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Abstract 

This paper is a short presentation of a joint work with 
Mejdi Azar/ez, Christine Bernardi and Yvon Maday, which 
will be published in a book entitled "Spectral Methods for 
Axisymmetric Domains". Here we focus on the solution of 
a simple boundary value problem: the Dirichlet problem 
associated with the Laplace operator. 
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1 Introduction 

1.1 The geometry 

As a prototype for axisymmetric boundary value problems, 
we consider the Dirichlet problem for the Laplacian iX in a 
three-dimensional axisymmetric domain f•. Let us denote 
by Ct C R + x R the meridian domain of f}. 

If (x,y, z) are the Cartesian coordinates in R s and 
(r, z, S) are the corresponding cylindrical coordinates in 
R + x R x T with T = R/27rZ, we have 

(x,v,z)e• -'. ? (r,z) efi and SeT. 

The rotation axis is r = 0. 

Our geometrical assumptions are the following: 
ß fi is a polygonal domain with sides and corners, 
ß • Cl {r = 0) =: Fo is a full side of •. 

We denote by F the part of the boundary of Ct which is 
not contained in Fo and we have, for the boundary of f} 

(x,y,z)•O• .•. (r,z)•r and SeT. 
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1.2 The Dirichlet problem 

In Cartesian coordinates (x,y,z), the Dirichlet problem 
writes: 

--A,•, = / in •, (1) fi = • on 0•. 
In cylindrical coordinates problem (1) becomes 

{ - oN- o0' = ] in n x (2) • = .• on r x T. 
Thus, the coefficients are independent from the angular 
variable 0 and a natural method for this problem is the 
angular Fourier decomposition. 

To this respect, let us recall that the Fourier decompo- 
sition, associated with a cut-off frequency, is known as the 
Fourier version of spectral methods. 

1.3 Fourier decomposition 

For • defined on f}, the Fourier coefficients are 

vk(r, z)= • v(r, z,S) e -'kø dS. 
The Dirichlet problem (1) on f• is equivalent to the s• 

quence of D•ic•et problems on •: Vk 6 Z 

•2u•=f• in •, u • = g• on r. 

We propose a n•eric• •ysis of each problem (3), 
combined with a cut-off •uency in the Fourier parameter 
k, w• yields a n•eric• appro•h to the solution of 
the thr•dimension• problem (1) by a finite number of 
discrete tw•dimension• problems. 

• the c•e when the right hand side (], •) is invariant 
by rotation, i.e. if its o•y non zero Fourier coe•cient is 
(•0, gO), • h• only its coe•cient u ø non zero •d problem 
(1) is equi•ent to the only problem (3) with k = 0. A 
numeric• •alysis by Finite Element Method of this fully 
•s•etric situation w• performed in [9]. 
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A complete coupling between the Fourier decomposition 
and Finite Element Method for general data is studied 
more recently in [8]. 

After the presentation of an abstract framework for the 
Fourier anal• coupled with an approximation of the 
problems (3), we construct a spectral method adapted to 
the different problems (3) •nd satisfying the convenient 
estimates with respect to k. 

2 Variational formulations 

2.1 The spaces 

The pivot space on • is L2(•) and the variational space 
on • is H•(•). 

We give hereafter their characterization by Fourier coef- 
ficients: let v be a function defined on • and let v k be its 
Fourier coefficients. 

Concerning the L 2 norm, we have the following equiva- 
lence 

where the norm in L2• (f}) is defined as 

Ilwll•<n) = Iw(r,z)l zrdrdz. 
The space L2•(f}) is the L z space on f} associated with the 
measure r dr dz. 

Concerning the H • norm on •} we have 

where the norm with parameter H ' [[s•)(n) is defined as 
k 2 

Thus, for any k • Z, the pivot space of problem (3) is 
L•(fl), whereas, as can be seen by the definition of the 
norm [I ' [In/,•(n), the variational spaces are different ac- 
cording as k is 0 or not: these are 

H•(f•):-{wl0•w, 0•w, weL•(n)} ifk=0, 
2.2 The problems 
In order to introduce the variational formulation for the 

continuous problems (3), we need the subspaces of the vari- 
ational spaces with zero Dirichlet traces: 

H•o(f•)={wßH•(n),w=0onr} ilk=0, V•(fl) = {w ß V•(fl), w = 0 on r} if k :• O. 

