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Abstract 

Solving the wave equation by a C o finite element method 
requires to mass-lump the term in time of the variational 
f6rmulation in order to avoid the inversion of a n-diagonal 
symmetric matrix at each time-step of the algorithm. One 
can easily get this mass-lumping on quadrilateral meshes 
by using a h-version of the spectral elements, based on 
Gauss-Lobatto quadrature formulae but the equivalent 
method is not obvious for triangular meshes. In this paper 
we construct and analyze new families of triangular finite 
elements which fulfill the same requirements as spectral 
quadratic and cubic finite elements. 
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I Introduction 

Solving the wave equation in time domain by finite element 
methods is challenging but fundamental in order to model 
problems closer to the needs of industry. However, the use 
of such techniques rises some difficulties due the presence 
of a mass-matrix which grows with the order of the method 
and the dimension of the problem and must be inverted at 
each time-step. For this reason, finite difference methods 
were preferred to FEM for a long time. 

Recent developments of FEM with mass-lumping, such 
as spectral finite elements enable to overcome this difficulty 
by using quadrilateral or hexahedral finite elements mass- 
lumped with Gauss-Lobatto quadrature rules [8]. Such 
elements were used and analyzed in their h-version and 
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some properties of superconvergence were pointed out, in 
particular for the error committed on the velocity [4]. 

However, the use of quadrilateral finite elements is not so 
easy (in particular because non-regular quadrilaterals lead 
to isoparametric elements) and the use of triangles remains 
more popular in the industrial community. For that rea- 
son, we construct and analyze, in this paper, higher order 
triangular finite elements fitted to the numerical resolu- 
tion of the wave equation. This purpose implies an ade- 
quate mass-lumping using a quadrature rule with positive 
weights in order to ensure the positivity of the discrete 
harmonic operator appearing in the scheme. Moreover. 
the accuracy of the method without mass-lumping must 
be kept. 

In order to get all these properties, we construct a class 
of HLconform triangular finite elements which correspond 
to P2 and P3 spectral finite elements. However. to get the 
positivity of the discrete operator, we must modify the 
classical spaces of polynomials Pk. 

The P2 standard space must be replaced by P2 = 
P2 • (b) where b = A•A2A3 in barycentric coordinates is 
the "bubble" function equal to 1 at the center of the tri- 
angle and 0 on its three edges. The new element is an 
element with 7 degrees of freedom which are those of the 
classical P2 triangle plus its center. Then, the correspond- 
ing quadrature rule is the well known Simpson's rule the 
weights of which are positive [11]. 

For P3, the process is more complex. The new element 
has 12 degrees of freedom and the space of polynomials 
is •s = Ps • (b•, b2, bs) where b•, b•, b3 are polynomials 
equal to I at three points symmetrically located on the 
three medians of the triangle respectively and 0 on the 
three edges of the triangle. We show that the problem has 
a solution for a unique set of points. 

An other approach can be found in [6]. 
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2 A non-stable approach 

We shall consider the following model problem: 

Findu' /R 2x]0, T[-, /R so that: 

(1) •-•7(x,t) - Au(x,t) = 0 in/R 2 x ]0, T[ 

u(x,O) = uo(x), •(x,O) = u•(x) in/R 2 
Its variational formulation is: 

dt 2 uvdx + VuVvdx=O Vv•H •(•2) 2 2 

(2) 
In this section. we shall only deal with the space ap- 
proximation which is the main point of this study. Let 
[.•t.(•2) = {v • H•(• 2) /Vi • N v/r• • P&}, be the 
Lagrange finite element space of kth order •sociated to a 
triangular mesh {•} of •2, Ti • •. The semi-discretized 
formulation of the problem can be written • follows: 

Find u•(.,t) • V•(•2), t • ]0, T[ so that: 

(a) + = 0 2 

2) 

Ouh (x, O] = = 
Let (•i)iex be a basis of V•(•2). Then (3) is equivalent 
to the following (infinite) ordinary differential equations 
system: 

(J•12.h)l. i -'- /iR2 •I(X ) •i(X) dx 
(4) 

with (I¾2'h)l'i -- fir •7•l(32) •7•i(x) dx ' 2 

(l, i) 6 N • 

So, we get a matrix (M2.h) which is n-diagonal symmet- 
ric and must be inverted at each time-step for any ex- 
plicit scheme, and we wish to lump this mass-matrix in 

order to avoid this inversion. This mass-lumping implies 
to find quadrature rules the points of which coincide with 
the degrees of freedom of the elements. Moreover, in order 
to keep the same accuracy as that of the scheme with- 
out mass-lumping, the quadrature rules must be exact for 
polynomials of degree 2k - 2 [2]. 

