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Abstract 

On the way to an efficient implementation of finite element 
algorithms related to the p- and h-p-versions on sparse 
grids, we present a general concept for the construction of 
hierarchical bases of higher order suitable for sparse grid 
methods. For the solution of partial differential equations, 
this approach allows us to profit both from the efficiency 
of sparse grid discretizations and from the advantages of 
higher order basis functions with regard to their approxi- 
mation accuracy. 

We discuss the general relations of sparse grids and 
higher order techniques, and we report the results of 
some first numerical experiments concerning piecewise bi- 
quadratic hierarchical basis functions. 
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1 Introduction 

Since their presentation in 1990 [18], sparse grids have 
turned out to be a very interesting approach to use for the 
efficient solution of partial differential equations and for 
a lot of other topics in numerical analysis like numerical 
integration [5] or FFT [14]. In comparison to the stan- 
dard full grid approach, the number of grid points can be 
reduced significantly from O(N d) to O(N (log 2 (N))d-•) or 
even O(N) in the d-dimensional case; whereas the accuracy 
of the sparse grid interpolant and of the approximation to 
the solution of the given boundary value problem, resp., 
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is only slightly deteriorated. For piecewise d-linear basis 
functions, an accuracy of the order O(N-2(log•(N)) d-•) 
with respect to the L2- or the maximum norm and of the 
order O(N -•) with respect to the energy norm has been 
shown [7]. Furthermore, regular sparse grids can be ex- 
tended in a very simple and natural manner to adaptive 
ones, which makes the hierarchical sparse grid concept ap- 
plicable to problems that require adaptive grid refinement, 
too. 

For the two-dimensional case, the results mentioned 
above show that, apart from the logarithmic factor and 
with respect to the Le-norm, sparse grid techniques with 
piecewise bilinear (biquadratic, ...) hierarchical basis func- 
tions correspond to full grid methods of fourth (sixth, ...) 
order. In the three-dimensional case, the gain in order 
is even more impressive. Therefore, sparse grid methods 
themselves can be considered as an approach of higher or- 
der. Additionally, together with polynomials of higher de- 
gree as basis functions, sparse grids are well-suited for the 
efficient realization of higher order finite element methods. 
Finally, implementing p- or h-p-version-type algorithms on 
sparse grids seems to be a very promising approach that 
allows us to profit not only from the sparse grid efficiency, 
but from the advantages of usual h-adaptivity, and the im- 
proved approximation quality of higher order basis func- 
tions. 

In this paper, first, a short introduction to sparse grid 
methods recalls their most important properties. Further- 
more, an overview of existing high order concepts for sparse 
grids is provided. Then, we present a new approach for 
generating higher order hierarchical bases on sparse grids, 
followed by some first numerical results for the case of 
piecewise biquadratic basis functions.- Finally, some con- 
cluding remarks and an outlook on further work to be done 
will close the discussion. 

2 Sparse grids 

The use of hierarchical bases for finite element discretiza- 

tions as proposed by Yserentant [17] and Bank, Dupont, 
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and Yserentant [4] instead of standard nodal bases stood 
at the beginning of the sparse grid idea, together with a 
tensor-product-type approach for the generalization from 
the one-dimensional to the d-dimensional case. For the 

corresponding subspace splitting of a full grid discretiza- 
tion space in two dimensions with piecewise bilinear hier- 
archical basis functions as in figure 1, it can be seen that 
the dimension (i. e., the number of grid points) of all sub- 
spaces with il q- i2 = c is 2 c-2. Furthermore, it has been 
shown in [7] that the contribution of all those subspaces 
with il + i2 = c to the interpolant of a function u is of 
the same order 0(2 -2c) with respect to the L2- or maxi- 
mum norm and O(2 -c) with regard to the energy norm, 

0% c0() if u fulfills the smoothness requirement ox•rg• • 
for the two-dimensional and o•...o• • ½0(•) for the gen- 
eral d-dimensional case, respectively. Here, fl denotes the 
underlying domain. Therefore, it turns out to be more rea- 
sonable to deal with a triangular subspace scheme as given 
in figure 2 instead of using the quadratic scheme of figure 
1. This leads us to the so-called sparse grids. For a formal 
definition of sparse grids, see [6], [7], or [18], e.g. 

iL= I 

I,= I i.= 3 i.-2 

Figure 1: Subspace splitting of a full grid space. 

