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Abstract 

•Ve discuss high-order finite element methods to simulate 
the flow of incompressible viscous fluids. We focus on algo- 
rithms for solving the related algebraic equations efficiently 
using the iterated penalty method for resolving the incom- 
pressibility constraint. We show that direct methods may 
be a suitable choice for solving the resulting linear equa- 
tions, at least in the t•vo-dimensional case. 

Key words: finite element method, incompressible vis- 
cous fluids, iterated penalty method, Navier-Stokes 
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1 Introduction 

High-order finite element methods provide very accurate 
simulations of the flow of incompressible viscous fluids [7]. 
Here xve focus on various algorithms for solving the related 
algebraic equations ef•ciently in the context of NewtonJan 
fluids, that is, ones solving the Navier-Stokes equations [8] 
which appear subsequently in equation (9). 

•Ve discuss the iterated penalty method for resolving 
the incompressibility constraint [4]. This method allows 
one to replace an indefinite linear-algebraic system with 
a positive-definite linear system in many cases. One key 
observation we make is that it is necessary in some cases 
to do only a very small number of penalty iterations after 
an initial start-up phase. This leads to a very ef•cient 
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algorithm. We also extend the algorithm and analysis in 
[4] to the case of inhomogeneous boundary conditions. 

Another observation we make is that direct methods 

may be a suitable choice for solving the resulting linear 
equations, at least in the two-dimensional case. We show 
that the relative fill-in due to Gaussian elimination is quite 
small for high-order methods, and decreases with increas- 
ing degree. This allows one to solve non-symmetric prob- 
lems with comparable ef•ciency to the symmetric case, al- 
lowing complex time-stepping schemes to be used. 

2 Mixed method formulation 

In all of the cases considered here, the formulation will 
reduce to solving a general mixed method of the form 

(1) a(uh, v) + b(v,ph) - F(v) Vv • V• b(u•,q) = G(q) Vq • II•, 

where F • V • and G • II • (the "primes" indicate dual 
spaces [4]). Here V and II are two Hilbert spaces with 
subspaces V• C V and IIh C II, respectively; u• • V• and 
p• • IIa are unknowns, a(., .) and b(-, .) are bilinear forms, 
which satisfy conditions introduced later. 

The main new ingredient in the variational formulation 
of mixed methods with inhomogeneous boundary condi- 
tions is that the term G is not zero. In [4], complete details 
are given only in the case that G -- 0. 

The variational problem (1) is only a slight generaliza- 
tion of (11.1.1) in [4], which had b(uh, q) -- (g,q)n as the 
second equation, if we make the translation g = PnhG 
where Pnh denotes the Riesz representation of G in II•,, 
that is 

(2) (PnhG, q)n = G(q) Vq • II•. 
We will assume that/>: V -• II is continuous and that 

(3) b(v,p) = (/)v,p)n Vp, 

where (., ')n denotes the inner product in II. Note that the 
second equation in (1) says that 

(4) Pnh/•un = Pn• G 
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where we also use Pnh g to denote the II-projection of g • II 
onto Ha. 

We assume that the bilinear forms satisfy the continuity 
conditions 

a(u,v) _< c•11ullv[IVllv Vu, v • v 
(5) b(v,p) ! CbllvllvIIPlln Vv • V, p • II 
and the coercivity conditions 

•11vll•_<a(v,v) Vv•ZUZa 
b(v,p) 

(6) 211p[ln < sup Vp • Ila. 
-v•vh IIvllv 

Here Z and Za are defined by 

(7) Z = {v • V ß b(v,q) = O Vq•ii) 

and 

(8) Za = {v G Va ' b(v,q) =0 Vq e ila} 

respectively. 

3 The Navier-Stokes equations 

The Navier-Stokes equations for the flow of a viscous, in- 
compressible, Newtonian fluid can be written 

-5u + Vp = -R (•u. V•u + •t) (9) • div u = O. 

for •x • • C IR•, t • [0, T], where •u(t, •x) denotes the fluid 
velocity, p(t. x•) denotes the pressure, and R denotes the 
Reynolds number [8]. These equations must be supple- 
mented by appropriate boundary conditions, such as the 
Dirichlet boundary conditions, u• = • on 0•, and initial 
condition •u(0, •x) = •u0(•x). 

