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Abstract 

This paper describes how one can use the spectral vanish- 
ing viscosity method proposed by Tadmor in multidomain 
solution of hyperbolic systems. Interface conditions are 
derived using a variational approach, and open boundary 
conditions are derived using the approach used in [9] for 
incomplete parabolic systems. 
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1 Introduction 

Filtering of the solution is often necessary when using spec- 
tral methods on nonlinear problems with solutions of lim- 
ited regularity. The main reason for using filtering is to 
prevent the buildup of components of high spatial fre- 
quency, i.e. towards the end of the spectrum of the discrete 
operator. The filtering thus prevents unwanted coupling 
from high to low frequencies, i.e. it stabilizes the numeri- 
cal solution. There are many variants of filtering described 
in the literature, see e.g. [6] for a general overview, and 
[8] for special techniques to handle discontinuities. We will 
here concentrate on problems where we don't have to deal 
explicitly with shocks or discontinuities, but where we filter 
to stabilize the smooth solution. 

We consider a quasi-linear hyperbolic system 

d 

(1) ut+ EAi(u,x,t) u•, =b(u,x,t), 
i=l 
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where u, b 6 ll• TM, Ai 6 • x m Chebyshev spectral collo- 
cation will be used to discretize the PDE system at least in 
one direction, and we consider the solution of (1) in multi- 
ple subdomains, i.e. the domain is given by 
The interfaces between the subdomains are denoted by Fij 
and the outer boundaries by c9fli. We will therefore have 
to find interface conditions at Fij for the the numerical 
method to work properly. In addition we want open or 
transparent boundary conditions, since we are interested 
in wave-like solutions where our boundary is just an arti- 
ficial one. Open boundary conditions for hyperbolic sys- 
tems are described in many papers, but here we consider 
the method using characteristic variables as described in 
e.g. [111, [171 and [11 . 

We will use the spectral viscosity method for Chebyshev 
discretizations proposed by Tadmor, [14], and discussed in 
detail in [2]. Other filtering or artificial viscosity methods 
are described in [6]. 

The rest of the paper is organized as follows: In section 
2 we describe the spectral viscosity in detail and inter- 
face conditions are derived using a variational technique. 
Section 3 is devoted to the derivation of open boundary 
conditions. 

Spectral viscosity and interface 
conditions 

Spectral viscosity or more precisely, spectral vanishing vis- 
cosity was introduced by Tadmor in the Fourier case in [15], 
and he showed that this method converged to the entropy 
solution of a system of conservation laws. The spectral 
viscosity (SV) method is a spectral filter which acts only 
on frequencies higher than a certain threshold, and hence 
should leave the low frequency (smooth) components in- 
tact. The theory is generalized in [16]. 
For the Chebyshev case, Tadmor have suggested the fol- 
lowing family of SV filters, see [14] and [2]: 

(2) eN 0 RN * , o= w-5 l 

121 



122 ICOSAHOM 95 

where es. is the "viscosity" coefficient, w(x) - (1-x2) -1/2 
the Chebyshev weight, p, q • Z. The filtering function is 
defined as: 

(3) 
mN<I<N 

where /•l are filter coe•cients and •l are tM Chebyshev 
coe•cients (Chebyshev transform) of the weighted first 
derivative 1/w(x)qu•. The parameters suggested by Tad- 
mop are: 

e• • N -•, m• N •/•, 

•. • I - , k > m N . 

The parameters p and q were set to I and 0 respectively 
in the numerical experiments reported in [17], because one 
wanted to keep the hyperbolic boundary and interface con- 
ditions. These values have also been chosen in larger ex- 
periments, see e.g. [3]. If we don't impose the restriction 
of using the hyperbolic boundary and interface conditions, 
but rather derive boundary conditions based on the PDE 
system with the viscosity term, we are free to choose val- 
ues for p and q. The simplest choice is to set both to zero, 
such that it resembles the Fourier variant. 

Note that there does not exist a convergence theory in 
the Chebyshev case, so we do not have a sound basis for 
choosing the parameters. The numerical experiments done 
so far indicate however that the choices above are reason- 
able. 

