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Abstract 

It is well known that spectral method can achieve expo- 
nential accuracy both on the approximation level and for 
solving partial differential equations if the solutions are an- 
alytic.- However, the situation is very different when the 
function or solution is not smooth. For a linear partial 
differential equation with discontinuous solutions, Fourier 
spectral method will produce poor point-wise accuracy, but 
will still maintain exponential accuracy for all moments 
against analytic functions. In this presentation we address 
the issue of accuracy of Fourier spectral method applied to 
the nonlinear Burgers equation through a numerical study. 
Our numerical experiments show that, unlike in the linear 
case, the moments against analytic functions are no longer 
very accurate. However the numerical solution seems to 
still contain accurate information, since accurate point val- 
ues can be extracted by a Gegenbauer polynomial based 
post-processing. 
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I Introduction 

In this presentation we are concerned with the accuracy 
of Fourier spectral method when applied to a nonlinear 
conservation law 

OtU+Oxf(U) = 0, -l_<x< 1 
(1) u(x,0) -- uø(x) 
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where the initial condition uø(x) is 2-periodic. As is well 
known, solutions to (1) typically contain discontinuities 
even if the initial condition uø(x) is analytic. Our purpose 
is to assess accuracy under such situation through a nu- 

• 1/:2 merical study for the case of Burgers equation f(u) - -T' 
See also [15]. 

First some notations. The Fourier approximation oper- 
ator Siv to an L 2 function u(x) is 

N 

(2) sivu(x) = 0ke 

where the Fourier coefficients fik are defined by 

for Fourier Galerkin, or by 

N 

(4) •k = 2N + I 

where xj 2j for Fourier collocation. To solve the par- • 2N+l ' 
tial differential equation (1), the standard Fourier spectral 
algorithm is 

SN(OtVN +Oxf(vN)) = 0, -1 _< x < 1 
(5) •iv(x, 0) = Sivuø(x) 

whereviv(x,t) iv = •=_iv 0k is supposed to approx- 
imate the exact solution u(x, t) of (1), and Siv is either the 
Galerkin or the collocation Fourier approximation operator 
defined by (2)-(a) or by (2)-(4). 

The approximation error 

(•) u(x)- Sivu½) 

is well known to be exponentially small (i.e., it is of the 
size O(r N) for some 0 ( r (1) if u(x) is analytic. In 
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this presentation, we will only discuss analytic functions 
as representations of general smooth functions. Similar 
results can also be obtained for C ø• or C k functions. How- 
ever, if u(x) is only piecewise analytic but discontinuous, 
the approximation error (6) is O(1) near the discontinu- 
ity and only first order O(-•) elsewhere. This is known as 
the Gibbs phenomenon. See, e.g., [4] and [3]. Fortunately, 
even if the accuracy is poor in the point-wise sense, it is 
still excelIent for the moments against any analytic func- 
tions. For any L • function u(x) and any analytic function 
w(x), we have [5]: 

(7) - sNu(x))w(x)ax[ Cr N 
for some constant C and 0 • r • I independent of N. This 
property is the basis of all the "reconstruction" or "post- 
processing" techniques. These techniques try to recover 
exponential or at least high order accuracy for point values 
based on the Fourier approximation SNU(X ) of a piecewise 
analytic function. In other words, one tries to obtain a 
small post-processed approximation error 

(8) u(x) - P,¾ s,u(x) 

where PN is some post-processing operator. Examples of 
PA' include various high frequency filters [14], [11], [17], 
[2], which are of the form 

with $NU(X) given by (2). The function a(•) in (9) is even 
(or satisfies a(-•) -- a(•) if it is complex valued as in 
[2]), smooth (the accuracy of the filter depends upon its 
smoothness), supported in (-1, 1) and satisfies a(0) = 1 
and a(k)(0) = 0 for I _< k <_ K (with accuracy of the 
filter again depends upon K). These filters can recover 
high order or even exponential accuracy in the smooth re- 
gions away from the discontinuities (the filter in [2] can also 
recover high order accuracy up to the discontinuity from 
one side). A more recent example of PN is the Gegenbauer 
polynomial based procedure discussed in [6], [7], [8], [9] and 
[10], which can give uniform exponential accuracy for all 
x right up to the discontinuity for piecewise analytic func- 
tions. In this sense spectral Fourier approximation is also 
exponentially accurate for piecewise analytic functions-- 
one only has to extract the hidden information from the 
poor approximation $N(X) using the post-processor PN. 

