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Abstract 

In this article we study the implementation of the Non- 
linear Galerkin method as a multiresolution method when 

a two-level Chebyshev-collocation discretization is used. 
A fine grid containing an even number of Gauss-Lobatto 
points is considered. The grid is decomposed into two 
coarse grids based on half as many Gauss-Radau points. 
This splitting suggests a decomposition of the unknowns 
in low modes and high modes components which is con- 
venient also in the physical space. A nonlinear Galerkin 
scheme is then applied to a linear parabolic equation in the 
case of a Chebyshev-Legendre scheme. L2-norm stability 
is proved. 
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1 Introduction 

In this article •ve study the implementation of the Non- 
linear Galerkin method in the case of a Chebyshev- 
collocation discretization. 

Following the guidelines of a previous article [3] in which 
the Fourier space-periodic case was considered, we address 
here the case of a Chebyshev approximation. 
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The basic idea in the Nonlinear Galerkin method (and in 
the theory of inertial manifolds) is the decomposition of the 
unknown u into its large scale and small scale components, 
y and z: 

(1) u=y+z. 

In the case of a Fourier expansion it is clear that y corre- 
sponds to the low modes and z to the high modes. When 
a Chebyshev expansion is considered: 

M 

(2) = 
k=O 

we show that the low modes are the coefficients of the 

low degree Chebyshev polynomials (k < N) and the high 
modes are the coefficients corresponding to the high degree 
Chebyshev polynomials (N + i < k < M). 

When a collocation method is used (as opposed to a full 
spectral method) we need to find a decomposition of the 
kind (1) which is suitable in the physical space. Such a 
decomposition is accomplished via the splitting of the fine 
grid into two coarse grids, based on half the points. A 
Nonlinear Galerkin method is applied to a linear parabolic 
equation in the case of a Chebyshev-Legendre approxima- 
tion. A slightly modified version of the original method 
proposed in [4] is considered and the L2-norm stability is 
proved. 

The article is organized as follows: Section 2 describes 
the choice of collocation points. The fine grid consists of an 
even number of Gauss-Lobatto points (M + i: 2N + 2), 
the two coarse grids are based on N + i Gauss-Radau 
points, each one containing one boundary point. 

A decomposition of type (1) is proposed in Section 3. 
Here y contains only low degree coefficients and is based on 
one coarse grid and z contains only high degree coefficients 
and is based on the other coarse grid. 

Based on a decomposition of type (1), a nonlinear 
Galerkin method for a linear parabolic equation is dis- 
cussed in Section 4. A new version of the Chebyshev- 
Legendre method originally presented in [4] is considered 
and L2-norm stability is proved. In a future article we 
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will extend the nonlinear Galerkin method based on the 

Chebyshev-Legendre approach to a nonlinear parabolic 
equation. 

2 Preliminaries 

Note that, since the pj are the zeros of Q, 

7-l s (Pk,Pj) -- 6kj. Q 

The Lagrange polynomial 7-/•_ (x, •jv) corresponding to 
the Gauss-Radau points •jv is given by (8), with: 

In this article we will use two polynomial spaces; we define, 
for 2•I = 2N + 1, the spaces: 

P M = {polynomials of degree _< 
(3) PN = {polynomials of degree _< N}, 
of dimensions M + i = (2N + 2) and N + i respectively. 

In the following we use many standard results in the 
Chebyshev approximation; for an overview of those results 
the reader is referred to [5, 7, 6] and [2]. (9) 

A generic function f, defined on [-1, 1] can be projected 
onto the space PM by interpolation on the following set of 
points: 

•rj 0<j<M, (4) x•:cosM, - - 
that we will refer to as the fine grid. We recall that the 
Gauss-Lobatto points x• are the zeros of (1 - x2)T}t(x), 
where TM(x) is the Chebyshev polynomial of degree M. (10) 

To project a function f on the spaces PN we will alter- 
natively use the two following coarse grids 

2•rj 2rrj 0 < j < N, (•) •;*: cos -•- = cos 2x +-----•' - - 
(6) •}Y = cos (2/+ 1)•r (2j + 1)•r 0 < j < N. M =cos 2N+l ' - - 
The Gauss-Radau points •Nare the zeros of TN+• -- TN, 
while the •]jY are the zeros of TN+ 1 q- T N (see e.g. [2], 
Chapter II]). 

