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Abstract 

The phase accuracy of standard finite difference time do- 
main algorithms in computational electromagnetism limits 
the type problem that can be solved. This is because phase 
error accumulates during the computation and eventually 
destroys the solution. We propose a new mass-lumped fi- 
nite element scheme using cubic edge elements which has 
superior phase accuracy compared to the standard finite 
difference scheme. The mass lumping is performed care- 
fully to avoid loss of accuracy. We analyze the dispersion 
error of the mass-lumped cubic scheme and provide a sim- 
ple numerical example showing the accuracy of the cubic 
scheme. 
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1 Introduction 

A central problem in computing an approximate solution 
to a linear hyperbolic problem is the control of phase error 
accumulation. As a wave propagates through computa- 
tional space, phase errors accumulate and eventually de- 
stroy the accuracy of the solution (see for example [1, 16]). 
This problem is particularly acute in computational elec- 
tromagnetism. The desire to compute accurate solutions 
to electrically large problems (ie. those problems in which 
a wave must be computed for a large number of cycles) 
implies the use of vast computational resources. There 
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is an obvious need to find numerical schemes with im- 

proved phase accuracy for approximating Maxwell's equa- 
tions. This paper is devoted to describing a mass-lumped 
finite element scheme for approximating the Maxwell sys- 
tem in three dimensions. The method is distinguished by 
having superior phase accuracy properties when compared 
to the usual finite difference scheme. 

In computational electromagnetism, the standard finite 
difference scheme for approximating the Maxwell system 
is the Yee scheme [22]. This is a second order accurate (in 
time and space) staggered grid scheme using leap-frog time 
stepping. It is very effective for computing the solution of 
Maxwell's system, but has only second order phase accu- 
racy which limits its applicability to high frequency prob- 
lems. The cubic finite element method we shall describe 

has a sixth order accurate phase error (but only fourth or- 
der spatial error) and is also a staggered grid scheme (or a 
mixed method in finite element language). 

W'e are not the first to propose higher order schemes 
for Maxwell's equations. For example, Tuomela [19] and 
Petropolis [17] have proposed fourth order finite differ- 
ence schemes based on extending the Yee approach. This 
scheme suffers from having a large stencil which compli- 
cates the implementation of boundary conditions and the 
handling of material discontinuities. 

A number of authors (for example [21, 20, 15]) have sug- 
gested using higher order finite element methods. We fol- 
low this approach and will describe a method based on 
cubic edge finite elements [13] on a mesh of cubes. An 
important difference in our approach is that we shall show 
how to mass-lump the scheme using an extension of the ap- 
proach of [9, 8, 18] while maintaining the accuracy of the 
scheme. Of course the limitation of using a grid of cubes 
will need to be relaxed in order to handle curved bound- 

aries. But we will discuss our approach to this problem 
elsewhere. 

One way of fitting curved boundaries is to use tetrahe- 
dral elements. However, in the case of edge elements, it 
is difficult to mass-lump even linear elements [7]. Mass 
lumping higher order tetrahedral elements is likely to be a 
challenging problem. 

181 



182 ICOSAHOM 95 

•Ve choose to use the edge elements of N•d•lec [13] be- 
cause these elements have the advantage of allowing con- 
trol over the divergence of the solution and allow a simple 
method of satisfying one of the standard electromagnetic 
boundary conditions. However the price to be paid for 
this is that the elements are anisotropic and more complex 
than standard elements. However as we shall discuss here, 
it is possible to show that the element anisotropy does not 
adversely effect the phase accuracy of the method. The 
family we use is cheaper to use (fewer degrees of freedom) 
than the other edge family of Mur and N•d•lec [12, 14]. 

There are also a number of more innovative approaches 
for developing phase accurate methods for the Maxwell 
system. For example Cangellaris [3] has investigated a 
spectral-cut-off method. At present that method seems 
limited to periodic problems. 

In th. is paper we shall focus on propagation and phase 
error properties of the mass-lumped scheme. For this rea- 
son we shall only consider a simple cavity problem and ig- 
nore such vital aspects of "real" electromagnetic problems 
as absorbing boundary conditions, complex structures and 
tensor material properties. These considerations, which 
are vital for realistic applications, will be discussed in the 
future. 

