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Abstract 

A parallel element-by-element ,nultilevel strategy is devel- 
oped and applied to two nonlinear, coupled PDE system.•. 
Spectral (p) finite elements are used to discretize the 
lems and the multilevel solution strategy uses projections 
between bases of different degree (level). The projection 
methods for the p-multilevel schemes are developed and an- 
alyzed for Lagrange and hierarchic bases. The approach is 
implemented in a parallel element-by-element algorithm, 
which is particularly suitable for the spectral finite ele- 
ment method. Results are presented for two candidate 
nonlinear elliptic transport problems: the augmented drift- 
diffusion equations of semiconductor device modeling and 
the stream function-vorticity equations of incompressible 
fluid dynamics. 
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1 Introduction 

Finite element methods in which the refinement is accom- 

plished by increasing the degree p of the polynomial basis 
can give superior accuracy for similar computational work 
as compared to the more commonly used h refinement 
schemes. However, the condition number of the matrix 
deteriorates with increasing p. This motivates the need 
for an effective preconditioner, and a multilevel scheme in 
which the basis degree serves as the grid level is a natural 
choice. Such schemes may also be easily parallelized. 

In the finite element context, the variational statement 
of the problem on the different grid levels leads naturally 
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to the development of appropriate projection operators [5• 
8]. Hierarchic basis functions, which are constructed by 
adding appropriate functions to the existing lower-degree 
polynomials, lead to matrices and vectors which are nested. 
This may be a particularly suitable choice for multilevel 
methods, since the projections for hierarchic multilevel are 
performed by merely truncating or appending a part of the 
vector at little or no computational cost [9]. 

Element-by-element strategies have proven to be effi- 
cient and scalable for parallelization of finite element meth- 
ods using gradient iterative solvers [2, 3• 6• 7]. The basic 
idea in the parallel EBE scheme is to avoid assembling the 
system and instead perform matrix-vector and dot prod- 
ucts in parallel at the element level. All matrices and vec- 
tors are stored in element format, which means the memory 
is scalable with the number of elements. Use of high-degree 
polynomials as the bases makes the element vectors longer 
and increases the ratio of calculation to communication by 
increasing the ratio of total degrees-of-freedom to element 
boundary degrees-of-freedom. 

Moreover, in this approach, multilevel operations such 
as residual calculation, restriction and prolongation can 
be confined to an element and hence are completely par- 
allel. The only steps that require communication are the 
smoothing (iteration) phase and coarse grid solves. A fur- 
ther advantage of spectral multilevel methods is that the 
number of elements in the domain remains constant, and 

hence the decomposition of the domain is fixed across grid 
levels. An important issue with parallel multilevel meth- 
ods defined in this way is the ratio of communication to 
calculation. Although this ratio may be small for the fine 
level (high-degree basis), on coarser levels it gets succes- 
sively larger, and at some level the communication time 
may dominate the total computational time. 

2 Spectral elements and multi- 
level 

An alternative to refining the mesh by making the element 
size h smaller is to increase the degree p of the polynomial 
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basis. Use of high-p finite elements can give higher-order 
accuracy for the same number of grid points. For example, 
the L 2 finite element error estimate for elliptic PDE's has 
the form [1] 

(1) llell: C(p)h, -- rain(r,p + 1) 

where r is the regularity of the solution (u • H r) and p 
is the degree of the basis. For smooth solutions the con- 
vergence rate with respect to h is then O(hp+l). If we 
increase the polynomial degree instead of decreasing the 
grid spacing we get exponential convergence of the error. 
This rate is not achieved in the vicinity of a singularity 
due to the local lack of regularity. In such regions the er- 
ror is O(h •) and, therefore, increasing p will not increase 
the rate beyond r. The optimal refinement strategy should 
be to decrease the element size h near a singularity, and 
to increase the degree p in smooth regions. Of course, we 
can grade the mesh (redistribute the grid) to cluster near 
a singularity and then increase p uniformly [5]. 