When spectral method is used to solve the PDE (1), we 
can consider the following different types of errors. The 

strongest is the point-wise error from the exact solution 
u(x,t): 
(10) u(x,t) - VN(X,t), 
which cannot be small even for t = 0 due to the Gibbs 

phenomenon, if the initial condition contains shocks. A 
more reasonable error is the point-wise error of the numer- 
ical solution VN(X, t) from the Fourier approximation of 
the exact solution $NU(X, t): 

(11) SNU(X,t) -- VN(X,t). 

If this error is exponentially small, we can claim the spec- 
tral method for (1) is exponentially accurate because of 
the post-processor (8) for the exact solution u(x, t). An 
even weaker error is defined by the error in the first few 
Fourier coefficients, i.e. 

(12) •,(t) - 9•,(t) 

for the first few k, where •(t) are the Fourier coefficients 
of the exact solution u(x,t) of (1). This is actually an 
example of the more general definition of error in moments 
against any analytic function w(x): 

/: (13) t)- 
1 

In fact, as long as this error in moments is exponentially 
small, we can claim that the spectral method is exponen- 
tially accurate in solving (1) by using property (7) for the 
exact solution u(x, t) and the post-processing (8). 

If the PDE (1) is linear (i.e. f(u) - a(x,t)u), it is 
proven in [5], [1] that spectral Fourier method is exponen- 
tially accurate in the sense that (13) is exponentially small. 
A post-processing (8) applied to rs. (x, t) would then yield 
an exponentially accurate point-wise approximation to the 
exact solution u(x,t). However, if (1) is nonlinear, it is 
still a theoretically open problem whether spectral Fourier 
method, equipped with either high frequency filtering or 
vanishing viscosity [16], [12], is exponentially (or high or- 
der) accurate in the sense of (13). Computational evidence 
in [13] seems to suggest that, even in this nonlinear case, 
highly accurate information is still implicitly contained in 
the numerical solution and can be extracted (at least away 
from the discontinuity) by a post-processing using high fre- 
quency filtering. However, because of the O(1) Gibbs phe- 
nomenon, the global error of the post-processed solution is 
still only at most first order in L •. Thus these numerical 
experiments do not establish global high order accuracy in 
the presence of shocks. In the next section we will perform 
a detailed numerical case study about this accuracy issue 
for the Burgers' equation (f(u) = -T)' We use a high fre- 
quency solution filter to stabilize the algorithm, and post 
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process the numerical result using the Gegenbauer poly- 
nomial based procedure [6], [10]. We observe that, unlike 
in the linear case, the spectral Fourier method is not very 
accurate in the sense of moments against analytic func- 
tions (13). However, numerical evidence does indicate the 
possibility of very high accuracy under some weaker defi- 
nition, perhaps some average of Fourier coefficients, since 
the post-processed result Pzvwv(x,t) is much more accu- 
rate than the Fourier coefficients themselves, and accurate 
Fourier coefficients can be "reconstructed" from this post- 
processed solution P•vv•v (x, t). 

Before finishing this introduction, we would like to de- 
scribe briefly the Gegenbauer polynomial based postpro- 
cessing procedure in [6], [7], [8], [9] and [10]. Let's consider 
the simplest case of only one discontinuity, located at the 
interval boundary x = +1. That is, u(x) is an analytic 
function in [-1, 1] but not periodic. Let's also only con- 
sider the Galerkin case, i.e. assume that we are given the 
first 2N + 1 Fourier coefficients of u(x) defined by (3), and 
hence S•.u(x) in (2). The objective is to recover exponen- 
tially accurate point values of u(x), uniformly over [-1,1]. 
To achieve this end, we consider the Gegenbauer expan- 
sion of u(x) over [-1.1], i.e., expansions in the Gegenbauer 
polynomials C•(x), which are orthogonal with the weight 
function (1 - x2):•-«: 

(14) u(x) -- Z f•C•(x) 

Of course, we do not know the exact Gegenbauer coeffi- 
cients Ax of u(x), but just the approximate Gegenbauer 
coefficients, fix obtained from SNu(x): N.k' 

(15) SNU(X) -- • •,•.•:C•(x) 
k----O 

The two most important ingredients in the reconstruction 
procedure are: (1) do not fix the parameter ,•, but choose 
it proportional to, but less than, N, and (2) do not sum 
(15) to infinity, but only to m: 

m 

(16) PNS•vu(x)- • '• • u.,kCk(x) 
k----O 

where m is again chosen proportional to, but less than, N. 
One could choose, for example, m = A = • •N, among many 
other possibilities. It can be proven [6] that, under such 
choices, the reconstruction error is uniformly exponentially 
small: 

(17) max lu(x)- PNSNu(x)I _• Cr N 
--l<x<l 

for some constants C > 0 and 0 < r < 1 independent of N. 
This is in contrast with earlier filtering techniques which 
can obtain good accuracy away from the discontinuity but 
still leaves O(1) errors near the discontinuity. The same 
conclusion also holds for more than one shocks, for Legen- 
dre, Chebyshev or general Gegenbauer expansions rather 
than Fourier expansions, and for collocation rather than 
aalerkin, [8], [9] and [10]. 

