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Abstract 

We introduce a new and efficient Chebyshev-Legendre 
Galerkin method for elliptic problems. The new method 
is based on a Legendre-Galerkin formulation, but only the 
Chebyshev-Gauss-Lobatto points are used in the compu- 
tation. Hence, it enjoys advantages of both the Legendre- 
Galerkin and Chebyshev-Galerkin methods. 
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i Introduction 

The Legendre-Galerkin method [13] for self-adjoint ellip- 
tic equations leads to symmetric and simpler linear sys- 
tems, but its efficiency is limited by the lack of fast trans- 
form between the physical space (values at the Legendre- 
Gauss-Lobatto points) and the spectral space (coefficients 
of the Legendre polynomials). Furthermore, the Legendre- 
Gauss-Lobatto (LGL) points are not available in an ex- 
plicit form and their evaluations for large N (N be- 
ing the order of polynomial space) may introduce signif- 
icant roundoff errors (cf. [1]). On the other hand, the 
Chebyshev-Gauss-Lobatto (CGL) points are given explic- 
itly and the transform between the physical space and 
the spectral space can be efficiently performed by using 
the Fast Fourier Transform (FFT). However, due to the 
non-uniform weight associated with the Chebyshev poly- 
nomials, the Chebyshev-Galerkin method [14] leads to non- 
symmetric (even for self-adjoint elliptic equations) and 
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more complex linear systems. We introduce in this paper 
a very efficient Chebyshev-Legendre Galerkin method that 
has the advantages of both the Legendre- and Chebyshev- 
Galerkin methods. Our method has two essential features: 

ß It is based on a Legendre-Galerkin formulation which 
preserves the symmetry of the underlying problem. 
The basis functions of the approximation space are 
compact combinations of Legendre polynomials, deter- 
mined by the order of the principle elliptic operator 
and the underlying boundary conditions. For prob- 
lems with constant coefficients, the linear systems re- 
sulted from these compact basis functions are banded 
sparse matrices, similar to those arising from a finite 
difference discretization, which can be efficiently in- 
verted. 

ß Only the coefficients of Legendre expansions and the 
values at the CGL points are used in the computation. 
Efficient algorithms are available to transform from 
the coefficients of Legendre expansions to the values 
at the CGL points and vice versa. 

In the next section, we describe the Legendre- and 
Chebyshev-Galerkin methods for an one-dimensional 
model problem. In Section 3, we introduce the 
Chebyshev-Legendre Galerkin method and describe the 
fast Chebyshev-Legendre transform between the values at 
CGL points and the coefficients of Legendre expansion. In 
Section 4, we present some numerical results which demon- 
strate the efficiency of the new method. 

2 Legendre-Galerkin and Cheby- 
shev-Galerkin methods 

To simplify the presentation, we consider the following one 
dimensional model problem: 

(1) au- uxx ---- f, in I---- (-1, 1), 

with the Robin type boundary condition 

(2) a_u(-1) + b_u•(-1) - 0, a+u(1) + b+u•(1) -- 0. 
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The problem(1-2) has a unique solution if 

(3) a• + b• • 0, a_b_ _< 0; a•_ + b•_ • 0, a+b+ _> O. 

Let S.¾ be the space of polynomials of degree less than or 
equal to N, and 

X.¾ ={vG SN: añv(4-1)+bñvx(4-1)----0}. 

We denote I.• the operator of interpolation at the LGL 
points {•i}05i51¾ (•i are the roots of the polynomial 
(1 - x2)L'.¾(x), where LN(X) is the Legendre polynomial 
of degree N), i.e. IlNf • SN and 

= 0 _< i _< 

Let (,u,v) = f_• uv dx. Then, the pseudo-spectral 
Legendre-Galerkin method for (1-2) is: find UN • XN s.t. 
V vN • X•¾, 

(4) c•(Us;V.¾)--(D•UN,VN)=(I}vf, VN ). 

Remark 2.1 The above formulation is slightly different 
from the usual Calerkin method in the following aspects: 

f is replaced by its interpolant I•f to allow faster 
evaluation; 

ß the boundary condition (2) in all cases is strongly 
enforced as in a collocation scheme, while in case 
b• -+-b• • 0 the boundary condition (2) will only be 
satisfied as N -• +•c in a usual Galerkin method (cf. 

