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Abstract 

Mesh adaptivity in the spectral element framework consists 
either in refining the decomposition into subdomains or in 
increasing the degree of the polynomials, so its numerical 
analysis relies on the h- N version of the method. Two 
different tools for adaptivity are presented and studied: er- 
ror indicators and decomposition by the mortar technique. 
Some numerical experiments are given. 

Key words: spectral elements. adaptivity, domain de- 
composition. 
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1 Introduction 

Mesh adaptivity has become an essential tool in the frame- 
work of finite element methods since it plays an important 
role for the efficiency of the discretization and the relia- 
bility of the numerical results. The aim of this paper is 
to present a tentative extension to the spectral element 
method. This one consists in approximating the solution 
of a partial differential equation by functions which are 
high degree polynomials on each rectangle of a nonover- 
lapping decomposition of the initial domain, by using ten- 
sorized polynomial bases that are associated with ten- 
sorized Gauss-type formulas. 

From this description, it can easily be seen that the spec- 
tral element mesh is constructed on two levels: the domain 

decomposition and the choice of the quadrature formula on 
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each rectangle since its nodes form the grid on this rect- 
angle. So, two levels of adaptivity exist: the decomposition 
adaptivity consists in cutting up the initial rectangles, the 
degree adaptivity in increasing the degree of the polynomials 
on a fixed rectangle. resulting in a refinement of the local 
grid. 

With the two levels, we associate two paralneters: the 
first one, denoted by h. represents the lengths of the largest 
edge of each rectangle, the second one, denoted bv N, is 
the set of the maximal degrees of polynomials inside each 
rectangle. So, we are led to work with the so-called h - N 
version of the spectral element method. 

We work with the model problem of a Laplace equa- 
tion with homogeneous Dirichlet boundary conditions. As 
a first tool, we describe several families of error indicators 
which should allow for an efficient refinement of the decom- 

position and an optimized choice of the degree. We recall 
the concluding results of their numerical analysis which is 
performed in [2], in one and two dimensions. As a second 
tool, we propose a way of working on the cut up rectangles. 
even if the new mesh is not conforming, by the mortar ele- 
ment method in h - N version. in analogy to the study of 
[5] for finite elements. Some numerical results are given, 
for the error indicators in order to compare them with the 
local error between the exact and discrete solutions and 

for the domain adaptivity in order to check its efficiency. 
An outline of the paper is as follows. In Section 2, we 

make some basic assumptions on the initial decomposition 
of the domain, and we introduce the exact and discrete 
problems. In Section 3, we describe the error indicators 
and present some numerical experiments. Section 4 is de- 
voted to decomposition adaptivity by the mortar method. 
The results of a first numerical test about adaptivity are 
given in Section 5. In Section 6, we propose some possible 
extensions of our analysis. 
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2 The geometry and the model 
problem. 

Let f• be a bounded open polygon in I• 2 (sometimes a 
bounded open interval in I•). From now on, we assume 
that it admits a family of decompositions into disjoint rect- 
angles (intervals), only for the sake of simplicity since most 
results extend to straight or curved quadrilaterals. More 
precisely, there exists a finite number of open rectangles 
(intervals) flk, 1 _< k _< K, such that 

(1) •= U•k and flkDFte=O, k•l. 
k=l 

The decomposition is characterized by a K-tuple h = 
(hk)•<k<a-, where hu is the length of the largest edge of 
f•t.. In the txvo-dimensional case, we choose to make the 
following hypotheses on this decomposition, although more 
technical arguments would allow to avoid them. 
Conformity hypothesis: The intersection of f/u and i2e, 
1 < k • f $ _K, is either empty or a corner or an edge of 

-- -- 

both i2k and fit. 
First regularity hypothesis: The ratio of the length of 
the largest edge of each flk to the length of the smallest one 
is bounded independently of k and of the decomposition, 
i.e. ofh. 

On the domain 9. and on each subdomain, we use the 
standard notation for the Hilbertian Sobolev spaces. their 
usual norms and seminorms. 

In this paper, we limit ourselves to the model problem 

(2) { -Au = f in •, u = 0 on 0fl. 

In view of the discretization. the function f is supposed to 
-- 

be continuous on fl. 

