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Abstract 

Error estimates for some spectral projection operators in 
weighted $obolev spaces of Jacobi type are derived in terms 
of a new family of weighted spaces, improving standard es- 
timates. Our results are used to improve error estimates 
for the Jacobi spectral solution of a model problem in a 
square by taking into account the decomposition of the 
solution near the corners. This generalizes to the Jacobi 
framework some results known in the unweighted case. 
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als, spectral projection operators, singularities in el- 
liptic problems. 
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Introduction 

The analysis of the convergence rate of high order dis- 
cretizations of elliptic problems over polygonal domains 
requires us to take into account the structure of the so- 
lutions near the corners. An early reference, concerning 
the p-version of the finite element method (F.E.M.) is [1]. 
It has been noted therein that the approximation results 
for the singular part of the solution, as obtained from esti- 
mates involving the usual unweighted Sobolev spaces H s, 
are not optimal for the p-version. An approximation the- 
ory for the p-version in the framework of certain weighted 
Sobolev spaces is given in [9]. In that paper, estimates 
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for the distance, •neasured in standard Sobolev norms, be- 
tween a function u and its high-order polynomial approx- 
imation up are given in terms of the norm of u in some 
weighted spaces. This theory has been applied in [10] to 
the analysis of the p-version of the F.E.M. over polygonal 
and polyhedral domains. It enables us to recover optimal 
convergence rates by analyzing separately the singular and 
the regular part of the solution. 

The results for the Legendre spectral discretizations are 
very close to those for the p-version since in both cases 
standard Sobolev norms of the error u - up are concerned. 
But for the numerical analysis of Chebyshev spectral meth- 
ods this error must be measured in terms of weighted 
$obolev norms based upon the Chebyshev weight. More- 
over, the analysis may require results related to other 
weights, for instance to the inverse of the Chebyshev weight 
as in [3]. So, it is useful to consider a wide range of weights, 
namely the Jacobi weights, as in [4]. The approximation 
theory for these spaces as developed therein involves high 
order weighted $obolev spaces H•. For a - 0 these spaces 
reduce to the usual unweighted ones. So, it can be ex- 
pected that the application of this theory to the H i ap- 
proximation of the singular part of the solutions will not 
yield optimal estimates. 

The aim of this paper is to improve the results in [4] for 
the Jacobi spectral approximation by using a new family 
of weighted spaces and the decomposition of the solution 
into a regular and a singular part. So, our results extend 
some results of [9] and [10] to the Jacobi framework. 

Although in this paper we present the analysis of a sim- 
ple model problem as an application , the techniques and 
results can be useful in the general context of elliptic prob- 
lems. 

The next section is devoted to introducing the basic no- 
tations. In section 3, we define the new family of weighted 
spaces and state our basic approximation results. Section 4 
is devoted to obtaining a characterization of the new spaces 
in terms of an intrinsic norm. In section 5, we study the 
approximation of some singular functions related to the 
solution of some elliptic problems. In section 6, we ob- 
tain improved convergence estimates for a simple model 
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problem. Finally, we resume our conclusions in section 7. 
For the sake of brevity some proofs have been omitted 

or only sketched but the detailed version of this work will 
appear in Fdez-Manin [11]. 

2 Preliminaries and notations 

Let A = (-1, 1) and a > -1 . We denote 

(f• •(x)2P•(x)dx) « < •}. 
For any s > 0 and a 6 (-1, 1) we denote H•(A) the 

weighted Sobolev space of order s associated to the weight 
function (1 - x2) • . Its norm will be denoted by 
Let P•¾ (A) be the space of polynomials with degree < N 
in A. Moreover, we shall note: 

rI• the orthogonal projection operator from L2•(A) 
onto Px(A) . 