One disadvantage of the p-type finite element method is 
that the conditioning of the matrix deteriorates with in- 
creasing p. This deterioration is dependent on the type of 
basis used. One way to counter this is to apply a precondi- 
tioner to the system. A p-type multilevel method may be 
defined by using the degree of the polynomial basis as the 
grid level. The intergrid transfers can then be naturally 
defined in terms of expansions in the appropriate bases. 

The analysis of a finite element Galerkin multilevel 
scheme is best carried out in the variational setting. In 
this way the Galerkin statement can be formulated on each 

grid level. and the consistency of the projection operators 
with the finite element discretizations on the associated 

grid levels is assured. The approach here follows that in 
[5!. We proceed by considering a representative linear el- 
liptic problem on a domain Ft with a boundary 0f•: 

(2) L(u) =f in Ft 
(3) u=g on OFt 

where L denotes the differential operator. Applying the 
method of weighted residuals and integrating by parts, the 
variational statement of the problem has the form: Find 
• E H with u: g on OFt such that 

(4) a(u,v) = f(v) Vv • H 

with v = 0 on 0[2. Here a(., .) denotes the bilinear func- 
tional, f(.) is a linear functional and H is the appropriate 
space of admissible functions. Introducing a finite element 
discretization and a polynomial basis so that S p C H, we 
define the approximate variational problem on grid level p 

(7) 

where 

(s) 

as: Find Up • S p with Up = g on OFt such that 

(5) •(•,•) = f(•) W• • S • 

with Vp - 0 on OFtp. Introducing the finite element expan- 
sion and evaluating the integrals in (5) leads to a linear 
system of the form 
(6) Apup ---- bp 
where p qnce again indicates the grid level. Now con- 
sider a m•dtilevel scheme where (6) corresponds to the fine 
grid system. Application of an iterative smoother to this 
system yields an approximation Up and associated error 
ep -- Up -- Up. Substituting this into (5), the error ep is 
specified by the residual equation 

a(½;, Up) -- •*(Up) for all Up • So p 

r*(Vp) = f(vp) -- a(ttp, Vp). 
Next, introduce a coarse grid level q such that S q C S p. 

Since all Vq are in S q and thus in S p we can test against 
the set of bases Vq [5] so the solution of (7) also satisfies 
the property 

(9) a(e;, vq): r*(Vq) for all Vq • $• 

where r*(vq) = f(vq)- a(u•, Vq). This system is obviously 
underdetermined, so we take the best (Galerkin) approxi- 

* * 

mation eq • S q to ep. That is. find eq • S• such that 
* 

(10) a(eq, vq) -- r*(vq) for all Vq • S• 
Substituting the finite element expansion in (10) yields 

the coarse level system for the error correction vector 
* 

(11) Aqeq -- rq. 

where Aq is computed by evaluating the bilinear form on 
the space S q and the right side vector defines a natural 
projection of the residual from S p to Sq. More specifically. 
(8) implies 
(•2) r*(•,•) = f(•,•) - •(•;, •). 
Note that this requires the a(.,-) inner product of u; and 
•q. 

As an illustration, consider the bilinear form for the 
Laplacian 

(13) a(u, v) = • Vu. Vvdfi 
Introducing a polynomial expansion for u; and polyno- 

mial test function Vq 

Np 

* •(* P q (14) Up = Up)j•j(x), Vq = •i (x) 
j=l 
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P and •b• q denote the respective basis functions for where (bj 
$P and Sq. Upon s•5•stitution this yields 

Np 

= 
j----1 

Np 

Let this projection operator be denoted A q'p. Then 

q (16) Ai• p 

so that (12) implies 

Np 

(17) r*(•) f(•iq)- Z q'p * ---- Aij (•p)j 

or in matrix form 

(18) r; = fq - Aq'Pu; 

Now, in the spirit of traditional multigrid methods on fi- 
nite difference grids, we can characterize the projection as 
the product of its component parts: residual vector calcu- 
lation (matrix multiplication) and projection to the coarser 
space. 