We introduce the product in 

(f,v) -- Jfn f(r,z)U(r,z) rdrdz. 
For k -- 0, the variational formulation of problem (3) is 

(4) [find u ø ß HI(f]), with u ø- gO ß H•o(n) , s.t. w ß Hlo(n), ao(•O, 

whereas for k • 0, this is 

(5) [find u • ß V•(fl), with u t• - gt• ß V?o(fl) , s.t. w ß V?o(n), a•(• 

with, for any k ß Z: 

ak(u,v) = 0ru0r•+ i:9•ui:9•U+ • uU rdrdz 
The integrodifferential forms ao, resp. ak for k 5& 0, are 
continuous •.d coercive on HL(n), resp. on V?o(n): 

3 X- Fourier method 

We introduce an abstract method of approximation "X" for 
each problem (4) and (5) and thus define a discrete method 
for the three-dimensional problem (1) via the introduction 
of a cut-off frequency. 

3.1 Spaces and forms 

Let K ß N denote the cut-off frequency and let • denote 
the parameter of discretization for the problems (4) and 
(5). For the Finite Element Method, the size of the mesh 
h plays the role of 5, for the p-version 5 equals p, the 
degree of polynomials, and for the spectral method, we 
use to denote by N the degree of the polynomials and it 
will be taken as 5. 

The approximate spaces are essentially generated by two 
families of finite dimensional subspaces of 

(• (f•))e family of approximate spaces for HI (n) 
(X• (f•))• family of approximate spaces for 

These two families generate a new family of spaces 

(S•ce(•))•c • approximating H;(•), defined by 
K 

= = 

and for k • 0, v k 
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We can also take into account a quadrature formula and 
introduce for any k 6 z the sesquilinear forms ak,• which 
approach the forms ak and we also need an approximate 
scalar product (.,.)• for (-,-). 

3.2 Discretized problems 

The exact solution • of problem (i) is approached by •c• 
belonging to SK•(•): 

with u• solution of the discretized variational problem for 
k=0: 

(7) [find ,• • Xo(f•), with u• - g• • X•(•), s.t. vv• • •(n), a0,•(-•, v•) = <f0, 

and u• solution of the discretized variational problem for 
k•0: 

(8) [find u• • X• (f•), with u• - g• • X•(f•), s.t. Vv• • •(n), ak,•(.•, v•)= (f•, 

Here X$ (f•), resp. X• (f•), denote the subspace of X0 (f•), 
resp. X$ (f•), with null traces on F. Moreover, the functions 
g• are approximates of gt in X0 (f•), resp. X• (f•) if k • 0. 

3.3 Fourier error estimates 

Let us introduce the exact truncated Fourier series 

K 

•[K] = E u• ei•s' 

We obviously have 

- u•ll•a• 
(o) 

2 

K 

Lemma 3.1 For any s k O, if • belongs to the Sobolev 
space H'+•(•), there holds: 

Let f • H'-l(•) and • • H'+a(fi). If • has a smooth 
boundary, then • belongs HS+1(•). But, with our geo- 
metrical assumptions, f• has conical points and edges in a 

generic way. Thus, as proven in [7] and [4] for instance, 
• does not belong to H•+i(•) in general: indeed, • has 
singular parts near the conical points and near the edges. 
Nevertheless, we prove that the singular parts near the 
conical points involve only a finite number of Fourier co- 
efficients and moreover that the singular parts near the 
edges are regular with respect to the angular Variable 8, 
and as a consequence we can state: 

Theorem 3.1 For any s _• O, if f • H•-•(•) and • • 
H•+i(•), there holds for the solution • of problem (1): 

3.4 Abstract error estimates 

We characterize for any s _• 0, the Sobolev space H•(•) by 
the Fourier coefficients: for any k • Z, there exist spaces 

H•k)(f•) endowed with a norm ]] ' ][H•.)(n) such that 

II•11•,(•)-- Y] 
With the help of different function• tools (tensorization 
of the •iables r •d z, Taylor decomposition in r = 0 of 
the functions of r, H•dy's inequalities, weighted Sobolev 
spaces) we prove that H•t)(•) is a subspace of the Sobolev 
space H•(•) of exponent s •sociated to the me•ure 
r dr dz: For Ikl > s - 1 

2 2 k2s 2 Ilwll•&>( m IIw 
•d •or I•l • s- 1, H?n (•) is a subspace of H•(•) ch•- - () 
•tefized by the n•lity of a ce•ain set of traces on the 
rotation •s r = 0. For inst•ce, for k = 0, all traces of 
odd r& •e 0, •d for a l•ger •ue of I kl, this set of 
trac• incre,es: for [k I > s - 1 • eftsting traces •e 0. 

