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Abstract 

We introduce a new filter or sum acceleration method 

which is the complementary error function with a logarith- 
mic argument. It was inspired by the large order asymp- 
totics of the Euler and Vandeven accelerations, which we 
show are both proportional to the erfc function also. We 
also show the relationship between Vandeven's filter, the 
Erfc-Log filter and the "lagged-Euler" method. The theory 
for the last of these is used to predict a spatially-varying 
optimal order for filtering of a Fourier or Chebyshev series 
for a function with a discontinuity, front or shock. 

Key words: sequence acceleration, filtering, Fourier 
spectral, Chebyshev spectral. 
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1 Introduction 

When the solution u(x,t) develops a shock or other region 
of very rapid variation, the convergence of all types of spec- 
tral series is slowed to a crawl. Chebyshev, Fourier and 
Legendre exhibit Gibbs' Phenomenon: the N-term trun- 
cation of the series has O(1) errors with rapid, unphysical 
oscillations in a boundary layer of width O(1/N) centered 
on the shock or frontal zone [5, 9, 3]. "Filtering" or"sum 
acceleration" is an important tool for reducing Gibbs' os- 
cillations. If the original unfiltered (and slowly converging) 
series is 
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N 

(1) UN(X) = y•, aj ½j(x) 
j=0 

where the ½j(x) are the basis functions, then a smoother 
and more physical approximation is the filtered partial sum 

(2) 
N 

U(X) = • •(j/N) aj qSj(x) 
j=0 

where •r is symmetric with respect to 0 = 0, that is, 
rr(-0) = rr(0) for all 0. Unfortunately, there is as yet no 
theory that identifies a unique, optimum filtering function 
rr(0) for each situation. However, some general considera- 
tions are known. 

One is the concept of the "order" p of a filter, which will 
be made more precise in the next section. A high order fil- 
ter is one which modifies u(x) only slightly in the smooth 
regions away from the shock. Almost by definition, large p 
is desirable far from the frontal zone. Majda, McDonough 
and Osher [11] show that it is possible to recover spectral 
accuracy away from the shock. even when u(x) is discon- 
tinuous, by filtering of sufficiently large order. 

In the vicinity of the front, however, low filtering or- 
der is desirable because large p gives a filtered function 
u•(x) which is very oscillatory and in the limit p -* oc 
displays Gibbs' Phenomenon even worse than the unfil- 
tered series. It follows the Holy Grail of filtering is one 
which is spatially-adaptive with an order p(x) that varies 
from small values around the shock to large values in the 
smooth regions far away from the discontinuity in u(x). 

To carry out such adapative filtering, we need a tool for 
identifying shocks or regions of very high gradient. Lo- 
cal error estimates have been well-developed for spatially- 
adaptive finite difference, finite element and finite volume 
codes, so we shall not discuss them further here. We shall 
instead simply assume that we have identified the points 
where low order filtering is needed. 

It is beyond the scope of this article to apply a filter with 
a spatially-adaptive p to a real fluid flow. Our goal is more 
modest: to define a new filter, the "Erfc-Log" acceleration, 

267 



268 ICOSAHOM 95 

and to derive a theory for how the order p should vary with 
nearness to the front. As a kind of extended prologue, we 
shall derive asymptotic approximations to two widely used 
filters, due to Vandeven and Euler, to show that these are 
asymptotically equivalent to each other and to the Erfc- 
Log filter in the limit p • oc. This asymptotic equality 
allows us to connect the theory of the Erfc-Log filter with 
earlier work of Boyd on the "lag-averaged Euler" acceler- 
ation, which supplies a theory for optimizing p(x). Simple 
numerical experiments show that the theory is quite effec- 
tive. 

For simplicity, our illustrations use only Fourier series. 
In the next to last section, we show how the Fourier results 
generalize almost trivially to Chebyshev and Legendre ex- 
pansions, too. 