To illustrate this idea, let us expand the test function 
in the higher-dimensional basis. Then 

Np 

(19) •'q --- Z 7•q'PrfiP 

Substituting (19) into (17) 

Np N r 

j•l j•l 

(•0) -- • q'P*'P - m v • (%) 
j=l 

or in matrix form 

* = Mq'P(bp- Apu;): Mq'Pr; (21) rq 

At this point we need to determine the actual values of 
m q'p in order to be able to carry out the projection. The ik 

following analysis is for Lagrange bases. These bases have 
the interpolation property that the value of each basis func- 
tion is one at the node corresponding to the basis function, 

and zero at all other nodes, i.e. ½i(xj) = 6ij. It follows 
that 

Np 

(22) 0•(xj): y•q'P•Prx • : m•j p 

That is, the components of the projection matrix M q'p are 
simply the values of the coarse grid basis at the fine grid 
nodes. 

To complete the multilevel concept in the variational set- 
ting, a prolongation operator is needed which will project 
the error correction in equation (11) to grid level p. A nat- 
ural choice for the prolongation operator is the transpose 
of the restriction operator in (22). Then the fine grid cor- 
rection is computed from the coarse grid result according 
to 

* 

(23) ep = (Mq'p)Te; 
As in the standard multigrid method, these error correc- 
tions are added to the approximate solution on the finer 
level to obtain the corrected approxinmtion and smoothed 
by fine grid iteration. 

2.1 Hierarchic bases and multilevel 

Hierarchic basis functions are constructed by adding the 
next degree basis function to an existing basis of lower de- 
gree. For example, a quadratic basis may be formed by 
adding a quadratic polynomial to an existing linear basis. 
The higher degree basis then explicitly contains the lower 
degree basis. This implies that the finite element •natrix 
and vector contributions corresponding to the lower de- 
gree polynomials are nested in the matrix and vector con- 
tributions for the higher degree polynomials. Similarly, 
coarsening implies simply deleting the appropriate rows 
and columns of the matrix. These properties are useful in 
the multilevel context. However, the interpolation prop- 
erty 4>i(xj) = 5ij for Lagrange polynomials holds only for 
the p = 1 basis. 

The advantages of hierarchic bases become apparent 
when we extend the previous multilevel analysis to this set- 
ting. The change of basis coefficients in (19) for Lagrange 
bases are simplified for hierarchics because the basis for the 
space S q is explicitly contained in the basis for S p. That 
is, 

(24) ½•=• l_<i<_Nq 

If we follow the same strategy as for the Lagrange ba- 
sis, then the residual projection in (17) becomes r*(O•) = 
r*(½/p) for i = 1, 2,..., Nq. That is, the components of the 
residual projection to the subspace S q are precisely the 
first Nq components of the fine grid residual. Hence, only 
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the first Nq components of the residual vector need to be 
computed. 

Similarly, the coarse grid matrix Aq is now the leading 
Nq x Nq minor of the fine level matrix Ap. Hence Aq does 
not need to be recomputed. 

The subspace problem for the error correction in $q 
again has the form in (11). That is, 

* 

{25) AqeS----rq. 
* 

In a two level scheme this system is solved for eq. The pro- 
jection of e• to the higher level space S p is trivial because 
of the explicit inclusion of the basis (recall (24)). Hence 
the corrected high level approximation is simply obtained 
by adding the Nq components of e• to the first Nq com- 

* 

ponents of up. This new approximation in S p can then be 
iteratively smoothed and the cycle repeated. 

We can express this alternatively by introducing the pro- 
jection operator defined by 

(26) (Ppq)ij-Sv i=l,...,Nq, j=l,...,Np. 

Then P• extracts the first Nq components of a vector of 
length Np. The problem on the coarse grid can then be 
expressed as 

(27) Aqe5 •- Ppq(bp- Apu;) 
or after projection 

(28) Aqeq 

An alternative to the standard error correction method 

described above takes advantage of the nesting of the ma- 
trices and vectors [9]. Instead of computing a correction 
and adding it to the existing approximation, one can di- 
rectly compute the corrected solution on the coarse level 

fiq = u(• + e i. More specifically, adding Aqu• to each side 
of (28) we have 

q * Aqu• (29) Aqfiq - bq -- PpApup + . 

and clearly can solve this system to get Uq. Note also that 
the matrix Ap and the vector u• can be decomposed into 
blocks in the following fashion 

(30) Ap = Apq App Up -- . Upp 

* 

where Aq and Uq are the coarse level matrix and solution 
approximation, respectively. Using this block decompo- 
sition and the projection defined in (26), equation (29) 
simplifies to 

* 

(31) Aq•Iq -- bq - Aqpupp. 