The actual solution procedure for (4) depends on the 
choice of basis functions for X5 •. It is essential for the 
sake of efficiency to use compact combinations of orthog- 
onal polynomials (with respect to the inner product (., .)) 
as basis functions. To this end, we set 

O•(x) = L•(x) +a•Li+•(x) +biLi+2(x), k =0,1,2,... 

We will choose {ai, bi } such that Oi(x) verifies the bound- 
ary condition (2). Since Lu(-[-1) = (-[-1) • and L[(-[-1) = 
• •- 1) the boundary condition (2) leads to the .•(-1)•-lk(k + , 
following system for {a•, b•}: 

(5), 

The determinant of the above system is 

DET• -- 2a+a_ + a_b+(k + 2) 2 -a+b_(k + 2) 2 
1 

- •b_b+(k + 1)(k + 2)2(k + 3) 
We then conclude from (3) that DETu • 0 for any k. 
Hence, {au,bu) can be uniquely determined from (5). 

It is obvious that {0u(x)) are linearly independent. 
Therefore by dimension argument we have 

XN =span{½u(x) ' k:0,1,2,...,N-2). 

Let us denote 

and 

$ = = , M = 

Then the equation (4) is equivalent to the following linear 
system: 

(6) (o•M + S)v = f. 

By integration by parts and taking into account the bound- 
ary condition (2), xve find that 

-- (d•O• 
a+ a_ 

= (DxO•:,DxOj) + •O•(1)Oj(1) - •O•(-1)Oj(-1) 

dx2 / • 

where • (resp. •) should be replaced by zero when b+ 

b+ = 0 (resp. b_ = 0). Hence, using the orthogonality 
of the Legendre polynomials, it is easy to veri• that the 
stiffness matrix S is a diagonal matrix with 

suu = -(4k + 6)bu, k = O, 1,2,... 

and the mass matrix M is symmetric penta-diagonal whose 
nonzero elements are 

2 2 2 2 
•-• + a•--• + b• j = k, 

2 b• 2 (7) ra•j-- a•+a•+• •+s, j=k+l, 

b• •_s, j = k + 2, 



Chebyshev-Legendre Methods 235 

and mjk - mkj. 
In summary: given the values of f at LGL points 

{(i}0<i<N, we determine the values of US (solution of (4)) 
at these LGL points as follows: 

1. (pre-computation) Compute LGL points, {ak, bk) and 
nonzero elements of $ and M; 

2. Evaluate the Legendre coefficients of I•f(x) from 
{f(•i)}•v=0 (backward Legendre transform); 

3. Evaluate f and solve v from (6); 
N-2 

4. Evaluate u•¾((j) = Ei=0 vi½i((j), j = 0,1,...,N 
(forward Legendre transform). 

It is clear that step 3 can be done in O(N) operations. 
However, each Legendre transform in steps 2 and 4 involves 
a matrix-by-vector product which will take about 2N 2 
arithmetic operations. To reduce the cost of the transforms 
between physical and spectral spaces, a natural choice is 
to use Chebyshev polynomials. We now describe briefly 
below the Chebyshev-Galerkin method for (1). 

Let I c be the interpolation operator at the CGL points N 

{r?i = cos(i•/N)}o<i<•, i.e. I•v f • SN and 

I•,f(rli) = f(r]i), 0 _< i _< N. 

The pseudo-spectral Chebyshev-Galerkin method for (1-2) 
is: find ux • X•v s.t. V v.¾ • XN, 

(s) - = 

,,'here = (1 - and ½, = &. As 
before, there exist unique {a•, b•} such that 

V•(x) = T•(x) + akT•+•(x) + b•T•+2(x) e XN, 

(where T• (x) is the Chebyshev polynomial of degree k) and 

XN = span(•hk(x) ß k = 0, 1,2,...,N- 2}. 