Remark 2.1 The fine grid, which contains even number (11) 
of points. is composed of the union of the two coarse grids, 
which both contain odd number of points: 

Indeed, we have: 

(7) •-• = •7, • : .7, 0 < • < 2• •. •2j+l -- -- 

In the following we give a general formula for the La- 
grange polynomial interpolating at a given set of points. 

Lemma 2.1 Given S + 1 points pj, j = 0,..., S, zeros of 
a polynomial Q(x), the Lagrange polynomial 7-I • that in- 
terpolates at those points is defined by (see e.g. [5], Section 
I. 11]): 

Q(x) 1 (12) 
(8) Tl•(x, pj) = x - pj Q'(pj)' 

c2(•) - (r•+• - r•)(•), 

•'(•J•) = (-1/+' 2• + 1 2 cos •j ' 
M 

Definition 2.1 Let f be a function defined on [-1, 1]; the 
interpolation polynomial Q2vf 6 P• is defined by: 

QNf(x) -- 
N 

j=0 

An alternative way of representing QNf is to use the iden- 
tity (see e.g. [9], Chapter I]): 

4 • T•(•)T•(x) 
k=0 

where, •0 N: 2, /•jv = 1 (1 _< j < N). Substituting (10) 
into (9) we get: 

N 

k=0 

where 

4 N f(•cJV)T•(•f ) 

It can be seen that: 

Lemma 2.2 The polynomial QNf interpolates the func- 
tion f at the collocation points •',i.e. : 

(Q2vf)(•jv) = f(•jv), 0 •_ j _• N. 

Alternatively, the projection on the space PN can be 
accomplished via collocation at the other coarse grid points 
,jr; in this case the Lagrange polynomial 7-/•_(x, r/J v) is 
given by (8) substituting: 

•(•) 

c•' ( .J • ) 
-- (TN+ 1 q- TN)(X), 

= (_l)j+ 1 2N + 1 
2 sin (2j+1)• ' 

2M 
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Definition 2.2 Let f - f(x) be a function defined on 
[-1, 1]; the interpolation polynomial QNf e PN is defined 
by: 

N 

(13) QNf(x) = 
j=O 

An alternative representation of QNf is: 
N 

(14) (•.vf(x) -- Z l•ff Tk(x), 
k=O 

where, 

- 4 '¾ f(vf)Tk(vf) 

where,•5•=2, •f=l(0CjCN-1). 
We can summarize the above by: 

Lemma 2.3 The polynomial QN interpolates f at the col- 
location points • ,i.e. ß 

(16) (QNf)(•f) = f(•f), 0 • j • N. 
The projection on the space PM is accomplished via 

collocation at the Gauss-Lobatto points x•. The cor- 
responding Lagrange polynomial •M (X M • ,Xj ), is given by 
(8), substituting 

(17) 

where a• = ai• = 2, 

= (1 - 
= (-- x)J+1d•/2•/, 

./= 1 (1 $ j $ M- 
Definition 2.3 Let f be a function defined on [-1, 1]; the 
interpolation polynomial IMf • PM is defined by: 

(18) 

M 

j=O 

Using the following equality, similar to (10), 

(19) 7-/M (x,x•)-- 2 • r•(x•)r•(x) 
k=0 

we can give an alternative representation of IMf: 

M 

(20) 
j=0 

where 

(21) - 
j=0 

In the following we define the scalar product with which 
we endow the spaces P•v. 

Definition 2.4 Suppose that u and v are given at the 
points •jv, then the scalar product (u, V)N in PN is defined 
as follows: 

(22) 
N 

j=0 

3 Fine/coarse grids vs high/low 
modes 

The main goal of this section is to find a decomposition of 
the fine grid into two coarse grids such that the difference 
between the projection operators at the different meshes 
turns out to be small both in the physical and the poly- 
nomial space. In other words we want to construct two 
collocation operators, ,7• on P;v and •M on P• that de- 
compose a generic function into its low modes and high 
modes components. 