Besides the regular sparse grids that result from skipping 
certain subspaces according to figure 2, adaptive grid re- 
finement can be realized in the sparse grid context in a very 
straightforward way. Since we use recursive dynamic data 
structures like binary trees for the implementation, and 
since the value of a hierarchical basis function, the hierar- 
chical surplus, can be used itself to indicate the smoothness 

i2=2 

ß 

ß 

Figure 2: Subspace splitting of a sparse grid space. 

of u at the corresponding grid point and, consequently, the 
necessity to refine the grid here, no additional work has to 
be done to implement adaptive refinement. Figure 3 shows 
a two-dimensional regular sparse grid, and figure 4 shows 
a three-dimensional adaptive one with singularities at the 
re-entrant corner and along the edges. 

Figure 3: Regular sparse grid. 

Speaking about the most important properties of sparse 
grids, we at least have to look at the number of grid points 
involved and at the approximation accuracy of piecewise 
d-linear hierarchical basis functions on sparse grids. For a 
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3 A bicubic approach on sparse 

.".:. i if' i.:'.11i' i i..ii..11 grids 
.......:....?.[ :.: • ::•..:•.•i::•:.;.•..[,..... •., • ... h• been done by St6rtkuhl [16]. There, the main empha- 
..'.-..x:'.•:..x:: •:•..;,.,•.•,•?•::• ...... "•. • "• ' ' sis is put on the solution of the twodimensional Stokes 
'•':,¾.::•'•' •'•"•-•"•:•':•. q'-'l:..¾.. • . [ equations. Using the stream function • and the vorticity 
" • ........... •' ..... ' ' ' w • variables, this system of two partial differential equa- 
-. '. '-. ' .... :.'•. :':".?.: tions of second order can be reduced to the fourth order 

.., .. •., x•.•.: :"-,.."s ' ', ... biharmonic equation •9: O. The corresponding bilinear -. :::,'...':... ?; ?'.?; orm:i: :,mme:ic, 

ß 
Figure 4: Adaptive sparse grid. 

detailed analysis, we once again refer to [7] and [18]. For a 
d-dimensional problem, the approach described above and 
illustrated in figure 2 leads to regular sparse grids with 
O(N(log2(N)) •-•) grid points, if N denotes the number of 
grid points in one dimension (i.e., • is the smallest mesh 
width occurring). A variant also discussed in [7] even leads 
to regular sparse grids with O(N) grid points. These re- 
suits have to be compared with the O(N •) points of regular 
full grids. Concerning the approximation quality, the ac- 
curacy of the sparse grid interpolant is only slightly deteri- 
orated from O(N- 2) to O(N- 2 (log 2 (N))•- • ) with respect 
to the L2- or maximum norm. With regard to the energs' 
norm, both the sparse grid interpolant and the finite ele- 
ment approximation to the solution of the given boundary 
value problem stay of the order O(N-•). 

Thus, sparse grids enable us to gain a factor of 2 in accu- 
racy for arbitrary number d of dimensions by just doubling 
the number of grid points. Since the smoothness require- 
ments can be overcome by adaptive grid refinement, sparse 
grids are a very efficient approach for the solution of partial 
differential equations. 

Recently, the class of problems that can be treated with 
sparse grid methods has been significantly extended. First 
experiments with time-dependent problems have been re- 
ported by Balder et al. in [3]; Pflaum [15] generalized the 
algorithm for the solution of the Poisson equation to the 
case of general elliptic differential operators of second order 
in two dimensions, and Dornseifer developed a mapping 
technique to deal with curvilinear domains. Furthermore, 
systems of equations like the Stokes equations are the focus 
of present sparse grid interest. 

