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Abstract 

This paper analyses a Chebyshev pseudospectral collo- 
cation semidiscrete (continuous in time) discretization of 
a variable coefficient parabolic problem. Optimal stabil- 
ity and convergence estimates are given. The analysis is 
based on an approximation property concerning the Gauss- 
Lobatto-Chebyshev interpolation operator. 
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1 Introduction 

Spectral approximations to the Dirichlet problem for linear 
parabolic equations with constant coefficients have been 
extensively investigated. Early references are [12], where 
Galerkin type discretizations are studied and [11], for pseu- 
dospectral approximations. A variational treatment for 
both Galerkin and collocations methods may be seen in 
[5]. Pseudospectral approximations for two dimensional 
problems are treated, among others, in [3]. 

However, less analysis has been done for the variable 
coefficient case. The paper [10] is one of the very few 
examples in the literature. 
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This paper analyses a Chebyshev pseudospectral ap- 
proximation to a parabolic problem with nonconstant coef- 
ficients. More precisely, let us consider the parabolic prob- 
lem 

(1) ut- (a(X)Ux)x : f(x,t), x C A,t _> 0, 
u(-1, t)-u(1, t) = 0, t_>0, 

u(x, 0) = no(x), xCA, 

where A = (-1, 1), a is smooth function satisfying the 
-- 

classical assumption 0 < a < a(x) _< • in A, which ensure 
the parabolicity of the problem. 

We follow the treatment given in [6] for a stationary 
advection-diffusion equation and discretize the equation by 
direct collocation at the Chebyshev-Gauss-Lobatto points. 
The leading term in our discretization is the derivative of 
the interpolating polynomial of a(x)u.•. Written in this 
form, the discretized equations have additional difficulties. 
In [10] the leading term was written as a(x)u.•.• and treated 
pseudospectrally by means of a special norm involving the 
function a. The approach we follow here has the advan- 
tage that the extension to advection-diffusion equations 
with nonconstant coefficient in both advective and diffu- 

sive terms is quite straightforward. Also, extensions to 
some problems in two dimensions, not reported in this pa- 
per, are possible along the lines presented here. Further- 
more. our formulation is of interest from a practical point 
of view. The solution of the discrete equations obtained by 
spectral collocation needs of an appropriate time-stepping. 
Explicit time-integrators suffer from very severe stability 
time-step restrictions and implicit ones need the solution of 
linear systems of equations. The use of iterative solvers for 
such systems has become popular. As noted in [4], there 
is no effective preconditioning available for problems with 
large first derivative. So, one is impeled to reformulate non 
constant coefficient problems in the form of equation (1). 

The next section is devoted to introduce the basic nota- 

tions. The properties of problem (1) are stated in Section 
3. Section 4 is devoted to the analysis of the collocation 
equations. The error estimates are presented in Section 
5. In the last section we add some final remarks concern- 
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ing the extension of the analysis to the advection-diffusion 
equation and to fully discrete schemes. 

2 Preliminaries and notation 

Let •,, be the Chebyshev weight. All the functional 
spaces related to the spatial variable are defined over A. 
\Ve use the notations, L2w = {v I f•v2wdx < oc} and 
H 1 : {v • L}lv.• • L 2 v(1)= v(-1) = 0} respectively co,0 

endowed with the norms II.llo,• and II.}l•.•. The inner 
product in L2• is represented by (.,-)o,•. Sobolev spaces 
of higher order with respect the Chebyshev weight are 
denoted by H•, v > 0 (see, for example,[1], [2, Chap- 
ter 1], for a definition). Let Hj • be the dual space of 
H}. o. The norm in H• • is denoted by II.ll-•,•. We 
shall identify the space L} with its dual, so we have 
H • 2 C H•7 , each space being dense in the 
next. We recall that, with this identification, for g • L•, 
,,'e have IIg!l-•,• = sup{f^ gvw dx/llvll•.• Iv •/•.0}. 

The space of polynomials of degree N satisf•ving the 
boundary conditions will be denoted by I•0 •. Let wj and 
x3, 0 < j <_ N, be the weights and nodes of the Gauss- 
Lobatto-Chebyshev quadrature in A. We denote by Ix 
the corresponding interpolation operator. We use the dis- 

crete norm II•,•ll,• = E•_-o v (xj)2wj defined over 
• and denote by (., ')N the corresponding inner product. 