ß {57,•} the family of Jacobi polynomials associated to 
the weight (1 - x2) • normalized in the following way: 
the degree of gr• is n and it satisfies 

r(•+•+•) 
(1) j)'•(4-1) = (+l)•r( n + 1)r(c• + l) 
where F stands for the classical Euler's gamma function. 
Their norm is given by 

(2) I1•? II • - 0,•,A -- 

22•+l(F(n + a + 1)) 2 

(3) 
(2n + 2• + 1)r(n + •) r(n + 2• •- 1) 

We also use the integral relation 

(4) 
1 (n+2a+l n + 2a 

when f •7•(t)dt is such that 

) 2•(t)p•(t)dt - O. 
A survey on the properties of the ,7• can be found in [4] 
and [12]. 

We shall also consider the function spaces defined over 
fl=AxA. For any-1 < a < 1 and s >0, H&(•) will 
stand for the Sobolev space of order s related to the weight 
(1- x2)•(1- y2)• (see [4] for a precise definition). The 
norm in this space will be denoted ]1' I1.•,•,•, We shall note 

ß P• (fl) the space of polynomials with degree < N with 
respect to each variable. 

ß 1-I• the orthogonal projection operator from L2•(fl) 
onto P2v(fl) ß 

It is standard to note that II•v = II•v '(•) o 

3 Approximation properties of 
the Z•(A) spaces 

For each integer m _> 0 , we define 

dJv 2 rn} (5) ZT(A)= {• • •(A)/• • •+•.(A), 1 _<j <_ 
equipped with the norm 

and for s > 0 non integer, s = m + cr . with 0 < cr < 1, 
we define Z•(A) by 

Z•(A): [Z•(A), Z•"•(A)]•,2 

where [.]•,2 stands for the K-interpolation method (see [2]). 
The next three lemmas show the behavior of the deriva- 

tion and integration operators over Z•(A) and a property 
which will be useful in the following section. 

2 define Lemma 3.1 For a > -1 and u • L,+•(A) we 
.T 

(Pu) by (Pu)(x)= fo u(t)dt . Then. for all m _> I in- 
teger, the mapping P"• is continuous from L2•+,•(A) into 
Z'•(A)). 

Lemma 3.2 For a > -1, 0 < 0 < 1 
m > 1 , it holds: 

and any integer 

(7) 

Lemma 3.3 For each non negative integer ra and for 

u • ZT(A) ß u: • •.7•(•) , •eing • the corre- 
sponding Fourier coefficients , we have: 

d j u 

(S) dx• 
• dJ•7• 

- •+,(A) -y]•• i• ,•<j<.• 
n----j 
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The next lemma gives a characterization of the space 
Z/•(A) together with an equivalent norm in this space 
which is useful in proving the approximation result in norm 

Lemma3.4 Let be s > 0. For u e L•(A), 

* c• 2 1 
(9) II u II•z(^)- (• I•,•1•(1 + n•)• II JA IIo,,•.^) • 

n•O 

then 

and the norm II. II•x(A) is a norm in J•(A) equivalent 
to II. 

Proof When s is an integer, the result easily follows by 
using lemmas (3.1), (3.3) and properties of the polynomials 
•f,'•. For the non-integer case we use a standard interpola- 
tion argument. [] 

Theorem 3.1 If u • Zi}(A) for O _< s' _< s . the follow- 
•ng estimation is satisfied 

Proof The result follows from (9) using the classical tech- 
niques for these kinds of estimations. 

Theorem 3.2 Let be O _< s' < s and u • Z•'(A) . If 

•,ith A = A('u) independent of N, Then u • Z•-•'(A) Ve •, 
O. Moreover 

I1•- u.•llzx-•(•) -< c(s, s', •,•)[11 • Ilzx'(•> +A] 

In order to obtain the approximation theorem in norm 
H• 1 we prove a technical result that gives the expression 
of the Fourier coefficients of u' with respect to {57•} in 
terms of those of u with respect to the same basis. This 
result generalizes well-known expressions for the case c• = 
0 and c• = -1/2. In the next step we obtain that II•v(u' )- 
(II•u)'belongs to a bidimensional subspace of polynomials 
and finally we conclude the approximation theorem. 

