
A Global Algorithm in Spectral Methods 
for the Coupled Navier-Stokes/Euler Equations* 

Chuanju Xu t 

Abstract 

This paper deals with a viscous/inviscid coupled model. 
A new global variational formulation is introduced. The 
coupled equations are approximated by a spectral method 
using the discrete spaces (JP:v x JP:v-2) x 
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Introduction 

Coupling different partial differential equations, as a par- 
ticular implementation of domain decomposition ideas, al- 
lows faster solution in many cases. Indeed, in the simula- 
tion of the fluid flow past an obstacle, for instance, often 
a complex and expensive model is only needed in a small 
fraction of domain. Outside this region we can use a sim- 
pler model. There has been much work on this research 
domain (see [3] for the theoretical justification, [1] for the 
numerical implementation on finite element methods and 
[6] for the first approximation by spectral element meth- 
ods). An essential point in this type of approximation 
consists of finding correct conditions on the interface sep- 
arating the viscous and inviscid subdomains. Secondly, 
appropriate algorithm is also important to the numeri- 
cal implementation. The coupled model considered here 
has been first investigated in [6] where the discrete spaces 
(lløN x llø:V_•) x (lløN x llø•) were used (where llø• x llø•_• 
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are the discrete velocity and pressure spaces for the Navier- 
Stokes equations; JPiv x JP• are the discrete velocity and 
pressure spaces for the Euler equations). In the existing 
literature, the numerical algorithm used to solve the re- 
suitant discrete equations was iteration-by-subdomain res- 
olution. An effective iterative procedure requires exact 
convergence analysis and repeated resolutions to reach the 
convergence, which is often theoretically non trivial and 
numerically costly. Instead, the new variational formu- 
lation that we are going to introduce here allows us to 
globally solve the coupled problem. This global resolution 
method does not require the convergence analysis of the in- 
terface iterative procedure; it alleviates the need for repeat 
computations and offers potential advantages as regards 
to the overall computational cost. This paper follows the 
works of [6] and considers, furthermore, the discrete spaces 
(JPN x iPN_2) x (JP:v-2 x JP•-a). We give the comparisons 
of the costs between the pure Navier-Stokes model and the 
coupled Navier-Stokes/Euler model. 

2 Viscous/inviscid coupling 

For the sake of simplification, consider domain fl =] - 
2,2[x]- •,•[, which is broken into fl- =]- 2,0[x•- 1,1[ 
and fl+ =]0,2[x]- 1, 1[. Let F k = 0f•C•0fl;', k = -, +;F = 
Off- C• Off +. • is the normal on 0fl to fl, and •-, •+ are 
the normals on F to fl-, fl+, respectively. 

For any integer m, let H'•(fl) be the classical Hilbert 
Sobolev space, provided with the usual norm [[. Jim.n, 
and also with the semi-norm [. [,,•.n. Lo•(fl) = {•.: v • 

= 0). 
Throughout this paper, with any function • defined in 

fl, we identify by •k the restriction in fl• of ½, k = -, +. 
Reciprocally, for the functions • defined in fl•, we denote 
by • the pair (•-, •+). 

Consider the viscous/inviscid coupled problem: Find 
two pairs (if-, if+), (p-, p+) defined in (fl-, fl+) respec- 
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tively, such that: 

{ aff--vAff-+Vp- = f V.ff-=0 infl-, (1) aft+ + Vp+ = f V. q+ = 0 in fi+, 
a- = 0 onr-, 

if+ ß if, = 0 on F +, 

where f• L2(•) 2 and a, v are two positive constants. 
Define two real Hilbert spaces: 

X-- {•7;ffln- • H•(•-)2,ffln+ • L2(•+)2, fflr- -0}, 
M- {q;q[n- • L2(fl-),qln+ • H•(n+),fnq-O } 

with the norms 

II•11x -II•-IIx,n- + I1•110,•+, 
Ilqll• -IIq-II0.•- + Iq+lx,•+ ß 

It has been proven [7] that the equations (1), with the 
following interface conditions: 

