operator, D 2. The 
appro•mate solution to Eq.(27) may be obtained as 

1 

(28) • = • + •.• • , 
k=0 

where •P • Q• is a p•ticul• solution, • = (&•,..., •)• 
•d span{&• }•=0 = •(D2) spas the null-space of the o• 
eratot, i.e. it is a b•is for the homogeneous solutions. 
We will later ret•n to the determination of the two con- 

stats, a•. By identi•ing these different spaces, we obtain 
that the operator, •2: Q• • Q•-2, is a 1-1 mapping 
in the restricted domain with a uniquely defined ii•verse, 
•-2: Q•-2 • Q•. We may conveniently term the in- 
-verse operator • integation operator. As shown by Cout- 
si• et M. [8], this operator c• be determined from the re- 
c•sion relations of the o•hogonM pol•omial family. For 
the Chebyshev b•, it h• the elements for Vi 6 [2,..., M] 

• •i--2 (29) b•,= -,• y=i 
4i• j = i+ 2 ' 
0 otherwise 

i.e. it is simply a tri-diagonM matra, with the •st two 
rows being zeros. Having identified the integation opera- 
tor •ows us to derive • •gorithm for solving the Poisson 
•uation • O(M) operations. 
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The particular solution in Eq.(28), may be found 
straightforwardly as 

(a0) ap = b-2! . 
In order to obtain the full solution, we need to identify the 
null-space of the operator. We assume that &k = •k + 0k, 
where •k E Q0 M, 0 k E Q2 M and •k signifies a vector of 
zeroes with the k'th position being one. This is simply the 
Chebyshev transform of Tk. Since &k is a null-vector to the 
operator, 1• 2, we obtain 

¾ke[0,1]: D2• k=D2(• k+0 k)=0 , 
or 

1• 20 k = 0 , 
since D2•k --= 0. In this simple example, this equation only 
has the trivial solution. Thus, we obtain the null-space of 
the operator as 

so =•o , p =p 

The complete solution may them be written, using Eq.(28), 

• = •P + ao• ø + a• 

Introducing the boundary conditions, we obtain the two 
unknown constants as the solution to a 2 x 2 system; 

M 

ß = -, : • •,•(-,)' + •0 - • = 0 
i----0 

M 

x=l : ui + a0 + a•=0 . 
i----0 

As we have seen, once the particular solution is found in 
0(34) operations using Eq.(30), the remaining part of the 
solution amounts to solving a 2 x 2 system. As shown in [8], 
the conditioning of the integration operator is very good, 
leading us to the conclusion that the full problem may be 
solved with very high accuracy even at high resolution. 

4.2.1 Poisson's equation 

Following the approach outlined in the previous part of the 
paper, we will now derive an algorithm, based on the inte- 
gration operators, for solving the two-dimensional Poisson 
equation in a channel geometry. 

Expanding the unknowns in a truncated Fourier(N)- 
Chebyshev(M) series yields the following problem for ¾j • 
[0,...,N/2] 

(31) [D 2 - (ja)2I] •: -&• , 
where a = 2•r/Lx is the aspect ratio, I is the identity 
matr• and • = ½0•,..., •)•, Z• = (Z0•,... ,Z.)•. 
Thus, all the Fourier modes decouple, and we have to solve 
N independent equations of the form given by Eq.(31). 
The boundary conditions were derived in Sec. 3 as 

M 

(32) j=0 : •00=0 , E(+l)i+xi2•i0=Uñ(t) 
M 

• • o : •(+•)• = o . 

We now introduce •i ~2 •p = D •b•, •j ½ Q0 M-2, leading to an 
approach for obtaining the particular solution as 

(33) [I- (ja)21]) -2] •: -•,• 
½•: f>-%. 

We note that all matrices are tri-diagonal matrices such 
that the problem may be solved efficiently by forward sub- 
stitution. The only remaining part is to identify the null- 
space of the operator. Similar to what was done for the 
one-dimensional Poisson problem, we assume, e• = 
such that 

Ak -- (34) [D 2-(ja)2I]e i: [D 2 (ja)2I](•+•):0 • 

Assuming • ~ 2 •a = D q• one obtains the scheme .. 