A complete variational formulation of (9) takes the form: 
Find •u such that •u(t, .) - • • V and p(t, .) • II such that 
vt • I0, r] 

a(u,v)+b(v,p)+ 
+ = 0 v, 

b(•u,q) -0 Vq•ii, 

where e.g. a(., .), b(., .) and c(.,., .) are given by 

f• • Oui Ovi (11) a(•u, v•):= ----dx, 
i,j=l OXj Xj ~ 

(12) of• •-• O v i b(v•, q) := - •x/q d•x, 
i=1 

[ 
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Figure 1: Empirically determined maximum time step size 
for different time stepping schemes for Jeffrey-Hamel flow 
for Reynolds number R = 240. The explicit scheme is (14), 
the implicit-explicit scheme is (15), the implicit scheme is 
(21). To utilize an implicit scheme for nonlinear equation, 
the fixed-point iterative method has been used. 

(13) 4•u, •, •w) := f• Lu. rs) .•w •, 
and (.,.)A2 denotes the L2(•)a-inner-product, •V = 
fil(•)d and II = {q• L2(•): fnqd•x=O}. For more 
details about notation see [4]. 

One of the simplest first-order time-stepping schemes is 

(14) 
a (•u '-x, v•) + b(v•,p t) 

b (•ue, q) 

•-RC (U œ--1 U •--1 V ] k• ' • ' •] 

- = o, 
'--0, 

where, here and below, v• varies over all V (or Va) and 
q varies over all II (or Ha) and At denotes the time-step 
size. The scheme is only explicit with respect to the veloc- 
ity. There is an equation for the pressure and the zero- 
divergence constraint. The major drawback of explicit 
schemes such as (14) is the severe limitation on the time 
step as depicted in Figure 1. 

Time-stepping schemes that are implicit with respect to 
the linear terms and explicit with respect to the nonlinear 
terms can be more efficient even though a linear system 
involving a(., .) form must be solved. The simplest of these 
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(15) 
a (•u •, v•) + b(v•, pt) 

b(•u•,q) 

A more complex time-stepping scheme could be based 
on the variational equations 

(16) 

a (?, v•) + b (v•,p •) +Rc 7g g--l, U g, V 
2i-•tt (•g -- • ug--I'•)L 2 '-- 0, 

b(•u•,q) :0, 

in which the nonlinear term has been approximated in such 
a way that the linear algebraic problem changes at each 
time step. It takes the form (1) with a form a(.,.) given 
by 

(17) a (s. s; F): (s, + 

where •U = R? arises from linearizing the nonlinear term. 
Even though the addition of the •U term makes it non- 

symmetric, 5(., .) will be coercive for •tt sufficiently large. 
In fact, when div •U _= 0 then integrating by parts yields 

(lS) 

--- --Vj dx = 0 2 Oxi •' 
i.j----1 

for all v • V so that 

(19) o• • •z-<•(v•,v•) 'v'v•(•V 
for the same choice of c• > 0 as before. Of course, •(., .) is 
continuous: 

(20) 5(v•, •W) _• Ca • V •W V 'V'•, •W (• V 

but now Ca depends on both •tt and •U. 
The main disadvantage of the time-stepping scheme (16) 

is that it has a time-dependent system of algebraic equa- 
tions. To avoid this time-dependence and to keep implicit- 
ness of the non-linear term approximation, fixed-point it- 
erations have been introduced in the following variational 

form 

a(•ut'm,v•) +b•~,p' } 

(21) 
b {u t,'• q) 

+ R c (•ue,m- l , •ue,m- l , v•) 
• ' ,-.d L 2 ---- O, 

: O, 

where m - 1, 2, ..., M is the fixed-point iteration index. We 
write •u e for •u e'M. The following convergence criterion has 
been used in our calculations for the fixed-point method: 

(22) •ut,.• __ •œ,m--1 _• efp •t,m . 
The simplest initial guess for fixed-point iterations is •u t'ø - 
U t-1 To reduce the number of fixed-point iterations, the 
initial guess was calculated using linear interpolation of the 
solution at two previous time steps: 

(23) •u t'ø -- 2•/-1 -- •U t-2. 