In the case of a Fourier expansion it is clear that the large 
scale component corresponds to the low modes, (i.e. to 
½iN•rx for small N) and the small scale component corre- 
sponds to the high modes, (e i'¾• for large N). In the case 
of a Chebyshev expansion we need to understand better 
the concept of small and large scales. Consider the Fourier 
expansion of the function (1 - x2)--'}TN ß 

y• . N i k rr.r __-- Ok • '. (23) v•- x • 

The coefficients b• can be expressed in terms of the Bessel 
function B•v(x)(see [[1], Chapter 10] and [[8], Lemma 2.6]): 

i'¾•'B •'k (24) b•= • •v( ), 
and they verify the following estimate: 

(2s) e•'k :v \ Ibl _< Amin 1, (•-•)) 
where A is a constant independent of k or N. Estimate (25) 
shows that, for large N, the lower terms in (23) decay 
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exponentially xvith N. VVe conclude that, for large N, 
basically only the terms that have mode number larger 
than N appear in the Fourier expansion (23). Therefore, 
TN, for large N, can be considered a small scale function. 

This justifies the following terminology of "low and high 
modes" in the case of a Chebyshev expansion. 

Consider a function f, expanded in the Chebyshev basis: 

M 

(26) f(x): Z f•Tk(x); 
k=O 

we refer to the first N coefficients as the low modes of 

f and to the coefficients corresponding to the Chebyshev 
polynonfials of degree from N + 1 to M as the high modes. 

The results of this section are based on the following: 

Theorem 3.1 

Let •1 = 2N + 1 and let QN, (•Nand I• be defined as in 
(g). (13) and (18). We set: 

(27) 3r.¾ - 

(28) 

Then. any function f • P M can be written, as: 

(29) f -- ,ffNf +6Mf, 

where •7.vf • P•v and GMf • P• (the orthogonal com- 
plement of P N in P M). Hence, •N f has only low modes 
and •.• f has only high modes, i.e.ß 

N+i 

(30) G,wf(x) = • ;•v• T 'x' dN+k N+kk ]. 
k=l 

A similar decomposition holds for IMf, for any function 
f.' 

(at) IMf = •7'Nf +6Mf. 

Proof VVe show that the coefficients of f and •f,¾f, cor- 
responding to 0 < k < N, agree. Recalling the definition 

of fM and using (7) we have: k 

(32) 

The following Lemma provides an explicit inversion for- 
mula expressing the Chebyshev coefficients of a function 

f • P'• in terms of its values at the points N ' 

Lemma 3.1 Consider a function f • PS• of the form 
N+• 

(33) f(x) -- f,v+•T,¾+t- (x), 
k=l 

where • is given in (21). For the .sake of simplicity. d.¾+k 
we will denote 

(34) F•. ^M .N. = f2N+•-•, k=O,... 

Let •j¾ be defined as in (5); then, for k -- 0,... ,N. 

(35) Fk = 4 X 
Proof From (33), evaluating f(•f), we obtain 

N+i [(2N +1 +k-(N + 1))2r•j] = + 
k=l 
N+I N 

f•+k N+•-k(•) ) = • v•r•(•ff) 
k=l k=0 

(36) 
Thus, using (22), 

(37)• =ø 
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The result follows then from the fact that 

(38) { (T•, Tp)•V =0, (Tp, = 

for k •p, 

Given the inversion formula (35), we can express a func- 
pM in terms of its values at the points •jv; the tion f • --N 

corresponding Lagrange interpolation operator turns out 
to be a linear combination of the Lagrange Kernels 
and T/M . [] 

GL 

Theorem 3.2 

Consider a function f in P,•, of the form 

N+i 

(39) f(x) = • ^M T 
k----1 

let •SY be defined as in (5). Then we have: 

(40) 
N+i 

where• 

(41) gj(x) = - 
Proof Substituting in (39) • he Chebyshev coefficients of 
f(x) expressed as in (35), we find: 

(42) 

thus. since Tt:(•j v) = T2N+,_•(scJv): 

(43) 

N 

f(x) - Z f(•.jv) (2N + 1)3• N x j=o 
N '¾ :r.•x+-,_,:((;. )T=•+i_,(•) 

x • 3' • k=0 k 

Rearranging the terms in (43), we eventually get: 

(44) 

f(x) ---- zJV=0 N 4 X f(•j ) (2•z+•)•j ¾ 
N+I TN+p(•j¾)TN+p(X) 
p=l 

where _N+• _ 2, and o'; +1 - 1 (p = 1.... N) The ON+ 1 -- __ , ß 
Theorem is proved, providing that: 

(45) 
--- 

N+! 
4 TN+p(•)¾)TN+p(X) 

(2N + 1)•J v Z a.•,'v+:t ' p----1 

this is a consequence of the alternative representation of 

the Lagrange polynomials 7'/•L and T/•_, (19) and (10). 