Consider now the PDE system (1) with the SV term 
added: 

d d 

(4) ut+•Aiux,=e•P (ii) l i=l i=l W(x)P (Ri * UX')x' + b 
where we have •sumed that the matrix p(ii) is diagonal, 
and that e represents a small parameter. Note that the SV 
method is defined in discrete form (see (3), and here we 
assume the existence of continuous operators R• for which 
R,•-• is a discrete approximation. 

To derive the interface conditions, we will use the varia- 
tional method applied in [9] for incomplete parabolic sys- 
tenas. In order to perform this we have to keeze the co- 
efficients at the interface, i.e. to linearize locally around 
the solution and the position. For (4), this implies that 
the matrices 
inner product within a domain, and denote by < .,. > the 
L2 inner product on the boundary. For sufficiently smooth 
functions, we will use the following Green's formula: 

(5a) (Aiux,,V) + (A•u, vx,) = (A•u, vn,) 

(Sb) 

We will use an antisymmetric term for the first derivative 
terms, and from the Green's formula, we have immediately 
that: 

1 (Aitt, vni) l[(A,u•,,v) - (A,u,v•i)] + • (Aiu•,, v) = • 
Hence we can write the PDE system for p - q -- 0 in 
variational form: 

1 

(ut, v) + 
i 

E E p(ii) ((Rz •t tlx,), t,x, ) 
i 

2 

(6) + 
i 

For p = 1 we get a similar result, but now the boundary 
term for the SV vanishes because of the form of the weight 
function. Since this will not give us other interface condi- 
tions than in the hyperbolic case, we concentrate on the 
case p - 0 from now on. 
If we introduce bilinear forms: 

we can write the the equations in variational form: 

(7) (•,, •) + •(u, •) + •(u, •) = (s•, •,) + (b, •,) 

where 

œU = eP(ii)(Ri *Ux,) + •Aiu ß 

We now proceed exactly as done in [9] and introduce two 
subdomains ft + and f•- and bilinear forms a +, a-, s +, s- 
defined over the respective subdomains. We have that: 

•(•,•) = a+(u,•)+a-(u,•) 
4u, •) = •+(•, •) + •- (u, •) 
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So by writing the equation (7) for fl+ and fl-, we can add 
these equations and subtract (7). We then obtain 

(s) v/n+ + v/n- -- o 

where the superscripts indicate the subdomains to which 
the quantity belongs. If we assume that the test function 
v is compactly supported in fl, then the boundary inner 
products reduces to that of the interface. The transmission 
conditions are: 

(9a) (œu)- = (œu) + 
(9b) u- - u + 

where the superscripts "+" and "-" refers to the values 
of the quantity taken in fl+ and fl- respectively. So in 
particular if .q+ and P.- are half-spaces with the x•-axis 
as the interface, we obtain the following conditions: 

(10a) Ep(11) (Z•l 
(10b) u + -- u- 
Note that the explicit dependence on Ai disappears be- 
cause we have to assume that this matrix is non-singular. 
Alternatively, we can of course use the condition Aiu + 
Aiu-, or TAiu + = TAiu- where T is the left eigenvector 
matrix of Ai. The latter condition expresses that the char- 
acteristic variables should be continuous at the interface. 

Hence for each component u/½ of U, we have apart from the 
continuity of the variable itself, a relation of the form: 

+ - ) (11) E+(R1 + 
If ;ve now take the discrete version of these conditions and 

use the definition (3) of the SV filter, 

rnN+ </<N+ 

ms_ <l<N_ 

we see that if the number of gridpoints in the two do- 
mains are equal, and therefore the parameters in the SV 
method, the conditions reduces to require that the Cheby- 
shev coefficients in the two subdomains should be equal 
for mN _• I _• N. In the much more interesting case where 
the number of grid points are not equal, we see from the 
definition that the coefficients of the expansion of the fil- 
tered values must be matched. For example, for the case 
where N+ > N_, and hence raN+ > raN_, we have the 
conditions: 

(13a) 

(13b) E+•t+•)t + = E-fiF;F, raN+ _<1 <_ N_ 
(3c) E+fi?;? = 0, 

These conditions are quite different from the interface con- 
ditions in [9], and the reason is that spectral viscosity is 
defined in spectral space, and hence we get matching condi- 
tions on the Chebyshev spectra in each domain. The condi- 
tions express that in [raN_, N_]Cl[raN+, N+] the Chebyshev 
coefficients have to be matched, and outside this interval 
they are set to zero. 