<35) [I - <ja)21•-2] • = (ja)2• 4 
=D •; 

-k •k e• = +qj 

Contrary to the simpler case of the one-dimensional Pois- 
son equation, we cannot obtain the null-vector by analyt- 
ical means. However, one should note that the null-vector 
may be calculated in a preprocessing stage. Since all op- 
erations only involve well-conditioned tri-diagonal banded 
matrices the eigenvectors spanning the null-space may be 
found with high accuracy. 

Introduction of the boundary conditions is done by ap- 
plying Eq.(28). The treatment may conveniently be split 
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into zero and non-zero Fourier modes. 

Fourier mode j • 0: 

Following Eq.(32) we obtain 

M M M 

(36)•'• • + a'o • •.o. + o 
i----0 i:0 i=0 

M M M 

+ + = 0. 
imO i=O i=O 

Note that s•mation over the null-vectors may be done • 
preprocess•g. Thus, cMc•ating the two constats ao •d 
a• is • O(M) operation. 

Fourier mode j: O: 

In this case the problem becomes equivalent to the example 
in the beginning of this section. Thus, •o • = 0. Since we 
choose •oo '- 0 we obtain the solution 

As a consequence we are only able to specify the value of 
•o(y) at one boundary, which is in full accordance with 
what we found in Sec. 3. As the problem is overdeter- 
mined, we will use two different methods which, however, 
are fully consistent. 

Using the Neumann conditions leads to 

M 

(37) al = U+(t) - •(:kl)i+li 2 •,o ß 
i:0 

Alternatively, one may apply the two constraints simulta- 
neously by adding the two expressions to obtain a condi- 
tion restricting the odd coefficients 

M-1 

'- -- -- • •iO ' (3s) o, 
i odd 

As it has been shown, it is possible to construct the scheme 
such that all operations are performed using banded ma- 
trices. This reduces the total operation count to O(MN) 
as compared to the direct method being an O(M3N) oper- 
ation. In addition to this, all matrices are well-conditioned 
and the boundary conditions do not introduce any addi- 
tional round-off error into the problem, as is often the case 
when using traditional tau methods. 

In the absence of the boundary conditions, the tri- 
diagonal form of the Poisson equation presented here is 

equivalent to that proposed in [16]. However, we wish 
to emphasize that this particular tri-diagonal form here 
is shown to be a consequence of the three term recurrence 
relation for the Chebyshev polynomial and not of the spe- 
cific geometry. Similar banded operators may be obtained 
for all polynomials obeying such a recurrence relation. 

4.2.2 Helmholtz' equation 

The scheme for the Helmholtz equation is very similar 
to that of the Poisson equation. Consider the Helmholtz 
equation approximated by a Fourier-Chebyshev series 

(39) lAD 2 - (1 + A(jo•)2)I] J•,•: ],• , 
for ¾j 6 [0,...,N/2], where A - vat. As for the Pois- 
son problem, all Fourier modes decouple. The solvability 
constraints for the vorticity were derived in Sec. 3 as 

j--O: 

(40) 

j•O: 

M 

-- -- • a;iø C = U-(t) - U+(t) = i 2 - 1 2L• i=o 
i even 

M 

i:0 

or 

As for the Poisson problem, direct solution leads to an 
ill-conditioned problem for large resolution. We introduce 
•j -- •2• leading to an approach for obtaining the par- 
ticular solution as 

(41) [AI- (1 + A(ja)2)• -2] •j: ]j 
D 

We note in particular that all matrices are tri-diagonal 
matrices such that the problem may be solved efficiently 
by forward substitution. The only remaining part is to 
identify the null-space of the operator. We define the null- 

•k = •k ^k vector as ej + qj, to obtain 

(42) [AD • - (1 + A(ja)2)I] • = (1 + A(ja)•)• 

Assuming • ' 2 • -- D q• one obtains the scheme 
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(43) 

Similar to the two-dimensional Poisson equation, we have 
to find the null-vector by solving the problem numerically. 
Again, this may be done in a preprocessing stage of the 
computation, with high accuracy. We find that, due to the 
appearance of the parameter • (which may vary signifi- 
candy for different computations), it is necessary to equili- 
brate the matrices prior to solving the problem by forward 
substitution. This is done in order to obtain maximum 

accuracy. 