4 The linear case 

We consider in this section the instructive case of the linear 

parabolic equation: 

(46) tit -- 1]Uxx -- O, u(-1, t)=u(1, t) =0, 
u(•, 0) = u0, 

x • (-1.1), 
t>0, 
x 6 (-1,1), 

t>0, 

where t• is a positive constant. The nonlinear Burgers 
equation will be considered in a future work. 

The choice of homogeneous boundary conditions is just 
for the sake of simplicity; all the results we present extend 
easily to the non homogeneous case. 

In the following we propose a Nonlinear Galerkin 
Method for problem (46) and compare it with a slightly 
modified version of the Chebyshev-Legendre method pre- 
sented in [4]. 

4.1 The Chebyshev-Legendre collocation 
method 

We describe hereafter the Chebyshev-Legendre Colloca- 
tion Method for (46) on the fine grid x•. W'e recall that in 
the Chebyshev-Legendre Collocation method the bound- 
ary conditions are imposed via a penalty method in such a 
way that the method is stable in the usual L•-norm (rather 
than the weighted L•-norm). We present here a slightly 
modified version of the method, in which a penalty term 
is still present, but the boundary conditions are satisfied 
exactly. In order to prove the L • stability, we need to in- 
troduce the Legendre collocation points (? defined as the 
roots of the polynomial (1 -x•)P•t, for M = 2N+ 1. Note 
that we do not need to use the Legendre points in the ac- 
tual computations but they are "ghost points" introduced 
only for the sake of the proof. The discrete scalar product 
corresponding to the points (? is defined as follows: 

M 

(47) 
$=0 
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where the •j are the usual Legendre weights (see e.g. [5], 
Chapter II]). 

For M = 2N+1, let PM be defined as in (3); we denote 

(48) B•+l = (1 + x)Ph(x) (1 - x)Ph(•) 2Ph(1) Bh= 2ph(_l) (53) 
In the classical Chebyshev-Legendre method we seek the 

polynomial uM • PM that satisfies: 

(49) •u.•(x) = v Ox • 

at the points x = x•, the Chebyshev collocation points (54) defined in (4); v0 and • are positive parameters deter- 
mined in the stability proof. 

We propose, instead: 

ß ) 
- 

at the points x = x•. Note that in this c•e, since 
d u • •(•1) = 0, the boundary conditions are satisfied for 

any t > 0 if they are initially satisfied. 
In both cases the penalty term is different from zero for 

all the Chebyshev points •; this adds some penalty terms 
to the differentiation matrix; however, since P•z((j¾) are 
given explicitly in [4], Section 3, these additional terms can 
be evaluated once and for all for any grSt size M. In [4] 
the following stability result is stated. 

Theorem 4.1 

Let u = u(x,t) • P•f be the solution of the Chebyshev- (55 
Legendre scheme (49). If •o and •I satisfy the following 
conditions.' 

(5•) •0 a 4•' •u a 4• h' 
then u satisfies: 

tM-1 

- u•q• ,t)dt. 
j=l 

Remark 4.1 The crucial point in the stability proof for 
this method relies on the fact that equality (49) is actually 
verified at every point x • (-1, 1), since both sides of (g9) 
are polynomials of degree M that agree at •I + 1 points. 
Hence, we can read the equality at the Legendre points 
• and thus carry on the proof as in the usual Legendre- 
collocation case. For all the details see [4], Lemma 4.1, 
Theorem 4.1]. The same remark is valid for the scheme 
(50) with the simplification that, since the boundary con- 
ditions are exactly satisfied, the boundary terms in the in- 
tegrations by parts are zero. 