Off- _ •_ p+ if+ vO-- • - p n = on F, 
ff-'ff- = -*7 +'if+ onF 

are well-posed in X x M, and the corresponding variational 
formulation writes: Find ff x p • X x M, such that 

a(ff, if) + y(Vff-, Vff-)_ - (p-, V. •-)_ 

+(Vp+, •+I+ - (p+ ß if+, ff-)r = (j(•) V•eX, (2) (V . ff_,q_ _ _ (ff+, Vq+)+ _ (ff_ . ff_,q+)r = 0 
Vq • 3,1, 

where (., ')k, (', ')r are defined by 

(,:.t')•.=fn •', (•,•,)r=fr•V•, k=-,+. k 

Theorem 2.1 For all ct and v positive, problem (œ) has 
one unique solution in X x M. 

Proof The proof is standard by using the saddle-point 
theorem. We write problem (2) in the form: Find ff x p • 
X x M, such that 

a(ff, ff)+b(ff, p) = (f, ff) Vff•X, b(ff, q) = 0 Vq • M, 

where forms a and b are defined as follow: 

•(•, •) = 
,(•, q) = 

.(a,.) + •(v•-, w-)_ va,, e x, 
-(q-, X7 ß •-)_ + (X7q+, v-'+)+ 
+(q+, if- ß ff-)r Vff • X, q • M. 

The saddle-point theorem consists in verifying four prop- 
erties: continuity and ellipticity of the form a; continuity 

and compatibility of the form b. The three firsts are proven 
in a classical way. The last one is proven if we show: there 
exists a positive constant •, such that 

b(•,q) 
inf sup > f) 
• •x II•11xllqll• - 

which can be found in [7]. 

3 Spectral discretizations and er- 
ror estimations 

Let • be the space of all polynomials of degree _< N. 
•/•,& and wi•,• (i,j - 0,...,N) denote, respectively, the 
(N + 1) 2 Gauss-Lobatto points and weights corresponding 
to the subdomain fl•(k +) Let •v =-, . = {•ij,k;i,j = 
0,... ,N}. 

A classical method of solving a coupled problem con- 
sists of exhibiting its solution as a limit of solutions of two 
subproblems within fl- and •+. This is done by consider- 
ing the following iterative procedure: first the one of two 
subproblems, in •2- for instance: 

aff-yAff+Vp = f in •2-, V.ff = 0 in •2-, 
ff = 0 on F-, 

Off p+ if+ v•-•-p.•- = ß on F 
is solved with a Neumann-type condition p+. if+ arbitrary; 
then, knowing if- on F, we solve the other subproblem: 

aft+ V'p = f in fl+, V.ff = 0 in fl+, 
if-ff = 0 on F +, 

if.if+ = ff-.ff+ on F 

which gives p+; and so on until the convergence be reached. 
The procedure requires generally a certain number of re- 
peat resolutions to reach the convergence. 

But here, we choose the strategy called "global reso- 
lution", which has been first used in [6]. Precisely, we 
consider the discrete coupled problem: Find ff2v x p• • 
X• x M•, such that 

(3• a•v(q2v,Y•v)+b•v(Y•v,p2v) = (f,•2v)2v ¾•2v e X•v, bN (fiN, qN) = 0 VqN • MN 

where 

x• = x n (•n(fl-) x •n_2(fl+)), 
M 2v = M I• (•o•v_2(fl-) x •o•v_2(fl+)), 



Navier-Stokes/Euler Global Resolution 153 

and aN, bN are two bilinear forms, defined by 

VSN, •7N • XN, 

bN(GN,qN) = --(q•v,V'•N)-,N + (VqN + • • N)+,N--2 
+(qN +, •' ff-)r,N V• ½ XN, qN • MN, 

where 

(a, •)N = (5-, o'-)_,N + (5 +, 

with 
N 

(5-, œ7-)_,N = Ei,j=o(U . -'- N N v )(%._)we,_, 
w•N-2 •~+ •(•N-2• N-• (if+, t•)+.N-2 = •i,j=OX u ' Ix•ij,+ /•ij,+ ' 

(v, V)•.N = Z•=o(VV)(•.-)w•.- 
(or equivalently, N N N = E•=o (vV)(•o•,+)Wo•.+). 

g•% first state the following results [2]. 