This work continues our study of two dimensional mass 
lumped schemes reported in [6, 4]. Here we show show to 
extend the method to three dimensions, summarize some 
results about the dispersion behavior of the three dimen- 
sional scheme and give the first numerical results in three 
dimensions. 

2 The Maxwell system 

As we discussed above, we will limit ourselves to a simple 
initial boundary value problem for the Maxwell system. 
Let [2 C R a be a domain or cavity filled with a dielec- 
tric medium having scalar permittivity e and permeability 
/z which can be functions of position (even discontinuous 
functions providing the discontinuities occur at finite el- 
ement boundaries). The electric field E = E(t, x) and 
magnetic induction B = B(t, x) are functions of time t 
and position x and satisfy the Maxwell system in [2: 

OE 

(1) v x 
OB 

(2) + v x E = O. 

In (1) the function J - J(t, x) is a known applied current 
density. For simplicity we shall assume a simple general- 

ized perfectly conducting boundary condition: 

(3) n x E = 'y on the boundary F = 0fl. 

Here 'y is a known tangential vector field on F and n is 
the unit outward normal to F. Finally, we assume that 
the initial fields E(0, .) and B(0, .) are given. The sys- 
tem (1) and (2) together with the boundary conditions (3) 
and the initial conditions is a well posed initial boundary 
value problem for the Maxwell system (at least when f• 
is a bounded Lipschitz domain, J • (L2(f•)) a, and if e 
and • are uniformly positive and bounded in L•(f•) [10]). 
We remark that we limit ourselves to dielectric media here 

since we will focus on wave propagation. A conductivity 
term can be added without difficulty. 

In the special case when f• = R a, e =/z = 1 and J = 0 
the Maxwell system possesses plane wave solutions. The 
dispersion analysis of (1) and (2) involves describing these 
solutions. Of course such a dispersion analysis is entirely 
trivial but we discuss it here for completeness. We suppose 
that the fields are time harmonic so that 

E(x,t) - •(x) exp(-iwt) and 
B(x,t) - •(x) exp(-iwt) 

where • and • are vector functions of position and • is 
a parameter. Substituting these expressions in (1) and (2) 
we obtain 

(4) -iw•-V'x• -- 0 inR 3, 
(5) -iw•+V'x• = 0 inR 3. 

Now, if • • 0 we can proceed in the usual way to eliminate 
the magnetic induction by using (5) in (4) to obtain 

v x (v x 

By standard vector identities this implies that 

However taking the divergence of (4), and assuming w • 0, 
we see that V. • = 0. Hence (6) becomes 

(7) w2•-A•=0 inR 3. 

Thus each component of • satisfies the standard 
Helmholtz equation, and the dispersion properties of (4)- 
(5) are exactly the same as for the wave equation. In par- 
ticular, we can seek a plane wave solution of (7) of the 
form 

• = •0 exp(i/• ß x) 
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where •70 is a constant vector and k = (kl, k2, ka) T. For 
this function to solve (7) it is necessary that w be related 
to k via a dispersion relation. There are two possibilities: 

(8) either co - 0 or co2 _ q- q- -Ikl 2, 

The case co = 0 corresponds to non-propagating waves, 
and the case co = +[kl corresponds to wave propagation. 
We shall refer to approximations of the dispersion relation 
co2 _ [kl2 as the "physical" dispersion relation. Unfortu- 
nately, the cubic finite element method in this paper has 
other non-zero dispersion relations that are termed "para- 
sitic" since they do not have a counterpart in the standard 
continuous theory. An alternative expression for the dis- 
persion relation corresponding to propagating waves is 

where co12(k) = k 2 is the dispersion relation for the one 
dimensional wave equation. This observation proves use- 
ful in analyzing the dispersion properties of the discrete 
scheme. 