Since this approach requires the use of ½l-elements, a 
piecewise cubic hierarchical Hermite basis is defined for the 
one-dimensional case, first. Here, we get two basis func- 
tions (i.e., two degrees of freedom to fix the value of the 
function and its first derivative) per grid point. For d = 2, 
the usual sparse grid tensor product approach leads to a 
piecewise bicubic hierarchical basis with four degrees of 
freedom per grid point. The resulting four different types 
of basis functions are shown in figure 5. 

Figure 5: The four types of bicubic basis functions. 

In the following, we present an alternative approach (cf. 
[8]) based on Cø-elements with still one degree of freedom 
per grid point. 
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4 Another concept for generating 
higher order hierarchical bases 
on sparse grids 

4.1 A quadratic hierarchical basis 

For reasons of clarity, let us study the one-dimensional case 
of a regular grid with N grid points, N = 2 n + 1, n • lN, 
and N values to be interpolated, first. For the construction 
of a piecewise quadratic interpolant, one has to fix three 
degrees of freedom in each interval between two neighbor- 
ing grid points. This leads to a total of 3N - 3 degrees 
of freedom for the whole problem. It is well-known that 
quadratic splines are perhaps the most common way to 
construct a suitable interpolant. With splines, we need N 
degrees of freedom to get an interpolant and twice N - 2 
degrees of freedom to make the interpolant both continu- 
ous and differentiable at the inner grid points. With one 
more condition fixed (some kind of boundary condition, 
e.g.), the interpolant is definitely determined. Thus, the 
higher order of the polynomials used leads to more smooth- 
ness of the interpolant. This effect is especially attractive, 
if smooth functions are to be interpolated, or if partial 
differential equations of higher order (like the biharmonic 
equation, e.g.. see [16]) have to be solved. However, in 
a lot of other situations (like the numerical treatment of 
singularities, e.g.), it seems to be neither necessary nor 
desirable. 

Therefore, we suggest a construction that leads to an in- 
terpolant (N degrees of freedom) which is only continuous 
(N - 2 degrees of freedom). The remaining N - 1 degrees 
of freedom are fixed by interpolation conditions outside 
the respective interval. For instance, the parabolic inter- 
polant between two neighboring grid points i and i q- 1, 
1 _• i _• N - 1, could be determined by either the values 
at the grid points i - 1, i, and i q- 1 (if i • 1), or the 
values at the nodes i, i q- 1, and i q- 2 (if i ( N- 1), or 
even the values at the grid points i, i q- 1 and an arbitrary 
third point. Since we want to define hierarchical bases, it 
turns out to be the best choice to determine the third grid 
point for interpolation by means of an hierarchical crite- 
rion: If i is a grid point on the finest level only, i.e., if i 
is even, then i - 1, i, and i q- 1 are taken into account. 
If, on the other hand, i is a coarse grid point (i.e. odd) 
and if, thus, i q- 1 does appear on the finest grid only, then 
i, i q- 1, and i q- 2 are the points chosen for interpolation. 
The result of this approach is shown in figure 6. On the 
intervals [2k + 1,2k + 3], 0 _• k _• (N- 3)/2, the resulting 
overall interpolant is quadrat!c, but at the (coarse) grid 
points 2k + 1, it may not be differentiable. 

I i-2 i-5 N 

Figure 6: Piecewise quadratic ½ø-interpolant. 

Starting from these considerations, we now introduce 
a piecewise quadratic hierarchical basis. To explain the 
principles, we first look at the well-known piecewise lin- 
ear case in one dimension. If we add appropriate basis 
functions at the coarse grid points to the hierarchical basis 
functions of each level, we get nested spaces of piecewise 
linear functions on the different levels (see figure 7). Here, 
a coarse grid function can be constructed by summing up 
three neighboring fine grid functions with the weights «. 
1, and «. This is important for a simple switch from one 
level to another, and it is necessary for the efficient imple- 
mentation of sparse grid algorithms. 

/ 

/ 
, 

,, / 

Figure 7: Linear hierarchical basis and nodal point bases 
on each level. 

The quadratic case turns out to be a little bit more 
complicated, because it is not possible to get a quadratic 
basis function on the coarse grid as a weighted sum of 
three neighboring quadratic basis functions on the fine 
grid. However, if we sum up two quadratic fine grid func- 
tions with the weight ¬ and one standard piecewise linear 
coarse grid function with the weight 1 as indicated in fig- 
ure 8, we get the desired quadratic function on the coarse 
grid. 