Lemma 3.1 Them exist projection operators • from 
L2(Q •) in •N(Qt'),k = --,+; •'• •om {ff;ff • 
H•(•-),fflr = 0} in {•N;•N • •X(•-),YNIr = 0} and 
H +'• from H•(Q +) in •N(Q +) such that N 

V•H•(fl•), m)0, k=-,+, 
--.1 

(4) II;- nx •11•,•- • CXX-mll•ll,,.n- v• • H'"(• -) m • 1, 
I• - •+'• N •lx.n+ • cmx-mll•llm.n+ 

V• • Hm(• +) m & l. 

Theorem 3.1 The discrete problem (3) is well posed in 
the space XN x 3[N. 

Proof The proof is done as in the theorem 2.1. The 
verification of the "Inf-Sup"is given in Lemma 3.2 below. 

Lemma 3.2 There exists a positive constant •N, possibly 
depending on N, such that 

inf sup 
•.•M• •.•x• II•NllxllqNllM 

Proof The proof follows the same lines as in the contin- 
uous case. We give only the estimation of the "Inf-Sup" 
constant/3N: 

where • is the local "Inf-Sup" constant corresponding to 
the Navier-Stokes part. rn 

Define the space 

VN -- {•7N;•7N • XN,bN(•N,qN) = 0, VqN • ]kiN} 

The error estimations are given in the following theorem. 

Theorem 3.2 Assume that the solutions of the prob- 
lem (1) satisfy 5 = 5- x 5 + • Ht(f•-) • x Hm-i(f•+) •, 
p = p- xp + 6 Hl-•(f• -) xHm(f•+), where I and m are real 
numbers, I _> 2, m _> 2; furthermore, assume f 6 H•(f•) •, 
where a is a real number _> 2, then the approximate solu- 
tions of (3) 5N = 5• x u•,pN = P•V X p+• verify 

Proof Estimation (5) is a direct consequence of 
lemma 3.2 and following result [2]: 

C[ inf (115- •NIIx q- sup 
•x •V,•, •x •V.x- 

(a - ax)(ff.¾, uT:v)) 

(b - b.v )( tFx. qx ) ) 

Remark 3.1 The estimate (5) is not optimal. It could be 
improved by looking for a better estimation for the term 

inf II 5 -YN IIx. We refer this question to [2]. 
•,x, 6Ix 

4 Description of the algorithm 

Let Ua,Pa(k = -,+) be the values at the global collo- 
cation points of the velocity and the pressure. D- and 
(D+) T denote the discrete divergence operators. B- and 
B + are the associated mass matrices. W denotes the dis- 
crete trace operator. Define 

L • = aB a + v (D-)(D-)r6t_. 

with 

1 k=- 5•_ = 0 k=+ 
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We write discrete problem (3) at the following matrix 
st at ement: 

]LU+IDP = ]BF 

(6) n)ru = o 
where 0 is zero vector, and 

U-- U+ , P- p+ , 0 L + ' 

0 D+ ]B = 0 B + ' 
It is assumed that the boundary conditions in the viscous 
part are already incorporated into the matrix operators. 

%Ve use the global iterative Uzawa procedure to solve (6). 
Formally, (6) can be equivalently replaced by the two sep- 
arated systems: 

(7) ]Dr]L-•IDP = ]DT]L-11BF 

(8) =mF-DP 

Noting that IDTIL-11D is a positive definite symmetric 
matrix, the pressure can be solved by an inner/outer con- 
jugate gradient iterative procedure. An important point 
to note is that the matrix IL in (7) and (8) is diagonal 
by bloc on the interface level, which means that the inner 
procedure is only needed in the viscous part. 