For P•, the degrees of freedom are the vertices of the 
triangle and the suitable rule is the trapezoidal rule. 

For P2, the degrees of freedom are the vertices of the 
triangle and the middles of the edges, and the suitable 
rule is so that the weights are equal to 0 at the vertices 
and 1/3 at the edges [11]. 

For these two first kinds of finite elements, the nodes 
of the element coincide with the points of the quadrature 
rule in a natural way. For cubic elements, the location of 
the nodes on the edges of the elements must be changed so 
that these nodes coincide with the points of the quadrature 
rule. Actually, the same fact occurs for quadrilaterals [4]. 

Without mass-lumping, the degrees of freedom of cubic 
elements are the vertices of the triangle, two points located 
at one third and two thirds of the edge and the center of 
the triangle. In order to mass-lump, we must define a new 
element with the same degrees of freedom but in which the 
distance of the points of the edges to the nearest vertex is 
(3 - x/'•)/6. So, the weights of the suitable quadrature rule 
are -1/120 at the vertices, 1/20 on the edges and 9/40 at 
the the center of the element [7]. As one can see, for P2 and 
Pa, the weights at the vertices of the quadrature rules are 
null or negative. So, these rules will not provide a proper 
approximation of -A: for P2, we get an ill-posed discrete 
problem and for Pa, the stability is not ensured. 

Some other quadrature rules which do not fit to our 
problem can be found in [5]. 

3 New finite element spaces 

Since the quadrature formulae above defined are unique, P2 
and Pa seem to have no chance to fulfill the requirements 
of mass-lumping for the wave equation. So, in order to 
overcome the difficulty risen by the non-positivity of the 
weigh_ts, we are going to construct new spaces, namely P2 
and Pa which will be slightly larger than P2 and Pa. This 
boils down to add some interior nodes to the previous P2 
and Pa triangles with the hope that we will be able to find 
quadrature rules which will be suitable for achieving mass 
lumping while keeping the order of the method. 

In fact, one can find also in [2] that if a space of poly- 
nomials /B satisfies Pk C /• C Pk', k _< k', one gets the 
"Pk accuracy" as soon as the quadrature formula is exact 
for Pk+•'-2. Considering the symmetries of the triangle, 
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one can show that it is sufficient to have three degrees of 
freedom (not fixed by symmetry) to integrate Pa and five 
degrees of freedom to integrate Ps [9]. 

3.1 The case of P2 elements 

In order to have the same accuracy as quadratic ele•.•ments, 
one would like to have a space P2 satisfying P2 C P2 C P3. 
Moreover, the quadrature formula should integrate exactly 
P3 (since 3 = 3 + 2 - 2). 

For this purpose, we shall define P2 by: 

(5) = Pe(v} 

where b denotes the "bubble" function expressed in 
barycentric coordinates {A1, As, As} as ß 

(6) b = AiA2A3 

The triangle corresponding to P2 is the classical P2 triangle 
(the nodes of which are the vertices Sj, j = 1, 3 and the 
middles of the edges Ej, j = 1, 3) to which we add its center 
of gravity G. The new finite element has seven degrees of 
freedom and it is immediate to check that we do get the 
P•-unisolvence. Moreover, as b vanishes on the edges of K, 
the degree of any element of •2 on any edge of K remains 
equal to 2. 

Now, if we can consider the space: 

(7) Vh = {v • co(Q)/VK • T•, V/K • •} 

as a space of approximation of H 1 (fl). Vh clearly admits 
three types of basis functions ß 

functions associated to the vertices of the triangles the 
support of which is equal to the number of triangles 
admitting a given node as a common vertex 

functions associated to the edges of the mesh the sup- 
port of which is made of two triangles 

"bubble"functions supported by one triangle. 

In this case, the Simpson's rule mass-lumps properly. Its 
points are the nodes of the degrees of freedom and its 
weights are: 

1 2 9 

(s) = 76 = = 76 
which are all positive. 

3.2 The case of P3 elements 

Now, we would like to construct a triangular finite element 
which will have the same properties as Pa and will provide 
a_positive mass-lum•ing. For that purpose, we shall define 
Pa such that Pa C P3 C P4. The corresponding quadrature 
rule must be exact for P5 (since 3 + 4 - 2 = 5). Of course, 
we wish to have a set of points as small as possible in 
order to keep a reasonable computational cost but large 
enough to lead to the five free parameters required for Ps, 
as mentioned above._Moreover, our choice is that the traces 
of the functions of Pa on the edges of the triangle should 
be of third order. 