As for the treatment of the Poisson equation, we split 
the treatment of the solvability constraints into zero and 
non-zero Fourier modes. 

Fourier mode j • O: 

Following the approach given by Eq.(28), the solvability 
constraints given in Eq.(40) for Vj 6 [1,...,N/2] are en- 
forced as 

+ .o 'V'" B + Ak 
i=0 i=0 i=0 

M M M 

44) + + = 0. 

Note again that summation over the null-vectors may be 
perfo•ed • preprocessing. 

Fourier mode j = 0: 

As stated in Eq.(40), we have three consistent conditions 
from which we may choose two. We have chosen the con- 
ditions 

(45) 

A M ^0 
eio + 

i--O i=0 
i even i even 

M •1 C 
E ei 0 _ • a• i2---1 = 2Lx 
i----O 

i even 

M-1 M-1 M-1 

• o2 • P $ •Ji0 q'•0 E '2-0 • eio • 
iml i•l i•l 
odd i odd i odd 

1 

(46) .L-6p - ---- 1 d (V+(t) + V-(t)) 2v dt ' 

Equation (45) restricts the even modes by ensuring con- 
sistency between the circulation and the vorticity, and 
Eq.(46), obtained by adding the two Neumann conditions, 
restrains the odd modes of the vorticity. Again, we end 
up with a 2 x 2 system which has to be solved in order to 
obtain the remaining constants. 

4.3 Initial vorticity distribution 

The code is initialized by choosing a vorticity distribution 
at t = 0. This initial vorticity distribution must, natu- 
rally, sastisfy the no-slip boundary conditions (12). If the 
coefficients wi• (t = 0) and B• are considered as the com- 
ponents of M dimensional vectors for fixed j -• 0, then the 
initial guess for •i• (t = 0) has to be projected onto a plane 
containing the vectors B• and B•. Since B• and B• are 
generally not mutually orthogonal, the two vectors 

(47) bie• = B5 + B• B• - B• 2 and bi• = 2 
are introduced. These two vectors are orthogonal to each 
other [9]. 

The projection of the initial guess for •i• (t = 0) onto the 
true no-slip wi• (t = 0) is then performed by Gram-Schmidt 
orthogonalization 

(48) 
In order for this projection scheme to give reasonable re- 
suits, the initial guess • should not be too far from sat- 
isfying the no-slip constraints (12). This can typically be 
achieved by choosing a zero-order distribution which gives 
rise to a flow parallel to the walls and adding an arbitrary, 
but not too large pertubation. 

4.4 Asymptotic stability of the discrete 
scheme 

As we aim at performing long time integration of the 
Navier-Stokes equations using the scheme described in the 
previous sections, we need to address the issue of temporal 
stability of the scheme. 

The emphasis will be on asymptotic stability of the 
scheme (t --* o•, At fixed) and not on the Lax-Richtmeyer 
stability (At --. 0, t fixed). The concept of asymptotic 
stability is normally considered to be of main interest for 
practical purposes [16]. 
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In order to perform the stability analysis, we linearize 
Eq.(1) around a linear velocity profile 

u = (y, 0). 

This recasts Eq.(1) into the linear form 

• + Y•-•z = vV2• ' 
subject to the solvability constraints on the vorticity as 
derived in Sec. 3. Since the linear shear is unconditionally 
stable in the continuous case, this has to be true also for 
the fully discrete approximation. 

We continue by expanding in a truncated Fourier- 
Chebyshev series to obtain two equations for the cosine 
and sine modes, respectively, for each Fourier mode j 6 
[0,...,N/•], 

(49) 

(50) 

Ot + (ja)Yd: = [D 2 - (ja)2I] 
(ja)Y&; =. [D 2 - (ja)2I] 

Here &• = (&•j, &•4j) :r and likewise for •' 2•r/Lx ..., 
is the aspect ratio of the channel, D 2 is the 2nd order 
Chebyshev spectral differential operator and the convolu- 
tion operator, Y, is given as [16] 

j=i-1 j = i + 1 
otherwise 

for ¾i 6 [0,...,M], where co = 2, cj = 1 for j > 0 and 
cj = O for j < O. 