2 A numerical case 

accuracy 

study about 

In our numerical solution reported in this section, time dis- 
cretization is by a third order Runge-Kutta method, with 
a time step At sufficiently small such that the spatial error 
is dominant in all cases. We compute the exact solution of 
the Burgers equation by Newton iterations on the implicit 
characteristic equations, and compute the Fourier coeffi- 
cients of a function (if not analytically given) by using a 
sufficiently accurate numerical quadrature. 

We first solve a linear equation 

3 
Otu+ O•:u = 0, -l<x< 1 

5 - 4 cos(wx) - 
0) = 

with periodic boundary conditions, up to t--1. using the 
Fourier Galerkin method: 

SN OtVN + 5-- 4COS(itX) O•'t'5' = 0, 
N 

(19) VN(X,O)=SNX= • (--1)ki i• kit e 
k=-N 

k•O 

Standard Galerkin method is stable for this linear prob- 
lem but produces poor point value accuracy, see Figure 1. 
In all the figures, we have shown the solution in a period 
bordered by the single discontinuity. However, the accu- 
racy in the first few Fourier coefficients, as representatives 
of moments against analytic functions, are computed more 
accurately, see Figure 2. 

In order to compare with the nonlinear case reported 
later, we solve the same linear equation (18) using the fil- 
tered Fourier method, i.e., after each Runge-Kutta time 
step, the numerical solution is filtered by (9) with the ex- 
ponential filter: 
(20) = 
where r is increasing with N and is related to the order of 
the filter, and a is chosen such that e -a equals machine 
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i Pointwise Error --- linear, no filter 10 • 
i 

I 1ø • 
i 

i lo' 
, 

i '•o "' 

Figure 1: Point-wise errors in the logarithm scale, linear 
PDE (18). Fourier Galerkin using 2N + 1 modes, for N = 
10, 20, 40 and 80. 

Error in First 10 Fourier Coeff --- linear, no filter, before post-pro• 

10 • 

10 • 

10 • 

10 • 
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Figure 2: Errors in the first 10 Fourier coefficients, in the 
logarithm scale, linear PDE (18). Fourier Galerkin using 
2N + I modes, for N = 10, 20, 40 and 80. 

Pointwise Error --- linear, filter 
, 

-0.5 0% Ol$ 1 I0 

Figure 3: Point-wise errors in the logarithm scale, linear 
PDE (18). Fourier Galerkin using 2N + 1 modes with 
exponential solution filters of order r. r -- 4 for N = 10; 
r = 6 for N = 20; r - 8 for N = 40 and r - 12 for N = 80. 

zero ( 10 -16 for double precision). The exponential filter 
(20) has the advantage of simplicity, and usually it works 
equally well as more complicated filters [17]. For this linear 
problem, as well as for the nonlinear Burgers' equation 
later, we will use the Fourier method with the following 
choice of filter orders: r = 4 for N = 10; r = 6 for N - 
20; r = 8 for N = 40 and r = 12 for N = 80. The 
result is shown in Figure 3 for the point-wise errors and in 
Figure 4 for the errors in the first few Fourier coefficients. 
Comparing with Figure i and Figure 2, we can see better 
point value accuracy in the smooth region because of the 
filters, and similar (good) accuracy for the first few Fourier 
coefficients. 

The computational result for the linear equation is not 
surprising since it just verifies the proven fact [5], [1] that 
Fourier coefficients, as representatives of moments against 
analytic functions, are computed with exponential accu- 
racy by the spectral Fourier method, and filtering will re- 
cover exponential point value accuracy in smooth regions 
away from the discontinuity. It should be noticed that, for 
the same N, the accuracy for the first few Fourier coeffi- 
cients is at the same level at or better than the best point 
value accuracy in the smooth region after filtering. This is 
again not surprising since point value accuracy is obtained 
from the Fourier coefficients through filtering. 