Next, in order to define the discrete problem, we intro- 
duce on each 94. and for a positive integer Nk the space 
IP.vk (i2k) of restrictions to flu of all polynomials of degree 
_< Nk with respect to each variable. In the two-dimensional 
case, we make the last hypothesis (which can be skipped 
out. see [2] for the details). 
Second regularity hypothesis: The ratio Nu/Nt for 
all pairs of rectangles flu and Ctt that share one edge is 
bounded independently of k and œ and of the decomposi- 
tion, i.e. of h. 

Denoting by N the K-tuple (Nu)•<k<K, we are going to 
work with the global parameter (h, N). And we introduce 
the discrete spaces 

ZhN = 

(3) X6,¾ = Z•5,• H•(f•). 

Note that the functions of X•N are continuous. In all that 
follows, c stands for a generic constant independent of h 
and N. 

Finally, on the open reference interval ] - 1, 1[, we in- 
troduce the nodes •j and the weights pj, 0 _< j i n, of 
the standard Gauss-Lobatto formula which is exact on all 

polynomials with degree < 2n- 1. Taking n equal to 
Nk allows for defining by affine transformation and ten- 

k 
sorization the corresponding nodes m•j and weights 
0 • i,j • Nk, on each domain flu (forget the index j 
in the one-dimensional case). This leads to the discrete 
product, for all continuous functions v and w on •: 

K Nk Nu 

(4) (v, w)h5 •: Z Z Z v(xCj) w(xCj) 
k=l •=0 j=0 

We also denote by Iax the usual Lagrange interpolation 
operator at these nodes, with values in 

Now, the discrete problem reads: and UhN in XhN such 
that 

(5) (gradu•v, gradt¾,•-)•.v = (f, v•.¾)•v, 
Vv•x • X•N. 

The positivity property of the Gauss-Lobatto quadrature 
formula (see [4. Rein. 13.3]) yields that it has a unique 
solution u•n, And using the standard spectral arguments 
on a reference square leads to the 
A priori estimate: There exists a positive constant c 
independent of h and N such that. if the solution u (resp. 
the function f) of problmn (2) is such that ,Ul• •. (resp. fl•.) 
belongs to H•'(•k), sk • 1 (resp. to H•'(•k). ak > 1) 
for 1 • k S K, the following estimate holds between u and 
the solution u•N of problem (5): 

K 

(6) 5 c 

3 Error indicators. 

On the present decomposition of the domain, a family of 
error indicators will be a K-tuple (r/u)•<k<•: satisfying for 
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some positive constants •lhN and •2hN, 

K 

__• I'glh N c + C IIf -- 
k•l 

(s) 

where wv stands for the union of the f•e which share at 
least an edge (an endpoint in the one-dimensional case) 
with f•k and c is independent of h and N. 

A family of error indicators is said to be optimal if both 
constants nXhN and ne•,¾ are bounded independently of 
h and N. For the indicators that we present here, the 
optimality is proven in the one-dimensional case but not 
in higher dimensions. 

The following indicators are derived from analogous 
residual type indicators in the finite element method, see 
ES! and [9] for instance, however weights are introduced in 
order to improve the optimality. more precisely to obtain 
better bounds for •x•,v and n2•:v (in the one-dimensional 
case. the results would not be optimal without weight). 
We refer to [2] for the proof of the estimates stated below. 
One-dimensional indicators: Here, we set 

(9) 
1 

where dk stands for the product of the distances to both 
endpoints of 

With definition (9), estimates (7) and (8) hold with con- 
stants nxh,¾ and •2h•v independent of h and N (more pre- 
cisely with •.¾ = 1 and ne•,N = • for instance). 

Note however that, in the one-dimensional c•e, the reg- 
ularity of the solution u only depends on the function f; as 
a consequence, the leading error in (7) and (8) comes from 
the term f -Zn•'f = -u" +Z•N(U"). So, to verify numer- 
ically the independence of the constants nlaN and 
with respect to the discretization parameters, xve have to 
make this contribution negligible. This is done by using 
the following modifications: solving problem (5) with the 
discrete product replaced by (., .)aM and computing the 
by (9) with the interpolate term ZaNf replaced by JaM f, 
•vhere M is a K-tuple of integers 2%(k larger than Nk. 
Bidimensional indicators: Let us denote by Fk.•, 1 
( • L(k), the edges of •k which are not contained in 
Introducing a parameter •, 0 • • S 1, we set 

k 

•(•) 

t=l 

where d• is now the product of the distances to the four 
edges of f• and d•,•. stands for the product of the distances 
to both endpoints of F•,•.. Clearly, [(%•m,N] denotes the 
jump of the normal derivative of the discrete solution UhN 
through each F•./. We only state the results for the basic 

• and a = 1, we refer to [2] for their cases O• • 0, O• • • 
extension to general values of a between 0 and 1. 

