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Abstract 

The heat equation with Dirichlet boundary conditions is 
solved in various geometries by a modified Fourier colloca- 
tion method. The computational domain is embedded in 
a larger, regular domain with a uniform, Cartesian grid, 
and the solution is defined to be identically zero outside 
the original domain. The discontinuities thus introduced 
across the boundary are handled by the modified Fourier 
collocation method, such that highly accurate approxima- 
tions to the spatial derivatives along each grid line can 
be calculated. One-dimensional applications are presented 
to demonstrate the accuracy and the robustness of the 
method. A detected robustness problem with respect to 
the location of boundary points relative to grid points is 
discussed. and modifications that stabilize the method are 

presented. Two-dimensional problems are then solved with 
high accuracy, and the flexibility with respect to complex 
geometries is demonstrated. 

Key words: spectral methods, Fourier series, Bernoulli 
polynomials. parabolic partial differential equations, 
complex geometries. 
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1 Introduction 

The modified Fourier collocation method presented in [5] 
constitutes a flexible scheme which, in principle, is applica- 
ble to a large class of initial-boundary value problems for 
partial differential equations in complex geometries. The 
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Figure 1: A domain [2 with complex geometry embedded 
in a rectangular domain D, with a regular grid. 

method uses a combination of trigonometric functions and 
polynomials to represent the functions involved along each 
grid line. Such representations have previously, to some ex- 
tent, been considered by Lanczos [9] and others, e.g. [7, 10], 
in less general contexts. 

As a model problem we shall, in this paper, study 
the heat equation subject to given initial conditions and 
Dirichlet boundary conditions: 

(1) 
ut =V2u, x•[2ClR •, 
u(x, 0): u0(x), x • n, 
•(x, t) = g(x, t), x • 0[2. 

t>O, 

Traditional numerical methods for such problems are 
normally of low order and utilize grids which are adapted 
to the actual geometry of the problem. When the given 
domain [2 has a complex geometry and high accuracy is 
desirable, (1) is consequently a challenging problem. 

A well-known technique (see e.g. [12]) is to embed the do- 
main [2 in a larger, rectangular domain D with a uniform, 
Cartesian grid, as shown in figure 1. This approach has 
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Figure 2: An example of a solution along the grid line 
marked in figure 1. Circles indicate the values at the grid 
points, and •/1-74 denote the points where the grid line 
intersects the bohndary 0f]. 

been used in various ways, e.g. [2, 11, 13], involving mod- 
ifications of the governing partial differential equations to 
account for the boundary conditions. The modified Fourier 
collocation method described in [5] applies a totally differ- 
ent strategy than earlier approaches. The partial differ- 
ential equation is not changed and is not solved at grid 
points outside the original domain. The embedding do- 
main is only used to represent the solution in a wa•v which 
facilitates the calculation of derivatives. 

The grid points inside fl will be referred to as "interior 
points", while the rest are called "exterior points". The 
solution is defined to be zero at all the exterior points, and 
the method of lines is applied in order to solve (1) at the 
interior points. 

When the solution u(x, t) is given on the uniform grid at 
a certain instant t. the spatial derivatives at the grid points 
can clearly be determined by considering u(x, t) along each 
grid line separately. As an example, the solution u(x,t) 
along the grid line marked in figure 1 may look something 
like that indicated in figure 2. 

One-dimensional functions along each grid line have to 
be differentiated in our approach, and as illustrated in fig- 
ure 2. these functions can be expected to be piecewise 
smooth with jump-singularities at the points stemming 
from the boundary 0fl. In section 2 we briefly review the 
main features of the method presented in [5] for handling 
the possible discontinuities introduced in the solution or its 
derivatives at these boundary points. In this connection we 
note that boundary points do not normally coincide with 
grid points. 

The method is in section 3 applied to the one-dimen- 
sional problem (1). In section 4 we discuss robustness prob- 
lems connected with the location of the boundary points, 
and show how these problems can be overcome for general 
geometries. With these modifications, the application of 
the method presented in [5] to two-dimensional problems 
(1) is relatively straightforward, and examples are given in 
section 5. Finally, in section 6, we give some concluding 

remarks. 