This form has two advantages. First, it mnphasizes the fact 
that the full residual need not be computed. Second, no 
intermediate correction needs to be projected and added 
to the fine level approximation. The computed coarse level 
solution from (31) is trivially inserted as the first Nq com- 
ponents of the fine level solution vector. 

2.2 Smoothing and correction 

For reasons of convenience and parallelization, a simple 
point Jacobi scheme is the preferred smoother for the mul- 
tilevel scheme. Any smoother must efficiently damp the 
high frequency error modes on the respective grids. For 
the relaxed Jacobi smoother, the relaxation parameter de- 
termines which frequencies are damped more quickly than 
others. If we assume that we wish to eliminate the highest 
frequency eigenmode corresponding to the leading eigen- 
value of the discrete operator we obtain the relaxation fac- 
tor for optimum multilevel smoothing [8, 14] 

(x, Ax) 
(32) •: ((x, Dx))-1 
xvhere D is a diagonal matrix with Di, =Aii. 

Since this relaxation factor •: is a function of the matrix 

A, it changes with both the problem and the discretiza- 
tion. Hence the optimum relaxation needs to be repeat- 
edly calculated for each decoupled equation matrix. This 
value can be conveniently calculated using a power series 
method. 

Calculation of this eigenvalue (or relaxation parameter) 
in a power series scheme generally requires 30-40 matrix- 
vector multiplies. If this were done at each nonlinear it- 
eration for each decoupled linear system, the cost would 
quickly become a significant part of the total computa- 
tion and communication time. However, if the linear sys- 
tem corresponding to a particular equation doesn't change 
enough to significantly alter this eigenvalue estimate over 
several block iterations, then the calculation can be done 
infrequently, and the cost can be amortized over several 
nonlinear iterations. In practice, this is found to be the 
case for both the augmented drift-diffusion and stream 
function - vorticity equations. Hence the relaxation is only 
recomputed every ten block iterations, or at the start of a 
continuation step. 

There are two main choices for a multilevel strategy ap- 
plied to a linear system: a V (or W) cycle, or a full multi- 
grid cycle. The full nmltigrid (FMV) cycle uses nested it- 
eration to improve the initial guess on the fine grid, hasten- 
ing convergence. The strategy for solution of the nonlin- 
ear problem uses block iteration and successive approxima- 
tions. Hence, at each nonlinear (or block) iteration, there 
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exists a good initial guess on the fine grid. For this reason 
only V-cycles are used as a multigrid cycling scheme. 

The Jacobi smoother can generate oscillations in the 
cross-wind direction for convection dominated problems. 
The magnitude of these oscillations is proportional to the 
magnitude of the residual. In order to minimize these oscil- 
lations, an initial coarse grid correction (no pre-smooths) 
is performed at the first V-cycle. This initial correction 
further improves the initial guess from the previous block 
iterate, and convergence is improved [8]. 

Multigrid cycling schemes such as the Full Approxima- 
tion Scheme can be used on the full nonlinear problem. 
Two alternative approaches are used here for the nonlin- 
ear problem. First, the multilevel solver is used only as 
the linear system solver for the fine grid problem, which 
is run to convergence using successive approximations and 
continuation. The second approach is a nested iteration 
scheme: The coarsest grid problem is run to convergence 
on the full nonlinear problem, including continuation in 
the boundary voltage or Reynolds number. The solution 
is then projected to the next finest grid and the problem on 
this grid level is then run to convergence at the final volt- 
age or Reynolds number. This strategy is repeated until 
the highest grid level is reached. 