Let • stand for the maximum of the N•, 1 < k _< K. 
Let also • be any positive real number. For a = 0, with 
the further assumption that the product h•N• (log N•) -• 
for any ft• that contains a re-entrant corner of ft is larger 
than a constant independent of h and N, estimates (7) and 
(8) hold with 

(11) •xh•v _< c and <2hN _< cN •+•. 
1 

For a: •, estimates (7) and (8) hold with 

(12) •xa•' _< c•¬+• and •2•v _< c;½ «+*. 

For a = 1, estimates (7) and (8) hold with 

(13) •hx < c•;•+• and •2•x < c. 

It can be noted that these constants are always indepen- 
dent of h (this allows for proving that the indicators defined 
in (10) are optimal for quadrilateral finite elements on a 
structured mesh), but they depend on N. However, the 
product nlhNn2hN is always smaller than _•;•+*. Also, the 
first inequality in (11) which is optimal allows for comput- 
ing an explicit upper bound for the error. 

•Ve present some numerical experiments in order to test 
and compare the previous indicators, firstly in the case of 
one subdomain in one or two dimensions: then, the index 
k is skipped over and the discretization parameter is the 
maximal degree N of the polynomials in this domain. For 
already explained reasons, we replace N by 3I = 48 x 48 in 
the right-hand side of problem (5) and in the interpolate 
of the function f in definition (9) or (10). 

Each of the four following figures represent, in logarith- 
mic scale, the "exact" error E = I u - u•.•lH•(Xz) (evaluated 
by replacing u by ZNU) and the indicator r• in the one- 
dimensional case, the three indicators r/ø, r/}• and r/1 in the 
two-dimensional case, as a function of N for 8 _< N _< 64. 

In Figure 1 and Figure 2, the domain • is ] - 1, 1[, and 
the two solutions u are respectively 

•I(X) : (1 -- 12) • , tt2(ir ) -- (1 -- 12)]. 

The theoretical slopes for the exact error E, given by 
the usual arguments of polynomial approximation (see [4, 
Rein. 6.4]), are respectively- 4 and - 3.5. The numerical 
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slopes for the error are respectively - 4.05 and - 3.4:2, the 
slopes for the indicators are respectively - 3.94 and - 3.49. 

In Figure 3 and Figure 4, the domain Sq is ] - 1, 1[ 2, and 
the two solutions u are respectively 

tta(.r, y) = (l -a'•) • (• - 

,4(x,9)=(1 ."~)•(1-S 2 • 
The slopes are given in Table 1. 

In Figure 5, the domain •q is now 1- 1,3[x]- 1, 1[, with 
the decomposition into •q• =]- 1, l[x]- 1, It and •q2 = 
11,3[x]- 1, 1[, and the solution tt iS given by 

U(x,y) = (1 q- x) '7 (3 -- x) 3 (l -- y') , 

so it is less regular in the left subdomain than in the right 
one. The following figure represents, in 1ogari[hmic scales, 
the local errors E• = lu - tthN[Ht(fl}) and the three indi- 

1 

cat ors '1•, 'lj and '1}. for/,'= 1 and 2. 

The results are in good coherency with estimates (11) 
to (13), up to a multiplicative constant on the indicators. 
In particular, in Figure 5, the indicators clearly show the 
lack of regularity of the solution on the left subdomain. 
Comparing [he indicators and their slopes to the exact 
error and its slope would lead to choose a = 1, however the 
difference between the three indicators is relatively small. 
Degree adaptivity: In the definition of the r/•, the term 
IaNf + Arran can be expanded in the tensorized basis of 
Jacobi polynomials that are orthogonal for the measure 
d•.(x, y)dz dy: the Legendre polynomials for a = 0, the 
Chebyshev polynomials of the second kind for a = «, t, he 
derivatives of the Legendre polynomials for a = 1. Of 
course, each coefficient of the expansion can be evaluated 
by an appropriate quadrature formula. 