It is fairly obvious that these conditions can be gener- 
alized to work for an interface of arbitrary (but smooth) 
shape. 

The implementation of these interface conditions can be 
done by a penalty method, or by exchanging interface val- 
ues as described in [13]. 

3 Boundary conditions 

Again we consider the PDE system (4) with p = 0: 

d d 

(14) ut + • Aiu•, : E • p(ii) (Ri * uZ,)x, + b 
i=l i=1 

We are now interested in imposing correct boundary con- 
ditions on fli. We know from numerical experiments. see 
e.g. [5] and [12], that indirect imposition of the bound- 
ary conditions seems to work well. This procedure goes as 
follows: Assume that we have a viscous term of the form 

ax/ 

and a boundary condition of the form 

Ou 

where a,/3,-y • ll•. At the boundary we now solve for ofl• 
in the boundary condition and insert this expression in the 
viscous term. Then we perform the second differentiation. 
These modified second derivatives are only computed at 
the boundary, elsewhere we compute the term as usual. If 
our viscous term is of the SV type, we can use the same pro- 
cedure, but slightly modified: We solve for the derivative 
in the boundary condition as before, but now we expand 
the result (a linear function of u) in Chebyshev series and 
filter these coefficients before performing the second differ- 
entiation. 

The situation is different if we want open or transpar- 
ent boundary conditions since it is not always possible to 
express such conditions as mixed type of boundary condi- 
tions. It is well known that the ideal open boundary condi- 
tions are global both in time and space, and therefore local 
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approximations have to be made. There are many meth- 
ods suggested for a Navier-Stokes type of equations, but 
here we will use the theory developed in [9]. Applications 
of this theory and discussion of the discrete case is given 
in [12]. The starting point for the derivation of the open 
boundary conditions in [9] are the interface conditions be- 
tween two subdomains. The theory relies on the fact that 
the linearized incomplete parabolic systems has solutions 
of the normal mode type: 

r+p 

i----I 

For the explanation of the symbols, see [9]. If we shall use 
this theory also for the SV case, we have to show that such 
solutions also exist for this case. 

3.1 The advection-diffusion equation 

In order to gain some insight into the existence of normal 
mode solutions for our type of SV equation, consider an 
advection equation with SV in 1D: 

0 

(15) t,t + ½vx = (R. vx) 
in the half-space •+ - (0, oc). If we perform a Laplace 
transform in t and assume zero initial conditions we get 

0 (R. •) s6 + c9• = e•x x . 

Now inserting a solution e f•, we get after canceling the 
common efX-term: 

(16) s + c• - •2•(•) 

where/•(•) is the Laplace transform of the filtering func- 
tion R. This means that we can solve (16) for • (at least in 
principle), and then find a normal mode for our PDE. The 
equation (16) is the same as the basic equation [9, (1.1)], 
and hence we have for the general case that 

Q(•,io) 

(17) 

d 

Ai• + • Ajirlj + ep(•)•2/•, (•) _ 
j=2 

d 

j--2 

To allow for different filtering parameters for the individual 
equations, we let •(•) - diag(1•ll(•),...,I•ln(•)), and 
similarly for the other coordinate directions. 

If we now go back to (1•6), we see that we should have an 
explicit expression for R(•), and we have not specified the 
operator itself yet, only indicated that it should be so con- 
structed that the discrete filtering operator Rs is a good 
approximation to it. If we consider R as a distribution we 
know that R - 5 will give the usual advection-diffusion 
equation, because we have that 5 * vx = vx and œ5 = 1 
(œ denotes the Laplace transform of a distribution). Open 
boundary conditions for the advection-diffusion equation 
are derived in [13]. 