3 Edge element discretization 

Now let us turn to discretizing (1)-(2) in space. Suppose 
we construct finite element subspaces as follows (we shall 
give details of this construction shortly): 

t:• C H(curl; 

-- {U e (L2(•))3 I V x u e (L2(•))3}, 
U0.h C H0(curl;•) 

= {u e H(curl;•)ln x u- 0 on F}, 
Vh c H(div;fi) 

- {v ß (L2(F0)3I V.v ß L2(f•)}. 
Then the obvious semi-discrete scheme for approximating 
the Maxwell system is to seek semi-discrete fields Ea(t) ß 
Ua and B(t) ß Va such that 

(eEh,t, (b) -- (lz-lBh, V x 
(9) 

(•-lSh,t, •)) -- (]•-lv X rh, 
(10) 
(11) n x Zh 

= -(J, ½), 
¾½ ß Uo,h, 

-- O, 

= ff• on F, 

where (u, v) = fn u. v dV and 'in is a suitable interpolant 
of '7 on F. In addition the initial conditions must be en- 
forced (for example by interpolating the initial data). This 
is an extension of the scheme proposed in [13] to variable 
e and/•. 

The problem with this approach is that the inner prod- 
uct (eEn,t, c)) gives rise to a projection matrix which makes 
it impossible to use a pointwise explicit time stepping 
scheme to discretize (9)-(10) in time. Following our mass- 
lureping strategy developed in [4], we mass-lump (9)-(10) 
by replacing the exact inner products by approximate in- 
ner products computed using quadrature. An important 
difference compared to the two dimensional scheme is that 
it is now necessary to apply quadrature to all terms in 
the weak formulation. We define two approximate inner 
products (., .)•h and (., ')2• which approximate (., .). Ob- 
viously the discrete bilinear forms must be chosen so as to 
lump the projection matrices for the magnetic and electric 
equations, preserve accuracy, and result in positive definite 
diagonal lumped matrices. 

Using the approximate inner products, the discrete so- 
lutions (E•(t),B•(t)) ß U• x Vh are taken to satisfy 

together with the boundary condition (11). In each case, 
for i = i or 2 the quadrature has the form 

(14) (u, v)in = (ul, Vl)lih q- (U2, V2)2ih q- (N3, V3)3ih, 

where the quadratures used to compute each term use 
quadrature points at the interpolation points for the cor- 
responding component of the solution. 

It remains to describe the quadratures and the spaces 
Un, U0,n and Vn. We suppose that • has been covered 
by a mesh consisting of translates of the "unit cell" [0, h] a. 
Obviously this greatly restricts the class of domains •. We 
could allow parallel-piped boxes, but the extension of the 
scheme to isoparametric hexahedra is much more complex 
and will be addressed in another paper. 

On each cube in the mesh, the electric and magnetic 
fields are represented by polynomials. In order to define 
these polynomials, we need to introduce some notation 
which we do next. Let -1 = •:f < :•2 t' < •a t' < •:4 t' = 1 
be the cubic Gauss-Lobatto quadrature points in [-1, 1] 
with corresponding quadrature weights tbO, tb2 •, tba • and 
tb4 •. Note that tbO = tb4 •. By mapping [-1, 1] onto [0, h] 
using an arline map, we obtain the Gauss-Lobatto points 
0 = x• < x2 • < Xa • < x4 • = h on [0, h] with associated 
weights w• = thigh/2, 1 < i < 4. Then we define the 
basis polynomials {/i (x) }/4=1 of degree 3 by requiring that 
li(xp) = 5ij, 1 < j < 4. Thus {/•(x)},4.=1 are the Lagrange 
basis functions associated with the Gauss-Lobatto points. 
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In the same way, let x• G < x• < x• G be the quadratic 
Gauss points in [0, hi (obtained by mapping the Gauss 
points in [-1,1] to [0, hi) with associated quadrature 
weights I• ,G]3 We define the quadratic Lagrange ba- lt6i fi=l' 

sis polynomials {gi(x)}•=• by gi(x?) = 6ij, I _( j (_ 3. 
Having defined these polynomials we can define the cubic 
edge elements used in this paper. These were proposed 
and analyzed in [13]. On the element [0, h] s, the discrete 
approximation En - (E•h., E2h, E3h) of E is represented 
as follows 

3 4 4 

'•'"•ijk gi(x)lj(y)lk(z), 
i=1 j=l 

4 3 4 

(16) E2•(x,y,z) • • • • •(2) •ij• li(x)gj(y)l•(z), 
i•1 j•l k=l 

4 4 3 

•=1 j=l 

where {E(j•, EJ•. © E•jk} are the degrees of freedom of the 
solution. The finite element solution on other elements 

is represented by translations of the basis functions used 
above (with different coefficients!). 