Now, figure 9 shows our piecewise quadratic hierarchical 
basis (solid lines), together with the extension to a nodal 
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1 1 

I III \\\\ 

Figure 8: Switching from fine to coarse level with quadratic 
hierarchical basis functions. 

point basis on each level (dashed lines). Note that each 
of these nodal bases consists of basis functions whose sup- 
ports vary in size. 

Figure 9: Quadratic hierarchical basis and nodal point 
bases on each level. 

As in the linear case, the generalization to a d- 
dimensional piecewise d-quadratic hierarchical basis with 
d > 1 is done by the tensor product approach that is typ- 
ical for the sparse grid context. 

Another important problem we have to deal with is the 
question of how to calculate the (quadratic) hierarchical 
surplus. Again, we first look at the one-dimensional case. 
The linear hierarchical surplus v• ) in a grid point m with 
hierarchical neighbors e(m) and w(m) is given by 

1 

(1) v• ) = u,,• - 3' (ue(,O + u•,(,,O) , 
where u,,•, Ue(m), and uw(,O denote the values of the 

underlying function u at the respective grid points. Re- 
member that the hierarchical neighbors of a grid point rn 
are just the two ends of the support of the hierarchical 
basis function located in rn. The corresponding formula 
for the quadratic hierarchical surplus v• ) depends on the 

hierarchical relations of the involved grid points. Figure 
10 illustrates the situation if e(m) is the father of m (with 
respect to the underlying binary tree) and if e(e(m)) is the 
father of e(m). 

A short calculation leads to 

i.e., the quadratic hierarchical surplus at a grid point m 
can be easily calculated with the help of the linear hierar- 
chical surplus at m and the linear surplus at the father of 
m: 

(2) 4 e(,,)' 

Thus, as in the linear case, nothing else has to be stored 
other than the linear hierarchical surplus. Again, the ten- 
sor product approach leads to a generalization of this result 
to the d-dimensional case with d > 1. For d = 2, e.g., we 
immediately get 

1 . v(t) 1 . v( (3) v!• 
where e(m) denotes the father of m in x-direction, n(m) 
the father of m in y-direction, and he(m) the father of 
n(m) in x-direction (see figure 11). For arbitrary d, the 
quadratic hierarchical surplus is given by 

(4) V(m q'd) --- 1,- ß v, . 

n(m) he(m) 

m e(m) 

Figure 11: Calculation of the quadratic hierarchical sur- 
plus for d -- 2. 
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Vm(q) / 
/ 

/ 

vm([) //// //'"/ 

w(m) 

v (I) 
e(rn) 

m e(m) e(e(m)) 

Figure 10: Linear and quadratic hierarchical surplus. 

4.2 Theoretical results 

Now, we turn to the approximation properties of sparse 
grids with the quadratic hierarchical basis introduced 
above. To this end, we study the behavior of the inter- 
polation error with respect to the L2-, the maximum, and 
the energy norm. According to finite element theory, the 
latter gives insight into the error of the finite element so- 
lution, too. 

In the main, the notation and the argumentation follow 
the linear case from [7]. Because of (2) and (4), we look at 

(5) 

for the one-dimensional case or 

(6) J(m q'a) := [1,- ß A t'a) 
for the general d-dimensional case. Here, for some suf- 
ficiently smooth function u (a) of d independent variables, 
J•'a) is the integral well-known from linear sparse grid the- 
ory, 

(7) 

Z•n l.d) :--- /_+h• /+ha d . (II • w• 
j:l 

02au (•) (x•, ..., xa) 
ß :7. ax, ... axe, 

at a grid point m (here normed to O) with assigned piece- 

d 

wise linear hierarchical basis function H•=l w3 

(s) h•+• if -h 3 <xj <0, 
hj ' -- -- 

wj(xj) := h•-x• if 0<xj <hj 
0 otherwise. 