It is easy to see that the stiffness matrix S (si• = 
(-D•vg•', ½i)•) is a upper triangular matrix and the mass 
matrix M (m• = (%, ½i)•) is a symmetric positive defi- 
nite penta-diagonal matrix. Although the matrix aM + S 
in (8) is not sparse, it can still be inverted at a cost com- 
parable to invert a seven-diagonal matrix by exploiting 
the special structures of S [14]. Therefore, thanks to the 
fast transforms available to the Chebyshev expansions, the 
Chebyshev-Galerkin method is preferable for this specific 
problem. However, the Chebyshev-Galerkin method may 
not be the best choice due to the non-symmetry (which 
introduces considerable difficulties for its analysis and ex- 
cludes the use of conjugate gradient type methods for 

problems with variable coefficients) and non-sparseness of 
the stiffness matrix (which excludes more efficient direct 
solvers such as the cyclic reduction [15] for problems in 
multi-dimensional domains). 

Remark 2.2 In case of the homogeneous Dirichlet bound- 
ary condition {i.e. bñ = O) or the homogeneous Neumann 
boundary condition {i.e. añ = 0), we have a• = 0, k = 
0, 1,2,... These special cases are discussed in detail in 
[13, 

For differential equations of order 2m, we should choose 
the basis functions for the Legendre- and Chebyshev- 
Calerkin method to be of the form 

•k(x) = Pk(x) + ak.lPk+l(X) +... + ak,2mPk+2m(x) 

where Pi(x) are Legendre or Chebyshev polynomials and 
ai,j should be determined by the underlying boundary con- 
ditions. See [13, 1,4] for the treatment of fourth-order prob- 
lems. 

For multi-dimensional problems, tensor products of one 
dimensional basis functions should be used. The resulting 
linear systems can be efficiently solved, for instance, by the 
matrix decomposition method [11, 9]. We refer to [13, 1,4] 
for more details. 

3 Chebyshev-Legendre Galerkin 
method 

To overcome the shortcomings of both the Legendre- and 
Chebyshev-Galerkin methods, we propose the follo;ving 
Chebyshev-Legendre Galerkin method for (1-2): find u• 6 
XN s.t. V v N • XN, 

(9) a(U:v,V:v)-(D•uN,v:v)=(I•f,v:v). 

The only difference with (4) is that the Chebyshev interpo- 
lation operator I•v is used instead of the Legendre interpo- 
lation operator I•v. Hence, the solution procedure of (9) is 
essentially the same as that of (4) except that Chebyshev- 
Legendre transforms (between the value of a function at 
CGL points and the coefficients of its Legendre expansion) 
are needed instead of the Legendre transforms. 

Recently Don and Gottlieb [6] introduced also a 
Chebyshev-Legendre collocation method for hyperbolic 
and parabolic equations. Their work is motivated by the 
fact that the hyperbolic equations are no.t well-posed in 
Chebyshev norm. in their method, the forcing term is ap- 
propriately penalized so that L 2 norm estimates can be ob- 
tained for the collocation method using Chebyshev points. 
Although the two methods share the same spirit which is 
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to take advantages of both the Chebyshev and Legendre 
methods, the motivation and the implementation of the 
two methods are entirely different. 

We now describe how the Chebyshev-Legendre trans- 
forms can be efficiently implemented. We split each 
Chebyshev-Legendre transform into two steps: 

1. The transform between its values at CGL points and 
the coefficients of its Chebyshev expansion. This can 

s log 2 N + 4N operations (cf. P. be done by FFT in • 
502 in [2]). 

2. The transform between the coefficients of the Cheby- 
shev expansion and of the Legendre expansion. 

This second transform has been addressed by Alpert and 
Rohklin [1]. They developed an O(N) algorithm for the 
second transform for a prescribed precision. Their algo- 

ß 

rithm, as most algorithms based on the fast multipole 
method [7], is most attractive for very large N. For mod- 
erate N, the algorithm we describe below appears to be 
more competitive. 

Let us write 

N N 

i=0 i=O 

and 

f = (f0, f!,)T a = (g0,g 

What we need is to transform between f and g. The rela- 
tion between f and g can be easily obtained by computing 
(p. Tg),: and (p, L2). In fact, let us denote 

2 (ri, Lj)•, bij (i + •)(Li Tj), aij = Ci 7r 
where co = 2 and ci = 1 for i > 1, and 

A -- (aij)i.j=o,1 ..... N, B -- (bij)i,j=o,1 ..... N. 