In practice, higher order time-stepping schemes can be 
used, including the second-order approximation of the time 
derivative ([6]): 

•. 3? -- 4u t-1 + •u g-2 (24) c9u (t•) Ot 2At ' 

but the main issues related to solving the resulting linear 
equations remain the same. 

All time-stepping schemes may be written as a problem 
for (•ul,p t) which is nearly of the form (1), for example, 
equation (15) may now be written as 

(25) +7' (•U/•--I•v•)L• 
b(•u•,q) =0 

with the more general form 5(., .), namely 

(26) 

where the constant 7' = R/At for the first-order time- 
stepping scheme and 7' = 1.5R/At for the second-order 
time-stepping scheme. Numerical experiments will be pre- 
sented subsequently for such a problem. Note that the 
linear algebraic problem to be solved at each time step is 
the same. 

Note that we have •u 
where •u • V. The variational problem (25) for •u • can 
then be written: Find •u • V and p • II such that 

5 (u, v) + b(v•,p) = -a (•[, v•) 
(2,) -a c s) + vs v 

b (•u, q) = -b (:, q) Vq • II. 
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This is of the form (1) with 

Fe) := -a (•, •) - nc (•-•, •-', •) (35) 

a (q):= -• (•q) Vq • n. 
Note that the inhomogeneous boundary data • appears in 

both right-hand sides, F and G. Thus we are forced to (36) 
deal with a nonzero G. 

A finite element discretization of (10), (15) or (27) is 
obtained by replacing V by Vn and • by •n satis•ing (6). where 
Since the notation is identical if we let V denote either V 

(•) 
or V• (and similarly with •) we drop all h subscripts from 
now on. 

4 Iterated penalty method 
ß 

Consider a general mixed method of the form (1). Let 
p' • IR and p > 0. The iterated penalty method (IPM) 
defines u • • V and p'* by 

(29) = F(v) - b(v,?) + p'G(T)v) Vv • V 
p•+• = p• + p (•u • - Pn, G) 

where Pn•G is defined in (2). Recall also that (4) says 
that Pn•u = Pn•G. 

The algorithm does not require Pn, G to be computed, 
only 

(30) 

for v • V. Suppose that G(q):= -b(%q). Then 

(31) G(Pn, Dv) = -b(7, Pn• Vv) = -(Vv, Pn• Vv)n. 

If further H = DV, then 

(32) b(v, Pn•G) = G(Pn•Vv) = 

for v • V. 

One key point of the iterated penalty method is that 
the system of equations represented by the first equation 
in (29) for u ", namely 

(33) = F(v) - b(v,p •) + p' G(Dv) Vv • V, 
will be symmetric if a(., .) is symmetric, and it will be 
positive definite if a(., .) is coercive and p• > 0. 

Suppose that H = DV. Then since G(q):= -b(% q), 

(Pn• G, q)n = G(q) = 
(34) -(D% q)n = -(Pn• 

that is, Pn•G = -Pn•T)'. Then 

P•+• = P• + PPn• T) (u • + 

since Pn•T)u • = T)u •. 
If we begin with p0 = 0 then, for all n > 0, 

Note that 

pn = p Prl• T) • ( u i + • ) - Prl • T)w n, 
i=0 

.• 
•=0 

b(v,p•) - (•Dv,p•)n = 
(38) (Vv, •n•Vw•)n = (Vv, Vw•)n 
since Pri,•Dv • •v. 

Thus, the iterated penalty method implicitly becomes 

a(u n, v) + p' (Vu n, Vv)n = F(v) 
(39) -(Vv, Vw•)n-p'(Vv, Vt)n Vv•V 

w•+• = w • + p (u • + •/). 