Since we know from [7] that .,, is just the linear hierar- 
chical surplus v• 'a) at point rn, with (4) and (6) we get 

J(mq ,d) 

--- V (rnq , d) 

In the following, we study the situation for d - 1, first. 
Together with (7) and (8) for d- 1, (5) leads to 

.-- Z(m/,1) __ I . 1(1,1) 4 

3h• G•2U(1) (Xl) -- tl(Xl) ' 0X21 J -hz 
dXl, 

where e(rn) again denotes the hierarchical father of m with 
assigned support I-hi, 3hi] and 

1{ (10) tl(xl):= õ' 
-3xl - 3hx, -h• < x• _< O, 
5xl - 3h•, 0 __< Xl <__ 
--Xl q- 3hi, hi g xl < 3hi. 
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By partial integration for each sub-interval [-51,0], [0, 51] , 
and [hi, 351], and by elimination of the resulting hl2-terms 
(which is possible here in contrast to the linear case), we 
get 

(11) J(m q'l) f3h• 03uO)(x•) -- -- TI(Xl) ß Ox13 dXl, J -h• 

(12) 

1 

Wl(Xl) := 1-•' 

-3Xl -'6h]Xl - 3hi 2, ß 5Xl 2 -- 6hlXl - 35•, 
--Xl 2 + 6hlXl - 95•1, 

-h• _< x• _< 0, 
0 _• Xl _• 51, 
h• _• x• _• 351. 

Together with (6) and (7), this result can be used to derive 
the generalization for the d-dimensional case. After a short 
calculation, we get 

(13) 

J(mq. d) .f3h•.f3hd d (-1) d (HT)(xj))' J--hz "J-hd j=l 
c•3du(d) (Xl, ... , Xd) 

OXl s ... Ox• dxd ... dxl, 
where Tj(xj) is defined in an analogous way to (12). 

%Vith (9) and (13), we are able to give two bounds for 
the quadratic hierarchical surplus v•'d): 

(14) 03du (d) 

-< Ox...o4 
and 

(15) 
_< o3d (½d) ß ) ) 

ß ' 'ø1 ' '" ' 'ød ' 

where •(md)(x•, ...Xd) denotes the characteristic function 
of the support of the basis function located at point 
(hi, ..., hal), ifm is normed to the origin. Note that (14) and 
(15) are correct only if we really have a quadratic surplus 
in each direction. On the coarsest level in some coordinate 

direction j (i.e., ij - I or xj - « for the unit square), 
however, figure 9 shows that, in spite of using a quadratic 
basis function, we have to use the linear hierarchical sur- 
plus with respect to the boundary values. Therefore, we 
get for the general case of a point m with k indices il, ..., ik 

equaling I and the others being greater than I (0 _• k _• d) 

(16) 

and 

[ < [[ a3d-•'u(d) [ 2 3 OXl '"OXkOXk+ 1 •c 
1 

'• '" k+1 ' '" 

(17) 

[ < 

Thus, with the following definition 

(18) 
u(d) l•c := sup ....... •,•(•.3} Ox•' ...Ox• • • ' 

:= sup •-_"5 i'" n'--E'• , 
2 ai6{2,3} 0X'l '"C/Wd 2 

we get 

(19) 

and 

1 

.h•2.....h•.h•+• 

(20) 

Finally, we have to calculate the L2- and maximum norm 
d 

of the &quadratic hierarchical basis function 1-Ij=l gj(xj), 
2 

(21) gj(xj) - h• - xj 
which is now used instead of the piecewise d-linear 

d 

•Ij-_• wj (xj) defined in (8). Obviously, the maximum norm 
d 

of 1-I•_-• gj(xj) is 1; and for the L2-norm, we get 

(22) gj(xj) •, •-•/ "•, ..... d ß 
j=l 2 

Now, we are ready to apply standard sparse grid approx- 
imation theory to the situation of piecewise d-quadratic 
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hierarchical basis functions. We are first interested in the 

difference between a sufficiently smooth function u (d) and 
its piecewise d-quadratic sparse grid interpolant a(d) of 
level n with a smallest occurring mesh width of 2-". Anal- 
ogously to the linear case, (19), (20), and (22) lead to 