Let T• be the k-th Chebyshev polynomial in A. Each 
polynomial in l?ff has a (unique) representation in terms 
of the derivatives of the T•,k = 1,..., N- 1: 

N-1 

(2) v •¾(x): • 0•(1 - x2)T•(x). 
k=l 

Throughout, we use the norxn 

!11•'111-- {f.• [(v•:)•] 2 •:-•d• } 1/0 It is well known that 
is a norm over H • equivalent to II' II•,•- Furthermore, w,0 

calculation shows that, for polynomials v • • 
N-1 

(3) IIIvNlll 2 • I • 
k=l 

where O• denotes the k-th coefficient in the representation 
(2) of t, •'. 

3 The continuous problem 

The problem (1) can be written in variational form as 

(4) (ut,•p)o,• + a(u, qz) = (f(t),qz)0,•, Vqz • H • C•',0 ' 

where a(u, v) is the bilinear form over H • defined by co,0 

(•) a(•,v) = f• a(x)•(v•:)•d• W, •, • • ' •,0' 

supplemented with the initial condition u(., O) = u0('). 
In this section we analyze the continuous problem (4). 

We start the analysis by stating a coercivity inequality for 
th• bilinear form a(u, v) in (5). More precisely we have 
following 

Theorem 3.1 Let a(x) be a function with continuous first 
order derivative in A. There exists a positive constant •o 
such that if • > •o 

for all u • H},.o. Here % > 0 is a suitable positive constant 
depending on •. 

Proof Following the techniques in [4, Theorem 11.1], we 
first obtain the auxiliary result 

i a(x)u;wdx + • (7) a(u,u) k • . 

and, as a consequence, the inequality 

l i, a(x)u:wdx_ 11• (s) a(u, u) • • • [•a•]- u'• •, 

where [xa•]- denotes the negative part of the function Xax. 
Let M be an upper bound of [xa•]-' the second term in 
(8) is bounded by 

(•) [•]- u• 5 
1 

and, using a Hardy inequality [2, Lemma 2.3] and the well- 
known fact that ab • •a 2 + (1/4•)b 2 we have 

• [•- M•] II%ll•,• •ll•ll 2 
Taking •o = g/'M and •o = M/l•o we have that, for 
• > •o, 

with % {(•- •)= M2 • • = 
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The coercivity of A(u, v) = a(u, v) + I•(u, v)o.w en- 
sures that, for data u0 E L• and f • L2([O,T];H•I), 
0 < T < •c, the problem (4) has a unique solu- 
tion u H•,o) NC([O,T];L•) such that ut 
L2([O,T];H• •) (see [8, Cap. XVIII, õ3, Ths. 1-2]). Fur- 
thermore, it is now straightforward to show that the prob- 
lem is well-posed. 

Theorem 3.2 In the above conditions, the solution of (J) 
satisfies the stability estimate 

where C(?) is a constant depending on ? = •. 

4 The collocation approximation 

Problem (1) is discretized, in a standard way, by colloca- 
tion at the Gauss-Lobatto points. Following [6], the collo- 
cation equations are written in variational form as 

(12) (u;•¾ (t), v•V)•v + a•v(uST (t), v •v) = (I•v(f), v•V)•v, 

for all v •v • 1•0 N , where the discrete bilinear form a•v is 
defined. for polynomials ½N, ½N in •ff, by 

(13) aN(• N, 0 N) = • IN(a(x)•7)(½N•)xdx. 
Formula (12) is supplemented with the initial condition 

(14) u•(0) = I•(uo). 

In order to prove the stability of the semidiscrete approx- 
imation (12)-(14), we first establish a coercivity property 
similar to (6). The proof is based on a approximation prop- 
erty for the interpolation operator IN that we next state 
as a lemma. 