2 Vandeven's theorem 

Theorem 2.1 (Vandeven Filter Order) 
(Simplified from the original). If or(O) is a sufficient smooth 
function such that 

or(O) = 1 

(3) or(m)(0) : 0, m=l,2,...,(p-1) 
-- 0, 0, x .... , (p- 

u, herecr ("•) denotes the m-th derivative of or, then the filter 
function or(O) is of "order p in Vandeven's sense" and he 
proved the following: 

1. If u(x) is smooth in the sense of possessing at least p 
continuous derivatives, then 

1 
(4) iu(x)- u•(x)l < constant Np-•/2 

2. If u(x) has a jump discontinuity at one or more points 
X -- Cm, i. e., 

then 

lira [u(c,• + e) - u(cm - e)] = j,• • 0, 
e•0 

1 
(6) lu(x)- u•(x)l < constant 

where d(x) is the distance from x to the nearest sin- 
gularity, that is, 

(7) d(x): inf {I x - (c• + 2k7rl), 

for all m and any integer k. 
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Figure 1: The Vandeven filter for different orders p. Cir- 
cles: p = 4. Plus signs: p = 10. Asterisks: p = 40 (steepest 
slope). 

The first part of the theorem implies that prior to the 
development of front. we can drive the error to zero faster 
than any finite power of N (i.e., achieve %pectral accu- 
racy") by using a filter of sufficiently high order p. The 
second part of the theorem shows, in a more precise reaf- 
firmation of Madja et al. [11], that spectral accuracy is still 
possible even with a discontinuity in u(x) provided x is not 
too close to the shock. The factor of d(x) shows that the 
error estimate fails apart - to O(1) errors - when d(x) is 
O(1/N). Sadly, this is not a flaw in the proof, but rather 
an intrinsic limitation of the class of filters described by 
Eq.(2). 

The conditions for small cr were known long before Van- 
deven, but the need to impose conditions on the filter func- 
tion for 0 m 1, that is, near the truncation or aliasing limit, 
was new and surprising. 

Vandeven's Theorem provides some constraints on fil- 
ters, but not specify a unique form. In the next section, 
we shall describe a filter first proposed by Vandeven him- 
self. 

3 Vandeven's filter 

This acceleration is defined [12] by 

(8) cry(O) = 1 F(2p) fo ø iF(p)] 2 It(1 - t)] p-• dt 
and illustrated in Figure 1. For integer order p, this can 
be alternatively defined as the unique Hermite interpolat- 
ing polynomial of degree (2p - 1) which satisfies the 2p 
conditions to be a filter of order p in Vandeven's sense. 

The filter can be evaluated for general p by exploiting 
the fact that it is a special case of the incomplete beta- 
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function. which in turn is a special case of the hypergeo- 
metric function: 

(9) o-v - 1 - œo(P,P) 

= 1 r(2p) 0p F(p, 1 - p; p + 1; 0) 
[r(p)] 2 P 

in the notation of the The NB$ Handbook of Functions [1]. 
Because of the identity 

(10) œo(P,P) = 

it is only necessary to apply the hypergeometric poxver se- 
ries, which has a unit radius of convergence, for 0 < 1/2: 

(11) 
OP(1-O)PF(2p) 

p[F(p)] 2 

1 + y• r(p + 1)I-(2p + n + 1) ,,=0 r(2p)r(p + n 7- •-) 

4 Steepest descent approximations 
for large order p 

4.1 Nonuniform approximation 

Figure 2 shows the integrand of the integral in cry for dif- 
ferent orders. The most striking conclusion is that the 
integrand becomes narrower and narrower as the order p 
increases. This suggests that the integrand can be more 
and more accurately approximated for large p by writing 
the integrand as an exponential and then making a Taylor 
approximation. To simplify, let P --- (p- 1) and change the 
integration variable to y _= (t - 1/2) so that the integrand 
is centered on y=O. Then, without approximation, 

t P (1 - t) p = exp(Plog(t[1 - t])) 

(12) : exp {Plog (1 -:Y2) } 
= 2 -2r' exp {P log(1 - 4y 2) } 

If we expand the logarithm as a Taylor series, then the 
integrand is approximated by the Gaussian so that 

crv(O'p) 

(13) 

F(2p) [0-1/2 exp(-4Py2)dy • 1- 22P[r(p)]2 
• 1-(1/2)erf {2pl/2(101 - 1/2)} 
• (1/2)erfc {2p•/2(101 - 1/2)}, p >> 1 

1 

0.8 

0.6 

0.4 

0.2 

, , 

0.4 0.6 
0 

Figure 2: The integrand of the integral in Vandeven's filter, 
scaled to have unit maximum, for three different p (solid) 
compared with corresponding approximation by the Gaus- 
sian function exp(-4p[t- 1/2] 2) (dashed) 

No approximations have been made in Eq. 13 except for 
the Tavlor expansion of the argument of the logarithm. 
and also the replacement of P(= p - 1) by p. consistent 
with p >> 1. Unfortunately, the erfc approximation is 
not uniformly valid as evident from Figure 2 because the 
expansion is about t = 1/2, but the integration is only over 
a small range of t far from this point when 0 is small. 