(23) 
u(d) - (d) • . B(n d) , - u"'I - 14 

where 

(24) Bt•d) := d- 1 
Consequently, we get for the sparse grid interpolation error 

(d) u(d) _ 

(25) 
u(d) -- un'I] 2 

= O 

-- O 

where N = 2'*+ 1 denotes the maximum number of 

grid points in one direction. Thus, in comparison to the 
standard regular full grid, the accuracy of the interpola- 
tion is only slightly deteriorated by the logarithmic factor 
(log2(N)) d-•. Note that, according to the above argumen- 
tation and analogously to the piecewise linear case, u (a) has 
to fulfill the following smoothness requirement, e.g.: 

03du (d) 

(26) axe... Ox• • Cø ( • )' 
With respect to the energy norm, we again have to look 

d 

at our d-quadratic hierarchical basis function Hj=i gl (xj), 
first: 

dxd .. dx• 

) h• dxd... dXl 

a ((16) d-• (ji•t)8 1) = 
/=1 

- -- l=• h• 

d 

As above, this result concerning rlj=• g•(xj) and (19) are 
the staxting point for standard sparse grid analysis, which 
finally results in 

(27) I u(")-•(a) I = O(4-") -- O(N -2) '• n,I E ' 

the desired bound for the sparse grid interpolation error 
u (a) a(a) with regard to the energy norm. Thus, as in 
the linear case, the order of the energy error does not de- 
teriorate when we switch from full grids to sparse. Since 
it is a well-known fact from finite element analysis that 
the finite element solution 5(,d) of a given boundary value 
problem is a best approximation to the solution u (a) on the 
underlying grid, we also get the following result concerning 
the error u (a) - fi(n d) of the finite element approximation: 

(28) u (d)-5?) r = O(4-") = O(N-2). 

5 First numerical experiments 

In this section, we report the results of some first numerical 
experiments concerning the piecewise quadratic hierarchi- 
cal basis described above. For that, we study the Laplace 
equation on the unit square with Dirichlet boundary con- 
ditions as a simple model problem: 

Au(x,y) = 0 on • = [0.1] 2, 

u(x,y) = sin(try)-sinh(rr(1 - x)) 
sinh(7r) 

Figure 12 shows the approximation to the solution cal- 
culated on the regular sparse grid of level 10 and its error. 

For the solution of the linear system that results from 
the finite element discretization on the sparse grid, a simple 
Gauss~SeideMteration was used. The numerical results for 

this model problem are given in table 1. There, n denotes 
the level of the regular sparse grids considered (i.e., 2 -• 
is the smallest mesh width occurring). [[e][•: indicates the 
maximum norm of the sparse grid error u (a) -;,(a) and 
lie[It denotes its energy norm. Finally, p•c and pr indicate 
the rates of reduction from level n to 'level n + 1 of the 

respective error, and dof, denotes the number of degrees 
of freedom, i.e. the number of grid points of the respective 
sparse grid. In table 1 and in figure 13, one can clearly see 
the 0(4-") - O(N-•)-behaviour of the energy norm, and 
the convergence with respect to the maximum norm turns 
out to be just slightly worse than 0(8-"), as was to be 
expected due to the logarithmic factor in (25). 

Furthermore, in figure 14, the results for the piecewise 
biquadratic case are compared to the piecewise bilinear 
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Figure 12: Sparse grid solution (above) and error (below) 
of the model problem. 

situation. Here, both times, adaptive sparse grids were 
used. Again, the advantages of the quadratic approach 
can be seen clearly. 

Now, let us turn to a second example: 

Au(x,y) = 0 on fi = [0,1] 2 , 

u(x,y) = cos(4•r(x-- y)). sinh(4•r(x + y)) 
sinh(8•r) 

Here, again, u fulfills the smoothness requirement (26). 
However, in contrast to our first example, adaptive grid 
refinement is very helpful (see figure 15). 