5 Generalization to the coupled 
Navier-Stokes/Euler equations 

We generalize the coupled model (1) to the coupled prob- 
lem between the Navier-Stokes equations and the Euler 
equations: 

•-+(ff-.V)ff--vAff-+Vp-=f- in Q- 
-•+ 

(9) O__• + (if+. V)f+ + Vp + = f+ in Q+ 
i-(O) = 55 in fi- f+(0) = • in fi+ 
if-Jr- = 0 f+ ß •+[r+ = 0 

with the incompressibility V. f = 0, where Q• = ft • x 
(0, T), k = -, +, and f•, U•o are two functions given. The 
non-linear term is treated by the method of characteristics. 
That is, we rewrite (9) under the form 

-- vAf- + Vp- = f- in Q 

Dt Df + + + 
(10) -•-+Vp =f inQ 

f-(0)=f• infi- f+(0)=U•o infi+ 
q-It--0 f+'ff+lr+=0' 

where D/Dr is the total derivative in the direction f. We 
discretize (10) in time by an implicit scheme: 

au - raft -"+• + Vp -"+• 
- f-"+• + af-" 

.•_n+l u It--0 

in •- 

in •+ 

where a = •tt with At the time step, and X"(X) = 
X(x, (n + 1)At, nat) is the solution of 

(11) dx •r----ffn(x), X(x,(n+ l)t;(n+ l)t)--x 
The time scheme is unconditionally stable, and each time 
iteration requires a coupled viscous/inviscid resolution plus 
a transport of the previous solution on the characteristics. 

We note that, on the interface F, we have f- ß if- -- f+. 
if-. Thus (11) is solved globally in all domain fi without 
any additional interface conditions on F. 

6 Numerical results 

We give a numerical example obtained by using the al- 
gorithm presented in previous sections. We consider the 
equation (9) with an exact analytical solution: 

u•(x, y) = 1-y2, u2(x, y) -- 0, p(x, y) = sin•rx sin•ry. 

Table 1 lists the discrete L2-error of ff- fin using 
the pure Navier-Stokes (NS), coupled Navier-Stokes/Euler 
with (/PN x/Px-2) x (/PN x/Px) version (N'S/EU(1)) and 
coupled Navier-Stokes/Euler with (/PN x/Px-2) x (/PN-2 x 
/PN-•) version (NS/EU(2)). The systems (7)-(8) are solved 
by the multigradient solver. The three methods give the 
same accuracy and converge exponentially. 

N NS NS/Eu(1) NS/Eu(2) 
5 9.49E-04 1.04E-0a 8.66E-03 
7 2.56E-04 2.38E-04 6.23E-04 

9 2.17E-05 2.08E-05 2.95E-05 

11 9.67E-06 2.23E-06 5.03E-06 

13 4.82E-07 2.56E-06 8.95E-07 

Table 1: Discrete L•-error of f - fN 

Table 2 lists the execution time in minutes on PC 486DX 

using the three models. The programs are written in For- 
tran and compiled with NDP486. The scheme in time is 
of 2-order. We take N = 11, At = 0.01, • = 0.001. 
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Time steps NS NS/Eu(1) NS/Eu(2) 
10 1.50m 1.20m 0.88m 

20 2.10m 2.01m 1.47m 

30 2.55m 2.38m 2.07m 

40 3.35m 2.57m 2.15m 

50 4.07m 3.20m 2.51m 

Table 2: Execution time in minutes 

7 Conclusions and discussions 

In conclusion, we have presented a coupled model and 
its global resolution algorithm. The theoretical anal- 
ysis and the numerical test show the effectiveness of 
the method. The comparisons of the execution time 
between the viscous/inviscid coupled resolution and 
tho pure viscous (i.e. global Navier-Stokes equations) 
resolution have been done. The partial results show 
that the (F'•, x •PN-•) x (•P•v x •P,v) approximative 
viscous/inviscid coupled model is more economical 
than the pure •P,v x •[P2v-2 viscous model and that 
(J•PN X J•N-2) X (J•PN-2 X J•N-2) version is even more 
so. 

In our numerical test the gain is obtained for the do- 
main splitted only into two sanhe subdomains. The 
gain would be greatly increased if we used the Navier- 
Stokes equations only in a small fraction of domain. 

The simulation of complex flows will produce a large 
and full matrix before the pressure P. The "sim- 
ple" nested conjugate gradient algorithm, in this case, 
would no longer be efficient. One way to recover a 
rapid convergence of the Uzawa algorithm is to use a 
preconditioner. 
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