For the semi-implicit predictor-corrector scheme given 
in Eq.(26), we obtain the following discrete approximation 

where we have introduced 

0 I and /,j=Ly 0 I •'=Y -x 0 ' 

being the 2(M+ 1) x 2(M+ 1) convolution operator and the 
discrete Helmholtz operator, Lj = I - vAt[D 2 - (ja)2I], 
respectively, for each Fourier mode. We assume that the 
solvability constraints for the vorticity, as given by Eq. (40) 

are introduced in Lj as tau conditions. We have also in- 
troduced the 2(M + 1) vector &? = [(&•, 

The operations necessary to perform the predictor step, 
Eq.(51), may now conveniently be written in the form 

Ax* = Px n , 

where 

X* = (&•,&•,&•-I ,&•V/2,-n -.n-l,T and ,' ' ' •NI2,WN/2 ) , 

x"(,;.,•',c;,•'-•,c;,• '-• -.-.• ...,-•,:r --' ,' '', •NI2, •NI2 , WN/2 ; 

are 3(M + 1)(N + 2) long vectors. Both A and P are 
(N/2 + 1) x (N/2 + 1) block diagonal matrices where each 
submatrix has the order 3(M + 1) x 3(M + 1). 

In a similar manner we may express the correction step, 
Eq.(52), on matrix form as 

Ax n+l - Cx* , 

Combining these two expressions leads to 

Ax "+• = Cx* = CA-•Px" 

Assuming x" = A-" we obtain the generalized eigenvalue 
problem of O(3(M + 1)(N + 2)) 

Ax" = ACA-•Px" , 

by which we may show stability of the fully discrete scheme 
provided IAI •_ 1. The eigenvalue problem may be solved 
using the QZ-algorithm. To limit the size of the ac- 
tual computation, the eigenvalue problem for each Fourier 
mode may be treated separately. 

In Figure I we show a typical spectrum obtained for 
M = N = 24, At = 0.10, L• = 2•r and Re = 1/• = 100. 
This clearly confirms that the total scheme is asymptoti- 
cally stable and no numerical instabilities are introduced 
through the approximation of the continuous stable shear 
flow. 

We observe that once the viscous boundary layer is re- 
solved, which happens approximately for 

M>v•e , 

the stability of the explicit part of the time integration 
is well characterized by the Courant-Friedrichs-Levy crite- 
rion 

CFL = [UmaxlAt < 1 . 
A 3•mi n -- 

A detailed discussion on the use of the CFL condition in 

spectral schemes is given in [17]. 
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Figure 1: Characteristic eigenvalue spectrum for the fully discrete stability analysis for M = N = 24, Re = 1/v = 100, 
L• = 2•r and At = 0.1. Left: The spectrum around the unit circle. Right: Detail of the spectrum close to the unit circle. 

For the case shown in Fig. 1, the CFL-criterion requires 
At _• 0.125, which is supported by our results. We observe 
that as At increases, eigenvalues from the left half-plane 
move towards the unit circle. In Fig. I we have used At = 
0.1 and the scheme remains stable, but increasing the time 
step slightly implies that eigenvalues cross the unit circle 
and as a result the scheme becomes unstable. 

5 Calculation of pressure field 

The traditional approach of calculating the pressure is to 
take the divergence of the momentum equation and enforce 
the condition of incompressibility leading to the Poisson 
problem: 
(53) v•p = v. (pu. Vu). 

The boundary conditions are found by considering the mo- 
mentum equation at the boundaries. Assuming fluid ad- 
hesion (no-slip) at the walls, the momentum equation 

ut+u-Vu= 1Vp+r, V2u 
P 

gives 

Vplov - -u'(t) + v V•ulov 
where U(t) is the wall velocity. This expression for the 
gradient of p gives rise to both Neumann and Dirichlet 
conditions on p, which leads to too many boundary con- 
ditions on the pressure. This problem can be overcome 
in a number of ways. However, there remains a serious 

accuracy issue. If the Navier-Stokes equations are solved 
in primitive variables, second-order derivatives of the ve- 
locity field must be calculated. If the w - • form is used, 
then third-order derivatives must be taken since the com- 

putation of the velocity already involves a computation of 
V•. Of course, things are not necessarily drastically bad, 
since the stream function is calculated from the vorticity in 
spectral space by inverting the Laplace operator; and this 
procedure is smoothing. However, the problem of comput- 
ing third derivatives can still be serious [6]. 