In the c•e p• = p this simplifies to 

•(•, v) + p (m •, V•)n = r(v) 
(4O) -(re, V( w• + P•))n Vv • • 

w-• = w -+p(u • +•). 

Thus we see that the introduction of inhomogeneous 
boundary conditions does not lead to a dramatic change to 
the formulation of the iterated penalty method. The main 
difference is that the "pressure" term 

(41) p = •n• Vw, 

where w := w • for the value of n at which the iteration 

is terminated, cannot be computed directly since w ½ • 
That is, •w ½ H. On the other hand, p is not needed at 
all for the computation of u and can be computed only as 
required. For example, in a time-stepping scheme it need 
not be computed every time step. 

The "pressure" term can be calculated in various ways. 
It satisfies the system 

(42) (p, Vv)n = (Vw, Vv)• Vv • •. 

We can write p = •z for various z • V, with z satisfying 
the under-determined system 

(4a) (Vz, Vv)n = (Vw, m)n Vv • •. 
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Several techniques could be used to specify z, but one sim- 
ple one is to use the system (1), namely, to find z e V and 
r • [i such that 

(44) a(:, v) + b(v, •) = 0 Vv e V 
b(z, q) = (Vw, q)• Vq e n 

which is (1) with F -=0 and G(q):- (/)w, q)rI. 
The iterated penalty method can be used to solve (44), 

yielding an algorithm of the form 

(45) 
a(z n , v) + p (Vz n, Vv). -- 

- (Z)v, Z)(C - pw))n Vv e V 
C+l = C + p (z• - w) 

in the case p' - p. This involves inverting the same alge- 
braic system as in (40), so very little extra work or storage 
is involved. 

Note that w n in (40) as well as (n in (45) do not converge 
to any finite functions and they might have arbitrarily large 
values. On the other hand, the iterative penalty method 
does not require calculation of those variables explicitly 
since the first equations in (40) and in (45) use 
and (/)('•,/)v). To avoid the calculation of variables with 
large entries and to reduce floating-point error, it is useful 
to rewrite the second equation in (40) and (45) in terms of 
(•w •, •v) and (•'•,/)v), which can be calculated with 
less error: 

(46) 
a(u '•, v) + p (/)u '•,/)v)n = F(v) 
-(Vv, V(w n + P•))n Vv e v 

(Vv, Vw•+ 1): (Vv, Vw •) + p(Vv, V(u • +•)). 

(47) 
a(•, v) + p(Vz•, Vv)n = 

-(m,z)(C-pw)) n Vve v 
(v•,,z)C +•) = (Z)v,Z)C) + p(Z)v,Z)(z • - w)). 

The variables /)u., '• and /)('• are incremented directly in 
our implementation. 

5 Application to Navier-Stokes 

The iterated penalty method (39) (with p' = p) for (15) 
takes the form 

(48) 

where either pl,O = 0 (i.e. ?,o = 0) or •w/'ø = •W l--l'N where 
N is the final value of n at time-step • - 1. If for some 

reason pt = pi,• = -Pndiv •w •"• were desired, it could be 
computed separately. 

For example, algorithm (40) could be used to compute 

z • (div '• div v) = 
(49) -(div ({n- p.w•'•), div v.)œa V•6y 

C +•: C + p (? - •'•) 

starting with, say, {o • 0. Then ? will converge to ! 6 • 
satisfying div• = Pndiv?'• = -?'•. Note that (49) 
requires the same system to be solved as for computing 
ff,n in (48), so very little extra code or data-storage is 
required. 

The potential difficulty caused by having inhomogeneous 
boundary data can be seen for high-order finite elements. 
For simplicity, consider the two-dimensional case (d = 2). 
Let W• denote piecewise polynomials of degree k on a 
triangular mesh, and let V• denote the subspace of W• 
consisting of functions that vanish on the boundary. Let 

(•o) • = v• • v•, 

and let •n = div •n. Then each q • •n is constrained 
at all boundary singular [4] vertices, •i, in the mesh. 
On the other hand, inhomogeneous boundary conditions 
will require the introduction of some • • W• x •. It 
is known [10] that div (W• x W•) consists of all piece- 
wise polynomials of degree k - 1, a larger space than 
•n if boundary singular vertices are present in the mesh. 
On the other hand, if there are no boundary singular 
vertices, there is no need to form the projection since 
Hn={q6div(W•xW•) ß fn q(x) dx = O} in this c•e. 