We now come to the nonlinear problem we are really 
interested in: we solve the nonlinear Burgers' equation 

Otu+Ox(•) = 0, -l<_x<l 
(21) u(x,O) = 0.3+0.7sin(•rx). 

The solution develops a shock at t = 0.-• and we compute 
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Error in First 10 Fourier Coeff --- linear, filter 

1½ _N=10 
1o' N=2• __ 

..__.--- 

10' N=8_•.0• • 
1o 4 . . . , . . , .... , i , 

0 2 4 6 6 

Figure 4: Errors in the first 10 Fourier coefficients, in the 
logarithm scale, linear PDE (18). Fourier Galerkin using 
2N + 1 modes with exponential solution filters of order r. 
r -- 4 for N = 10; r = 6 for N = 20; r = 8 for N = 40 and 
r - 12 for N = 80. 

the solution up to t - 1. The initial condition is chosen 
such that the shock is moving with time. For this nonlin- 
ear PDE, the standard Galerkin method cannot converge 
to the entropy solution [16]. One would need to add dissi- 
pations either by the high frequency solution filtering (9) 
or by the spectral vanishing viscosity [16], [12], [13]. Nu- 
merical results for the Burgers' equation with the vanishing 
viscosity method can be found in, e.g., [13]. Here we will 
only report the results obtained by solution filtering, using 
the same r as in the previous linear case (18). We have 
also computed with the vanishing viscosity methods and 
have obtained similar results. 

In Figure 5 we plot the point-wise error u(x, t)--rs(x, t), 
and in Figure 6 the error for the first 10 Fourier coeffi- 
cients. While the pattern of the point-wise errors are simi- 
lar to the linear case in Figure 3, the errors for the Fourier 
coefficients are clearly much worse in comparison. As a 
matter of fact, for the same N, the errors for the first few 
Fourier coefficients are a few magnitudes larger than the 
smallest point value error in the smooth region. This is 
clearly different from what we observe in the linear case 
in Figure 4, and suggests that the first few Fourier coef- 
ficients, again as representatives of moments against ana- 
lytical functions, are no longer computed with exponential 
or high order accuracy. It is sort of puzzling that each dif- 
ference in the Fourier coefficients •k (t) - 9k (t) is relatively 
large (Figure 6), but the point-wise error u(x, t) - VN (x, t), 
which is just an average (weighted sum) of 
(against O(1) weight functions eik•x), is much smaller in 
the smooth region (Figure 5). Some caneelation must be 
present for this to happen. 

Next, we apply the Gegenbauer post-processor [6], as 

Poin •t•o, ise Error --- Before Post-Processing 

.,.-,. / / 2,m 
1o• N=4 

10'•/ ' • 015 ' ' ' ' 010 ' ' ' 0'5 

Figure 5: Point-wise errors in the logarithm scale, Burgers 
equation (21). Fourier Galerkin using 2N + I modes with 
exponential solution filters of order r. r = 4 for N = 10; 
r = 6 for N = 20; r = 8 for N = 40 and r = 12 for N = 80. 

Error in First 10 Fourier Coefficients --- Before Post-Processing 
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0 2 4 6 8 

N=10 

Figure 6: Errors in the first 10 Fourier coefficients, in the 
logarithm scale, Burgers equation (21). Fourier Galerkin 
using 2N + 1 modes with exponential solution filters of 
orderr. r =4 forN= 10; r = 6 for N=20; r =8 for 
N = 40 and r = 12 for N = 80. 
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Pointwise Error --- After Post-Processing 
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First 10 Fouder Coefficients --- After Post-Processing 

Figure 7: Point-wise errors in the logarithm scale, Burgers 
equation (21). Fourier Galerkin using 2N + i modes with 
exponential solution filters of order r. r - 4 for N - 10; 
r - 6 for N - 20; r - 8 for N - 40 and r - 12 for N - 80. 
Gegenbauer post-processed, with parameters A - 2, m - 1 
for N- 10; A-- 3, m- 3 for N-20; A-- 12, m-7for 
N-40and A-62, m-15, forN-80. 