So, all these required properties lead us to define a set 
of quadrature points classified as follows: 

the three vertices {S•, S2, S3} 

boundary points 

interior points {G•(,$), G2(3), 

In what precedes, (a,3) denotes two real parame- 
ter between 0 and 1, Gi(,3) has barycentric coordinates 

(,3,1-/3 1-•3 1•/• 1___• 2 ' 2 )' G2(•) (--,•, ) and Gs(3) 

( 2 , •,•), while Mo(a ) denotes the barycentre of 
Si and Sy with respective weights a and (1 - a) (see figure 
1). 

Note that, with respect to the quadrature points consid- 
ered in section 2, we gained one parameter (namely •)) by 
splitting the center of gravity G into three interior points 
G• (3), G•(3) and Ga(3). 

On the other hand, the set •3 must satisfy: 
( i ) Pa C Pa C P4. 
(ii) The previous quadrature points are Pa-unisolvent. 
(iii) Traces on OK of functions of Pa have degree 3. 
All this is obtained by choosing: 

(9) = P3 e 

the dimension of which is equal to 12, which coincides with 
the number of quadrature points we have considered. It 
is easy to construct the three basis functions bl, b2 and 
b3 associated to G•(3), G•(/3) and G3(/3) as bubble type 
functions defined by: 

(10) bj = b(Aj - I - •) 2 

To see that the quadrature p2ints are Pa-unisolvent it suf- 
fices to remark that any i•of Pa has a unique decomposition 
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Figure 1' The degrees of freedom for •2 (left) and •a (right). 

in the form: 

(11) { •'-p+bq pE P3, p(G) ---- 0 
qEP1 

Then if • vanishes in all quadrature points, p vanishes 
at all boundary points and also at G. These points being 
Pa-unisolvent, we deduce that p = 0. Now the fact that 
•(Gj(,$)) = 0 yields q(Gj(/3)) which yields q = 0 since 
q E P1 and since the three points G• (/3), (72(/3) and Ca(/3) 

1 

are not aligned as soon as/3 •k õ. 
Taking into account the different kinds of points, the 

quadrature formula can be written: 

(12) 

E(f) = 

which is a formula with 

five parameters (ws, w•, co O, a and/3) while we have 5 
classes of equivalence in Ps. 

One shows there exists a unique set for the parameters 
in order that formula (12) integrates exactly Ps. This set 

is' 

(13) 

/3 __1 2__• V• 3 + __• 0.5853 

-42 - 21 vf• + V/35 + 16 v"-•v•v• 
84 + 42 v/• 

0.2935 

919 v• + 2471 
"' 0.0148 

124080 VQ + 330960 

OJc• --- 2 • (2 '•- V/'•) 4 • 0.0488 
25280 + 9520 V• 

147 + 42 v/• 
w O = 2 -,-, 0.2208 

400 x/• + 1280 

Of course, we now construct a space of approximation of 
H• (f/) as: 

(14) Vn -- {v 6 Cø(•)/VK ß Th, V/K • •3} 
Once again there are three types of basis functions. The 
difference with the •2 space lies in the fact that there is 
still one basis functions by vertex (as for P2) but two basis 
functions by edge and three basis functions by triangle. 

The approximation of the term in time leads to a di- 
agonal mass-matrix only when one uses the appropriate 
quadrature formula to compute the integrals appearing in 
the variational formulation but the computation of the in- 
tegrals coming from the harmonic operator can be made 
in two ways: either exactly or by using the same quadra- 
ture formula (which will not provide an exact value of the 
integrals). We shall present here the first point of view. 
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Of course, this kind of result could be extended to higher 
order triangular finite elements but, even for P3, the com- 
putations, made with the help of MAPLE, which led to 
this result were not immediate and it is obvious that such 

computations will rapidly reach the bounds of any soft- 
ware of this kind for higher order elements. So, although 
conceptually possible, the extension to higher order does 
not seem easy in practice. Moreover, we don't have any 
theoretical result ensuring that it is possible to construct 
an adequate quadrature formula with positive weights at 
any order. 

Immediate generalization of such elements to 3D pro- 
vided non-positive quadrature rules until now. 