6 Convergence of IPM 

The convergence properties of (29) follow from [4]. 

Theorem 6.1 Suppose that the forms (1) satisfy (5) and 
(6) for Vn and Ha = I)Vn. Then the algorithm ('29) con- 
verges to the solution of (1) for any 0 < p < 2p • for ff 
suJficiently large. For the choice p = if, (29) converges 
geometrically with a rate given by 

The following stopping criterion follows from [4]. 

Theorem 6.2 Suppose that the forms (1) satisfy (5) and 
(6) for Vn and [In = I)Vn. Then the errors in algorithm 
(29) can be estimated by 
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and 

Ill - phllrz -< + + >'Cb - Prz,, Gllrz- 
When G(q) - -b(*/, q), then Pr•h G = -ProbeD*/and since 

•Du • E 1-lb, 

(51) 

The latter norm is easier to compute, avoiding the need 
to compute Pr•hG. We formalize this observation in the 
following result. 

Corollary 6.1 Under the conditions of Theorem (6.2) the 
errors in algorithm (29) can be estimated by 

and 

The corollary gives a natural convergence criterion of the 
iterated penalty method: 

(52) 

7 Computational examples 

All numerical experiments reported in this paper were con- 
ducted using the code Albert [1]. The space V/• is chosen 
to be (50) with degree k _> 4. As a test problem we con- 
sider the well-studied Jeffrey-Hamel flow in a converging 
duct [8]. For this flow, a semi-analytical solution is known 
which is a similarity solution of the form 

(53) •u(x,y):= 6v u(atan(y/x)) 
where 

(54) u"+4u+6u 2=C, u(O)=u(a)=O, 

and differentiation is with respect to the polar angle q) and 
c• is the angle (in radians) made by the two walls of the 
channel. Figure 2 shows the profile (for a = •r/4) of the 
radial velocity u at r - I for two choices of C, 100 and 
10,000. These correspond to Reynolds' numbers of 20 and 
240, respectively, with R calculated by formula R = max [•[ 
for r = 1. 

radial velocity amplitude for Jeffrey-Hamd flow at r=l 
10 • , , , , , 

10 0 

R=240 

i I i 

angular variable 

Figure 2: The profile of the angular velocity u at r -- 1 
for two choices of C, 100 and 10,000. These correspond to 
Reynolds' numbers of 20 and 240, respectively. 

The profiles are plotted for 0.01 <_ &/c• <_ 0.99. This 
allows an assessment of the behavior of the solution in the 

boundary layer. For example, the angular displacement 
thickness 6•, which can be defined in this case by 

f/2 (55) := i J0 

* 

has values 6•0 = 0.110 and 6240 - 0.046. 
For the domain, we consider a slice of a wedge with 

opening c• = •'/4 radians made perpendicular to one of 
the wedge sides, as shown in Figure 3. This provides a 
flow with no particular symmetry. 

Figure 3 shows the pressure relative "error" in the case 
of C = 100 if the projection Prx• in (41) is not included in 
the calculation (left). Note that the error is concentrated 
around the one boundary-singular vertex. When the pro- 
jection is included (right), the relative error drops by five 
orders of magnitude, to about 0.05 percent. 

Figure 1 shows the maximum time-step size for stabil- 
ity of the different time-stepping schemes. The implicit 
schemes are unconditionally stable if one solves the non- 
linear equation exactly, but any algorithm used to solve 
them, such as fixed point iterations, introduces implicitly a 
stability limit. Our simulations were initialized with u - 0. 
Note that the time-dependent numerical solution converges 
to the steady state. A set of subsequently refined meshes 
was used, starting with the coarsest one from Figure 3. 
Numerical experiments have shown that the second-order 
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Maximum pressure error = 2.3245 
Maximum pressure error = 0.0005 

Figure 3: The pressure relative "error" due to a boundary- 
singular vertex in the case of C = 100 if the projection 
Pm• is not included in the calculation (left) and if it is 
included (right). The vertices of the trapezoid are (1, 0), 
(1,1), (2,2), (2,0), in clockwise order starting from the 
lower-left corner. 