Figure 8: Errors in the first 10 Fourier coefficients, recon- 
structed from PNVN(X, t), in the logarithm scale, Burgers 
equation (21). Fourier Galerkin using 2N + I modes with 
exponential solution filters of order r. r - 4 for N - 10; 
r - 6 for N - 20; r - 8 for N - 40 and r = 12 for N = 80. 
Gegenbauer post-processed, with parameters A -- 2, m = 1 
forN= 10; A=3, m=3 for N= 20; A= 12, rn= 7 for 
N=40andA=62, m=15, forN=80. 

briefly described in the previous section, to the numerical 
solution VN(X,t). We first use the exact shock location, 
and use the following values for the parameters m and A: 
A = 2, m = I for N = 10; A = 3, m = 3 for N = 20; 
A = 12, rn = 7 for N = 40 and A = 62, m = 15, for 
N = 80. We would like to point out that there is no the- 
oretical justification in doing this post-processing for the 
current nonlinear case, since the post-processing procedure 
assumes that the Fourier coefficients are accurate, which 
is not true any more. However, the post-processed result 
is surprisingly good, see the point-wise errors in Figure 7. 
Just like in the approximation test cases [6], V•re can ob- 
serve good accuracy everywhere including at the disconti- 
nuity x - +1 + 0.3. From these very accurate point values 
we can reconstruct the Fourier coefficients, namely we can 
compute the Fourier coefficients of PNVN(X,t), see Fig- 
ure 8. These reconstructed Fourier coefficients are much 

more accurate than before the post-processing, comparing 
Figure 8 with Figure 6. 

This suggests that, even if VN(X,t) or its Fourier co- 
efficients 9k(t) are not very accurate, it must implicitly 
contain accurate information which is extracted in this 

case by the Gegenbauer polynomial based post-processor 
PN. This numerical evidence suggests that in the nonlin- 
ear PDE case, Fourier coefficients 9k (t), just like point-wise 
values in the linear (or nonlinear) PDE case, are no longer 
good indicators of accuracy. They themselves are not very 
accurate, but they implicitly contain accurate information 
which can be extracted by adequate post-processors PN. 

This accurate information might be contained in some av- 
erages of the Fourier coefficients (since the post-processing 
procedure based on Gegenbauer polynomials [6] uses cer- 
tain averages of Fourier coefficients rather than the coeffi- 
cients themselves). 

We finally make two remarks: 

Remark 2.1 In the Gegenbauer reconstruction procedure 
above we have used the exact shock location. The proce- 
dure in [8] allows us to use an approximate shock loca- 
tion, determined from the Fourier coeJficients themselves 
(e.g., [2]). Similarly good results can be obtained when 
the reconstruction is performed in a slightly smaller sub- 
interval inside which the solution is guaranteed to be ana- 
lytic. For example, we use the shock detector in [2], which 
in this case detects the shock location to within 0.0000025 

for all the N values used, and a reconstruction inside the 
sub-interval [-0.999997,0.999997], which is just slightly 
smaller than [-1, 1] (when numerically detected shock is 
shifted to x = -1) and guarantees that the true shock is 
outside this region. The result is shown in Figure 9. It is 
clearly as good as the case where the exact shock location 
is used (comparing with Figure 7). 

Remark 2.2 If we use collocation (J) instead of Galerkin, 
and the Gegenbauer reconstruction procedure in [10], the 
result is almost identically good: Compare Figure 10 with 
Figure 7. 
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Pointwise error --- after post-process with detected shock locatio 
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Figure 9: Point-wise errors in the logarithm scale, Burg- 
ers equation (21). Fourier Galerkin method using 2N + 1 
modes .with exponential solution filters of order r. r = 4 
for N = 10; r = 6 for N = 20; r - 8 for N = 40 and r = 12 
for N = 80. Gegenbauer post-processed with a numerically 
determined shock location which for this problem produces 
shock locations to within 0.0000025 for all the N used. The 

reconstruction sub-interval is [-0.999997, 0.999997] when 
the numerical shock is shifted to x = -1. Parameters: 

A = 2, m = 1 for N = 10; A = 3, m = 3 for N = 20; 
A = 26, m = 9 for N = 40 and A = 52, m = 17, for 
N=80. 

Pointwise Error--- After Post-Processing, Collocation 
,0' 

to o 

1(3 • 
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10 • , 
io s 

lo 4 
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1o,• , • • , , , , • • , , , i • , • • i 
•.6 o.o o.6 1 .o 

Figure 10: Point-wise errors in the logarithm scale, Burgers 
equation (21). Fourier collocation method using 2N + 1 
modes with exponential solution filters of order r. r = 4 
for N = 10; r = 6 for N = 20; r = 8 for N = 40 and 
r = 12 for N = 80. Gegenbauer post-processed, with 
parameters A = 2, m = I for N = 10; A = 3, m = 3 for 
N=20; A=26, m=9 for N=40 and A =60, m= 15, 
for N = 80. 
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