2 The modified Fourier colloca- 

tion method 

We shall denote by w(x) the solution of the problem (1) 
along an arbitrarily given grid line (in the x-, y- or z- 
direction) at an arbitrarily given instant t. Since we clearly, 
without loss of generality, may take the domain D to be 
[0, 2•r]d; the one-dimensional function w(x) can be assumed 
to be a piecewise smooth function defined on the interval 
[0,2•r]. Following [5], a representation of the solution on 
the following form is sought: 

(2) w(x) = wQ(x)+ Ayv(x 
j=l n=O 

Here the functions •,(z; •) are determined for n = O, 1,... 
by the Bernoulli polynomials B•,+•(z) [1] in the following 
way: 

(3) •*(x;•/J) - (n+ 1)• •**+• ' 
0!z-9• •2=. 

= <0. 

In the context of this paper •, j = 1, 2,..., M. shall de- 
note the points where the boundary 8• of the original 
domain intersects the given grid line. 

By definkion, the function V• (z; %) is a piecewise poly- 
nomial function of degree n • 1 which is n - 1 •imes con- 
tinuously differentiable on [0.2•], while the nth derivative 
of • (z; •) suffers a jump discontinuity of magnitude 1 at 
z = •j. If we for n = 0,1,2,...,•, • = 1,2 ..... •, let 
A? be given as the jump in the nth derivative of w(z) at 

(4) Aj - dx • 
it readily follows from (2) that the 2•-periodic extension of 
w Q (x) is at least Q times continuously differentiable every- 
where. For Q sufficiently large, the Fourier coefficients as- 
sociated with w Q (x) are therefore rapidly decreasing; and 
consequently wQ(x) can, in this case, be accurately ap- 
proffimated by a truncated Fourier series expansion: 

2v/2-• 

k=-N/2+l 

Since w(x) = 0 at all exterior points and Dirichlet 
boundary conditions are assumed, the jumps A•, j = 
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1, 2,..., M, can be readily determined by the data given 
in (1). •Ve subtract the corresponding terms in the follow- 
ing way: 

M 

(6) wø(x) = w(x) - •-•,A•Vo(x; ffj). 
j=l 

Based on the values of this function wø(x) at the N grid 
points xl = 2•'l/N, 1 = 0, 1,..., N - 1, we now calculate 
the corresponding discrete Fourier coefficients •. 

Still following [5], the jumps A• in the derivatives up to 
order Q are approximately determined as the least squares 
solution of the overdetermined system 

(7) 
n •0 

n----1 2=1 

where (•)k(•,j) denote the discrete Fourier coefficients as- 
sociated with the functions V•(x; 7j). The Fourier coeffi- 
cients in (5) are then approximately calculated by 

(s) 

More details on the calculation of approximate jumps and 
coefficients can be found in [6]. 

From (3) and properties of the Bernoulli polynomials, 
we have for x :• 7: 

(9) 

d 

7) = if), 
d 

u0(: 7): 

n=l,2,..., 

The derivatives of w(x) can therefore be approximately 
calculated from (2) and (5) when x :• 7j, J = 1,..., M: 

(10) 
dxp 

N/2-1 M 

- 2-; 
k=-N/2+l j=l 

+ Z ZA?V•-p(X;•/j). 
j=l n=p 

It is shown in [4, 5] that this method gives a 
(Q + 1- p)'th order accurate approximation to the pth 
derivative of w(x) for p = 0, 1,..., Q, when N -• •. We 
also note that formal spectral accuracy can here, in princi- 
ple, be obtained by defining the parameter Q as a function 
of N. 
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Figure 3: RMS-error over the grid points for the approxi- 
mate second derivative of the function (11). 

Q 2 3 4 5 6 
Theoretically expected order 1.5 2.5 3.5 4.5 5.5 

Experimental order 1.6 2.7 3.9 5.2 6.5 

Table 1: Convergence orders for the RMS-error of the ap- 
proximation to the second derivative of the function (11). 

To demonstrate the order estimates numerically, we con- 
sider as an example the accuracy of the calculated second 
derivative of the following function: 

(11) u(x) = - exp(x/2) + (exp(7r) - 1)x/27r + 1, 0< x< 27r. 
-- -- 

The RMS-errors are shown in figure 3. With the exception 
of the smallest values of N for Q -- 5 and Q - 6, the curves 
of the maximum errors in figure 3 are close to straight lines, 
as expected from the asymptotic theory. Approximate or- 
ders of convergence found from the slopes of the curves 
between N - 32 and N = 64, and are shown in table 1 
for different values of Q. Assuming that the largest errors 
only occur at the points closest to the boundary points, the 
RMS-error is expected to be one half order better than the 
maximum error. These theoretical estimates are given in 
table 1, and are clearly confirmed by the numerical results. 
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Figure 4: The solution of (12), (13) at different times, 
calculated with N = 32 and (2 = 4. The positions of the 
grid points and the two boundary points are shown on the 
curve for t = 0.01. 