Figure 16 illustrates the results for piecewise bilinear and 
piecewise biquadratic basis functions. In both cases, adap- 
tive grid refinement has been used. In comparison with fig- 
ure 14, the gain that can be achieved with the biquadratic 
approach is smaller. This had to be expected, since adap- 
tive mesh refinement is very efficient in such situations, 
and it indicates that a combined process of adaptive grid 
refinement and adaptive choice of the polynomial degree 
p of the basis functions might be the appropriate strategy 
for sparse grids, too. 

1 2.53 10 -s 2.43 10 -a 1 
1.02 3.02 

2 2.48 10 -s 8.05 10 -2 5 
2.67 3.41 

3 9.28 10 -4 2.36 10 -2 17 
3.14 3.77 

4 2.96 10 -4 6.26 10 -s 49 
4.09 3.91 

5 7.24 10 -5 1.60 10 -s 129 
5.36 3.98 

6 1.35 10 -5 4.02 10 -4 321 
6.19 3.98 

7 2.18 10 -0 1.01 10 -4 769 
6.83 4.02 

8 3.19 10 -7 2.51 10 -5 1793 
7.28 3.99 

9 4.38 10 -0 6.29 10 -0 4097 
7.60 4.01 

10 5.76 10 -9 1.57 10 -0 9217 
7.76 3.99 

11 7.42 10 -•ø 3.93 10 -7 20481 
7.89 4.00 

12 9.41 10 -• 9.82 10 -0 45057 
7.94 3.99 

13 1.19 10 -• 2.46 10 -s 98305 
7.97 4.01 

14 1.49 10 -•2 6.14 10 -9 212993 

Table 1: Error on the regular sparse grid of level n. 

6 Concluding remarks 

In this paper, some first steps towards an efficient imple- 
mentation of higher order techniques on sparse grids have 
been discussed. The approach of section 4 leads to hier- 
archical bases of polynomials of higher degree p > 1. but 
still results in CO-(sparse grid)-interpolants. However, the 
number of degrees of freedom per grid point does not in- 
crease with growing p. Obviously, the concepts presented 
for the quadratic case can be generalized to the situation 
with cubic polynomials, and so on, which will be in the 
centre of future work. Finally, h-p-version-type algorithms 
[1, 12, 13] are to be developed for sparse grids, too. 

The following tables 2 and 3 show why higher order tech- 
niques on sparse grids seem to be a very promising ap- 
proach to the efficient numerical treatment of partial dif- 
ferential equations. Each row in both tables corresponds to 
a fixed number d of dimensions of the underlying problem, 
and each column stands for a certain polynomial degree p 
of the basis functions used. If M denotes the overall num- 

ber of unknowns (i.e., M = N d for a regular full grid and 
M = O(N(log2(N)) 'i-•) or M = O(N), respectively, for 
regular sparse grids), then, we can indicate the order of 
approximation with respect to the energy norm by 
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Figure 13: Rates poc and PE of error reduction. 

The entries in both tables now show the respective val- 
ues of a. For example, if we want to achieve second order 
with respect to the number of unknowns on full grids, i.e. 
a - 2. we have to use quadratic polynomials in the one- 
dimensional case, quartic ones for d = 2; and, for three- 
dimensional problems. even polynomials of degree p = 6 
have to be used. With sparse grids. in contrast to that, p 
does not depend on d. For a = 2, quadratic polynomials 
are sufficient for arbitrary d. 

Table 2: Approximation order M -• for various d and p on 
full grids. 

At this point, we have to go into the smoothness re- 
quirements of sparse grid techniques. For the quadratic 
case, they are given in (26). At first glance, these seem 
to be quite restrictive, especially for larger p. However, as 
in the linear case, the inherent h-adaptivity of sparse grid 
techniques should be able to deal with non-smooth situa- 
tions, too. Furthermore, we can learn from tables 2 and 
3 that, with respect to the overall number of unknowns, 
sparse grids can manage with smaller values of p than full 
grids. Therefore, especially for achieving high approxima- 

Figure 14: Maximum error vs. number of grid points (lin- 
ear and quadratic case). 

Figure 15: Sparse grid solution of the second example. 

tion quality for three-dimensional problems, sparse grids 
even turn out to be advantageous regarding smoothness 
requirements. 
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