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Abstract 

A spectral multi-domain method is introduced and exam- 
ined. After dividing the computational domain into non- 
overlapping subdomains a Legendre-Tau approximation is 
constructed within each subdomain. Unlike the standard 

Legendre-Tau approximation a variational approximation 
is constructed and the result is that only simple continuity 
is required at the interfaces between the subdomains. The 
method is introduced for a simple 1D Helmholtz equation 
and two examples are given: a 1D Burger's Equation with a 
small viscosity and Navier-Stokes incompressible flow over 
a backstep. 

Key words: spectral elements, Helmholtz equation, 
Burger's equation, Navier-Stokes equation. 
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I Introduction 

A spectral multi-domain approximation using a Lanczos- 
Tau approximation [4, p. 79] is examined and is imple- 
mented by enforcing a variational approximation. The 
method is constructed so as to construct a local spectral 
basis within each subdomain [3]. The method is first in- 
troduced for a simple Helmholtz equation, a 1D Burger's 
equation with a small viscosity, and finally the Navier- 
Stokes incompressible flow over a backstep is examined. 

Another technique which yields an approximation in the 
Fourier domain has been proposed by Israeli, et al in [8], 
however the approach proposed here has more in common 
with the collocation method proposed by Patera [11]. A 
collocation method using the same test functions for the 
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variational form that is examined here has been proposed 
in [2]. Because a variational approach is employed the 
method has the advantage that the interface can be easily 
calculated by requiring only C O continuity. 

Unlike other variational approaches an approximation is 
found in the Spectral domain. This approach easily takes 
advantage of the accuracy of the spectral multi-domain 
methods as well as an advantage in the robustness of 
the Galerkin schemes. The numerical schemes generated 
from such an approach can easily accommodate compli- 
cated boundary conditions that depend on the spectrum. 
One disadvantage is that any nonlinear terms are more 
expensive to compute xvhen compared to the collocation 
approach. Because this approach is designed for use with 
multiple computational subdomains the size of the approx- 
imating space on each subdomain is kept small. and the 
expense of calculating the nonlinear terms can be kept low. 

Because the scheme is essentially a Legendre-Tau 
method, the system of equations is constructed in the same 
manner as is done with Galerkin methods. Since the ap- 
proximating functions do not necessarily satism,the bound- 
ary conditions the boundaries are directly enforced. This 
is done either by enforcing the boundaries at specific grid 
points or by a minimization of the difference between the 
true boundaries and the approximation. 

2 Multi-domain tau method 

To take advantage of the high accuracy and relatively 
course discretizations offered by spectral methods and 
avoid restrictions placed on the computational domain, the 
domain is subdivided into non-overlapping subdomains. 
On each subdomain an approximation is found that is a 
linear combination of the Legendre polynomials up to a 
given degree. To present the method without the burden 
of too many technical details, first a simple 1D Helmholtz 
equation is exanfined, 

uxx + Au = f, x • (0,1). 
u(0) = u(1) = 0. 
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The approximation is constructed by integrating against 
a sequence of test functions and building a system of al- 
gebraic equations. In the standard implementation of the 
Tau method the test functions are chosen to be the same 

as the trim functions. In such a case both the test func- 

tions and the trim functions are found from the sequence 
of Legendre polynomials. Since a multi-domain approxi- 
mation is sought the test functions, •j(x), are defined in 
a different xvay, 

(2) ½j(x) = (1- x2)Lj(x), 
l+x 

Viv-(x) = 2 ' 
1--x 

½N(X) : 
2 

O_<j<N-1, 

As defined the test functions are zero on the endpoints 
for j = 0...N-2. For j = N- 1 andj = N the test 
functions are linear polynomials, and the span of all of the 
test functions is 

I I I 
L • R • = L • R*' 

Figure 1: A Multi-Domain Example in 1-D for subdomains 
1 and r. 

The computational domain is to be divided into M non- 
overlapping subdomains. For a given subdomain, r, the 
approximation is written as u'/v(x ) 6 P2v and the left and 
right endpoints are L" and R •, respectively (see Figure 
1). On each subdomain the domain is mapped to the unit 
square [-1,1] using a simple linear transformation: 

X-- L r 

(3) 
The approximation on subdomain r is written as a linear 
combination of the Legendre polynomials and has support 
only on subdomain r: 

(4) u*•(x) -- { Y]•i5øct}'Li(•r)' x • [Lr,• r] 0 otherwise. 