To obtain a globally curl conforming element, Elk is cho- 
sen to be continuous in across faces in the mesh that are 

normal to the y and z axes, but in general, it is discon- 
tinuous faces in the mesh that are normal to the x axis. 

Similarly E2• is continuous across faces normal to the z 
and z axes and E• is continuous across faces normal to 
the z and y axes. The space U• can then be assembled in 
the usual finite element way. The space U•,0 is the sub- 
space of U• consisting of those functions with a vanishing 
tangential component on F. This can be found simply by 
setting the degrees of freedom associated with edges or 
faces on F to zero. 

On [0. hi •, the discrete magnetic induction B• = 
(B•;•, B2•. B•) •' is represented by 

B(1) li(x)gj(y)gk(Z) ijk • 

B(2) i;k 

B(S) 

1p(x) p(2) where t•_.ijk, "-"ijk, "-'ijk } are the degrees of freedom of the 
solution. 

To obtain a globally divergence conforming element, Bxn 
is continuous across faces in the mesh that are normal to 

the x axis, but in general discontinuous across other faces. 
Similarly B2n is continuous across faces normal to the y 
axis and Bsn is continuous across faces normal to the z 
axis. The space Vn can then be assembled in the usual 
finite element way. 

Figure 1 shows the distribution of degrees of freedom 
for the first component of the electric and magnetic fields. 
Note that the polynomials used to represent En and Bn 
are of different degrees in different directions, and differ- 
ent for each component so it is not clear how the discrete 
dispersion relation will behave. 

The quadratures used to compute (., .)• and (., ')2• use 
quadrature points at the interpolation points for the cor- 
responding component of the solution. Thus, we approxi- 
mate 

rio u•v• dV • ,h]• 
3 4 4 

(21) •'• Z • u•(z•,z•, • (z•,z•, • • • • ß 
i=1 j=l k=l 

and (u•, v•)•in (see (14)) is obtained by adding quadratures 
of the type (21) over all elements. The remaining quadra- 
tures are defined similarly. Using these quadratures and 
the fact that the basis functions are Lagrange interpolants 
at the quadrature points results in a diagonal matrix mul- 
tiplying each time derivative term when the discrete equa- 
tions are written in matrix form. The fact that Gauss 

or Gauss-Lobatto quadrature is used in each direction im- 
plies that the accuracy of the finite element scheme is not 
spoiled. 

4 Dispersion analysis 

Taking f• = R a, e = /• = 1 and J = 0 in (12) and (13) 
we can perform a discrete dispersion analysis on the finite 
element scheme outlined above. We start the dispersion 
analysis of the discrete scheme by seeking discrete solutions 
of the form 

E•(x,t) = •(m)exp(-iwt), and 
Bn(x,t) = •n(x) exp(-iwt) 

where •n • Un and •n e Vn. Then (12)-(13) becomes 

- x = 0 
(22) V• n e U•, 

- (v x = 0 
(23) e 
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Figure 1: Here we show the distribution of degrees of freedom for the first component of the electric and magnetic fields 
on an element (electric field - left, magnetic induction - right). The degrees are located at •auss or Gauss-Lobatto 
points in each coordinate and are show by the bold face arrows. There are some electric degrees associated with edges 
of the grid and this is the origin of the name "edge elements" for the electric field. For the magnetic field the degrees 
of freedom are either internal to an element or associated with faces. 

we cannot find finite element functions •;a and •a that 
behave like exp(ik-x) in space since •Th and •a are piece- 
wise polynomials. Instead we demand that •;a and •a 
behave like exp(ik ß x) on the level of the mesh, so that if 
e, is the ith unit vector 

•7a(x + lhe• + mhe2 + nhea) = 
(24) •(x) exp(i(lhk• + mhk2 + nhk3)) 

and similarly for •a. In particular let us consider the 
the first component of •Ta denoted •al. This function is 
discontinuous as a function of x across faces in the mesh 

normal to the x axis, but it is continuous as a function 
of y or z across the remaining faces. Thus we are only 
concerned with (24) in the y and z directions: 

•a• (x + lhE2 + mhE3) = •a• (x) exp(ik2hl)exp(ikahm). 