4.2 Uniform, improved approximation 

A uniform approximation can be derived by consistently 
applying the method of steepest descent. The first step is 
to make an exact change of variable so that the argument 
of the exponential is quadratic in the new variable z(y): 

(14) -z 2 •Plog(1 - 4y 2) 

Expanding the metric factor dy/dz in the transformed in- 
tegrand and retaining only the lowest order in lip gives the 
approximation, uniformly valid in 0 E [0, 1] for p > > 1, 

(15) crv(O;p) 

•erfc 2p •/2 IOl- •) -log(l- 410- 1/2] 4[o- 1/21 

The error in approximating the Vandeven filter by these 
two approximations is shown (on a logarithmic scale) in 
Figure 3. The maximum error for various orders is illus- 
trated in Table 1 and is roughly 0.045/p - quite small even 
for low order p. 
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5 Euler acceleration 

The Euler filter of order M is defined by I4. 6. 7] 

o 

O 0.2 0.4 0.6 0.8 
O 

Figure 3: Solid crv(0, p = 3). Circles' Absolute value of the 
error in the Erfc approximation. Pluses: Error in Erfc-Log 
approximation. 

Order p maxl•v(O;p)-•Erf•._Log(O:p)l 
1 0.0787 

2 0.0287 

3 0.0170 

4 0.0120 

5 O.OO93 

6 0.0076 

7 0.0064 

8 0.0055 

9 0.0049 

10 O.OO43 

Table 1' Maximum error for 0 6 [0, 1] of the Erfc-Log 
approximation to Vandeven's filter 

(16) erE(0)- 1 

O'E • ]g Mk , 

erE(l) - 0 

j = 1,2 .... M 

where the "partial sum weights" are 

M• 1 

(17) 
The summation from k = j to M is analogous to the indef- 
inite intnegral in Vandeven's method while the partial sum 
weight p• plays the role of the integrand tP-•(1 - t) p-1. 
In sharp contrast, however, the Euler acceleration is de- 
fined only for discrete values of 0. 

Like Vandeven's integrand, the partial sum weights be- 
come increasingly concentrated with respect to the nfid- 
die of the range as the order increases. By applying the 
method of steepest descent for sums [2], we find 

(18) CrE(O;M)•lerfc V/2M+4 IO[- 5 . Mr>> 1 2 

This has exactly the same form as the large-order approx- 
imation to the Vandeven filter. Indeed, the two filters are 
asymptotically identical if the orders of the two methods 
are related by 

(19) M = 2p- 2 

Table 2 shows that the erfc-approximation is very accu- 
rate. The maximum error in any of the weights for a given 
order is roughly 0.03/M. 

The Euler acceleration does have one major weakness 
compared to Vandeven's: because the filter of order :V/is 
defined only at (M + 2) discrete points, the Euler filter can 
only be applied to (M + 2) terms of a series. In contrast, 
one has the option (a useful one, it turns out) of applying 
crv for fixed order p to an arbitrarily large number of terms. 

The lag-averaged Euler acceleration, described in the 
section after next, generalizes the classical Euler filter to 
obtain most of the advantages of Vandeven's acceleration. 

6 The Erfc and Erfc-log filters 

Asymptotic approximations are usually only imperfect re- 
flections of an underlying reality. Filters, however, are only 
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Order •I maxle(O; 
1 0.0416 

2 0.0223 

3 0.0127 

4 0.0083 

5 0.0076 

6 0.0061 

7 0.0044 

8 0.0043 

9 0.0038 

10 0.0030 

15 0.00205 

20 0.00151 

25 0.00119 

30 0.00097 

Table 2: Maximum error for 0 E [0, 1] of the Erfc-Log 
approximation to rr(j/(M + 1)), Euler's acceleration 

a means to an end, a tool for itnproving other approxima- 
tions. In the absence of a theory to identif•v "the" optimum 
filter, a slavish affection for a particular filter, such as Van- 
deven's, seems silly. The Vandeven Filter Theorem does 
not identify a unique filter, but only suggests a whole class 
of filters. In practice, some filters which nearly but not 
exactly satisf•v the conditions of the theorem work well in 
applications [11]. 