In this example x is in the computational domain defined 
in equation (1) and • is found from equation (3). For 
0 _< j <_ N, the test functions for subdomain r are define, 

x otherwise. 

L t R t = L ,' R ,- 

Figure 2: Trial functions •_•(x) and ¾'•;v(x) combine on 
adjacent subdomains to assemble an "hat" function. 

With these definitions the variational approximation can 
be examined. Except for the linear functions, the test func- 
tions are zero on the subdomain boundaries. and each test 

function has support on only one subdomain. When inte- 
grating against the approximation the only integral that 
need be found is that part within the individual subdo- 
•nain. The linear test functions, however, do not have zero 
boundaries on each subdomain. If the linear functions on 

adjacent subdomains are examined the result is a simple 
hat function (see Figure 2). This composite test function 
is used to insure that the flux is balanced across the sub- 

domain interface. 

By splitting the trial functions into the polynomials that 
are zero at the boundaries and those that are not, the 
method is a p-version finite element method. Unlike more 
conventional p-version schemes, by constructing the ap- 
proximation as a linear combination of the Legendre poly- 
nomials it becomes quite easy to increase the order of 
the approximation xvithin each subdomain (p-refinement). 
Moreover, the resulting matrices share a similar struc- 
ture to those found in the conventional single subdomain 
Legendre-Tau method[4]. For example, within each subdo- 
man the entries for the stiffness •natrix cooresponding to 
trial functions ;vhich are zero at the boundaries represesent 
a sparse upper-triangular matrix. 

Once the approximation and the test functions are de- 
fined on the two subdomains the variational approximation 
of equation (1) is constructed. For j = 0,..., N - 2 the 
following equations are enforced on each subdomain: 

Assuming that subdomain I is the subdomain to the left 
and adjacent to subdomain r, the equations for the linear 
test functions are constructed by integrating against the 
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hat function: 

R* d l 

R • R r 

The boundary conditions are enforced as they are done 
in the standard Tau techniques. Assuming that subdo- 
main 0 is the far left subdomain and M is the subdomain 

on the far right, the boundaries are directly enforced in a 
pointwise manner, 

tt o N o = (-1)' = o, 
(s) u:¾(1) '¾ = •=o = 0. 

The subdomain interfaces are enforced by simply requiring 
C ø continuity: 

(9) 

UN 
N N 

I ' 

•=0 i=O 

The solution to the system of equations in equations (6) 
through (9) is the approximation to equation (1). 

2.1 The stiffness matrix 

Equations (6) through (9) are used to construct an ap- 
proximation to equation (1). By substituting U•v(X ) from 
equation (4) the stiffness and the mass matrices can be con- 
structed. Here we will concentrate on the second derivative 

operator and find the entries for the stiffness matrix. The 
entries for the stiffness matrix are derived and the mass 

matrix can be found in a similar process. 
The stiffness matrix is found by examining the varia- 

riohal form for the second derivative. After a substitu- 

tion to allow for integration across [-1, 1] the variational 
form of the second derivative in equation (6) is derived for 
;=0...N-2: 

-2 

R" - L • 

First, the sum of Legendre polynomials is substituted for 
the approximation U•v (x). For j = 0... N- 2 the result is 

(10) 

ai R• _--L• 
i----O 

((1 - 1 d• 

The system of equations can be constructed through the 
use of a stiffness matrix, $N, by setting 

- L•i(x) ((1 - x2)Lj(x)) dx ($.•')ji - R•- L'• 1 

2( 2j(1- j) 6ji) ' (11) = R•_L • 4%•+ 2j+l 
forO_<j<N-1, andO<i<N%,isgivenbv 

1 i+jeven, i_>j+2 (12) eji = 0 otherwise. 

This yields a sparse upper-triangular matrix and is similar 
to the result for the standard single domain tau method 
[4]. 