This equation relates •h• on faces normal of [0, hi a to the 
y or z axis to the value on the opposite face. Motivated 
by this we define the 4 x 3 matrix Px by 

P• =- ' exp(iklh),O,O ' 
where I is the 3 x 3 identity matrix. The matrices Py 
and Pz are defined similarly with k• replaced by k2 and ka 
respectively. 

We shall also need the following notation. Let M c be 
the 3 x 3 diagonal matrix with (%o,..., OVa •) on the main 

diagonal and let 3//œ be the 4 x 4 diagonal matrix with 
(•,... •4 •) on the main diagonal. We also define DO) to 

(•)= fo • l•(x)gj(x) dx. Finally be the 4 x 3 matrix with 
let • be the 3 x 3 identity matrix and •œ be 4 x 4 identity 
matrix. 

The following theorem holds [5]' 

Theorem 4.1 Let 0 _< kih _• 7r, 1 _< i _< 3 and suppose 
o•n • 0 where o•a is the dispersion relation for the first kind 
edge elements with mass-lumping. Then 

where 0•2• is an eigenvalue for 

(25) PjD(•)MS•D(1):rpxu• 2 ß - %•P• M•P:u• = 0 

and similarly for 0•2• and 053h (with x replaced by y and 
z). 

Remarks. 

, 

. 

The proof of this theorem follows the same outline 
as derivation of the the dispersion relations for the 
continuous problem given in the introduction. 

Equation (25) is exactly the equation arising from a 
dispersion analysis of the one dimensional wave equa- 
tion discretized using finite elements and mass-lumped 
by Gauss-Lobatto point integration [4]. Thus disper- 
sion relations are available [18]. 
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3. Despite the use of anisotropic basis functions (differ- 
ent degrees in different directions), from the point of 
view of phase error the method behaves as if full cubic 
polynomials have been used in all directions. 

4. If we do not mass lump (so use (9)-(10) rather than 
(12)-(13)) the same conclusion holds if we replace Mc 
and ML by suitable non-diagonal inner product ma- 
trices for the appropriate elements. 

From [18] we know that (25) has three dispersion rela- 
tions (we have suppressed the dependency on x): 

h6k6 •v•(k) = A•(k) • k 2 1 302400 + 
(26) 

(27) 

(28) 

+o(1))), 
+o(1))). 

The first dispersion relation (26) is the "physical" disper- 
sion relationship corresponding to a sixth order approxi- 
mation to the true dispersion relation •2 = k2 for the one 
dimensional wave equation. The remaining dispersion re- 
lations (27) and (28) are parasitic modes. These modes do 
not seem to cause catastrophic problems in practice, but 
must be taken into account when determing the stability 
of the scheme. 

Using (26)-(28) we have the foilroving corollary: 
Corollary 4.1 There are 27 non zero dispersion relations 
for the cubic edge finite element scheme described here. 
They are 

ß 

= ) + 
for 1 < i,j,k < 3. One mode, •a 2 (k), is a sixth or- - -- h,1,1,1 

der approximation to the physical mode given in (8). The 
remaining 26 modes are parasitic. 

One more point is that using this corollary and the re- 
suits of [18] we can show that 

2 2 (29) max maxh cz•,i,j,•(k ) - 18(6 + x/•). l_•i,j.k_•3 hk 

This result will allow us to give a stability condition for 
the fully discrete scheme. 

5 Time stepping 

For a practical implementation of (12)-(13) it is necessary 
to discretize in time. In [4], we have shown that in two di- 
mensions it is best to use a fourth order leap-frog time step- 
ping scheme when cubic finite elements are used in space. 

An obvious question is whether this conclusion holds in 
three dimensions. 

We shall start by presenting a second order in time 
scheme. If we number the degrees of freedom for En and 
Bn we can write the unknowns as vectors/•n and/•n, then 
(12)-(13) may be written as the following matrix ordinary 
differential equation: 

c (30) 
d•n 

(31) Ms +C• = 0, 
where (30) applies to the internal degrees of freedom of 
and the boundary degrees are determined by (11). The 
most important feature of these equations is that Me and 
Ms are diagonal matrices which is a direct result of our 
lumping strategy. The matrix C corresponds to a discrete 
cuff, and the vector f is determined form the given func- 
tion J. 