3 The heat equation in one di- 
mension 

In this section we consider '•e one-dimensional version 

of (1). and restrict ourselves to two boundary points 
(.•I = 2 in the notation of the previous section): 

ut = uzx, 0 < "/•. < x < '72 < 27r, t > O, 
(i2) 0) = 0 < < < ,o_ < 

t): t) = t > 0. 

We want to apply the method described in the previous 
section for calculating ux• at each interior grid point (for 
z E (')•. •2)), and solve the resulting system of ordinary dif- 
ferential equations by a fourth order explicit Runge-Kutta 
method IS]. 

XVe first consider (12) with the following initial- and 
boundary conditions: 

(13) u0(x): 0.0, g• -- 1.0, g2: 0.5. 

The boundary points are chosen to be 

(14) ^n = 0.26rr, '/2 = 1.847r, 

and the solution at different times for N = 32 and (2 = 4 
converges nicely to a straight line, as shown in figure 4. 

In this example all eigenfunctions associated with the 
spatial operator in (12) are excited through the incompat- 
ibility between the initial- and boundary conditions (13). 

Figure 5: RMS-error at t = 0.6 in the solution of (12). (15). 

In order to study the accuracy of the method, it is more 
revealing to look at the accuracy obtained for the solution 
of (12) corresponding to the lowest order eigenfunction. In 
fact, that solution decays more slowly than all other solu- 
tions and will; therefore, normally dominate the accuracy. 

As will be discussed in section 4, the location of the 
boundary points relative to the grid points may influ- 
ence both the approximation accuracy [6] and the sta- 
bility of the described algorithm for the time-dependent 
problem (12). To eliminate these effects in the measure- 
ment of accuracy, the next example is defined on the full 
interval [0, 27r]. This means that */• = 0, and ?2 = 27r 
is identified with '/• through the periodicity of the repre- 
sentation (2). The initial function, corresponding to the 
fundamental eigenfunction associated with (12) is then 

(1,5) u0 = sin(x/2), 0 < x _< 27r. 

With this initial function, the exact solution of (12) at 
later times is just a scaled version of (15). After integration 
to t = 0.6, the solution has decayed to around 10% of the 
initial function. The RMS-errors at t- 0.6 for different 

values of N and (2 are shown in figure 5. 
Figure 5 illustrates how the order of accuracy increases 

with increasing (2, but it also shows that remarkably good 
results can be obtained on coarse grids, i.e., far from the 
asymptotic range where the theoretical error estimates are 
valid. For the highest values of (2 and N, the applied 
numerical precision is the most important limiting factor 
for the obtained accuracy. 

The stability limit for the time-steps was, in our calcu- 
lations, found to be At .• 2IN 2'•, and was virtually inde- 
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pendent of Q. The stability limit is, therefore, comparable 
with the stability limit for the standard Fourier method 
for periodic problems and considerably better than the 
O(N -4) limit for Chebyshev or Legendre methods [3] for 
the problem (12), (15). Even though it would be interest- 
ing to search for efficient implicit solvers for the modified 
Fourier method, these results means that explicit time in- 
tegration for second order equations is not necessarily pro- 
hibitively expensive with this method. We shall therefore, 
in this work. restrict our attention to explicit methods. 

4 Discussion of robustness 

It was demonstrated in the previous section that the dif- 
ferentiation method described in section 2 produces a sta- 
ble method for the solution of the one-dimensional heat 

equation. However, as already mentioned, the stability 
is found to be sensitive to the location of the boundary 
points. There are no stability problems when the bound- 
ary points coincide with grid points, but for applications 
to problems in higher dimensions with domains of com- 
plex geometry, it is apparent from figure I that boundary 
points at general locations relative to the grid points must 
normally be dealt with. 