This leads to insert the equality 

N 2)3 
rn=l n-'-i 

in (7). Conversely, it can be proven that each r/•.,,, is 
bounded by a combination of the coefficients of order 
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E (tileor.) E (nulner.) rl0 ri« ri1 

Function u 3 -4 -3.52 -3.35 -3.44 -3.48 

Function u4 -3.5 -3.18 -3.06 --3.13 -3.16 

Table 1: 

.2- 

4 
0.:• 

Figure 5.1 Figure 5.2 

(ra, n) and (m -4- 1, n -4- 1) of the error grad (u - UhN) on 
f•k in an orthogonal basis, in the same spirit as (8). Then, 
the general algorithm for adaptivity could be: 
ß computing the rik, 

C• . 

ß for each k such that ri• is large, computing some 
ß if the • for large values of m + n are small or decrease 
with m • n, cutting up the element f•.; if not, increasing 
the maximal degree Nk. 

4 Decomposition by the mortar 
technique. 

In the two-dimensional case, cutting up the rectangles into 
subrectangles in adequation with the previously computed 
error indicators is very easy, however preserving the con- 
formity property (as stated in the conformity hypothesis) 
could lead to highly increasing the number of degrees of 
freedom in the new discrete problem. The following Figure 
6 presents a basic example, where only the three rectan- 
gles containing the re-entrant corner have to be cut up into 

four subrectangles for adaptivity but six further rectangle• 
have to be cut up in two for conformity reasons. 

However, the mortar element method [6, 7] is known for 
efficiently handling the nonconforming decomposition and 
was used in [5] to treat nonconforming refinements in the 
finite element case, we now describe the analogous proce- 
dure for the spectral element •nethod. So, let us assume 
that, among the rectangles f•, 1 •_ k •_ K, only the /x '• 
first ones f•x, f•2, ... and f•K' must be cut up into rn • 
open subrectangles f•k•,, 1 •_ k • •_ rn 2 (only for the sake of 
brevity, we take the same m for all rectangles). We define 
the open subdomains A,• and A• by 

K* K* m 2 

(14)•m-- U•-- U U •', A•--•m- 
k--1 k----I k'----1 

We introduce new integers N• _• Nk, K* + 1 •_ k •_ K, 
and N•, _• N•, 1 •_ k_• K* and 1 _• k' _• m •, in orde• 
to take into account the possible degree adaptivity. On 
A•, the discrete functions are restrictions of continuous 
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Figure 6 

functions in Zh•' for a modified value of N: 

XhN(--•l) -•- 

while on A,,, they now are polynomials on the subrectan- 
gles: 

l!k<_ N*, 1<_ k'!m-"}. 
Next, let. Ft, I _< t" •_ L, denote the edges of the •k, 
A'* + </,- < A', that are contained in 0Az (• OA,,. Each 
1'• is the edge of two rectangles •kt(e) and •,•(•), with 
A'* + / < /,'t(•) _< I•' and / <_ /,',,,(/•) _< N*. Thus, on this 

edge, we define a. trace subspace [[•v(Ft) in one of the 
two following ways: 
- in the first case, Wn•v(Fe) coincides with 
(which is a subspace of traces on Ft of functions in 
Xa,•,(A•)); then Fe is said to be of type 1; 
- in the second case, •VnN(Fe) is the subspace of traces on 
Ft of functions in Xh•(A,,,)', made of functions that are 
polynomial with degree N•, - 1 on the edges of the two 
•, which contain the endpoints of Ft, with k = k•(t); 
then, Fe is said to be of type m. 

k'* is defined as the Finally, the mortar discrete space • 
space of all functions vn• satisfying' 
(i) t, hNlat belongs to XhN(A1) and vhNla• belongs to 
X•(A.•), 
(ii) v•,• vanishes on 
(iii) there exists a function •, called mortar function, such 
that 

- on all Fe of type 1, • coincides with the trace of 
and 

(15) fr (v•N•a• --•)(r)•'(r)dr=O, V½• 
- on all Fe of type m., • coincides with the trace of 
and 

(16) •t(vh•[•,,, - •)(r)½(r)dr = 0, V½ • 
It can be noted that the space X• is never contained in 
H•(•), so the discretization is nonconforming. 