100 
Maximum time-step size for the implicit schemes, JHFIow 

2-nd order 

1-st order 

10 -2 ........ , , 
10 • 10 • 10 • 10 '• 

Figure 4: Maximum time-step size for the implicit time 
stepping schemes using fixed-point iterations as in (48) for 
Jeffrey-Hamel flow vs Reynolds number. The maximum 
mesh-step size h = 0.35 (two subdivisions of the mesh 
displayed on Figure 3). 

implicit-explicit scheme with 3 fixed-point iterations (21) 
is the most efficient of the ones we tested. 

Figure 4 shows the maximum time-step size for the im- 
plicit time-stepping schemes as a function of the Reynolds 
number. The mesh was generated by twice refining the 
coarse mesh shown in Figure 3. The number of unknowns 
N = 1202. 

8 Using an initial pressure 

It is possible to use a good initial guess for w ø in the it- 
erated penalty method (40). For example, we can use the 
final w • from the previous time step or other "outer iter- 
ation." Figure 5 shows the reduction in number of itera- 
tions needed as a function of time using an initial w n from 
the previous time step, for two different Reynolds numbers 
and for a moderate penalty parameter (p = 100). Nu- 
merical experiments were conducted for the Jeffrey-Hamel 
problem with zero initial guess. The number of penalty 
iterations approaches one because the solution approaches 
steady state. 

Figure 6 shows the effect of varying the penalty param- 
eter for Reynolds numbers 20 and 240. Shown are the 
pressure and velocity error after convergence (at a time of 
t = 5) for the Jeffrey-Hamel problem. We see that if the 

20 
R = 240 

,•15 • 
._ 

0 / i I i i I i 0 0.5 1 1.5 2 2.5 3 315 
time 

4 45 5 

Figure 5: Reduction in number of iterations needed to 
satisfy (52) as a function of time for two different Reynolds 
numbers and for penalty parameter p = 100 using initial 
w n from the previous time step for Jeffrey-Hamel flow. 
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Convergence of iterated penalty method vs penalty parameter, R = 20 
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Figure 6: Effect of varying the penalty parameter for Reynolds numbers 20 (a) and 240 (b). Shown are the pressure 
and velocity error after convergence (at a time of t = 5) and the number of iterations in the penalty method at the first 
time step. plotted as a function of the penalty parameter, p. Number of penalty iterations for small value of the penalty 

1 

parameter p is proportional to • (b). 

penalty parameter becomes too large, then first the pres- 
sure degrades and finally so does the velocity. Also shown 
is the number of penalty iterations at the first time step 
when there is no initial guess for w ø. We see that it is 
large for a small penalty parameter but decreases rapidly 
to just one iteration for larger penalty parameters. The 
errors quoted in figures were in the Loc norm. We have 
obtained quantitatively similar error estimates in the L2 
norm. 

For truly time-dependent problems, the number of 
penalty iterations also approaches one for each fixed- 
point iteration, when the value of penalty parameter is 
big enough. The uniform flow around a cylinder is a 
classical time-dependent problem which has been investi- 
gated by many researchers (see [3] and references reported 
therein). For Reynolds numbers larger than some critical 
value (around 40) vortex shedding occurs behind the cylin- 
der (Figure 7). The time-dependent horizontal component 
of velocity is given in Figure 8. Plotted are velocity val- 
ues at six points along the line through the center of the 
cylinder cross-section at the angle of 0 = 153 ø with direc- 
tion of flow for a Reynolds number R = 100, a time step 
size At = 0.05 and a computational mesh with 2831 nodal 
points. The frequency of the oscillations in terms of the 
dimensionless Strouhal number is found to be St = 0.177. 