Lemma 4.1 Let b(x) be a function in C • = C "•'•, m + 
• = or, 0 _< 0 < 1, the class of functions whose m-th deriva- 
twe is HSlder continuous in A with exponent •. The in- 
terpolation operator IN based on the Gauss-Lobatto points 
satisfies, for each polynomial v N 

(15) [•(x)•(x)] •(x)v•(x) I•¾ 1 - x 2 - 1 - x 2 0,• 
< CArrS• [log X]•/211v• 

Proof Using (2), (3) and the equivalence between the 
norms I1' [Ix,• and II1' Ill, we arrive at 

(16) IN / 1 -- 

1•_• }1/2 <_ CIIvN IIx,• 

In order to estimate the terms II•N[brg-br•llo,•, let us in- 
troduce •, the best m•imum-norm approximation poly- 
nomial of degree r of b(x) over A. A classical result [13, 
Theorem 1.5], states 

(17) Ilb-•11• qi•.lib qll• • C•-•11bllc • 
where IIbllc• denotes the norm in C 

IIbllc• = sup IbC•)(x)l + sup 

Then, we have that 

iI•N[bT•] - bT;110,• 

Using that IIr•llo,•: •3w2 h• the second term in the 
right-hand side, the equivalence between the norms ]l' I Io,•, 
and I1,11• in the first and (17), we obtain, for 1 5 k 5 Ar-1, 

Even though the above inequality can be used for all pos- 
sible values of k, it only provides a useful estimate for k 
bounded away from N. On the other hand, we also have, 
for 1 gk•N-1, 

(19) [l•x[6r•] - bY•110,• • 2•11611c• 3/2, 
So, our purpose is to use (19) for the first values of k, and 
(19) for the rest. With this in mind, we take v, 0 < v < 1, 
and write (/.J denotes integer part), 

N-1 

k=l 

[•NJ N-• 
t 2 

k=l k=[vNJ 

Using (19) and (19) in order to handle the first and second 
terms respectively, we get 

L•J N-• 

S•C • k-•(N+l-k) -2•+C • k -x, 
k=l L•NJ+I 
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where C is a constant depending only on b. Using now 
that •¾ + 1 - k _> (1 - v)N for k _< LvNJ, we get 

S< 

C (1-v)-2•Y-2•(1 +1ogN)+logv -1 +log L•NJ/' 
Now we restrict • to be in [•, 1]. Using the boundedness 
of the function log •/(1 - •) on that interval, we obtain 

S • C ((1 - •)-•-•(• + 1og•)+ (1 - •) + •-•) 
for all u • [•,1] and for all N • 4 with a constant C 
independent of both N and •. In order to make the bound 
optimal we choose u = u(N) = 1 - N -2•/(1+2a) (which 
indeed belongs to [•, 1] for N large enough) and get the 
final bound 

--2• 

S • CN• logN. 

Theorem 4.1 Let us suppose that the function a has con- 
-- 

ti•uous first order derivatives in A. There exist positive 
constants lu• and No such that, if lu > lu•, and N > N0, 

(20) a•.(½ •' v N) + •(vS,vl•'),• > •11•Sll • • -- 1.w• 

for all v •v • •. Here • is a positive constant depending 
o, • but not on N. 

Proof We denote by C a uniform positive constant not 
necessarily the same at each occurrence. Let v N 
Our aim is to prove the inequality 

(2•) a•v(• '•, •) • 

i •,•[av)•]•7• d• + X a.•(•'•)%•z- Z•[v •] 4 • ' 

with 

œx[•, 'v] = 

• + l_x.----- 7 IN Li_•j •'z•'• • 
Using a Hardy inequality to handle the term EN, we get 

I•[v•]l • Cll•NIl•,• •N F•avS 1 •av• L•W] •-• 0.•' 
The conclusion is then reached by applying (16) and argu- 
ing as in Theorem 3.1. In order to get (21), we start by 
writing aN in the form 

(22)%v(v•' v'•) = •x I•[av•]v.•'•dx 
1• lf• 

with 

[I• •avN •a'vN 

We next observe that 

^ (23) a•v(v•V,v •v) + v• 1- x 2• 

• (1-z•)•a• • • [•] •ø' 
where 

z(•)[v•]: 
Integrating by parts the second term in (23) and using 
w• - 2w•/w • w •, it is easy to obtain 

i •a(v ) d (a• (•4) 5 - 

• •a•(•) 
Finally, using (22) and (24) and following once more the 
techniques in [4, Theorem 11.1], we obtain the desired in- 
equality (21) 