With obvious extensions of the notation for nodes and 
weights, the new discrete product is now defined, for all 
continuous functions v and w on •, by: 

Z E Z . .) ) 
k=K*+l i=0j=0 

K* m 2 N• N• 

k=l k•=l i=0 

And the new discrete problem reads: find u• in X• such 
that 

(18) (gradu•,gradvn•)• = (f, 
VvnN • X•N. 

The end of this section is devoted to the numerical analysis 
of problem (18), in order to prove that it has the same 
properties as problem (5) in spite of its nonconformity. 
Wellposedness: Problem (18) can equivalently be writ- 
ten as a linear system with as many unknowns as equa- 
tions, so we only have to check that for null data its only 
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solution is 0. This is a consequence of the following ar- 
gument: if (gradu•N, grad u;N)• N is 0, the positivity of 
the quadrature formulas implies that grad U•N is 0, so that 
u;x is a constant on each subdomain At and A• where it 
is continuous. Then, the matching conditions (15) and (16) 
are sufficient to enforce that the two constants are equal 
and, thanks to the boundary conditions on u[N , they are 
0. Hence, problem (18) has a unique solution. 

Next, in order to work with discontinuous functions in 
Xjx, we introduce the broken seminorm and norm on •: 

1 

From the previous lines, we derive that there exists a pos- 
itive constant •a•, possibly depending on h and N, such 
that the following ellipticity property holds: 

(20) (grad v•x,gradv•.•)• N > ahN Ill, Nil 2 

Then, the following estimate holds for any function vh•v 
in X•x and any function fhN which are polynonfial of 
degree _< N• - 1 on each •2k, K* + 1 < k <_ K, and of 
degree _< Nk•, - 1 on each •2•,, 1 <_ k _< K*, 1 _< k' _< m 2' 

. -1 ( 
L 

5-•f=l fFr (On•)(T)[WhN](T) dT 
+ sup 

where/7• x. stands for the Lagrange interpolation operator 
on the new mesh. The last term being evaluated from stan- 
dard arguments [4, õ 7 and õ 14], we only study the behav- 
ior of the ellipticity constant c•v and we briefly explain 
the analysis of the approximation error and consistency 
error that appear in the right-hand side. 
Uniform ellipticity: Here, we prove the following basic 
property: there exists a constant 2 independent of h and 
:Y such that 

(22) Ilv•Nll•.•(•) 5 • Ivhzv[1., VuhN • X•x. 

Indeed, it can be assumed without restriction that Q is a 
rectangle ]a, a•[x]b, b•[ (since both the mesh and functions 
in X• v can obviously be extended to a larger rectangle). 
The line of fixed coordinate y crosses OA• • OAm at a 

a y finite number of points of edges Ft,i, denoted by ( i, Y), 
i < i <_ I, in increasing order of x coordinate. So, we can 

y y write (with a i < x •_ ) ai+l 

y) = + 

+ (O•va•v)(t,y)dt +...+ (OxVax)(t,y)dt. 

Next, we integrate on •2 the square of this equation: with 
a0 y=aanda•+• =a •, 

II,h.llZ(n) <- 2 Jrz(y f (Ovh)(t,y)dt) 2 dxdy i=1 Ja• x 

I 

Using Cauchy-Schwarz inequalities leads to 

II•',,vll•=(•> 5 2(a'-a) 2 (11a•.•11•(•) 

+2½' - 
/=1 i=l 

where he.i is the length of P•.i. From the first regularity 
hypothesis, we observe that the length of the rectangle 
with edge F•.i in &• is bounded by c times its width. so 
that 

I 

• h•.i 5 c (a' - a). 
i=1 

On the other hand, it follows from the orthogonality of the 
jump [vh•] to the constants in L2(F•.i) that 

Inserting these estimates in the previous lines implies (22) 
with 3 only depending on the first regularity hypothesis 
and the diameter of •. 