Figure 7: Velocity field for the uniform flow around a cylin- 
der. R = 100, t = 100, At = 0.05. Computational domain 
f• = [-10, 30] x [-20, 20]. Radius of the cylinder r = 1. 
Center of the cylinder is at (0, 0). Plotted is part of the 
domain [-3,9] x [-6,6]. Computational mesh has 2831 
nodal points. Initial flow at t = 0 was uniform flow except 
on the cylinder, where it was set to zero. 
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Authors of [3] found the dimensionless Strouhal number 
to be St = 0.16 (only two digits were reported). The 
difference in observed St could be a result of the finite 

computation domain used f] -[-10,30] x [-20,20] or by 
the polygonal approximation of the cylinder (24 sides). A 
calculation on the domain f] = [-20, 60] x [-40, 40], using 
a 36-edge polygon for the cylinder representation, a mesh 
with 12943 nodal points and a time step size At -- 0.02, 
yielded a the dimensionless Strouhal number St - 0.169. 

The initial time steps need a large number of fixed-point 
and penalty iterations but when the solution becomes pe- 
riodic (t > 50), each time step requires approximately the 
same number of fixed-point and penalty iterations. Fig- 
ure 9 shows the total number of penalty iterations per 
time step as function of the penalty parameter at time 
100. Two different iteration strategies were used. One re- 
quires penalty iterations reach convergence according to 

the criterion (52) with tolerance eip = 10 -?. Another 
sets the number of penalty iterations per fixed-point iter- 
ation to one and the iterations are forced to satisfy both 

convergence criteria (22) with tolerance efp = 10 -4 and 
(52). The second strategy requires fewer total number of 
penalty iterations for high values of the penalty parameter 
and therefore minimizes the number of linear-system solves 
required. We did simulation of the same flow for higher 
values of the Reynolds number (R = 200). For penalty 
parameter p = 10 s and time step At = 0.02 number of 
fixed-point iterations equal 3 with one penalty iteration 
per fixed-point iteration. Like for steady-state flows the 
value of penalty parameter can not arbitrary large due to 
the big numerical error. 

Since it appears that it is often possible to do only one 
penalty iteration per fixed-point iteration, it is interest- 
ing to compare this method with other methods. Alge- 
braically, the system of equations for a mixed method (1) 
can be written in the form 

(56) ( A B U 0) 0) 
The iterated penalty method avoids the need to even calcu- 
late the matrix B, and only requires the solution of equa- 
tions of the form 

(A+pD)V=G, 

which involve only the velocity degrees-of-freedom, where 
D = BB t and B t represents the matrix associated with the 
divergence operator. Since this is a much smaller system 
of equations than (56), the iterated penalty method can 
provide a much more efficient algorithm than ones like (56) 
which explicitly involve the pressure degrees-of-freedom, 
such as the Taylor-Hood method [7]. 

Uniform flow around a cyhnder, R - 100 
1.4 ...... 

1.2 t 

0.4 

0.2 i i• 9• 
r/D =0. 

0 • r/D=0.• 

-0,2 r/D=0.5• 
0 5 10 15 20 25 30 35 

Time 

Figure 8: Time-dependent horizontal component of veloc- 
ity field at six points along the line through the center of 
the cylinder cross-section at the angle of 0 - 153 ø with di- 
rection of flow. Simulations were for uniform flow around 

cylinder with diameter D = 2, R - 100. 

9 Direct versus iterative solvers 

Iterative solvers are often used to solve the linear- 

algebraic problem that arises in implicit and implicit- 
explicit schemes for time-dependent partial differential 
equations. However, direct solvers have various nice fea- 
tures. For example they allow one to solve non-symmetric 
problems with the same amount of work as for symmetric 
problems. Thus it is natural to ask what is the relative 
amount of work for direct versus iterative solvers. •Ve will 

see that for high-order methods, at least in two dimensions, 
direct methods have an interesting range of applicability. 