To obtain a second order time stepping scheme, we use 
a leap-flog scheme (as is standard for finite difference 
methods [22]). We let 
•((n + 1/2)At) where At is the time step. Then the 
fully discrete electric and magnetic fields are determined 
by solving successively 

+ : 0. 
These equations may be solved rapidly since 
are diagonal. 

If • = R 3, we can use the dispersion analysis to show 
that the time stepping scheme is stable provided the fol- 
lowing Courant condition is satisfied: 

At 2 
-- < m 0.13. 

where we have used (29). 
This time stepping scheme is called a "2-4" scheme since 

it is formally second order in time and the use of cubic ele- 
ments in space is expected to provide fourth order accuracy 
in space. The fourth order accuracy in space is a known 
superconvergence result if the method is not mass lumped 
[11], but has not yet been proved for the mass lumped case. 

To construct a fourth order in time scheme, we adopt 
the modified equation approach which corrects the error 
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in the leap-frog scheme. The scheme is derived in [4] and 
can be summarized as follows: if we define 

,4 = M•C r and B = -M•C 

then at interior points 

ff•+l/2 : Mi•n+l/2 q_ 

while at boundary points ff•+z/2 and ff•+•/2 are given by 
time derivatives of if. 

Using these equalities in a Taylor expansion of ff•+• - 
ff• about t = (n + 1/2)At and discarding higher order 
terms gives us the following time stepping scheme for the 
electric field 

(At)3 •+•/2 (32) ff•+• = ff=+Atff• +•/2+• tt ß 
This is a corrected leap-frog scheme. 

The time stepping scheme for the magnetic induction is 
obtained in the same way using the magnetic analogue of 
(32). Using this time stepping scheme, we have a locally 
fourth order accuracy in time. The scheme is termed a '&4' 
scheme since it is formally 4th order in time and expected 
to be 4th order in space. The stability constraint can be 
shown (again using the bound (29)) to be 

At < 0.381h. 

This is almost three times the stability limit for the 2-4 
scheme (but the work per time step is approximately three 
times the work for a single 2-4 time step). Thus the fourth 
order in time accuracy is gained at almost no extra cost 
compared to the 2-4 scheme. 

To demonstrate the improvement in phase velocity of the 
fully discrete 4-4 scheme compared to the Yee scheme we 
show a graph of phase velocity defined by h/Ikl against 
the reciprocal of the number of grid points per wavelength 
in Figure 2 for waves traveling along the x axis (ie k = 
(k•,0,0)). For the Yee scheme, we choose At/h = 1/x/-•, 
and for the 4-4 scheme we choose At/h = 0.3. The exact 
phase velocity is unity regardless of k, and both the Yee 
scheme and the cubic 4-4 scheme underestimate this phase 
velocity. However the cubic 4-4 scheme is much closer to 
the ideal. 

6 Numerical results 

In order to compare the cubic method to the standard 
Yee finite difference scheme we have performed a simple 

computational comparison of the methods. We take •q - 
[0, 2] a and mesh •q by subdividing into N x N x N cubes. 

For the Yee scheme the time step is chosen to be the 
optimal step (the maximum step consistent with stability). 
For the 2-4 cubic scheme, we choose either 

0.2h (this is approximately At • -•- 
the Courant stability limit), 
0.2h h 2 

or At m min(x/_•, 3 ) 
and for the cubic 4-4 scheme we use At • 0.3h. 

The exact solution is a Gaussian wave given by 

E = Eog(k. x- t) and B = Bog(k. x - t) 

where 

k = (cos(O) cos(½), sin(O), cos(O) sin(•b)) 

and 0 = ½ = 0.5. Also 

E0 = (- sin(O) cos((•),cos(0),- sin(O) sin((•)) 
B0 = (- sin((•), 0, cos(0)), 

Finally the function g(t) is given by 

exp(_ 10(s_ 1)2)_exp(_ 10 ) •-exp(-•0) 0 <_ t < 2 g(t) = 0 otherwise . 
The boundary data q, is computed from the exact solution 
and J = 0. The solution is not aligned with a particular 
mesh direction. 