In our alternative approach, we avoid the issues related 
to overdeterminacy by rewriting the momentum equation 
in the form 

so that, introducing the dynamic pressure 

we obtain 

I 2 
.P = p+ ]pu , 

-1VP = -V (• + v•) x •.- wV•. 
p 

Again, at first sight, calculating •t involves high deriva- 
tives since 

However, this relation can be written as 

v • (,/,6 + ,,,,,,) = [o.,, 
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This computes the lumped quantity •,. + • which, after 
all, is what appears on the right hand side of the pressure 
gradient equation. Thus, the need to consider anything but 
first derivatives in the pressure calculation is eliminated. 

This leads to the following algorithm for the pressure 
computation: 

ß Given a vorticity field • 

ß Find the values of the j-th Fourier mode of • at walls, 
for j • 0: 

M 

i--O 

ß Find • by solving the Poisson problems: 

2 ^ 

I V•o =-•o , dy •=ñ• 
ß Compute the Jacobian [a•, •p] 

ß Compute the quantity •Pt + 
Solve 

v 2 + = 
subject to the boundary conditions 

__ 5P ñ ø Oy 

ß Finally, compute a•'•b 

• pu s ß Now consider the dynamic pressure P - p + • 
which satisfies: 

IVP = -V (•p• + v.•) x •. -•v•p 
p 

The right hand side is known, to an accuracy of the 
same order as the rest of the quantities involved in the 
code. 

We may compute the dynamic pressure in mode space 
by inverting either the x- or the y-component of 
the gradient. Each computation should produce the 
Fourier-Chebyshev expansion of P except for the cor- 
responding 0-mode (i.e. inverting the x-component 
gives no information about the 0-Fourier mode, and, 
similarly, the y-component will yield no informa- 
tion about the 0-Chebyshev mode). Combining both 

computations, we recover P. The two expansions 
thus constructed should agree on the non-zero modes. 
The difference of these two independent computations 
provides an upper estimate for the accuracy of the 
scheme. 

6 Numerical tests 

In previous papers [9, 18], the high accuracy of our method 
in calculations at moderate Reynolds numbers up to Re _< 
3000 was demonstrated and close agreement with experi- 
mental results were shown. 

Here, we will report results obtained by our code for 
higher Reynolds number flows in order to demonstrate the 
capabilities of the method. 

6.1 Unstable Poiseuille flow 

In the first example, we report results from direct simula- 
tions of a Poiseuille flow at Re = 10,000 and a = 2rr/Lx - 
1.0. These parameters correspond exactly to the eigenso- 
lutions obtained for the Orr-Sommerfeld equation studied 
in Sec. 3.1. As we know the solution of the linearized prob- 
lem with high accuracy, this procedure may be viewed as 
a thorough test of the full scheme and interdependencies 
of the spatial and temporal resolution. 

In order to extract the unstable mode, we apply the 
algorithm by Buneman [19] which allows for calculating 
the frequency and growth rate of a monochromatic signal. 
It should be noted that this scheme is only second order 
accurate in time. As a signal for the diagnostics we use 
the time-trace of the expansion coefficient of the second 
Chebyshev mode and the first Fourier mode, i.e. k = 1. 

In all runs we used a time step, At, which is well un- 
der the limit dictated by the semi-implicit time advancing 
scheme. All rnn.• have been continued until T = 200. The 

numbers are accurate to O(10-?). 
In Table 3 we study the spatial convergence of the 

scheme. As found from the linear eigenvalue analysis in 
Sec. 3.1, we confirm that M --- 64 and N = 16 is sufficient 
to resolve the dynamics of the unstable Poiseuille flow. We 
observe that as soon as the dynamics is resolved, we obtain 
the eigenvalues with very good accuracy. 