Theorem 3.3 For u • C•:(•,), u 

•,' = 2:,•%o •,75'•, then 

= Un• and 
r•O 

(10) 07 = (2• + 2• + 1)r(• + 2. + 1) 
r(•+.+l) 

• r(n+.+ 1) 
Y•- r(• +2. + 1) a• 

odd 

( in the exceptional case k = 0 and c• = -1/2 we set 

(2• + o• + 1)r(• + 2• + 1) = r(2a + 2) ) 

Proof Firstly by using (4) we obtain the equality 

secondly we solve the homogeneous difference equation 

(n + 
(n + a)(2n + 2a- 1) 

(n+c• + 1) 
(12) (n + 2a + 1)(2n + 2a + 3) X•+x = 0 

•1 =•Y• :1 

to obtain the general term for k _> i 

X•= (2k+2a+l) r(k+2a+l) r(ct-lq-3) 
(2a - 21 + 5) F(k + a + 1) r(2a - l + 3) 

with l=0 if k even, 1=1 if k odd. 
defined by 

•t(k 1) -- r•'k •i 1) 
Then, equation (11) leads to 

For k _> 1 let O(k 1) be 

o(nl]l __ ½(1) (/-/+ a)(2n + 2a - 1) 1 •+• = n + 2a X,•_• 0, 

using that u • C•:(•) we deduce that 
Therefore 

lim b(k 1) = 0 . 

•1) __ Z (7/ q- OZ)(27t q- 20• -- 1) 1 n +2a '•'n - 1 
n=k+l 

n+kodd 

and we conclude the result for k >_ 1. The identity (11) 
with n - i solves the case fi(01) 
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• it(• •) • have Lemma 3.5 For u 6 H i (A) and u'= ,f,• we 

the following property: 

{ A•(N)0o N -]- A•(N -]- 1)07 for N even H•(tt')-(II•vtt)'-- A•(N -]- 1)0o • -]- A•(N)•bf for N odd 
(•) 
where 

•' (2• + 2• + 1)r(• + 2• + 1) 
•.----0 

•"(m) = (2,• + 2• + 1)r(m + 2• + 1) ' 
The previous lemma allows us to state the following the- 

orere. 

Theorem a.4 For s > i- c• and u e Z}(A)•H}(A) 
lL•e have 

We now focus on the two-dimensional case. First, for 

.s _> 0 we define the space Z• (•) by 

(1,) z,;(a) = 
Using the standard tensorization argument and theorem 
3.1 we obtain the following result concerning the approxi- 
mation in the I] I[0.•.^ norm. 

Theorem 3.5 For s > 0 and u • Z}(f•) we have: 

l[ •-H•.• II0.•,•< c N -• II • Ilz•(•> 
For the approximation in ]l II•,•,^, now we state: 

Theorem 3.6 For allr > 0, s > 1-c• and uE Z}(f•) 
Ou Ou 

such that Ox ' Oy • Z•( ) we have: 

(16) N -• 11 • Ilzx(•) q- I1• Ilzx(•) 

Proof We use the following decomposition 

a• ( (n•)) = a• a• + 

a• o•, 
and we apply the monodimensional result to the first and 
second terms. The third term is handled by using theorem 
3.3 

4 Intrinsic norms of the spaces 

Z(A) 
In this section we use the notations appearing in the works 
Bernardi-Dauge-Maday [7] and Triebel [13], as well as some 
results therein. 

For m non negative integer we denote the space 

with the norm defined by 
1 

: • 
j=O ,h 

For any number s > 0 non integer we put s =m+0 
with 0 < 0 < 1 and m integer, and denote 

with the norm 

(18) ,,vl,2 • dJv 2.•+2( j - + 

•'•- • -.•).A 

•.• I•- yl 1+2ø (1 - x2)•dx dy 
where for all a > 1 the domain &A,= is defined by: 