As a consequence of (22), the ellipticity constant 
can be chosen independent of h and N. 
Approximation error: As detailed in [6], the construc- 
tion relies on the following result [3, Thm 3.g.10]: there 
exists a lifting operator R• which associates with a poly- 
nomial • in P• (-1, 1) which vanishes at •!. a polynomial 
in P•(]- 1,1[ 2) such that its trace is eqm,( to ½, on one 
edge of the square, to 0 on the three other edges and such 
that its norm in H•(]- 1, 1[ =) is bounded by a constant 

(independent of n) times So the idea for 
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exhibiting a function in X•; which approximates the so- 
lution u is: starting from the interpolate Z•NU , next lifting 
the jumps at the nonconforming points of 0A1 F1 cqA m by 
multiplying them by a low degree function, and finally lift- 
ing the jumps through the edges thanks to the previous 
operator transported on each rectangle and subrectangle. 
Consistency error: From conditions (15) and (16) to- 
gether with the definition of p, it can be observed that 

( 

where •%.¾.•_ is the orthogonal projection operator from 
L2(Fe) onto }V•:v(F•). So the desired estimates follow 
from the properties of the analogous projection operator 
in L-•(-1, 1), see [6, Lemma 2.1]. 

Inserting all these results in (21), we derive the final 
tilnates: if the solution u (resp. the function f) of problem 
(2) is such that its restriction to • belongs to H • (•), 

s (resp. to H •(•.), • > 1) for K*+I < k < K s•.>• _ _ 
3 

and its restriction to •, belongs to H •' (•:•). s•, > 
(resp. to H•'(•.,), e•, > •)for • 5 k 5 K *, 
1 • k • • m 2. the following estimate holds between u and 
the solution u•.¾ of problem (18)' 

(23) 

This estimate is fully optimal with respect to any param- 
eter but rather complicated. When all the h• are equal to 
h and all the N•, N•, are equal to N, and if moreover the 
function f is assumed to be very regular and N is large 
enough, this estimate is easier to read: for any solution u 

such that Ul& belongs to Hs•(A1) and Ul•, belongs to 
. 

(24) Ilu - u•Nlll, < c (•s•--i Nl-,s• ilullHs;(•xx ) 

Moreover, let s be any positive real number. Taking ac- 
count of the corner singular hnctions leads to a modified 
estimate: if all the • containing a re-entrant corner of • 
are included in A• as in Figure 6 (so that A• only contains 
convex corners), 

Ilu - u•lll, 5 c(f)(h 2-• Ns-4 + •-• h•-e N s-• ) 

So, taking m = h-2• r4 would optimize this estimate. This 
could be an argument for the choice of the initial mesh. 

5 First experiment in adaptivity. 

As a first test for the efficiency of the adaptivity. we present 
some numerical results in the one-dimensional case of the 

domain gt =]0, 1[, when the solution u of problem (2) is 

Note that it is smooth except in the left part of the domain. 
Here, the function f is interpolated by InN f with the same 
N as for the discrete solution. so that the leading part of 
the error comes from this interpolation. 

The first computation is performed on a decomposition 
of i2 in ten equal subdomains i2•: =] •, •[, 1 <_ k _< 10. 
Tables 2 and 3 present, for N equal to 16, 32, 64, the 
local errors E• = [u- UhN[H'(9.•) and the correspond- 
ing indicators r/• in the left five subdomains (the more 
interesting ones). Next, the discrete solution is computed 
with a decomposition of f• in twenty equal subdomains 
•t t-• t [, I < • < 20. Table 4 presents, for Nequal -] .-•-6-, • - - 
to 16, 32, 64, the errors E•. on each i2•, 1 _< k _< 5, com- 
puted as the square root of the sum of the [u- 
for the two •t contained in 

In a final step, the discrete solution is computed with 
a decomposition of f• in twenty "adapted" sub domains 
which, according to the previous indicators, are chosen as 
follows: the first interval i2• is divided into 11 equal el- 
ements, the other nine ones are left unchanged. Table 5 
present, for N equal to 16, 32, 64, the errors E•' on each 
f•, I _< k <_ 5: the first one is the square root of the sum of 

the [u - unN[•(a•,) on the first eleven subdomains 
contained in i2•, the other ones are the new error on the 
nonrefined intervals. 
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N = 16 0.1 X 10 -4 0.9 x 10 -• 0.9 x 10 -• 0.9 x 10 -• 0.9 x 10 -• 