Then we have 

(10) f=Ag, g= By, AB= BA= I. 

By the orthogonality and parity of the Chebyshev and Leg- 
endre polynomials, we observe immediately that 

aij ---- bij -- 0, for i > j or i + j odd. 
I 2 

Hence, both A and B only have about •N nonzero el- 
ements, and the cost of each transform between f and 

1 2 g is about •N operations. Consequently, the cost of 
each Chebyshev-Legendre transform is about log 2 N+ 

• 2 operations as opposed to 2N 2 operations for 4N) + 5N 
the Legendre transform. In •ure operational counts, the 
cost of the two transforms is about the same at N = 8, and 
the Chebyshev-Legendre transform costs about one third 
of the Legendre transform at N = 128 (see Table I for 
computational results). 

In summary, the one-dimensional Chebyshev-Legendre 
transform can be done in about 

(5•N log2 N + 4N)+ min(•N 2, CN) •- O(N log 2 N) 
operations, where C is a large constant in Alpert 
and Rohklin's algorithm [1]. Since multi-dimensional 
transforms in the tensor product form are performed 
through a sequence of one-dimensional transforms, the d- 
dimensional Chebyshev-Legendre transform can be done 
in O(N • log 2 N) operations and it has the same speedup 
as in the 1-D case, when compared with the d-dimensional 
Legendre transform. 

The nonzero elements of A and B can be easily deter- 
mined by the recurrence relations: 

Ti+•(x) -- 2zTi(z)- Ti_•(z), i _> 1, 

Li+l(X) : 2i+ lxLi(x) _ i Li_•(x) i > 1. i+1 i+1 ' - 

Indeed, let aij = (T,, Lj)•, then for j >_ i > 1, 

= 

(Ti 2j + lxL j J L•-i) 'j+l 

2j + i (xT•,L•)• J ~ j + 1 - 
2j+1 j 

= 2j + 2 (Ti+l 4- Ti-I,Lj)• - •ij-• ß j+ 
2j+1 j 

= 2j +2 (ai+•j +ai-•j) - j+ laij-• ß 
Similarly, let Dij = (Li, Tj), we have for j >_ i > 1, 

~ 2i + 2 ~ 2i •i-lj •ij bij+• -- 2i + lbi+•J + 2--•-• - -•' 
Thus, each nonzero element of A and B can be obtained 
by just a few operations. Furthermore, the Chebyshev- 
Legendre transform (10) is extremely easy to implement, 
while the algorithm in [1] requires considerable program- 
ming effort. 

We now turn our attention to problems with variable 
coefficients. Let us consider for instance the following non- 
separable equation: 

{ -div½(•)Vu) + b(•)u = f, • • • = [-1,1] •, ß 

ulon = o, 
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where d = 1, 2 or 3, a(x) > 0 and b(x) > 0 for x • [-1, 1] a. 
We can apply the spectral-Galerkin method directly to this 
equation, but it is more efficient in most cases to make a 
change of dependent variable v = gru [4] which reduces 
(11) to: 

(12) Av -= -Av +p(x)v ---- q, x • f• ---- [-1, 1] d, vlo• = 0, 

where p(x) - i b(x) and q(x)= . a(v"5) + f 
The unmodified spectral-Galerkin method is usually 

impractical for this type of problems. We propose in- 
stead the following pseudo-spectral Chebyshev-Legendre 
Calerkin method for (12): find VN • XN = {w • $N : 
w[ap. ---- O} s.t. 

(13) IC , (Aspvv, w) = ( w) Vw e 

where Asp is defined 

(Asp,, w) = (w, Vw) + w), 

and S.v is the space of polynomials of degree _< N in each 
variable. It is clear that the matrix corresponding to Asp 
is full. Hence, the system (13) must be solved by using an 
iterative method. Preconditioned iterative methods have 

been successfully applied to the spectral-collocation sys- 
tems with pre-conditioners based on either the finite dif- 
ference approximations [12, 10] or finite elements approxi- 
mations [5, 3]. Here we propose to use 7/sp defined by 

-= (Vv, Vw) + w) 

(for an appropriate c• _> 0) as the preconditioner for Asp. 
This type of pre-conditioners was used in the finite differ- 
ence context by Concus and Golub [4], and the convergence 
rate of a iterative scheme for (13) with this type of pre- 
conditioners is independent of the discretization parameter 
N. The preconditioning equation (i.e. TlspV = g) can be 
efficiently solved in O(N) operations for d = I (see Sec- 
tion 2) and in O(Nd(log2 N) d-l) operations for d =2 and 
3 (see [15]). Since the evaluation of AspW for w • XN can 
be done in O(N • log 2 N) operations (see below), the equa- 
tion (11) can be solved in general in O(Nd(log2N) •-•) 
operations. 