3 Parallelization 

Finite element methods divide a given problem domain 
into a union of elements for discrete solution. Hence 

schemes in which blocks of elements are operated on by 
a processor and the processor decomposition follows ele- 
ment boundaries provide a natural way in which to paral- 
lelize finite element methods [2, 3, 6, 7]. Adjacent elements 
share nodes on the element interface, so the information 
associated with these nodes may be stored on different pro- 
cessors. This information is updated during matrix-vector 
product or inner product operations. This means that mes- 
sages must be passed between processors in order to update 
these values. The ratio of communication to computation 
is important because it can limit efficiency. The use of 
high-p elements, which have more internal degrees of free- 
dom, results in a higher computation to communication 
ratio. 

For a message passing paradigm, the time to send a mes- 
sage is given by 
(33) 

where a is the startup time or latency, /• is the time per 
byte for message transfer, and L,,• is the length of the mes- 
sage in bytes. For transfers in which a large amount of data 
is to be transferred, the key is to send as few messages as 

possible so that the startup time is minimized. Otherwise 
the startup time may dominate the communication time. 
The optimum situation would be to send one long message 
so that the latency is essentially hidden. 

The previous argument motivates the need for message 
bundling using sendlists. A data structure is developed in 
which each processor has a pointer array which contains 
the element and node numbers that are shared with an- 

other processor. The order in which this information is 
to be placed into a message is also stored. Thus, when a 
vector is to be updated, a message vector is filled in order 
and sent to the appropriate processor. In turn, a message 
is received from that processor. A pointer array indicates 
which element and local node corresponds to which posi- 
tion in the array, in the same way as for the message which 
was sent. In this fashion all of the communication between 

adjacent processors can be accomplished using one mes- 
sage each way, and message latency is minimized. There 
is, however, some overhead in the packing and unpacking 
phases. 

In the present work we can use an element-type data 
structure and recast all matrix-vector or projection opera- 
tions at the element level. This means that instead of ad- 

dressing a vector by its global node number, it is addressed 
by its element and local node number. In addition, each 
element has a pointer array which stores its neighbor ele- 
ments and which nodes are shared with this neighbor. A 
specific processor will store information only for elements 
local to that processor. Elements are therefore addressed 
by the number local to that processor rather than a global 
element number. The pointer array for neighbor infor- 
mation includes the local element number and processor 
number for neighboring elements. This format facilitates 
parallel coding. 

The formation of the matrix and RHS vector for finite 

element methods is usually accomplished by forming the 
local element matrices and vectors and summing them to 
get the global matrix and RHS as implied in the multi- 
level formulation of the previous sections. However, in the 
present parallel algorithm we no longer form the global ma- 
trix and RHS, but leave them in element form. The matrix 
and RHS calculation phase is therefore completely paral- 
lel. If the matrix is to be preconditioned using a global 
Jacobi preconditioner (diagonal scaling), then the diago- 
nal elements of the matrices may be assembled to find the 
scaling factor. This accumulation phase will involve com- 
munication across processor boundaries. 

Iteration by point iterative methods (Jacobi, SOR, etc.) 
as a smoother or gradient methods (CG, BCG, etc.) for 
the coarse grid solve involves repeated matrix-vector mul- 
tiplications or dot products. Calculation of either one re- 
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quires that the information on shared nodes be updated. 
For instance, to compute a matrix-vector product such as 

* 

(34) Apup -- Vp 

in the residual calculation (21), we write u; = B,u; where 
Bc is the Boolean (adjacency or connectivity) matrix for 
element e and relates local to global variables. Then 

(35) Ap = Z T e B e ApB• 

and 

E E 

Apup (E T e ß ß B• ApB•)up Z T = = B e Apup 
c:l 

E 

: v 

Hence the calculation requires element matrix-vector prod- 
ucts that can be carried out independently in parallel. 

Note that the solution vector is stored in summed form, 
but still in element format. The element accumulation 

in (36) requires communication if the element boundary 
corresponds to a processor boundary. High-p elements, 
which have more internal degrees of freedom, will result in 
a higher ratio of computation to communication. 

Hence we see that when structured in this way, multilevel 
methods are a natural extension of the parallel EBE solu- 
tion of finite element problems using gradient or other it- 
erative methods. Obviously the smoothing phase proceeds 
as before with matrix-vector products updated across el- 
ement boundaries. The issues of the residual calculation, 
restriction, and prolongation also need to be addressed. 