N - 32 0.1 x l0 -5 0.9 x l0 -7 0.9 x l0 -7 0.9 x l0 -v 0.9 x l0 -v 

N = 64 0.7 x l0 -• 0.9 x l0 -v 0.9 x 10 -7 0.9 x 10 -7 0.9 x l0 -7 

Table 2: 

r]l 112 

N - 16 0.4 x 10 -5 0.5 x 10 -•ø 0.3 x 10 -•ø 0.1 x 10 -•ø 0.6 x 10 -• 

N -- 32 0.9 x 10 -e 0.1 x 10 -9 0.2 x 10 -9 0.3 x 10 -9 0.2 x 10 -• 

N -- 64 0.4 x 10 -* 0.2 x 10 -8 0.3 x 10 -8 0.4 x 10 -8 0.7 x 10 -8 

Table 3: 

-2 

-8 
0.5 

20 equal triangle• 
I I•'•'•'•ted tria tngles 
I 1.5 2 

Figure 7 

The efficiency of the adaptivity already appears in these 
tables. It. can also be checked that the local refinement 
yields a small improvement of the error in all subdomains. 
In Figure 7, we present, in logarithmic scales and for N 
between 8 and 64, the global error lu- u•vls•(r•l cot- 

responding respectively to the ten equal intervals, to the 
twenty equal intervals and to the twenty adapted intervals. 

6 Possible extensions. 

In analogy to the finite element case [8, 9], it can be checked 
that the arguments for estimating the constants t•lh N and 
t•2•v hold for any elliptic problem of type: find u in V such 
that 

¾v • V, a(u, v) =/rl f(•)v(•.)dx, 
for any polygonal domain • with angles • and -• and any 
closed subspace [' of œ2(•) or HI(•), •vhen t.l•e bilinear 
form a(. ) is continuous and elliptic in V. Moreover, it 
also holds when this form satisfies an inf-sup condition of 
Babu.•ka and Brezzi type: this is the case for the Stokes 
problem. So the estimates (11) to (13) should hold, with 
slight modifications, for any standard second-order prob- 
lem with Dirichlet. Neumann or mixed boundary condi- 
tions. 
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N = 16 0.1 x 10 -s 0.[ X 10 -6 0.1 X 10 -6 0.1 X 10 -6 0.1 X 10 -6 

N = 32 0.1 x 10 -s 0.7 x 10 -7 0.7 x 10 -7 0.7 x 10 -7 0.7 x 10 -7 

N = 64 0.1 x 10 -6 0.1 x 10 -7 0.1 x 10 -7 0.1 x 10 -7 0.1 x 10 -7 

Table 4: 

N = 16 0.1 X 10 -6 0.2 X 10 -7 0.2 X 10 -7 0.2 X 10 -7 0.2 X 10 -7 

N = 32 0.4 x 10 -7 0.5 x 10 -8 0.5 x 10 -8 0.5 x 10 -8 0.5 x 10 -s 

N = 64 0.4 x 10 -s 0.8 x 10 -9 0.7 x 10 -9 0.1 x 10 -8 0.1 x 10 -8 

Table 5: 

As already explained. the initial problem (5) can be 
solved xvith the decomposition into rectangles replaced by 
a more complex one, tnade of convex quadrilaterals and 
quadrilaterals with curved edges to treat the geometry of 
the initial domain. Since the discretization on these ele- 

nlents is built by using a one-to-one transformation that 
•naps the reference square onto the element, transporting 
the problem onto the square and approximating the result- 
ing problem on the square (with nonconstant coefficients) 
by polynomials. So there is no problem in extending the 
previous results to this geometry. 

However, handling fourth-order problems or three- 
dimensional geometries or nonlinear equations would re- 
quire further work in order to derive the analogues of 
estimates (11) to (13). And even in the simplest two- 
dimensional example, these esti•nates are not fully opti- 

real. 

The mortar elelnent discretization on the new mesh can 

easily be extended to Inore complex second-order prob- 
lenis and decompositions into convex quadrilaterals and 
quadrilaterals with curved edges. Also using the three- 
dimensional mortar technique as studied in [1], would al- 
low to analyze this discretization in the three-dimensional 
case. 
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