The equations for the interface are found by integrating 
against the hat function over the two subdomains as given 
in equation (7), 

(13) 
R• d l 

n• d d • 

N N 

ai R l _ L t + % R,• _ L ,• 
i----1 i=1 

i odd i odd 

The entries for the stiffness matrix are found by enforc- 
ing the variational form of the second derivative as well 
as the boundaries. The mass matrix, A42v, can be con- 
structed using the same approach. 
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Burger's equation with a small 
viscosity 

An example of the discretization for Burger's equation with 
a small viscosity is examined, 

ut q- uu• - unix, x • (-1, 1), t>0, 
•(+l,t) = 0, t>0, 
u(x,O) = -sin(7rx). 

This equation develops a steep gradient around x = 0 and 
has been examined in Basdevant, et al [1]. The temporal 
discretizations employed here closely parallel those found 
in [1]. 

The previously described spatial discretization is em- 
ployed in the approximation to equation (14). The tem- 
poral discretization is constructed from a finite difference 
approximation and employs an Adams-Bashforth/Crank- 
Nicholson Scheme (ABCN) [1]. The approximation at the 
n th time step is denoted tt•v. The convective term is ap- 
proximated using the explicit Adams-Bashforth discretiza- 
tion and the diffusive term is approximated using the im- 
plicit Crank-Nicholson discretization, 

(14) UN 

N N 

At 

n •n 

1 ^•--1 

and the resulting •natrix equations are given by 

(15) •" = u•(u•)x, 

The nonlinear terms can be calculated as a convolution 

sum [4. p. 82] or using collocation on the abscissa kom 
the Gauss-Lobatto quadrature as was done here [4, p. 83]. 

A comparison between three different methods is exam- 
ined. The first is a single domain Chebychev-Tau scheme 
[4. p. 80], a Chebychev-Galerkin-Collocation •h•n• [11], 
and a multi-domain Legendre-Tan scheme. (A comparison 
between a finite difference approximation and the spec- 
tral techniques can be found in [1].) For the two spectral 
element approximations four equally spaced subdomains 

1 

are implemented. In the examples the values v - •00=, 
1 

At = 2• are employed. 

The true solution that is used for reference is ap- 
proximated from the convolution product given in Cole's 
transformation[5]. An approximation of the true solution 
;vas calculated using Gauss-Hermite integration with 9 dig- 

• the gradient achieves its of accuracy [6, 12]. (For v = i5-67 
its maximum near t = 0.5 [1].) 

The L • errors for these values are given in Figures 3 
through 5. For this test case the L 2 errors are presented 
for the times t= 1/•, t= 2/•. and t= 3/7r [1]. For each 
of the three trials the error reported is not the percentage 
error. In the test case a steep gradient occurs around x = 0 
and once this gradient is resolved the two multi-domain 
methods offer a more accurate approximation. 

Figures 3 through 5 demonstrate that the multi-domain 
techniques can yield a more accurate approximation when 
compared to a single domain approximation. Because the 
steep gradient occurs around a subdomain interface the 
two multi-domain techniques are better able to resolve the 
gradient. The approximations at the times 2,/7r and 3/7r 
demonstrates the robustness of the Tan approximations. 
When the gradient is not adequately resolved the collo- 
cation scheme actually diverges while both Tau methods 
maintain their stability. The multi-domain Tau method 
maintains the advantages of both the Tan method and the 
multi-domain method. 

4 Navier-Stokes 

flow 
incompressible 

The incompressible Navier-Stokes flow equation. 

(16) ut + (u ' V)• + Vp = i V2u, 
Re 

subject to V.• = O. 

with no slip boundaries are examined [7]. The geoxnetries 
examined are for flow within a driven cavity as well as flow 
over a backstep. The spatial discretization mnployed is the 
same as examined in section 2. The temporal discretization 
is based on the the splitting method [10] and the methods 
proposed by Karniadakis, et al [9]. The splitting method 
is a convenient scheme to separate the actions of the two 
spatial operators acting on the velocity, 

(17) 
1 

= 5 (½. + v. 
1 Van. œ(u) = Re 

(The implementation employs the skew-symmetric form of 
the nonlinear operator). 
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Approximation to Burger's Equation - L 2 Errors 
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Figure 3: The L 2 errors for the approximation to Burger's Equation with a small viscosity at the time 

(is) - 

Following the method proposed by Karniadakis, et al 
[9], the pressure is not calculated, rather the time aver- 
aged pressure is approximated. The three relavent spatial 
operators can then be isolated in three separate steps, 

= - [t'•+•jV(UN) dt, 
dtn 

= -X7i0 , subject to K7.•N =0, 

= œ(uN) dt. 