Consequently, it is sensible to regard the Erfc and Erfc- 
Log formulas as something more than mere approxima- 
tions. These expressions themselves define new filters, co- 
equal in status with the Euler and Vandeven filters: 

1 

(20) •--= 101- • 

(21) CrEr7•(O;p) _= (1/2)erfc {2p 1/2 •} 

(22) rrE•7•._•oa(0; p) =-- 

•erfc{2pl/2•/--1øg(1--4•2) } 4• 2 

The Erfc filter is simple, but it does not satisfy the con- 
ditions of Vandeven's theorem. Does it matter? 

To test this, we applied the Erfc, Erfc-Log and Vande- 
ven filters to accelerate the Fourier series for the piecexvise 
linear or "sawtooth" function, which is defined by 

ß (23) Sw(x) -= Sw(x + m- integer 

10 -5 

10 -10 

10 -15 
0 

Erfc-Log '. 
o'.s • 1'.s •, 2'.s •- 

d 

Figure 4: Absolute value of the error in the sine series for 
the sawtooth function, truncated at N -- 100, after ap- 
plication of the Vandeven filter (solid). the Erfc-Log filter 
(dashed) and the Erfc filter (dotted) for order p = 8. The 
abscissa is d(x), the distance to the nearest jmnp discon- 
tinuity. 

or equivalently by 

2 (-1) (24) Sw(x) _= - - sin(jx) V x 
j=l 

This function has a jump discontinuity at +7r and is thus a 
good model of a function with a shock wave, or of a frontal 
zone too narrow to be resolved by N Fourier terms. 

Fig. 4 shows that in the vicinity of the front, all three 
methods are about equally bad. Away from the front, how- 
ever, the Erfc filter is awful compared to both the Vande- 
ven and Erfc-Log filters, whose results are indistinguish- 
able. With regret, we must abandon the Erfc filter, in 
spite of its highly desirable simplicity, because it is too 
inaccurate in consequence of its violation of Vandeven's 
Theorem. 

The Erfc-Log filter, however. is just as good as Vande- 
ven's, but simpler. The numerical results of later sections 
will all be generated using the Erfc-Log filter. 

The Euler, Vandeven, and Erfc-Log filters are identical 
triplets with in the sense of asymptotic equivalence. (Re- 
call that the asymptotic approximations of the Euler and 
Vandeven filters by the Erfc-Log filter are accurate even 
for order p or M as small as 2.) The filters are not ex- 
actly the same, but then, identical triplets have individual 
personalities. We can pick whichever personality is conve- 
nient. 

For computation, the Erfc-Log filter is the most conve- 
nient. For theoretical purposes, the Euler filter has some 
advantages because •ve can tap into a couple of centuries 
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Figure 5: Solid: crv(O;p) for p = 3. Dashed: crœE([(M + 
1)/M)]O; 4), the lag-averaged Euler scheme derived from 
the standard Euler method of order 4. The argmnent of 0 
in crL E has been scaled so its graph touches the Vandeven 
filter at the edge of each "step". 

of analysis that has grown around it, as we shall do in the 
next section. 

7 Lag-averaged Euler acceleration 

The lag-averaged Euler method is a very simple (one might 
unkindly say "simple-minded") generalization of Euler's 
method. Since the latter (at order M) is defined only at 
(•ll + 2) discrete points, extend it to a larger number of 
terms by applying each of the M "non-trivial" weights to A 
terms in succession where A is the "lag parameter". (The 
"non-trivial" weights are those which are not equal to 1 
or 0.) The ordinary Euler acceleration is the special case 
A = 1. The weight function is [8]: 

rrœE(0;A,N= I+MA)= { 1 0=0 • ' -- M' 

as illustrated schematically in Fig. 5. 
For M = 4, for example, a0 is weighted by 1, 

{a• .... ,ax} are multiplied by 15/16, {ax+•,...,a2x} by 
11/16, the next quarter of the series is multiplied by 5/16, 
and final fourth of the terms is weighted by 1/16. 