3.3 Discretization in time 

The higher order character of the approximation in space 
suggests to use a higher order approximation in time in or- 
der not to sully the accuracy of the global approximation. 
Of course, the most natural way to get a fourth order time 
discretization would be to discretize the time derivative by 
using a centered fourth order finite difference scheme. Un- 
fortunately, such schemes are unconditionally unstable. So 
two solutions remain: either use a standard second order 
finite difference scheme: 

n--1 

(15) 02uh(t") ,.v 11•-}-1 -- 212• Jr' ll h 
which is stable but reduces the convergence of the method 
to second order or apply a modified equation approach 
described, for instance, in [3] but in a slightly different 
way, as described below: 

By writing down the Taylor expansion of (15) we get: 

(16) 
Ot 2 At2 

12 0t 4 
+o(h 6) 

04Uh 
At this step, we replace • by N•uh (Na - M•,•K2,a) 

(these matrices were defined in (4)). 
The new formulation can then be written: 

At 2 At 2 _ ., 
(17) •+' = • - •-• - h•-•[• - •y•hJ 
This new algorithm involves two computations of the dis- 
crete Laplace operator but this additional cost will be bal- 
anced by the increase of the stability condition, as we shall 
see below. 

A plane wave (or, equivalently, Fourier) analysis of the 
method leads to an eigenvalue problem in w• (w• is the 
pulsation of the discrete plane wave). The eigenvectors of 
this problem are in •t 6 for ,• and •t •3 for -•3. Its solu- 
tion (computed numerically) provides the following stabil- 
ity conditions: 

At 

(18) At < 0.2187 for • and •- < 0.i2aa for •3 h - - 

for the second order scheme in time, 

At 

(19) at < 0.37ss for and < 0.155 for 
for the fourth order scheme in time which allows to use 

time-steps almost twice larger than a second order sche•ne. 
This balances the increase of computation introduced by 
the method. 

Higher order approximations in time do not have the 
same properties and provide too expensive algorithms. 

Moreover, the ratio q• = w•/k gives the error committed 
on the velocity. The study of qh versus the inverse of the 
number of elements per wavelength and for different values 
of the angle of the direction of propagation 0 and the ratio 
a = At/h gives the dispersion curves [10]. On the other 
hand, log-like curves of q• shows that the error is of 4th 
order for P2 and 6th order for P3, which points out the 
same superconvergence phenomenon as for quadrilaterals. 

Remark: A classical finite element analysis gives an 
error in h 4 for the L•-norm and in h 3 for the Hi-norm 
[1], [•]. 

4 Numerical results 

We solved the following test problem for regular meshes in 
ß 

•-•T(x,y,t) - Au(x,y,t) = g(x,y)f(t) 

in ]0, 12[• x]0, 50[ 

(20) •(x, y, 0) = 0• •(x, y, 0) = 0 in ]0,12[ 2 
u(O,y,t) = u(12, y,t) = u(x,O,t) = 

u(x, 12, t) = 0 in ]0, 12[ 2 x ]0, 50[ 

where g(x, y) is a Gaussian function in polar coordinates 
and f(t) is the second derivative of a Gaussian function 
(Ricker function). 
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Figure 2: Dispersion curves for •2 and fourth order in time, ct varying from 0.05 to 0.35, for 0 = 0 (left) and 0 = rr 
4 

(right). 

We give, in the figures below, the seismograms of the 
solutions on the interval in time [25, 50] (i.e. after a trip 
of 100 wavelengths) at the point (9,3) on a regular meshes 
cont_ainin_g roughly the same number of degrees of freedom 
for P2, Pa and P1. The "exact" solution is in dotted line 
and the numerical one in continuous line. 

These figures show the gain of accuracy given by Pa and 
the importance of a good accuracy in time. In fact, in order 
to obtain an "exact" solution on a no_n-regular mesh, P2 
will take twice more CPU time than P3. 

5 Conclusion 

x, Ve constructed and analyzed triangular finite elements 
with mass-lumping for the wave equation with an accuracy 
comparable to quadratic and cubic spectral finite elements. 
These new elements ensure a stable approximation of the 
wave equation. Higher order elements could be found but 
no automatic algorithm is known for the moment. Gener- 
alization to tetrahedra is being studied. 
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Figure 3: Dispersion curves for •3 and second order in time, a varying from 0.05 to 0.124, for O = 0 (left) and O = •- 
4 

(right) (top) and fourth order in time, a varying from 0.1 to 0.21, for 0 = 0 (left) and 0 - • (right) (bottom). 
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Figure 4: Seismogram for P•, second order in time and space, 3.75 elements per wavelength, a - 0.3. 
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