For example, consider the residual calculation rp = bp - 
ApUp. In the EBE structure we obtain 

E E E 

(37) • • B•rp • T e : Bebp _ • T e * B• ApBeup 
e=l e=l 

but B•u; = u; so (37) implies 
E E 

T e e e (38) • B[r; = •B• (bp- ApUp) 
e=l e:l 

and we can use directly the element residuals 

(39) rp •- bp - Apup 

Note also that because the element bases are defined locally 
we can introduce a local change of basis at the element 

level and corresponding to the global matrix M q'p in (21) 
we have the element projection matrix M• 'p. Then the 
element residual projection follows in a manner analogous 
to (21) as 
(40) r• = M•'Pr; 

Thus residual calculation and restriction take place on the 
element level, without communication, and are completely 
parallel operations. The prolongation to finer grid operates 
on the error vector, which is the solution on the coarser 
grid. This vector is stored in summed format, and hence 
no updating is necessary. Therefore, prolongation can also 
take place on an element and is once again completely par- 
allel. 

To summarize, the basic steps of the parallel algorith•n 
for a two-level scheme are: 

1. Processor partition. An element-by-element partition- 
ing of the domain is made (contiguous element blocks 
are desirable). Sendlists for interprocessor communi- 
cation are constructed. 

2. High-level smoothing iteration. 

(a) For each processor subdomain in parallel com- 
pute element matrix and vector contribu- 
tions at every level and store elementwise 

{A;}, {b;}, {A•}. {b•}. 
(b) For k = 1, 2,..., K iterations carry out relaxed 

Jacobi iteration (or a similar scheme). This in- 
volves local element matrix-vector products with 
element solution vector iterate {u;} and commu- 
nication between adjacent processors for element 
nodes on an interprocessor boundary. 

Residual computation and projection. For each ele- 
ment in parallel, compute element residuals (level p) 
and locally project to level q to get residuals r•. For 
the hierarchic basis this reduces to simply comput- 
ing the first •V• components of the residual for each 
element e. 

Coarse grid solution. The coarse grid system is solved 
in parallel using an element-by-element generalized 
conjugate gradient solver. 

High-level update. The coarse level correction for each 
element is projected elementwise to the higher level 
using (23) and these p-level element corrections are 
added to the current p-level element iterate. 

6. Return to Step 2(b) and repeat the cycle until the fine 
grid iterate satisfies a specified stopping test. 
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Remark 1: In the above procedure all matrices and vec- 
tors are generated and stored elementwise. This permits a 
more straightforward parallel implementation and simpli- 
fies coding. 

Remark 2: Additional level projections and smoothing 
iterations 'an be included in the usual way. 

4 Applications 

The above method is now formulated for two nonlinear, 
coupled transport problems. The first test case is the aug- 
mented drift-diffusion equations, which model the trans- 
port of electrons and holes (carriers) in semiconductor de- 
vices. The steady state, scaled form of the equations is 
[4. 11. 15. 16] 

A2/X½ = n-p--C' 
(41) V. (/•Vn-/•nV½) = R 

•7 . (l_tp•7p q- i_tpp•7tO) = R 

xvhere •' is the electrostatic potential, n and p are car- 
rier concentrations, /• and /•p are mobilities, R is the 
recombination-generation rate, C is the doping, and A is 
the scaled Debye length. An augmented mobility model is 
used for the carrier mobilities [4]. 

Equations (41) are decoupled iteratively and successive 
approximations used to solve the nonlinear problem [10]. 
A linearized Newton step is used on the potential equa- 
tion to facilitate convergence[8, 10]. The equations are 
then discretized using a spectral finite element method. 
The approximate variational statement of the decoupled 
problem is: For iterate k = 1, 2, 3, find ½k-•1, T•q-1 and 
pk+l H h H t • ( (Ft) C (Ft) satisfying the respective essential 
boundary conditions and such that 

and 

/]•p( • k+l --/o h 

= f• Rv• dx Vv• • H h (f•) 

for test functions wn, uh, vh vanishing on those harts of 
the boundary where respective essential data is g: .en and 
where zero flux conditions are taken elsewhere. Further 

details are given in [8]. 
Upon integration, three linear systems are obtained, 

which are solved successively with a multilevel method us- 
ing available solution iterates of the other field variables 
[8]. Due to discontinuities in the doping C for these prob- 
lems, the issue of gridding is critical for high-p elements. 
A transition region must be used between different doping 
values, and at least one element must be in this region. 
Otherwise, Gibbs-type oscillations are set up in the inte- 
rior of the element containing the discontinuity, resulting 
in divergence. 