The reason this seemingly obvious generalization is in- 
teresting is that both it and the Euler acceleration can be 
derived from averaging successive partial sums. The par- 
tial sums are 

(26) Sk --= Z aj 
j--o 

Suppose the coefficients aj oscillate in degree j with pe- 
riod P. The shortest possible period is P = 2 which cor- 
responds to a strictly alternating series: if aj is positive, 
then aj+ 1 is negative, aj+ 2 is positive, a j+3 is negative and 
so on. An elementary theorem of first-year calculus shows 
that the partial sums will successively overshoot and un- 
dershoot the true sum S. 

In this case, the sequenc• of "once-averaged" partial 
sums 

(27) T• --- (& + S•_•)/2 

should be a better approximation, for each j, than either 
of the two partial sums from which it was formed. The 
overshoot of Sj+• is largely cancelled by the undershoot 
Sj_• when the two are averaged. 

The once-averaged partial sums often oscillate. too. In 
this case, the rate of convergence to S can be further ac- 
celerated by averaging the averages T• to form a sequence 
of twice-averaged sums. Continuing this "averaging-of- 
averages" until all M + 1 terms in a given series have been 
exhausted gives the standard Euler acceleration. 

If the coefficients oscillate with a different period P. then 
Boyd [8] suggested lag-averaging of partial sums, that is. 
generalizing the fundamental averaging by averaging par- 
tial sums which differ in degree by an integer •. i.e.. 

(2s) -- (& + &-x)/2 

where the optimal lag is 

(29) • = [P/2] 

where [P/2] denotes the integer nearest half the period in 
degree. With this choice of h, the "crest" of a •"wave" in a• 
is averaged with the "trough" for maximum cancellation. 
It is shown in [8] that repeating the lag-averaging until all 
N terms in the truncated series have been exhausted gives 
the weight in Eq. 25. 

8 Optimizing filter order 

The reason the lag-averaged Euler theory is intriguing is 
that at least for some classes of functions, it is possible to 
determine how the period-in-degree varies with d(x), the 
distance to the nearest singularity of u(x), and thereby 
optimize the lag • as a function of x. Because of the close 
connection between the Euler and lag-Euler methods and 
the Vandeven and Erfc-Log filters, i. e., asymptotically 
these methods are all described by a single formula, the lag- 
averaged Euler theory should work equally well for cry (0; p) 
and cr•f•_•oa(0;p) as well. 
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The sawtooth function, defined earlier, is the simplest 
function with a jump discoutinuity. However, it is more 
than a mere exemplar. If we adjust the strength and loca- 
tion of the singularity, the difference between the shifted- 
and-scaled sawtooth function and an arbitrary u(x) with 
a single discontinuity per period is continuous. It follows 
that the Fourier series of the difference converges more 
rapidly than that of the sawtooth function, implying in 
turn that the Fourier coefficients of the sawtooth function 

asymptotically approximate those of u(x), aj, as degree 
3 --• co. It follows that what is optimum for the sawtooth 
function should also be optimum for other functions with 
one discontinuity, at least for sufficiently large N where N 
is the truncation of the Fourier series. 

Boyd [8] shows, in an analysis not repeated here, that 

2v 

(30) P(x) = d(x) 
where d(x), as in Vandeven's Theorem, is the difference 
between x and the singularity. Thus, the period of the 
Fourier coefficients aj in j varies from P=2 at the point far- 
thest from the singularity (and its periodic images) where 
d(x) = •, its maximum value, to cc where x = xs, the 
location of the discontinuity in u(x). 

The optimum lag A in the lag-averaged Euler method 
is simply the integer nearest P(x)/2. Translating this to 
the Euler and Erfc-Log filters so these filters, applied to 
N = i + MA tdrms, are the envelope of the lag-averaged 
Euler method gives 

(31) Poptimura(X) ---- i + N • 

9 Numerical tests 

Figure 6 illustrates how the error in approximating a func- 
tion with a discontinuity varies with both nearness to the 
singularity d(x) and filter order p. Along the left edge of 
the figure where d(x) is small, i.e., close to the discon- 
tinuity, the error is mediocre (O(10 -2) • O(1/N)) for all 
orders p. Very close to the discontinuity in Sw(x), filtering 
helps little. 

On the right of Figure 6, far from the singularity, we 
see confirmation of Madja, McDonough and Osher's con- 
tention [11] that it is possible to retrieve spectral accu- 
racy: for sufficiently large p, we obtain errors smaller than 
O(10 -•ø-) [to the upper right of the contour labelled "-12"] 
in spite of the nasty singularity in Sw(x). Further, for fixed 
d(x), the error decreases roughly geometrically with p. 