We can express the filtering distribution in terms of a 
type of summability kernels used in harmonic analysis, see 
e.g. [10]. An example of such a kernel is the De la Vall4e 
Poussin kernel 

Vx = 2K2x - Kx 

where Kx is the F•jer kernel, see again [10]. The Fourier 
transform of the De la Vall•e Poussin kernel is shown in 

figure 1. We see that a possible filtering operation may be 

Y}. 

k 2k 

Figure 1: Fourier transform of the De la Vall•e Poussin 
kernel 

expressed as R ß v.• = v• - Vx ß Vx for a suitable A, hence 
the filtering distribution can be written R = 5 - Vx. We 
are seeking the Laplace transform of this distribution, and 
that is different from the Fourier representation since we 
have the relation 

œ(f(x))=.•'(f(x)e-•rz), •= a+iw, 

where w is the variable in Fourier space. We will try to 
find a kernel with Fourier transform matching the form of 
•he spectral viscosity. Let V(•) be the Laplace transform 
of such a kernel. Then we can write (16) 

(18) s + • = e• 2 (1 - V(•)). 

The distribution V(•) should then tend to zero • [•[ • •. 
An interesting kernel is the function of Riesz-mean type 
discussed in [4, p.34]. In Fourier space it is given by 

1-112 0 w>l 
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Note that the Riesz-mean kernel does not have the same 

Fourier representation as the SV method calls for, but the 
characteristics are very similar. We will see below that 
there are analytical results available for the Riesz-mean, 
which give us insight into how the filtering affects the con- 
struction of the open boundary conditions. If 0 < a < b 
the following kernel has the wanted properties: 

v•b(•') = aK - (a - 1)K , a = b2 _ a• 
The Fourier representation of this function is given in figure 
2. The inverse transform of K(w) is also given in [4]: 

! 

ß 

Figure 2: Fourier representation of the kernel 

•-•(K(•)) = x-3/2J3/2(x), 
hence 

•'-•Vab -- c•b-X/2J3/2(bx) - (a - 1)a-U•Js/•(ax) 

that goes as O(x -2) • x • •. Hence it is a well- 
behaved function. The Laplace transform of •-•(K(•)) 
is possible to calculate and it is expressed • a hyperge• 
metric function. 

c •-•/•/•(•))=•/•r(•)•r ;•;•; • . 
The hypergeometric function is the expression 

( r ;•; •' • • = • (•m +•)tSm + •) mmO 

It is e•y to see that the transform behaves like O(• -1) • 
• • •, hence have the wanted behavior. 

The Laplace transform of the filtering distribution can 
now be written 

I 1 

(19) V(•) = 1 - c1• - C2• + 0(• -5) 

for [•[ sufficiently large, and where Ci, C2 6 1• To sim- 
plify further, we may assume'l• I so large that the •-•-term 
can be ignored, and we are left with the -•- term. The 
constant C1 is easily calculated from the expression for the 
Laplace transform. So the "characteristic" equation (16) 
now becomes: 

Consider now a kernel that has a Fourier representation 
that corresponds to the SV method. Let 

(21) •c(•)= • - - 
• •v•a 

We want to compute the inverse Fourier transform for this 
distribution: 

•'-I(K:) = ei•tdt + ei"•t--dt 0.22 ' 

The first integral, denoted by I•, is elementary: 

l ' iat 1) (22) •- •(• - 
The second integral is more difficult, but the inverse trans- 
form of P[•-• is known. Furthermore, the following relation 
holds: 

•'-•(Pf ) = •'-•(l+(w)•) q- •'(l+(w) ), 
where l+(w) is the unit step function. The last term can 
be computed by using the result in [7, p.177]: 

•'(1+(•) 1) = a(o2)t - a(2•t ln(t - i0) aj2 -- 

where a(02) - i, a(._? -- i(1 q- F'(1) q- i-•). Using the expres- 
sion for Pf•--• in [18, p.204], we have the wanted inverse 
transform: 

t (2)t + a(2•t ln(t - i0) (23) I2 = •- l+(t)t-a o _ 
We will now compute the Laplace transform of I1 and I2, 
and again we are only interested in the asymptotic prop- 
erties of these transforms. We have 