Combin•g Theorem 3.1 with (9), we obtain 

Th•rem 3.2 We •sume that for any k • Z, we have 
the estimate •tween the solutions of problems (4) and (7), 
•sp. (5) and (8) q k 4 0 

for a •nstant X(k, 6) > O. 
Then, for the appm•mate solution •Ke defined 

we ha•e the e•r estimate 

(10) •=-• 
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4 Spectral element method and 

4.1 Domain decomposition 

Since fi is a polygonal domain, it can be covered by a 
"disjoint union" of quadrilaterals fit, i.e. satisfying 

fit n 

Since we have assumed that • Cl (r = 0} = F0 is a full 
side of f2, it is possible to choose a decomposition of 
satisfying: 

-- fitt•Fo= •) or0. 
The model one dimensional sub-element is the interval 

A = (-1,.1) 

and the model two dimensional element is the square 

There exist local maps •'t: • onto fit. According to the 
situation of fit with respect to the rotation axis F0, there 

are two models: and 
(•) -•'t maps the side • = -1 onto •t VI F0, 
•) "ordinary" Cartesian situation. 

4.2 Discrete spaces 

The parameter of discretization in • is taken as the de- 
gree N of the polynomials on which are based the discrete 
spaces 

5= N, N , +•. 

The basic spaces of polynomial functions are defined on 
the interval A: 

P•v(A) = {w polynomial ,degw _< N} 

= (w ß ?N(A), w(-1) = 0}, 

from which are constructed the spaces on the square E by 
tensorization 

?N(r) = ?s(A) © ?•(5) 

• (I•) = •*N (A) © PN (A). 

The spaces X•(Ft) and X;(•) of the abstract theory are 
now denoted XN(fi) and X•v (fi) respectively, and defined 

We have 

4.3 Quadrature formulas 

One of the specificities of the spectra] methods is the 
quadrature formulas whose nodes are taken as the roots of 
certain families of orthogonal polynomials (which are the 
orthonormal bases of eigenvectors of some second order 
differential operators on the interval A, degenerate at the 
ends 4-1 of A). 

For the direction • in case (•) ) For both directions • and • in case (•) 

the Gauss-Lobatto formula is used: its nodes •j and 
weights pj are such that 

W ß ?a•_• (A), 
1 N 

/_ q)(•)d• = E q)(•5)pj. 1 j=O 

For the direction ( in case (•), we have constructed 3 
formulas, indexed by m ß (1, 2, 
ß the formula m = 1 is a Gauss-Radau formula (in • = +1) 
for the measure (1 + ()d(; 
ß the formula rn = 2 is a Gauss-Lobatto formula for the 

measure (1 + •)d•; .. 
ß the formula m = 3 is derived from the Gauss-Radau 

formula for the measure d(: it has the same nodes denoted 

(is) and its weights wJ a) are obtained from the weights •j of 
the ordinary Gauss-Radau formula by 

These quadrature formulas satisfy: 

ß rn = 1, 3: the nodes •Jm) are such that 

-1 < C? ) <-.. < C(N m) < ((N•: = 1 
and the exactness property reads 

I N+I 

f •o(•')(1 4- •)dC E ,,.(m), (m) = •qj ) wj 
1 

j=l 

-- for m = 1, we even have the exactness for •o ß •2•v(A). 
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Experimental 2t + 2 t + • 2t + 1 
re=l, 3 

L•2(A) norm 
Theoretical 2t + 1 t + • 2t 

Experimental 2t + 2 t + • 2t + 1 
m=2 

Li•(A) norm 
Theoretical 2t + 2 t + • 2t 

Experimental 2t x x 
m--2 

/?_1 (A) norm 
Theoretical 2t x x 

Table 1: Table of convergence for the interpolation operators 

ß m = 2: the nodes C (•) •j are such that 

= r(2) = 1 ½? -1 < ½?) <..-< ½(•) < -•v+l 
and the exactness property reads 

N+I /,•2). •o(•) (1 + ½)d• = y• •o(½J :)) 
1 j=l 

4.4 Projection operators on the interval 

Let L•(A) and L • L • _•(A) be the spaces on A associated 
with the measures (1 + ½)d½ and (1 + ½)- ld½ respectively. 
The sharpest results for the orthogonal projection oper- 
ators in L2(A), L•(A), L•_i(A) use the Sobolev spaces 
H•t•(A ) associated with the Jacobi weights (1-0a(1+()•. 
We have 

11•o + N -s - •dl,.•,(^) < c 

The Sobolev spaces in the right hand sides axe the domains 
of the power { of the Sturm-Liouville operators associated 
with LZ(A), L•(A), L2_• (A) respectively. Such an approach 
is given in [5, 6]. 