Close to the singularity, Figure 6 shows little except that 
no filter works particularly well. Figure ? is a blowup of 

7 ' 0 -lO 
6 -9 

0.5 1 1.5 2 2,5 3 

Figure 6: Contours of the logarithm (base 10) of the error 
as a function of order p (vertical) and distance d(x) to the 
discontinuity in the function (horizontal). Erfc-Log filter 
applied to the first 100 terms of the sine series for the 
sawtooth function. 

1.15 

1.1 
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1 

0.95 
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2.! 2.95 3 3.05 3.1 
x 

Figure 7: Comparison of the sawtooth function (straight 
line without symbols) with Erfc-Log filtered 100-term sine 
series for various orders p. Circles: p-2. x's: p - 4. 
Pluses: p = 10. Asterisks: p - 50. 
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Figure 8: The error in approximating Sw(x) by 100 terms 
of its Fourier series after application of the Erfc-Log filter 
of various orders p at five different distances d(x) from the 
singularity of the sawtooth function. The large x-in-circle 
symbols mark the predicted optimal order. 

a comparison between the filtered sine series and the saxv- 
tooth function. showing only a small portion of the peri- 
odicity interval near the discontinuity at x = r•. All of 
the filtered series are way off for x > 3.1. For smaller x, 
however, low order (p = 2) is best because the approxima- 
tion is nearly monotonic with only a slight overshoot. In 
contrast, p = 50 gives back the wild oscillations of Gibbs' 
oscillation. The approxi•nation is poor for x < 3.1, too. 

Neither the high accuracy possible far from the singu- 
larity for high order p, nor the desirability of low order 
p in the neighborhood of the jump, are novelties; Figs. 6 
and 7 have been included merely for completeness. The in- 
triguing question is: how well does our theory predict the 
optimal p as a function of nearest to the singularity? 

Figure 8 shows the answer is: pretty well. For each value 
of d, the distance to the singularity, there is a minimum in 
the error as a function of filter order p. The minimum is 
very fiat so that the error is insensitive to the choice of p 
within a factor of (3/2) either too large or too small. The 
predictions of Eq. 31 are at the low-p edge of the fiat part 
of each curve, but this is quite acceptable. It seems likely 
that for actual fluid dynamics calculations, which will be 
much more contaminated by aliasing and other noise than 
the sawtooth function, that erring on the side of low order 
- stronger filtering - is desirable anyway. 

Figure 9: A graphical interpretation of the Chebyshev 
--, Fourier mapping. Each point on the Chebyshev grid 
(crosses on the horizontal line bisecting the circle is 
mapped by t=arccos(x) into two points on the correspond- 
ing evenly spaced Fourier grid (circles on the unit circle) 
as indicated by the arroxvs. The Fourier theory for opti- 
nilzing filter order can be applied to the Chebyshev case if 
distance d to the singularity is measured on the circle, not 
on the Chebyshev grid itself. 

10 Chebyshev and Legendre series 

A Chebyshev polynomial expansion on x E [-1.1] is 
mapped into a Fourier cosine series in r E [-r•, r•] by the 
change-of-variable 

(32) x = cos(r) 4•- r = arccos(x) 
as shown schematically in Fig. 9. Because a Chebyshev 
series is just a Fourier series in disguise, all earlier results 
carry over to Chebyshev polynomials with only minor mod- 
ifications. 

The important change is that in order to borrow the 
Fourier theory that relates optimal order p(x) to distance 
from the front d(x), this distance to the singularity should 
now be measure in terms of the trigonometric argument r 
instead of x, the argument of the Chebyshev polynomials: 

(33) d(x) =_ arccos(x) - arccos(x,•) [Chebyshev] 

where x.• is the location of the singularity. (For multiple 
singularities, take the minimum of the difference of arc- 
cosines over all the singularities of u(x).) 

Legendre polynomials are very popular in spectral ele- 
ments [3, 10]. Unfortunately, no simple transformation is 
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known to turn a Legendre expansion into a Fourier series. 
However, the Legendre grid is very similar to the Cheby- 
shev grid and the two types of series converge within the 
sanhe region in the complex-plane. It seems likely, though 
we offer no proof, that p(x) can be optimized for Legendre 
series by the same formulas as for Chebyshev. 

11 Conclusions 
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