5 Error estimates 

In order to get the optimal error esthnates. we need to 
state the stability of the discrete problem for a slightly 
more general class of discrete right-hand sides. Namely, 
we consider the following generalization of (12) 

•v /•(t),v x (25) (•,;•(t),v•),• +a.•.(•, (t),v "•) =< , > 
for all •,• • 7o •', where • • •(0,•:(•7)*). Ue•e 
< .,- > stands for the duality between (•)* and •'. 
For g e (Pff)* we write Ilgll-x.m' =sup{< g,v >/llvllx.• I 
v • •ff}. As (25) is a finite dimension problem, it has 
a unique solution uN(t) • • for data u•' 6 •v and 
1N • L2(0, T;(•ff)*), T > 0. Further, the uniform 
ercivity of the bilinear forms aN(½ 
ensures that we have the discrete analogue of Theorem 3.2: 

Theorem 5.1 In the above conditions, the solution of 
(25) satisfies, for N > No, the following uniform stabil- 
ity estimate: 

(26) II•(t)11o,• + Ilu•(•)lli•d• 
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where C(•) is a constant depending on the constant 
m Theorem J.1 but not on N. 

For the error between the exact solution u and its colloca- 

tion approximation u N, we have the following result. 

Theorem 5.2 Assume the function a(x) is in C •, rr _> 1, 
and f • L2([O,T],H,•) , r > «. Let us suppose further that 
tt • C([O,T],H• rt) and u t • L2([0, T], m-2 H• ), m ) 3 6not 
•cessarily an integer). Then we have, for all 0 < t • T 
and N large enough, the ewor estimate: 

t • 

Ce "• N-mll•011•,• +N •-m II•(s)ll•,•d• 
1 

where C is a constant depe,ding on the function a(x) but 
•ot on N. 

Proof Let rr• ß /-/•..0 •-• ?•; be the projection operator 
defined by: 

)T ((v_ •;.•)•).• dx = 0, v• • e 1 

From [1, Theorem 4.3] we have the estimate 

(28) 

for 0 < r _< 1 <_ s. Indeed, the duality argument used 
therein to prove the estimate for r = 0 also works when 

r = -1. Let e:V(t) = 7rk4]u(t)-u'¾(t). From (4) and (12), 
we conclude that e:v(t) satisfies 

(e•v(t),vN)•+aN(e•V(t) v :v) =< l•v 2 3 vN . , (t)+l•¾(t)+l•¾(t), > 

for all t, '¾ • 70 •', where 

7r* < l•v(t),v N > : ( [3jut(t),vN)N -- (ut(t),vN)o,,• 
< l,•-(t),• '• > = a•(•.•(t),• •) - a(•(t),• •') 
< 13 v N .x(t), > = (f(t),v•')0.• - (/(t),v•')• ' 

From (28) with r - -1 and s = m- 2, we get 

(29) 

To handle l•v , we write the decomposition 

< 13(t),• • >= (a- •[.3j)•[3j•(t)•,•.• + • _ • • 

+ (•[3]) - a).,•[3ju(t)•,v• • + I - x • o.• 
+ a(•- •[,3j•(t)•),, • + • _ • 

0.w 

where , t, • stands for the best maximum norm approxi- •-] 

marion polynmnial of degree k-½J of the function a(x) over 
A. So, recalling (17) and using (28) with • = s = •, we 
obtain 

(30) 

Using the estimate for the interpolation operator 

(see [7]) and standard arguments, we obtain the bound: 

(31) Ill?vll-•,•- _< C•V-rlIflI•,•. 

The desired error estimate follows using (29)-(31) in the 
bound obtained by replacing in (26) e :v by u x and lk + 
12 3 x + l•v by l•v together with (28) applied to u. first with 
r=0ands=mandthenwithr=l ands=m-2. [] 

6 Final remarks and conclusions 

Once the coercivity of the discrete bilinear form a x has 
been proved, the analysis can be easily extended to cover 
a number of other situations. For reason of brevity we only 
point out one of such extensions: the case of the advection- 
diffusion equation in one dimension, with nonconstant co- 
efficients in both the advective and diffusive terms. Our 

analysis may also be extended to some other cases in di- 
mension two that we do not report here. The last subsec- 
tion is devoted to remarking how the fully discrete case 
can be analyzed along the preceding lines. 