œ(I1) -/log • 
• - ia 

but expanding Ia in power series we get the asymptotic 
result: 

a a 2 

(24) œ(I•) -- • q- •-• q- O(• -3) 
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The Laplace transform of I2 has the following asymptotic 
expansion: 

c 

(25) œ(I2) = • + O(•-a), C e R 
Hence by assuming that I•[ is sufficiently large, we may 
include only the •-l-term, and this gives the same "char- 
acteristic" equation as (20), but where the constant C1 is 
now substituted by a. 

The open boundary condition comes from the transmis- 
sion condition where we have inserted the normal mode 

solution in the outer domain: 

(26) n, sv• = s•(•)v, 

cfr. [9, Thm.2.2], with/•(•) = 1 - V(f). The exact form 
of the boundary condition now depends on the behavior of 
V(•) as s -• 0 for the obtained values of f. 

Let us first consider the case where all V(f) can be 
ignored, i.e. [•[ is sufficiently large for this to be satis- 
fied within the required accuracy for the open boundary 
conditions. Then (16) reduces to the ordinary advection- 
diffusion equation: 

which has roots: 

s + c• = 

- + - + O(s), and - - + e . + 0(?) 
s c c 

This gives the following first order open boundary condi- 
tions: 

(27a) s(R. v•) = 0, on outflow 
(27b) s(R.v•) = cv, on inflow 

The second order (and time-dependent) conditions are: 

(28a) s(R . v•) = --vt, on outflow 
½ 

(28b) s(R.v•) = cv + -vt, on inflow 
c 

These conditions make sense since for R = 5 they are iden- 
tical to the conditions for the advection-diffusion equation 
obtained in [13]. The interpretation of the conditions in the 
discrete case is via the Chebyshev expansion both sides of 
the equations. So for the first order conditions, the inter- 
pretation is as follows: 

outflow: 

0 <_ I _< mN : bt unchanged 

rnN<l<N .' /•tbt=O 

inflow: 

O_<l_<mN : at=0 

mN< I _< N : t•tbt = c at 

where al are the Chebyshev coefficients for the unknown 

Similar interpretations are valid for the second order 
conditions. An alternative is to use indirect imposition 
of the boundary conditions, i.e. substitute for s(R ß v•) at 
the boundary before performing the second differentiation 
in the viscous term. 

Now consider the equation (20) again, and this has the 
following roots expanded in s-series: 

c $ 

-- + -- + C1 + 
• ½ 

and 

s( s2 sC• ) -- + s + + O(s 2) 

With C1 = a = rnN = s -1/2 we have that s•/•(•) = 
s• - s 1/2 + O(1), hence with the roots above this becomes: 

$ 

c + -s + O(s3/2), and 
c 

s s__•3/2 + 0½2) - -s+ c2• c 

This gives the following open boundary conditions: For the 
outflow case we get the same conditions as above, but now 
the terms omitted are (.9(sa/2). For the inflow case we also 
get the same conditions because the terms of order s 1/2 in 
s•(•) cancel. 

If we include the second order term in the Laplace trans- 
form, we get the same first root, but the s-term in the sec- 
ond root, which does not influence the boundary condition, 
now becomes 

s 2 s a 2 ' 

C3+ --+--. -- a c2 c 
If we include the third order term in the Laplace trans- 

form, and not the second order term. we get an entirely 
similar result: The s-term of the second root becomes: 

s • s C• 
C3 q-Cl• q---. $ 

We see that in this case we obtain an integro-differential 
relation, which is not local. 

3.2 The incomplete parabolic system 

•Ve now return to the incomplete parabolic system. From 
the above results for the advection-diffusion equation we 
may infer that the conditions to be used here are the same 
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as the ones derived in e.g. [12], but where the left hand 
side of the conditions now are of the form: 

v(R,ui,z). 