The interpolation operators associated with the Gauss- 
Lobatto formula on A are denoted iN, whereas those asso- 
ciated to the formula (m) are denoted i• •). We have 

II• - iw•[[,.=(^) _( c N-' [[•IInL(^ ). 
Let us give here the L a estimates for the i?): if s _• 1 

Ilv-i?)vllr.,•(^) _< cm-'ll•ll,:_,,.(^), m-- 1,3, 
II•- i(•)•llq(^) < ca -• 

and if, moreover •o(-1) = 0 

The formula m = 2 is the only one which is convenient 
for the norm L • and thus, for the variational space V• 
(when k • 0), since it is the only formula which preserves 
the zero trace in • -- -1, which corresponds to the rotation 
axis. The three formulas can be used for the variational 
space H• (when k = 0). 

In the above Table 1, we show the results of numerical 

tests for the convergence rate of I[•o - i? )•o[I in L • norms 
for the following functions •o: 

V;-(•)=(1+•) ', V,ø(½)= I½1 ', 
which have singularities in -1, 0 and +1 respectively. 
These numerical results show an order of convergence equal 
to those of the projection operators in L•(A) or L2_• (A). 
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4.5 Discrete scalar product and forms 
We return to the bidimensional domain fi itself. Let œ• be 
the •et of the indices œ of the domain decomposition in the 
situation (•), and œ5 be the set of the œ in the situation 
¸. 

By the help of the local maps Yt, we define interpolation 
operators Z• "•) on the domain fi: for v in ½0(•), Z•-•)v is 
the only element of XN (fi) such that 

vœ • œ•, vj, j' 

We have similar L 2 estimates as in the interval A. Here 

are the estimates that we can obtain in the norms H•k ) (f•) 
of the x2riational spaces of problems (4) and {5): when 
k=0, wehavefors>l andre=l,2,3 

(11) 

and when k • 0, we have for s > • and m = 2 

(12) [Iv 

The definitions of the approximate scalar product and 
forms are obvious from the above quadrature formulas: for 
any function v which is integrable for the measure r dr dz, 
let us denote for each œ by Ttv the function on the square 
E such that 

/nv(r,z) rdrdz = • jf• Ttv(•,•) (1 +•)dCd• 
+ • fr T%(½,•) de dE. 

The approximate scalar product (., ')N is defined for v and 
w in ½o(•) by 

= E ' 

+ • •(v•)(•,•,)• •,. 

For any k 6 Z the sesquilinear forms ak,N which ap- 
proach the forms a• are defined thanks to the approxi- 
mate scalar product (',')N: for u and v in C•(•) (with 
zero traces on F0 if k • 0) 

For k = 0, any from the three quadrature formulas can be 
used, and if k • 0, only m = 2 is used. The discrete forms 
a•,N are coercive on H(•k)(•) for any k, uniformly in k. 

5 Error estimates for the spectral 
element method 

The error estimates for the discrete problems in fi (7) 
and (8) obtained with the above definitions of the discrete 
spaces and quadrature formulas, are based on lemmas of 
classical type. 

5.1 Lemmas of type C(•a and Strang 

Lemma 5.1 For k = O, we have the following estimate 
between the solution u ø of the continuous problem (4) 
and the solution u• of the discrete problem (7): for any 
v• ½ XN(fi) such that u•-v• belongs to X• (fi), for any 
w•_• ½ xN_•(fi), for any f•_• 

Ilu ø - •,g• Ilsi(a) <_ c (ll•, ø - v• II.i(a)+ Ilu ø - w•_• IIs•(a) 
+ II/ø - •?)føllz•(n) + II/ø - I•_, IIq(o)) 

Lemma 5.2 For any k •: O, we have the following esti- 
mate between the solution u • of the continuous problem 
(5) and the solution u• of the discrete problem (8): for 
any • • x•(•) such that u•-• belongs to •(•), for 
any w•_• • x•_• (n), for any .f•_• 

with a constant c independent of k. 

As v•v and v[ we can take •(m) o •(•) k z•, u N and respec- .% UN 
tively. 

5.2 Evaluation of the constants X(k, N) 

In order to estimate the constants X(k, N) appearing in 
Theorem 3.2, we have to study the behavior of each of 
the four terms on the right hand side in each of the above 
estimates. Concerning the terms involving the data fk, we 
can rely on the regularity of the data in problem (1). As for 
the terms involving the solutions themselves, we have to 
take into account the limitation of their regularity caused 
by the corners of •. 