6.1 Advection-diffusion equation 

Let us consider the following advection-diffusion equation 

ut-(a(x)u•)•q-b(x)u•q-c(x)u =f(x,t), xGA, t_>0, 
(32) u(-1,t) = u(1, t) = 0, t _> 0, 

•(•, 0) = •0(•), x • ^. 
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Let we assume that the functions b and c are bounded in 

A. Associated with (32) we have the bilinear form defined 
by 

(33) A(u, v) = a(u, v) + b(u, v) + c(u, v), u, v e H•, 0 
where a(u,v) is defined in (5) and b(u,v) and c(u,v) 
are respectively defined by b(u, v) = f^ b(x)uxw' dx and 
c(u, v) = f^ c(x)uwv dx. It is readily shown that 

lb(u, •)1 < b•11• 2 b• IIo.• + •11•11 • • 0,• 

(34) Ic(u, •110,•, 
where • and c• are •he maximum value in A of •he func- 
tions b(x) and c(x) respectively, and e is a parameter •o be 
determined later. So, one can consider 
and c(u, v) in (33) as perturbations of •he coercive form 
a(u. v). Using •hen (6) we ge• •he inequality 

10.• > (%- •)11•11 • (35) 
Taking e < •,/•, we get a coerdvity proper•y for •he 
perturbed form A(u, v). 

The usual collocation discrefization of (32) leads to •he 
problem 

(30) w 
with 

Ax(•: ¾ . •,•') = ..• (•, •,•) + &N(• •, •,•) + o•.(• •, •,•), 
for polynonfials u N, v N ff •. The discrete bilinear form 
a.v has been defined in (13) and the perturbations bN and 
c.v are given by, 

N-1 

N-1 

where x•, zS, j = O. 1,..., N, are the nodes and weights of 
the Gauss-Lobatto-Chebyshev quadrature formula. It is 
readily shown that •N and CN satisfy similar estimates as 
their continuous counterparts • and c. Then, taking into 
account the coerciviW of the form aN, one can obtain the 
same property for the perturbed form Ax. As a conse- 
quence the stability and convergence results of the previ- 
ous section also apply to the convection-diffusion case. In 
particular, the bilinear form AN satisfies a uniformly on N 
coercivi W inequalky 

(37) ANCVN, N) + •(vN, u N) • %llvNll•,•, for suitable constants • and 7•. 

6.2 Fully-discrete schemes 

A semidiscrete approximation to a partial differential equa- 
tion yields a system of ordinary differential equations that 
can be numerically integrated by means of a standard ODE 
solver. As it is well known, explicit finite-difference meth- 
ods for the time integration of spectral discretization of 
second order parabolic equations may have a restriction 
on the time step At of the form At _< C/N 4. see for exam- 
ple [4, Chapter 4]. For the case of a Legendre collocation 
spatial discretization of a constant coefficient advection- 
diffusion equation, it has been recently proved that, if a 
general rational approximation to the exponential is used 
for the time integration a (.9(N -4) time-step restriction 
guarantees stability. In order to avoid such a severe re- 
striction, A-stable time discretization are often used. 

The usual way to analyze a finite-difference time- 
discretization is by resorting to the energy method and 
therefore following the same lines we have previously pre- 
sented. We shall give no details but as an example, let us 
consider the backward Euler method for the problem (32), 

((•L• •)//•t,•'•)• ' + A•(•+•, •N) = 
(38) (I• [f•+•], vN)N, 

N iS meant to be an approxima- where f• = f(k•t) and u• 
tion to the solution of (36) at t = kAt. Taking v •v = u•+•, 
using (37) and summing, we get the stability estimate 

k+l ) i/2 I1.•+•11• + •t• I1'•11•,• 

c(•)• • II•[•(0)]IIN +•t IIIxE/•311•,• , 
kj=l 

for 0 • (k + 1)At • t. The error estimate for the semidis- 
crete approximation together with consistency properties 
of the scheme and standard procedures (see, for example, 
[14]) allow to derive an O(At + N -•) bound for enough 
smooth data and coe•cients. 
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