The second application is the stream function-vorticity 
equations for incompressible Navier-Stokes flow in two 

The steady state form of the equations is dimensions. 

[8, 12, 13] 

(42) -•,A•+ u. V( = f 

where 0 is the stream function, • is the vorticity, u is the 
velocity, and f is the divergence of the body force. 

Following the procedure outlined above, the equations 
are decoupled and discretized to obtain the variational 
statement: For iterate k = 1 2.3. find r•+l H • , ... c 
Hl(•) satisfying the essential boundary conditions and 
such that 

+ 

k k+l w )u) ad= fwad VwaH 

where vorticity boundary data is computed from the avail- 
able stream function iterate. Then find •'•+• • Ha(fi) 
satisfying the essential boundary conditions and such that 

h Sh •h dz 

e H 

Again, the line• systems arising from substitution of 
the appropriate basis and integration are solved with a 
multilevel scheme, and available solution iterates are used. 

5 Results 

The first test case is the augmented drift-diffusion equa- 
tions. The example chosen is an n + - n - n + diode with 
doping of 5 x 1017 and 2 x 10 •5 in the n + and n regions 
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Figure 1: Electrostatic potential. 1V bias 
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Figure 2: Electron concentration. 1V bias 

respectively. device length of .3/zm, active length of .ltzm, 
and an applied bias of iV. Surface plots of the electro- 
static potential and electron concentration are shown in 
Figures 1 and 2. This solution was computed using a uni- 
form 12 x 12 grid of 144 bicubic elements, and a multilevel 
solver which used bilinear elements as the coarsest level. 

A further study examined the performance of the nonlin- 
ear successive approximation scheme for different choices 
of element degree. The convergence history of the non- 
linear iterations is shown in Figure 3 for biquadratic and 
biquintic elements. The graph shows the L2 norm of the 
residual of the electron transport linear system at each 
block iteration. Experience has shown that for the drift- 
diffusion problem. a good initial iterate is very important 

for convergence of the decoupled iterations. Hence. both 
continuation in the applied bias and nested iteration are 
used. The spikes in Figure 3 correspond to either a new 
continuation step or the beginning of the solution on a finer 
grid in a nested iteration step. Note that for both cases. 
the nonlinear convergence is not smooth early in the his- 
tory, but becomes smoother at later nested iteration steps 
and also later in the specific continuation or nested itera- 
tion cycle. 
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Figure 3: Electron concentration convergence with block 
iterations 

The convergence of the multilevel method for the La- 
grange and hierarchic bases is next considered. A compar- 
ison is given for both the potential and electron transport 
equations in Table 1. Here the tabulated values correspond 
to the fraction of the residual remaining at the end of the 
V-cycle. Note that the residual reduction factor is very 
good for the Lagrange basis for p < 6 in the potential 
equation. but deteriorates at p = 6. The reduction factor 
for the transport equation is not as good. as should be ex- 
pected. and deteriorates as the basis degree is increased. 
For a Lagrange basis and the multilevel scheme used. this 
makes sense. The coarse level linear system is solved ex- 
actly, so the higher the basis degree, the further away it 
is from an exact solution since the intermediate levels are 

not solved exactly. The hierarchic basis reduction factors 
exhibit the opposite trend with basis degree. This makes 
sense since the problem at intermediate and coarse grids 
doesn't begin with an initial guess of zero. Since the so- 
lution is nested. intermediate grids have a non-zero initial 
guess, which is improved by the smoothing steps on inter- 
mediate grid levels. 