However, this has to be justified (at least partially) because 
the theory developed in [9] is based upon certain assump- 
tions which we now have to check. We will therefore follow 

the derivation in [9] in broad terms. In the following we will 
assume that the filtering function/•(•) will have the form 
1 - V(•) for all the variables. Moreover, the matrices P(JJ) 
in the SVoterm will be assumed to be diagonal. The latter 
assumption should not cause problems for the systems we 
will consider below. We will consider the problem in the 
half-space Q- - (x: x• < 0) bounded by the boundary 
F = {x: x• -- 0). The half-space Q+ = {x: x• > 0) then 
represents th outer domain. 

The first point to check is if the normal modes • have 
the same behavior as stated in [9, Thm. l.1] as e --• 0. 
In essence, r values should tend to infinity and n values 
should have a finite limit. The proof in [9] can be used 
almost as it stands, but we have to check that 

I•p(11)•2k(•)- sI I -- 0 
has r roots with negative real part and r roots with positive 
real part. Using the assumption that the matrix 
is diagonal and positive definite, and that •(•) has the 
required form, we can easily find that the theorem holds. 

Now we can assume a solution in the outer domain of 

the normal mode type: 

• -- E Aie•iXa (I)i. 

This solution will be used to derive the open boundary 
condition in the first form. We start with the transmission 

condition 

(29) R ß •p(1•)• _ R ß eP(l•)fi• + 

and compute fi•+ and R ß fi•. We get 

i:1 

and hence the transmission condition is 

r+p 

S * ep(ll)•tz -- ep(11) E •i•ik(•i)(I)i' 
i=1 

Now using the derivation in the proof of [9, Thm.2.2], we 
obtain an equivalent result: 

Lemma 3.1 The open boundary condition at F for the 
half-space fl- is: 

(30) R * 
r+pr+p 

i=lj=l 

ß 

We have used the same notation as in [9] and [12]. From 
the assumptions we have 

The next step depends on the asymptotic properties of •. 
It is relatively straightforward to show using the proof of 
[9, Thm. l.1] that we have the following expressions: 

(• "[- O(e 1/2) i __< j _• rn ($1) •j = 0 _x_ (9(1) < j _• • + •/• + m r + p 

where the quantities a and 0 are found as in [9], and where 
X is found from another generalized eigenproblem which we 
don't give here because it will not be used in the following. 
Hence we see that the asymptotic properties of z•/•(•i) 
are the same as in [9], but now we have terms of order e 1/• 
in both expressions. So we can now construct boundary 
conditions of half orders. 

By performing the limiting process, we obtain a parallel 
to the conditions [9, (2.10a), (2.10b)]: 

where now 

•i -- { Oi + Xie •/• + m+l<_i_<r+p 
l<i<m 

hence the first order conditions are the same as those ob- 

tained in e.g. [12], whereas the second order conditions are 
now in fact conditions of order 1«. 

3.3 Applications to the Euler equations 
for an atmosphere 

In this section we will be applying the results obtained 
above to the Euler equations used to simulate gravity 
waves in the atmosphere, for the physics see e.g. [3]. The 
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governing equations are as follows: 

du 

(33a) p•- = Vp 4. pg 4. F 
(33b) dp 4- •/pV . u - 0 

dt 

(33c) Op o-• + v. (pu) = o 
Here u is the velocity vector, p is the density, p is the pres- 
sure, g is the acceleration of gravity, and 7 is the ratio 
of specific heats. The open boundary conditions for this 
system of PDEs is given e.g. in [2]. The open bound- 
ary conditions for the incomplete parabolic system for this 
PDE system is not given explicitly in the literature, but 
we can easily infer what the conditions are from the re- 
sults for a closely related system, namely the equations for 
nonlinear acoustic propagation in sea water, given in [12]. 

We include a SV-term in these PDE system and assume 
that P(•) = diag(1, 1, 1, n/e, 0), and also that the filtering 
function (using the parameters ra2v and N) is the same for 
all variables. Hence the pressure equation can have a dif- 
ferent amount of damping from the momentum equations. 
It is straightforward to extend the results to the case where 
P(•) can have arbitrary positive elements. 