4.2 The nonlinear Galerkin method 

As suggested by Theorem (3.1), we have a natural decom- 
position of any function u E PM: 

u = •¾u + 6Mu -- y + z, 

where •7N = (QN +(•N)/2 and 6M: IM--..7N. Projecting 
equation (49) with •7•v and gM, respectively, we obtain 
the following scheme: 

yt(x) 

at the points x = ()•; the coefficient c• is equal to 0 or 1 
according to the term zt being removed or not. 

Remark 4.2 Note that the penalty terms •.• B•+• , •x B•, 
(I• - J•v)B• and (IM -- Js•)Bji are different from zero 
at all the points •jY, but they can be computed once and for 
all at the beginning of the iteration. This leads to a slight 
modification of the differentiation matrix. 

As in the previous Section, one can consider a slightly 
different scheme (corresponding to (50))' 

at the points x -- •Y. 
The stability of the methods is a direct consequence of 

the stability of (49) and (50). In fact, from (54) it 
is immediately seen that y + z satisfies equation (49) at 
the points •jv. Actually, equality (543) and (54b) are 
true also at the points •/jY. Let us consider the first equa- 
tion: both sides are polynomials of degree N that agree at 
N + 1 points, thus they agree at all the points x • [-1, 1], 
in particular at •/jv. Regarding the second equation, we 
observe that both sides are polynomials in pM of the N, 

form O(x) N -- Y•'.•=• •+•T•v+•(x) and, thanks to Theorem 
(3.2), these polynomials are uniquely determined by their 
values at the points (if. Hence, we deduce that equality 
(54b) is verified at all points in the interval [-1,1], and 
thus at the points r•J v. The following Theorem is, there- 
fore, proved. 
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Theorem 4.2 

Let y(x, t) and z(x,t) be the solutions of the Chebyshev- 
Legendre scheme (5,i). If ro and rM satisfy f51), then 
y + z satisfies: 

(56) /(y + z)(., t), (y + z) 

2 fo - x(q ,t) dt. 
j=l 

In a similar way one can prove that the scheme (55) is 
stable in norm L 2. 

5 Implementation issues 

In this section we discuss some aspects of the implementa- 
tion of the Nonlinear Galerkin method introduced in the 

previous section. We will show how the splitting of the 
equation in low and high modes produces a significant gain 
in terms of the total computational cost, compared to the 
classical method (49). 

VVe consider in the following the scheme (54), but simi- 
lar considerations are valid in the case of the scheme (55). 
We propose to solve both equations in (54) on the physical 
space, via collocation on the coarse grid points {•jv}. In 
fact, the unknown z contains only modes with wave num- 
bers larger than N, thus it belongs to the space U•. The 
representation formula (40) given in Theorem (3.2) is used 
to solve the high modes equation in (54) on the coarse grid 
{•jv}. Note also that the penalty terms •7NB•, ,•NB•i, 
(I.v• -- •7N)B.• and (IM -- •7N)B•4 can be computed once 
and for all at the beginning of the iteration. 

In the following we will compare the number of opera- 
tions needed to advance the solution of from time t = 0 to 

time t - 1. For the sake of simplicity, we assume that all 
the derivatives are computed via vector-matrix multipli- 
cations and that the time stepping is done via an explicit 
method. 

Consider the Chebyshev-Legendre scheme (49) based 
on the fine grid {xff}, containing 2N + 2 points. In order 
to compute the spatial derivative we need (2N) 2 opera- 
tions. Since At ,• x W-•W' we have the total number of 
64N 6 operations. 

Consider now the Chebyshev-Legendre nonlinear 
Galerkin scheme (54). Assume that y and z are given 
at the fine mesh. In order to solve (543) 3N 2 operations 
are needed for the derivatives (note that •xxQN and •x(•N 
should be taken separately). To solve equation (54b), us- 
ing (40), we can compute the spatial derivative in just 
N 2 operations. The total count to evaluate the spatial 

derivatives sums up to 5N 2. Also in view of the appli- 
cation we have in mind to a nonlinear equation, we sug- 
gest to advance the coarse grid equation in time with an 
explicit method, and therefore consider a time step of or- 
der At , x W'•. On the other hand, we suggest to use for 
the high modes equation, which is linear in z, an implicit 
method. The total computational cost is then 5N 6, offer- 
ing a substantial saving over the non-split scheme. 
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