In the first time step the nonlinear term is integrated 
through the use of an explicit method such as those from 
the Adams-Bashforth family of schemes while the third 
step employs an implicit step such as those found in the 
Adams-Moulton family of schemes. Because an explicit 
step is taken there is a restriction on the time step. How- 
ever, the more stringent restriction on the time step comes 

from the Stokes operator. This is mitigated through the 
use of the implicit step in the final equation. 

For the 2D equations the both the approximating and 
trial functions are taken as tensor products of those found 
in the 1D case. Within each subdomain an approxima- 
tion is constructed which is a linear combination of the 

Legendre polynomials, for (•, !/) in subdomain r, 
N N 

(19) u•(x, y) = E E øzi• Li(•)Lj(•r)' 
j=0 i=0 

The test functions are also found as a simple tensor prod- 

uct, 
Continuity across the subomain interfaces are enforced 

by minimizing the difference between the approximations 
on adjacent subdomains. For example, if subdomain r is to 
the right of subdomain 1 then on subdomain r the bound- 
ary • ---- -1 is adjacent to the boundary on subdomain 1 
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Approximation to Burger's Equation - L Errors 
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Figure 4: The L 2 errors for the approximation to Burger's Equation with a small viscosity at the time t - 2 -- w' 

when .• : 1. The continuity across this interface is en- and, 
forced bv requiring that the difference between the two 
approximations be orthogonal to the space of polynomials (22) 
of degree N - 2, 

1 (20) (u%(1, y)- u•(-1, y)) Lj(y)dy --- 0, 
1 

j=0...N-2. 

Continuity is ensured with the final requirement that the 
subdomains be continuous at the corners which is directly 
enforced as it is done with collocation type methods, 

(21) 
l 

UN(1,1) = u•(-1,1), 
N N N N 

•=0 j=O i=0 j=0 

4.1 Flow over a Backstep 

In the second trial, the Navier-Stokes incompressible flow 
over a backstep, the domain is divided into 30 subdomains 
(see Figure 7). On each subdomain the approximation 
utilizes a polynomial of degree 6 in both the x and the 
y-directions. The initial condition is zero velocity with a 
time step of At = 10 -3. The height of the backstep is 1 
and the maximum velocity at the inlet is 1. The implicit 
step that is taken in equation (18) is inverted through the 
use of the GMRES method [13, 14]. 
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Approximation to Burger's Equation - L 2 Errors 
v= 1/(100•), 8t = 1/(200•) 

Time = 3/• 
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Figure 5: The L 2 errors for the approximation to Burger's Equation with a small viscosity at the time t - 3. 71' 

In this example two different Reynolds numbers are ex- 
amined, Re= t and Re=4-•0 and the velocity fields are 

__ 1 
shown in Figure 8. For the situation for Re-2-- • the ini- 
tial velocity was taken to be zero and the velocity field 
shown was found after 6000 time steps. For the situation 

__ 1 
for Re-4-•-• the initial condition employed was the velocity 
field obtained in the previous situation. The velocity field 
shown was found after 2300 time steps. 

Figures 8 and 9 show the velocity fields for both trials. 
The first figure, Figure 8, demonstrates the velocity field 
for the area around the inlet and the backstep. The sec- 
ond figure, Figure 9, is a more detailed view of the area 
directly behind the backstep itself and shows the area of 
recirculation. 
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Figure 6: The true solution to Burger's Equation at t = •, t = -}, and t = _3. 
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Re=200 

ß 

Re=400 

Figure 8: Vector plot for the inlets for two simulations. The top si•nulation is from the test case Re=200 and the bottom 
simulation is from the test case Re;400. 
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Re=200 

Re=400 

Figure 9: Vector plot focusing on the region behind the backstep for two simulations. The top simulation is from the 
test case Re-200 and the bottom simulation is from the test case Re=400. 



266 Kelly Black 