In the one-dimensional case it seems that Q - 2 always 
produces a stable algorithm, while we have observed in- 
stabilities in certain circumstances for all higher values of 
Q. Apparently, even values of Q are more robust than odd 
values, and higher even values of Q seem less robust than 
lower ones. For Q even, it appears that a sufficient condi- 
tion for stability is that each boundary point is situated at 
a distance from an exterior grid point which is not larger 
than 0.6. Ax, where Ax = 2:r/N is the grid spacing. 

To at least partially explain this instability, we note that 
the Dirichlet boundary conditions are introduced only by 
specifying the jumps in the function values at the boundary 
points. and subtracting their contributions as described 
by (6). However, specifying the jump does not introduce 
a strict control on each of the two one-sided limit values 

at the boundary point, because the solution at the bound- 
ary could in principle then "float", with correct jump but 
wrong values. The value of the solution is specified at the 
exterior grid points, but if the distance from the nearest 
of these to the boundary point is too large, the "floating" 
may produce an instability. 

One way to avoid the instability may be to adjust the 
boundary of the domain in such a way that the boundary 
points on each grid line in each spatial direction are moved 
to nearby "stable" positions. Since each boundary point 
only has to be moved within a single grid interval, this 

process will clearly converge, but will probably reduce the 
order of the method. Thus other approaches should be 
investigated, and this is the topic of the present section. 

In the situation considered here, we assume that there 
is an exterior interval where the solution is identically zero 
at one side of each boundary point. This information can 
be used in different ways, and we shall first consider the 
use of Taylor expansions around the boundary points. 

For the case M -- 2 we know that 

dnw dnw + 
(16) d--•--•-(?•- ) = d--•(72 )=0, n=0,1,2,.... 
The jumps A?, A• calculated by (7) are known to approx- 
imately satisfy (4), hence equation (16) implies that the 
calculated value of A? approximates w(")(x) at x = 
and -A• approximates w('O(x) at x = •. Since it w• 
shown in [5] that the error in the jump Ay calculated by (7) 
actually is of the order O(N -(q+l-•)) as N • •, we get 
that the following approximate Taylor expansion around 
x = •/• holds for w(x) as long as 0 • x - qq • 2w/N: 

w(X) = A• + (x - 71)A• + 2] A• +.-. 
(17) (x _ •1) Q 

( Q] A• + O(•-(Q+i)). 
A corresponding formula holds for 0 • •2 -x • 2w/N, 
except for a change of sign. If x•_• • •/• < x• and xt < 
72 • x•+•, we therefore obtain the following approximate 
formul• for the second derivative of w(x) at the interior 
grid points x = x• and x = 

Wxx(Xk) = A• + (Xk -- *i)A• +'" + (Xk -- •/1)Q-2A• ' 
(Q- 

= - - -.- '- 
(lS) 
With this modification introduced, we have not detected 
instabilities when Q is even. Although unstable situations 
have been observed in some cases for odd values of Q, the 
modification has been seen to have a stabilizing effect for 
most cases. 

Unfortunately, however, calculations show that the accu- 
racy of the calculated second derivative normally decreases 
at the grid points where the Taylor expansion method (18) 
is applied, even though the formal approximation error is 
of the same order as in the original method. We shall 
therefore consider another approach, which also has more 
general applications [4]. 

From (2) and the corresponding discrete Fourier series 
M 

= 
j=l 
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the folloxving equations can be derived for ra = 0, 1, 2,... 
as •¾ --• oc: 

(19) 

+ = 

30000 

25000 

20000 

15000 

For x anywhere in the exterior intervals, the term •-k-2•-•w(x) toooo 
is zero, so the only unknowns in (19) are the jumps A• for 
n = 1,2,..., and j = 1,2,...,M. It can be shown [4] that 

5000 

the error in A• calculated from (19) is of the same order 
when N -• oc as for the jumps calculated by the spectral 
equations (7). 0 

Following the comments made earlier in this section 
about "floating" boundary values, it is natural to evalu- 
ate (19) at the limits as x ---> "/j from the outside, i.e., from 
an exterior interval. Numerical experiments have shown 
that if (19) with m = 0, 1.2 are added to the system of 
equations (7). we obtain stable calculations regardless of 
the boundary locations. 