Let us denote by e the corners of • which do not belong 
to the rotation axis r0. They correspond to the edges of 
•. Let w(e) be the opening of the angle of fi at the corner 
e. We set: 

w = supw(e). 
e 
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Similarly, we denote by c the corners of • which belong to 
F0. They correspond to the conical points of •. Let a(c) 
be the opening of the angle of • at the corner c. We set: 

a -- sup a(c). 

The regularity of u k is limited by the first exponent of sin- 
gularity at each corner. For a corner e, this first exponent 
does not depend on k and is equal to 7r/•(e). For a corner 
c• it depends on k and is equal to •(a(c)) with •(a) the 
smallest positive root of the equation 

= 0 

where P• is the Legendre function of degree • and order k. 
All of these functions decrease with respect to the opening; 
the smallest "edge exponent" is •/w and, for each k, the 
smallest "corner exponent" is equal to •(•). Setting 

s•= min( • •} + 

we obtain the largest Sobolev exponent such that, if s • s• 

u e W > 0. 

Then, when s is large enough, the constant X(k, N) has a 
similar behavior as N-•: in the best polynomial approx- 
imation of singular functions, we also find the doubling of 
the convergence order well-known in the p-version of finite 
elements [5, 6, 1], and in spectral elements in the Cartesian 
case [2]. Indeed, setting 

and for k • 0 

v0=min --,uo(a)+ 

1} vk =rain --,vk(a)-• 
we obtain, combining the above lemmas with the estinmtes 
about the projection and interpolation operators 

(la) X(k,N) _< c(N-2•-k(logN) a/2 + Nt-'•). 
6 Conclusions 

6.1 Global estimates 

We obtain a global estimate between the solution of the 
three dimensional problem (1) and the approximate solu- 
tion 

K 

•KN = E UkN eikO 
k=-K 

with the help of the general estimate (10) and the above 
majoration (13). Taking into account 

(14) 0<Uo and l<u• <vo <..., 

we get 

115- 

(K -s + N •-s + (N -2rø + N -2r•)(log N) a/2) 

6.2 Examples 

If the angles c•(c) are equal to 7r/2, the domain •t has no 
conical point in c. Thus, % = v• = 7r/•. If • is a rectangle, 
then the convergence rate in the norm H x (•t) is 

K -s + N •-s + N-4(log N)3/2. 

and in the norm L2(•), we prove by an Aubin-Nitsche 
argument 

K -•-• + N •-• + N-'• (log N)3/2. 

If fi has the shape of a L, then the convergence rate in 
the norm H•(•t) is 

K -s + N •-• + N-4/3(log N)I/2. 

Thanks to the minorations of (14), in the most general 
case, the exponents 2to and 2r• are always > 1. 

6.3 Hints about the numerical solution 

For the discrete problems (7) and (8), there are several pos- 
sibilities to derive matrices to be inverted for their nunmr- 

ical solution. Essential objects linking the discrete vari- 
ational systems and the linear systems are the bases of 

Lagrange polynomials •j and •5'•): the integer N being 
fixed, for j • {0,..., N}, tj is the unique polynomial be- 
longing to ?• (A) which equals 1 in the node •j and 0 in 
the other nodes. Similarly, concerning the "radial" vari- 

able, for j • {1,..., N + 1}, t•'•)is the unique polynomial 
belonging to n>• (A) which equals 1 in the node (Jm) and 0 
in the other nodes. 

To describe some peculiarities of these matrices, we focus 
on the radial variable r -- (+ 1, for ( in the interval A. Let 
us consider the discrete problems (7) and (8) without the 
variable z, in the only variable r. With the choice of basis 

functions t•"•) for the test and trial functions, the Galerkin 
zion) method reads as an algebraic problem,.c^• k U = F with a 
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(,•) •(,•) )j stiffness matrix zl(") equal to (ak,N(•j ,•j, ) ,j,. The • 'GAL k 

matrix •(•) of the collocation system at the nodes • • •COL k 

reads 

( k' (•) (•)) •0•-0•+ )(• )(•), ) . (-0• -; • 
It is known [3], that in the Cartesian c•e the Galerkin 

and the collocation systems are equivalent. In the radial 
case, when k = 0, the Galerkin method is equivalent to the 
collocation method only for m = 3; and when k • 0, the 
Galerkin method is equivalent to the collocation method 
for m = 2. 

Numerical evaluation of the condition numbers of the 

different rigidity matrices show a behavior in N • for all 
Galerkin matrices 4(•) •GA• k, a behavior in N 4 for the collo- 
cation matrix4(•') ifk=0, m=3ork•0, m=2, and • •COL k 

in N • for the "forbidden" collocation matrix with k = 0, 
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