Since the first order conditions are identical to the ones 

obtained'for the usual incomplete parabolic system except 
that the left hand side is the filtered derivative, we can 
write down the results directly from the formulas given in 
[12]. Consider first the right interface and the inflow case. 
We then get: 

(34a) R , e•x = 
0S 

(34b) R,e•x = 

(34c) R , e ox - 
o• 

(34d) R* e•x x = 

01 

01) 

A _ 

(a + a- o•) 

Here the hatted quantities are the frozen coefficients used 
in the derivation of the characteristic variables, a and so 
on represents the variables with homogeneous initial con- 
ditions, a is the sound speed, and 

i (•(1 + n)- v/4(a 2- •2)+ •2(1 + n)2) 0• = • . 
In the inflow case there is also a hyperbolic part which is 
an old friend: 

P Po 

(35) P &2 = Po a2 

where the quantities with the zero subscript refers to the 
values exterior to the domain. 

For the outflow case we don't have any hyperbolic part 
of the boundary conditions, and the parabolic part, again 
from the results in [12] is: 

0• 0• 

(36a) R,e•x = )(&+•t_0•) 
(36b) R,e•-•x = 0 

0• 

(36c) a, •-; = 
o• 

(36d) n,• = 

o 

0•(0• -•) 
()aa - i•) 

We see that these conditions contains the outgoing fast 
characteristic for the hyperbolic part of the system, so that 
the conditions reduce to specifying the incoming character- 
istics in the e -, 0 limit. 

For the left boundary we have a different incoming char- 
acteristic which will enter in the expression. Again form 
[12] we get. for the inflow case: 

0• 02 

(37a) R,e•x = )(a+fi-02)()aa+P) 
0• 

(37b) n,• = • 
0w 

(37c) R* e-- = 
Ox 

(37d) R,e•x x = (a+fi-02) 
We also have a hyperbolic part of the boundary conditions 
and this identical to (35). 
For the outflow case we get in a similar way 

(38a) R ß e-- = ()fi'a + p) 
Ox )(a + a - 02 ) 
Oe 

(38b) R,e-- = 0 
Ox 
Ow 

(38c) R * e ox = 0 

(38d) R ,e•-• = 
and there is no hyperbolic part here 
The interpretation of these conditions in the discrete case is 
again via the Chebyshev coefficients, exactly as shown for 
the advection-diffusion case. The practical implementation 
can be done in several ways, and in [12] the numerical ex- 
periments show that the indirect imposition method works 
best. This procedure can of course also be applied here, 
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but then the direct correspondence between the Chebyshev 
coefficients is somewhat hidden. 

Note that for frequencies (and i-values) below the filter- 
ing threshold, we have a hyperbolic system with its cor- 
responding open boundary conditions. In practice that 
means that we have to impose both types of boundary 
conditions, those belonging to the h•vperbolic system, and 
viscous ones like those derived above. 

4 Conclusion 

[3] 

[4] 

The spectral viscosity method is a useful method to sta- [5] 
bilize the computations when using Chebyshev spectral 
methods in long-term simulations. We have extended the 
spectral viscosity method to a multidomain method by [6] 
deriving interface conditions between subdomains. The 
domain decomposition technique is useful for example to 
adapt the resolution to the physical phenomena studied, 
and to handle complex geometries. [7] 

The interface conditions were derived based on a varia- 

riohal formulation and can be implemented in the same 
way as done for multidomain solution of advection- 
diffusion equations. [8] 

We have also derived transparent boundary conditions 
for quasilinear hyperbolic systems with spectral viscosity. 
Such boundary conditions are needed when modeling wave 
phenomena in a physically unbounded domain. The same 
procedure used to derive the transparent boundary condi- [9] 
tions can also be used for other types of boundary condi- 
tions. 

The numerical experiments with the interface and 
boundary conditions have just started, and what the best 
way of implementing then is, is not yet clear. Further- 

more, theoretical work in the Chebyshev case has not really [11] 
started, and we hope to contribute to the understanding 
of the spectral viscosity method in forthcoming reports. 
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