Because of the pseudo-spectral treatment of the term 
pv•, Asp is not exactly symmetric. However, it is indeed a 
spectrally accurate approximation to the symmetric spec- 
tral operator •sp defined by 

(AspU, W) ----- (VV, VW) + (p(3•)V, W), V V, W • X N. 

The numerical experiments indicate that preconditioned 
conjugate gradient type methods (see for instance [8]) 
can be applied to Asp and converge significantly faster 
than preconditioned Richardson or preconditioned mini- 
mum residual methods. 

The sacrifice for the exact symmetry is compensated by 
the fact that AspW can be efficiently evaluated. More pre- 
cisely, given the coefficients of w • X•, we evaluate the 
action of A•pW in XN as follows (with the operation counts 
of each step in parentheses): 

1. Compute the Legendre coefficients of -Aw; (O(Nd)) 

2. Perform the forward Chebyshev-Legendre transform 
(from the Legendre coefficients to the values at the 
CGL points) of w; (O(Ndlog2 N)) 

3. Compute p(x)w(x) at the CGL points and then 
take the backward Chebyshev-Legendre transform of 
Zfv(p(z)w(z)); log 

4. Compute the action of AspW = -Aw + I•(p(x)w(x)) 
in XN. (O(Nd)) 

The total cost, dominated by the cost of the two 
Chebyshev-Legendre transforms, is of order O(N • log 2 N). 

4 Numerical results 

In this section, we present and compare some numeri- 
cal experiments on Legendre-Galerkin (LG), Chebyshev- 
Galerkin (CG) and Chebyshev-Legendre Galerkin (CLG) 
methods. All computations are performed in double pre- 
cision on a SUN-Sparc10 workstation Model-30 with stan- 
dard optimization option "-O". All CPU times listed are 
in seconds. We first compare the costs of four different 
transforms: 

1. Chebyshev transform (CT). 

2. Legendre transform (LT). This is done in an optimal 
way: we pre-compute and store the transform matrix, 
and then use Fortran BLAS routine dgemm.f for the 
matrix-matrix product. 

3. Chebyshev-Legendre transform I (CLT-I) by the 
• N 2 algorithm in Section 3. (• log 2 N + 4N) + • 

4. Chebyshev-Legendre transform II (CLT-II) by the 
(• log 2 N + 4N)+O(N)algorithm in [1] with 16-digit 
accuracy. 

FFTPACK routine cost.f (available at NETLIB) is used for 
the real cosine transform in CT, CLT-I and CLT-II. The 
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N CT LT CLT-I CLT-II 

1-D transform 

32 (1000) .09 '.23 0.17 * 
64 /1000) .16 1.04 0.59 .95 
128 (1000) .31 4.05 1.87 2.38 
256 (1000) .60 15.92 6.49 "5.61 
512 (100) .13 6.32 2.41 1.46 
1024 (100) .36 25.81 9.51 3.36 

2-D transform 

16 (100) .11 .21 .18 * 
32 (100) .43 1.45 0.93 * 
64 (100) 2.47 14.74 6.59 12.29 
128 (10) .91 11.26 4.15 6.29 
256 (10) 3.99 88.33 29.06 30.36 
512 (1) 2.08 69.94 21.67 16.07 

Table 1: CPU time for the three transforms. 

N LG CLG CG 

32 0.04 (0.01) 0.04 (0.01) o.oa (0.04) 
64 0.36 (0.06) 0.2 (0.06) 0.14 (0.19) 
128 2,75 (0.14) 1.39 (0.14) 1.64 (1.99) 
256 20.13 (0.54) 8.53 (0.54) 11.93 (17.99) 
512 151.87 (2.04) 45.27 (2.04) 118.13 (167.36) 

Table 2: CPU time for the three Poisson solvers. 