There is a price to pay for including the additional 
equations (19) in the calculations of the jumps, however, 
namely that the second derivative operator may become 
more stiff, manifested through a negative eigenvalue with 
large magnitude. This occurs in the same situations which 
previously led to instabilities; when a boundary point 
is located close to an interior grid point. Thus, stable 
calculations require shorter time-steps for explicit time- 

integration in such cases. (20) 
An illustration is given in figure 6, where the abso- 

lute value of the largest negative eigenvalue of the second 
derivative operator is plotted for N = 32 and Q - 4. The 
right boundary point ?2 is fixed at 29.5Ax, while the po- 
sition of the left boundary point 7• varies, and it is clearly 
seen that positions close to interior grid points lead to 
growth in the eigenvalue. This growth has been found 
to be largest when (19) is used with m = 0 only, and de- 
creases when higher values of m are used, but only small 
improvements are achieved by using values of m larger than 
2. 

Even in the worst cases displayed in figure 6, the eigen- 

value is only increased by a factor of about 10. As this (21) 
is still small compared to N 2, it does not seriously affect 
the comments made in the previous section about explicit 
time-integration. Ho•vever, there is clearly a potential gain 
if this growth can be avoided, because some boundary 
points must be expected to end up close to the least fa- 
vorable positions when problems in complex geometries in 
higher dimensions are solved. We hope in the near future 
to be able to describe such improvements elsewhere. 

i , 

No extra eqs. -+- 
Extra eqs. with m=0,1,2 -+--- 

i i i i 

1 2 3 4 5 
Left boundary position (in units of grid spacing) 

Figure 6: Magnitude of the negative eigenvalue with 
largest absolute value for the second derivative operator 
with Dirichlet boundary conditions, as a function of the 
position 7z of the left boundary point for N = 32, Q = 4, 
•/2 = 29.5Ax. 

5 The heat equation in two di- 
mensions 

In this section we consider the two-dimensional version 

of (1). 

Compared to the solution method for the one-dimensional 
case in section 3, the only change in the procedure needed 
here is that the derivatives must be calculated along every 
grid line in both the spatial directions. The shape of the 
domain f• will clearly, in general, give different locations 
for the boundary points for each such grid line. 

We shall first study an example where the exact solution 
is easy to obtain, namely the case where f• is a circular 
domain with centre at (x0, y0) and radius r0: 

a = { y)l( - + (y - y0) < }, 
x0 = 1.1•r, Y0 = 0.95•r, r0 = 0.75•r. 

Corresponding to the one-dimensional example (12), 
(15), we choose the initial condition to be the most slowly 
decaying eigenfunction for the spatial operator in (20) on 
the domain (21): 

(22) uo(x,y)= J0 (h•v/(x- x0) 2 + (y- y0)2/r0) ß 
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Figure 7: The initial condition (22) on the circle (21), 
shoxvn on a 48 x 48 grid. 

Here J0 is the Bessel function of the first kind of order 
zero, and •1 m 2.40 is its first zero [1]. A homogeneous 
boundary condition is applied: 

Figure 8: Solution at t - 0.05 of the two-dimensional 
heat equation (20) on the circle (21) with the initial con- 
dition (22), calculated with N• = N s = 48 and Q = 6. 

(23) g(x, y) = O, when (x - xo) 

The initial condition (22) is shown in figure 7, and the 
solution at t = 0.05, calculated with N• = N s = 48 and 
Q = 6. is shown in figure 8. 

Figure 9 shoxvs the RMS-error at t = 0.05 for different 
values of N• = N s = N and Q. The exact solution at 
t - 0.05 is equal to the initial condition multiplied by a 
scaling factor 0.60. These results were obtained when the 
additional equations (19) xvith m = 0, 1, 2 were included at 
the exterior limits of the boundary points. As for the one- 
dimensional results in figure 5, the convergence is algebraic 
when the number of grid points are large enough, but we 
note that quite accurate results are obtained also on the 
coatset grids. 

Finally, we xvant to demonstrate the flexibility of the 
method with regard to more complex geometries. The con- 
sidered domain is shoxvn in figure 10, and the initial- and 
boundary conditions are chosen as 
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•0(x,y) 
(24) 

g(x,y,t) 

: 0.08 + 0.23(1 + cos(x - 0.8•r)) 
(1 + cos(y- 0.9•r)), (x,y) E •, 

= •0(x, y), (x,y) e 

and displayed in figure 11. To calculate the solution for this 
problem, the only necessary modifications of the program 
used in the previous example are to adjust the parameters 

Figure 9: RMS error of solutions at t = 0.05 of the two- 
dimensional heat equation on the circle (21), with the ini- 
tial condition (22). 
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