{ (•,•)•AxA/•<O and •<l+•<a(l+•) 
a 

•A.a • 

or•>O and x-• < 1-o<a(1-•) a 

The space denoted by W•'2(A) in [7] coincides with H}(A). 
We characterize the space Z} (A) by the following theorem. 
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Theorem 4.1 Let s be a positive real number which is 
not an integer. s -- m q- O with O < O < i and s • l q- c• 
when c• E (-1, 0). Then, a no• in Z•(A) which defines 
the space is: 

1 

•,• ix_ yl•+• s (1 - dy 
Proof • consider three cases depending on the values 
of s and a 

First case: •>0, and0<s<l. 
Following the notation in •iebel [13] we have: 

(20) Z2(A ) = •ø(A, pa,pa) 

W2•(A) = •V•(A,p(•+i),p(•_•)) 
and with the notation in Bernardi-Dauge-Madw [7] we 

can state the inclusions: 

1.2 1 l•f 1,2 c c ,, 

By using theorem (1.b.10) and lemma (1.b.22) in [7] we 
have that •;2• (A) •2 

(2•) Z}(A) •.2 

Moreover the identifications (20) and (21) lead to: 

From the results in section 3.4.2 of [13] we have: 

Finally we apply proposition (1.c.2) and renmrk 
(1.c.3) in [7] to deduce that for s non integer 
i[?(A,p(•+•),p(•_s)) = V2+•(A) and therefore 

= = U+,(5) 

Using again theorem (1.b.10) of [7] we obtain 
s2 

and conclude the theorem in this case. 

Second case: a > -1 , and m • 1. 
If follows e•ily from the first case together with lemma 

Third case:-l<•<0 and 0<s< 1. 

In this c•e, we prove first an analogous result for the 
spaces defined on the interval Z = (0, 1) in a quite sim- 
ilar way. This allows us to handle only one singular point 

instead of two. We consider the weight x • and define the 
natural spaces L2• (27), s,2 W• (27), Vd ,2 (27) and ZI (27). Then, 
the mapping 

r' Z2(Z ) m.2 
v o(t) = v(t =) 

is an isomorphism for m-0, 1. Therefore 

is also an isomorphism. As we have a characterization of 
H5s,2 s the norm in x+2•(27) we can obtain a norm in Z,•(I). 

Finally, the result holds for the domain A from standard 
localization techniques . [] 

5 Approximation of singular func- 
tions 

%Ve are interested in the approximation by polynomials of 
the functions W•(x, y) defined by: 

W•(x,y) = ((1 - x) + i(1 - y))• 

for e > -1, because they coincide with the singular part of 
the solution of the Dirichlet or Neumann problem for the 
Laplace operator, and also for the biharmonic operator. 

Theorem 5.1 For any real number e > -1 the function 
14/•(x, y) belongs to Z•(f•) for any positive real number s < 
2(e + a + 1) 

Proof The proof must distinguish between two cases, de- 
pending on whether s is an integer or not. 
If s = m integer, taking into account (15) we only have 
to check that W•(x,y) • Z;(A; L•(A)) because the other 
case is analogous. Let 0 _< j _< m, the strongest singu- 

o• w• arises near larity in the expression of • 2 2 
L,•.j(A,L.(A)) 

the point (1, 1), so: 

for sonhe positive constants Cx and C2. In order to bound 
the last term in (21), we consider the change of variables: 

I - x: rcos½ 

1 - y = rsin0 
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then we obtain the integral 

(23) r 2(e-j)+2a+j+l cos •+j • sin • 0 dr de 

which is finite because c• + j > -1 , c• > -1 and 2(e - 
j) + 2c• +j + i > -1 when m < 2(e+ c• + 1). 
When s is not an integer we must verify 

(24) II w•(x,y)Ilzx(A•L•<,•//< • 

because the other term is analogous. To do this, we use the 
intrinsic norm given by theorem 4.1. Since the mapping 