CPU time for the three transforms (excluding the initial- 
ization process) are tabulated in Table I where the number 
in parentheses is the number of transforms made. Notice 
that in the 2-D case, CLT-I is more efficient than LT for N 
as low as 16 and is three times faster than LT for N = 256, 
and CLT-I is more efficient than CLT-II for N _< 256 (CLT- 
II may become more competitive if single precision is used 
[1]). Furthermore, CLT are more accurate than LT for N 
large, since LT may suffer from the round-off errors from 
the computation of LGL points (see Table 6 in [1] for more 
details). The CPU time for 3-D transforms behaves simi- 
larly as the 2-D transforms. 

We now compare the costs of solving a 2-D Poisson equa- 
tion by using the CG, LG and CLG methods. The CPU 
time for the initialization process (such as computing the 
eigenvectors of the 1-D second-order problem) is given in 
the parentheses. Evidently, CLG is more efficient than 
LG in all cases. Furthermore, CLG is comparable to the 
very efficient CG method for N < 64 and CLG becomes 
significantly more efficient than CG for N > 128. 

Next, we report on the computational results for the 
2-D non-separable equation (11). Two test problems are 
considered: 

Example 1. a(x,y) = (1 + a((x + 1) 4 q- (y q- 1)4)) 2 
and b(x, y) = 0. The function a(x, y) has very large vari- 
ation over the domain but after the change of depedent 
variable v = v/-Su, the function p(x,y) in (12) is still non- 
negative and has much less variation than a(x, y). Hence, 
fast convergence rate is expected for a wide range of a. 

Example 2. a(x,y) = (1.5 + sin(a(x + y)))2 and 
b(x,y) = 0. In this case, p(x,y) in (12) is no longer a 

4 2 < p(x,y) < 4c• 2 The positive function and we have -•c• . 
system (12) is still positive definite because (11) is. But 
the convergence rate may deteorate for large c• due to the 
nonpositivity of p(x, y). 

The two problems are solved by three different schemes: 

1. (CL-PCG) the preconditioned conjugate gradient 
method applied to (13); 

2. (CL-PCGS) the preconditioned conjugate gradient 
squared method [16] applied to (13); 

3. (C-PCGS) the preconditioned conjugate gradient 
squared method applied to a Chebyshev-Galerkin ap- 
proximation to (12)(similar to (13), but is formulated 
with a weighted inner product). 

In Table 3, we list the number of iterations needed for 7- 
digit accuracy. A few remarks are in order. Firstly, all 
three schemes for the first example converge very rapidly, 
even with a very large a. The slower convergence for 
Example 2 with a = 5 is attributed to the nonpositiv- 
ity of p(x,y). Note however that even though -20 <_ 
p(x, y) _< 100 at a = 5, the three schemes still converge 
with a relatively small number of interations. This is a 
strong indication that these interative schemes applied to 
spectral-Galerkin formulations are very robust. Secondly, 
even though the system (13) is not exactly symmetric, CL- 
PCG still converges very rapidly, although at a rate slower 
than that of CL-PCGS. However, the slower convergence 
rate is more than compensated by the fact that one itera- 
tion of PCGS costs twice as much as one iteration of PCG. 

Finally, the cost of one iteration of PCG (resp. PCGS) is 
about the same as the cost of solving one (resp. two) Pois- 
son equation(s) by the respective method (cf. Table 2). 

In summary, we have developed a very efficient 
Chebyshev-Legendre Galerkin method with quasi-optimal 
operation counts for solving elliptic equations. 

Acknowledgments. The author would like to thank 
Dr. Alpert for providing his program for the Chebyshev- 
Legendre transform. 
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CL-PCG CL-PCGS C-PCGS 

N Example 1: c• = 10, 1000 
16 8, 10 5, 6 5, 7 
32 8, 9 5, 6 5, 7 
64 8, 8 5, 6 5, 7 

Example 2: c• = 2, 5 
16 8, 23 5, 13 5, 14 
32 8, 18 5, 13 5, 13 
64 8, 17 5, 13 5, 13 

Table 3: Number of iterations required for 7-digit accuracy. 
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