To obtain a quantitative comparison of the error in the 
various schemes, we shall display plots of the discrete rel- 
ative L 2 error as a function of the number of degrees of 
freedom in the problem (number of unknowns). The dis- 
crete L 2 error is defined as follows. Let rr• and rr• be the 
interpolation operators for the electric and magnetic field 
spaces (obviously these operators are different for the cu- 
bic and Yee schemes). Then the relative discrete L2 error 
is defined to be 

(33) (l[aSE(t)- Ea(t)112 + libfaSB(t)- Ba(t)112)•/2 
(11fE½)112 q_ IIaB B(t)112) 

(recall e =/• = 1) and we evaluate this error at t = 3. 
When we use At = O(h) in the cubic 2-4 scheme, the 

error is almost entirely due to time stepping error (since 
this is second order rather than fourth order for the spa- 
tial error). The overall convergence rate is second order 
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Figure 2: Here we show a graph of the discrete phase velocity (defined by con/lk[) against the reciprocal number of grid 
points per wavelength for waves traveling along the x axis. In the case of the Yee scheme, we choose At/h = 1/V• 
which is optimal. For the 4-4 scheme we show the phase velocity for At/h = 0.3. These choices of Courant condition 
are the same as those used for the numerical experiments in Section 6. Ideally the phase velocity should be constant 
and equal to one independent of the number of grid points per wavelength. 
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and the results in Figure 3 show that the method has ap- [3] 
proximately the same error (for a given total number of 
degrees of freedom) as the Yee scheme. If however we use 
At - O(h 2) in the 2-4 scheme, the error in the discrete 
scheme is now O(h 4) and for a given number of degrees of 
freedom the cubic scheme is more accurate than the Yee 

scheme (provided h is small enough). This choice is not [4] 
practical in general since it results in a very small time 
step. 

For the 4-4 scheme, the choice of At = O(h) results in a 
scheme with error O(h 4) and with a reasonable time step [5] 
size. Again the results are shown in Figure 3. 

Conclusion [6] 

We have described a cubic mass-lumped edge finite ele- 
ment scheme for approximating the Maxwell system and 
have derived the dispersion relations for the semi-discrete [7] 
scheme. These show a sixth order accurate dispersion re- 
lation (although the scheme is only expected to be fourth 
order accurate in amplitude due to the use of cubic basis 
functions). We then showed how to discretize the method [8] 
in tinhe using either a second order or fourth order leapfrog 
scheme and derived the stability bound for these schemes. 

Numerical results (for propagating a Gaussian pulse a [9] 
short distance) show that the cubic method can be more 
accurate than the Yee scheme provided a sufficiently accu- 
rate time stepping scheme is used. The results also suggest 
that the fourth order in time offers substantial advantages 

over the second order in time scheme. [10] 
To be truly useful the scheme must be developed further. 

In particular we need to show how to deal with curved 
boundaries and how to implement an absorbing condition [11] 
to terminate infinite domain calculations. The problem 
of curved boundaries is the most difficult since it appears 
likely that the use of Berenger's perfectly matched absorb- 
ing layer [2] will be possible with our cubic scheme and [12] 
that this will result in a good absorbing condition. We 
are currently investigating mapping schemes to fit curved 
boundaries and hope to report on a complete method soon. 
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Figure 3: Here we show the discrete L 2 error defined by (33) against the total number of degrees of freedom for the 
Yee scheme, the cubic 2-4 scheme and the cubic 4-4 scheme. This error includes both phase and amplitude error. The 
Yee scheme and cubic 2-4 scheme with At -- O(h) converge with error O(h •) and there is not an obvious advantage to 
the cubic scheme since the error is close to the Yee scheme for a given number of unknowns. If a more accurate time 
stepping scheme is used (cubic 2-4 scheme with At -- O(h •) or the cubic 4-4 scheme) the cubic scheme now converges 
at the expected rate of O(h 4) and rapidly becomes more accurate than the Yee scheme. These results suggest that the 
cubic 4-4 scheme is to be prefered to the cubic 2-4 scheme. 
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