Using an ordering strategy related to the "minimum de- 
gree" algorithm [9] in the case of symmetric matrices, the 
growth in the number of fill-ins is as depicted in Figure 10. 
What is plotted is the ratio of the number of non-zeros 
in the factored matrix to the number of non-zeros in the 

original matrix, as a function of the former. The number 
of non-zeros in the factored matrix is a good measure of 
the computational complexity for time-stepping problems 
where the matrix can be factored once and then re-used 

many times. We see that for a large range of problems, 
the number of non-zeros in the factored matrix will be less 

than twice that of the original matrix. This means that 
using the factored matrix for a direct solution will take less 
than two steps of typical iterative methods. 

The relative cost of solving is made even more apparent 
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Figure 11: Relative cost of solver and form evaluations for finite elements order p = 4 (a) and p - 6 (b). D denotes the 
divergence term and C the nonlinear term. 

in Figure 11. Shown is the relative cost of the solver and 
the form evaluations for the 4-th and 6-th order finite- 

element method. The data reported in Figures 10 and 
11 does not change very much as we vary the geometry 
of the domain and other problem parameters. The line 
marked D denotes the work for computing the divergence 
form b(v,p) and the line marked C denotes the work for 
computing the nonlinear form c(u, v, w). We see that for 
the 6-th order finite-element method, the nonlinear form 
dominates the solver by a substantial factor, although the 
cost for the latter is growing at a faster rate (the forms 
can be computed in an amount of work that is linear in 
the number of matrix entries, but the cost of the solver 
grows supra-linearly). 

An interesting question is the effectiveness of increasing 
the degree of approximation versus decreasing the mesh 
size. To investigate the dependence of the numerical error 
on the degree of approximation and number of unknowns, 
we simulate Jeffrey-Hamel flow. A set of subsequently re- 
fined meshes was used, starting with the coarsest one from 
Figure 3. Figure 12 compares the accuracy gained as a 
function of the number of non-zeros in the factored matrix, 
a measure of the dominant part of the computation. For 
smaller Reynolds numbers, higher degree approximations 
are more efficient. However, for larger Reynolds numbers, 
less difference in efficiency is seen as the degree is varied. 

Since the forward- and back-solve is so efficient, it is rea- 

sonable to study the efficiency as a function of an estimate 
of the entire work for a complete time step for the overall 
algorithm. Figure 13 shows this data for Reynolds numbers 
20 and 240. We see that basing the plots on an estimate 
of the work for a complete time-step tends to make low- 
order and high-order methods look much more similar in 
terms of accuracy achieved as a function of work expended. 
There is a noticeable increase in cost as the Reynolds num- 
ber increases, due to the increased information content of 
the solution. 

We note that we have omitted plots of the efficiency as 
a function of run time [2], as the latter is highly dependent 
on the computer architecture. For cache architectures, run 
time correlates well with the number of nonzeros in the 

factorized matrix. 

For very large problem sizes, iterative methods will be 
more efficient. However, the standard multigrid method 
requires a number of smoothing steps proportional to the 
penalty parameter [5]. The data in Figures 6 and ?? indi- 
cates penalty parameter should be very large. 

10 Conclusions 

We showed that high-order finite element methods can sim- 
ulate the flow of incompressible viscous fluids efficiently 
using the iterated penalty method for resolving the incom- 
pressibility constraint. We gave a description of the iter- 
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Figure 12: Accuracy in the maximum norm as a function of the number of non-zeros in the factored matrix for Reynolds 
number = 20 (a) and 240 (b). Numerical solution was computed for Jeffrey-Hamel flow on a set of subsequently refined 
meshes. 

Computational error vs floating point operations per iteration, R = 20 
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Figure 13: Accuracy as a function of the number of total work in a time step for Reynolds number = 20 (a) and 240 
(b). 
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ated penalty method in the case of inhomogeneous bound- 
ary conditions. We showed that direct methods may be a 
suitable choice for many simulations, at least in the two- 
dimensional case. 

Current work extending the results of this paper involves 
mesh optimization using error estimators and an extension 
of these results to three dimensions. 
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tored matrix to the number of nonzeros in the original 
matrix. 