We have also studied the temporal convergence of the 
full scheme. We find that the scheme is clearly first order 
in time as expected from the backward Euler time step for 
the diffusive part of the equation. 
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T=8.00 

T=10.00 T=10.00 

T=14.00 

T=30.00 T=30.00 

Figure 2: The roll up of a thin shear layer in a periodic channel with counter moving walls at Re = 40,000. The 
coutour plots show vorticity (left) and pressure (right) with full and dashed lines indicating positive and negative levels, 
respectively. . 
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M .iV A,• ,X• 
64 16 0.01250 0.2375063 0.0037167 
64 32 0.01250 0.2375063 0.0037167 

64 64 0.01250 0.2375063 0.0037167 
64 128 0.01250 0.2375063 0.0037167 
i6 16 0.00625 0.2367990 0.0212072 
32 16 0.00625 0.2396010 0.0042858 
64 16 0.00625 0.2375164 0.0037283 

128 16 0.00625 0.2375164 0.0037282 

complex dynamics involved in vorticity production during 
boundary layer eruptions. 

The computation of the pressure gives global errors, as 
defined in the last part of Sec. 5, of (P(10 -7) up to T • 5, 
when thin boundary layers near the walls are formed. The 
global error then grows to (P(10 -s) which is kept through- 
out the symmetric evolution, demonstrating the high ac- 
curacy of the pressure algorithm. 

Table 3: Spatial convergence of frequency, hi, and growth 
rate, At, for the unstable mode of a Poiseuille flow at 
Re--10,000, k -- 1, a = 1.0 and U0 = 1.0. M and N are 
the number of Chebyshev and Fourier modes, respectively, 
and At designates the used time-step. 

6.2 Roll up between moving walls at high 
Reynolds number 

In Figure 2 we show the evolution of the vorticity and pres- 
sure field during roll up of a thin shear layer in a periodic 
channel with counter moving walls at Reynolds number 
Re -- 40, 000. The value of Re is based on the channel 
half width and the total velocity difference between the 
upper and lower walls moving with U + -- -1 and U- = 1, 
respectively. Obviously, this example has mainly theoreti- 
cal interest, since three-dimensional effects will begin to be 
important already at much lower Reynolds numbers. At 
T = 0, we have set up an unstable vorticity sheet perturbed 
in the •c-direction by mode number 1. In this example, we 
have used 512 Fourier modes and 1024 Chebyshev modes, 
corresponding to 342 x 684 active modes after de-aliasing. 
The time step, At, is 10 -3 . 

We observe a very high degree of symmetry in the nu- 
merical solution despite many violent bursts of boundary 
layer vorticity. Symmetry of the flow is maintained up to 
T • 35. After this, the code can no longer adequately re- 
solve the dynamics and breaks down shortly after T -- 37. 
We have performed a similar simulation [20] with addi- 
tional random noise of amplitude 10 -s added to all the 
spectral modes at T -- 0. This slightly noisy run begins to 
lose symmetry at T • 20, indicating that round-off errors 
in the present calculation are less than 10 -s. 

The accuracy checks described in Sec. 2.1 for the energy 
and enstrophy evolution give 5.10 -4 accuracy for dE/dr 
and 5.10 -2 for dF2/dt at T --- 24. At T = 30, these num- 
bers are 2.10 -2 and 10 -1, respectively, indicating the loss 
of adequate resolution near the end of the simulation. We 
would like to emphasize that these accuracy tests, and es- 
pecial!y the enstrophy evolution test, are very valuable di- 
agnostic tools, since they provide consistency checks for the 

? Concluding remarks 

In this paper, we have developed a spectral tau method 
for the solution of the incompressible Navier-Stokes equa- 
tions in a planar geometry. The emphasis has been on 
the periodic channel with no-slip walls, but we have pre- 
viously employed similar algorithms in annular geometries 
[3, 7, 18], just as we are presently adapting the scheme to 
a disk geometry. 

The emphasis in this work has been on the accurate so- 
lution of the incompressible Navier-Stokes equations for 
flows with strong boundary layer interactions. Such flows 
require high spatial resolution, which, in turn, impose se- 
vere requirements on the development of accurate and effi- 
cient algorithms. We have implemented several diagnostic 
accuracy tests in the code, and in the present paper, we 
have reported results demonstrating that high accuracy 
can be obtained even for flows with violent boundary layer 
activity. 

We have previously demonstrated close agreement [3, 7, 
18] between our numerical results and experiments per- 
formed at moderate Reynolds numbers, (P(1000). In this 
paper, we have furthermore demonstrated the ability of 
our scheme to perform accurate and direct simulations 
of turbulent boundary layer eruptions in planar flows at 
Reynolds numbers which are even an order of magnitude 
higher. 
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