The second example is the stream function-vorticity 
equations applied to the driven cavity problem. The re- 
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Lagrange Hierarchic 
p • n • n 
2 .07 .28 .53 .58 

3 .07 .30 .49 .55 

4 .17 .31 .52 .42 

5 .17 .52 .51 .37 

6 .69 .79 .49 .28 

Table 1: Multilevel residual reduction factor for the aug- 
mented drift-diffusion problem 
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Figure 5: Vorticity, Re = 100 
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Figure 4: Stream function, Re = 100 

locity of the top of the cavity is normalized to one and the 
viscosity is chosen so that the Reynolds number of the flow 
is 100. Contour plots for the stream function and vorticity 
are shown in Figures 4 and 5. The solution was computed 
using a uniform 16 x 16 grid of 1024 quadratic elements, 
and a multilevel solver which used bilinear elements as the 

coarse grid. 
The convergence history for the stream function linear 

system is shown in Figure 6. Notice that the convergence 
is smooth and that it asymptotes to a specific rate. The 
rate is determined by the largest block relaxation which 
gives convergence. This relaxation is lower for the higher 
degree elements, and hence convergence is slower. Experi- 
ence has shown that at this Reynolds number continuation 
is unnecessary and more computationally expensive, as is 
nested iteration. 

The residual reduction factor for the stream function 
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Figure 6: Stream function convergence with block itera- 
tions 
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Lagrange Hierarchic 

2 .20 .26 .23 .19 

3 .17 .29 .19 .17 

4 .38 .34 .19 .17 

5 .49 .53 .10 .10 

6 .70 .70 .07 .07 

Table 2: Multilevel residual reduction factor for the stream 

function-vorticity problem at Re = 100 

equation and the vorticity transport equation are shown 
in Table 2. Once again, the Lagrange basis exhibits a 
steady deterioration of the reduction factor with degree 
p for both equations. In this case the values are more 
similar since the problem is not as convection-dominated. 
The hierarchic basis performs well on this problem, with a 
gradual reduction of the factor with basis degree. 

Figure 7 shows the speedup on the Intel iPSC/860 hy- 
percube for the stream function-vorticity problem. The 
speedups are presented for a grid of 1024 quadratic ele- 
ments and a grid of 64 quintic elements, with a Lagrange 
basis used in both instances. The processor decomposition 
is performed by ordering the elements in the square do- 
main naturally and distributing them to the processors in 
order. i.e. the first • elements go to the first processor Np 
and so on, with _N• the number of elements and Np the 
number of processors. The speedup for less than 16 pro- 
cessors is very good, with a parallel efficiency of .83 for 8 
processors. The deterioration of performance above this 
level is due to the smaller problem sizes on each processor, 
meaning the communication-computation ratio is larger. 
The speedups are similar since the p = 5 case has fewer 
grid points (smaller problem size). For the same number of 
elements as for the p = 2 case, the speedup will obviously 
be better. 

6 Conclusions 

Spectral elements have proven to be a practical discretiza- 
tion technique for both the augmented drift-diffusion and 
stream function-vorticity problems. However, care must 
be taken in the augmented drift-diffusion problem with 
the placement of the elements. At least one element must 
lie in a transition region between different doping values, 
or the solution diverges due to Gibbs-type oscillations. 

Spectral multilevel is an effective preconditioner for the 
high-p systems for both applications and both Lagrange 

Speedup on Intel iPSC/860 
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Figure 7: Speedup, stream function-vorticity, Re = 100, 
Lagrange basis 

and hierarchic bases. Adaptive calculation of the relax- 
ation parameter • allows use of simple point Jacobi re- 
laxation as a multilevel smoother, even for high-p ele- 
ments. Nested iteration has proven to be an efficient so- 
lution method for the augmented drift-diffusion problem, 
reducing the number of fine grid nonlinear iterations sig- 
nificantly. Extension of the multilevel scheme to include 
additional smoothers, especially gradient solvers, may fur- 
ther improve efficiency. 

In an element-by-element scheme, multilevel methods 
are easily parallelizable, with very good speedups if the 
problem size per processor is moderate. Use of very 
high-degree elements, problems with multiple degrees-of- 
freedom per node, or three-dimensional problems may ex- 
tend this parallel performance down to decompositions 
which have only one element per processor. 
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