(x,•) A f(x,y)=((1-x)+/(1-y))•-m 

is C • away from (1, 1), it clearly suffices to bound the 
integral 

.Ix- x'l 
(1 - z•)•+•(1 - 

where 

•={O<x<l,O<z' <1,1--- 
1--37 

We make the change of variables 

1-x=(1-y)t 

1-x' =(1-y)tz 

and we must veri•' that the integral 

(26) I =/•(1 - y)2e+2c•-s+ltc•+s-2ø ß 
I(t + i) e-m -- (tz q- i)•-"•12dzdtdy 

is finite, where 

Iz - 11 •+2ø 

©={0<y<l,0<t< 
I 1 

1-y'a 

For fixed t, we apply Hardy's inequality in [•, 1] and in 
[1. a] to obtain 

(27) a l(t + i) •--• -- (tZ + i)½--•l 2 {z- 11 •+20 dz < 

C f•a t21 z _ 111-20( 1 + t2h2) e-m-•dz _< 
Ct2(1 + t2h2) e-m-• 

where 

• for e-m-l<O h= • 
a for e-m-l>_O 

From (26) and (27), we obtain that. I is bounded by 

(28) c (• - •)•+•-'•+• 
1 

o •-• tc•+'•-2øt2(1 + t2h 2) .... •dtdy. 
Finally, we bound the integral with respect to t and af- 

terwards with respect to y to obtain the desired result. 

Remark 5.1 For any real number e > -1, we also intro- 
duce the function 17V•(x, y) defined by 

IZV• (x, y) - ((1 - x) + i(1 - y))• log((1 - x) + i(1 - y)) 

By using the same proof, it can be verified that theorem 
(5.1) is still valid with V[• replaced by •. 

6 Application to elliptic problems 
We consider the Dirichlet problem on the square •2 

- Au = f in •2 

(29) u=0 in 0S2. 

Let (aj,bj) , I _< j <_ 4 denote the vertices off•. If the 
function f belongs to H•P(•2) . for p _> 0. then a decompo- 
sition result of M. Dauge [8], guarantees that the solution 
u of (29) can be written as 

4 

j----1 

The function u• belongs to H/} (f•) for all non negative real 
number s < min{p+2,5+o•}. the X• are C • cut-off 
functions and the functions •. i < j < 4 are 

IYV•(x,y) = Im{((aj - x) + i(bj - y))2 log((a• - x) + i(b3 - y)}. 

Therefore the solution u belongs to H•(•2) for all 
0 < s < min{p + 2, 3 + (•}. We denote urv the discrete so- 
lution provided by the Gauss-Lobatto-Jacobi collocation 
spectral method, namely: 

v• • P•(•) 

(30) -AUN(x) = f(x) x 
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where E stands for the set of Gauss-Lobatto-Jacobi nodes. 

So, if only standard approximation results (see [4] and [6]) 
are used, the following convergence estimation is obtained: 

(31) Ilu- /tNII1,o,• __• 

where a = rain{3 + a, p + 2}. 
However, following the same lines as in section 4 of [5] we 
can use the previous results in this paper to approximate 
the functions • in the framework of the Z• spaces, and 
use standard results to approximate the regular part u•. 
Finally, to enforce the homogeneous boundary conditions 
we use [4, proposition V.1] and we obtain the estimation 

(32) Ilu- 

where now a = rain{5 + a, 5 + 2•, p + 2}. 
In (29) and (30) • can be taken arbitrarily small. 
For instance, if • = -1/2 and f • C•(•), the standard 
results state 

while the ideas here proposed conclude an improvement in 
the estimate to obtain 

7 Conclusions 

We have improved the classical results for the polynomial 
approximation in weighted Sobolev spaces of Jacobi type 
by introducing a new family of weighted spaces. We have 
shown in a model problem that our results enable us to 
improve the error estimates for Jacobi spectral methods 
by using the knmvledge of the singularities of the solution 
near the corners. Our analysis includes, in particular, the 
important case of the Chebyshev weight. Although we 
have considered the analysis of a simple model problem, 
the results and techniques can be used in the general case 
of Jacobi spectral discretization of elliptic problems. In the 
future we will also apply the patching method with these 
techniques in order to state results about spectral Cheby- 
shev approximations in more general domains. 
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