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Abstract 

A spectral element method is described for the flow of a 
viscoelastic fluid past a sphere in a tube. An approximate 
Jacobian is used to solve the system of nonlinear algebraic 
equations derived from the spectral element discretization 
as a cost-effective alternative to the full Newton method. 

The linearized equations are solved using a preconditioned 
generalised minimal residual (GMRES) method. Numeri- 
cal results showing the behaviour of the drag on the sphere 
as a function of the elasticity of the fluid are presented. A 
comparison with other methods is made and shows good 
agreement with the results of the proposed method. 

Key words: viscoelastic flow, drag factor, spectral ele- 
ments, GMRES method. 
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I Introduction 

The mathematical solution for the flow field generated by 
a particle moving at low speed through an infinite expanse 
of NewtonJan fluid was produced by Stokes [24] as long 
ago as 1851. The problem of determining the influence of 
the walls of a nearby container on the drag force experi- 
enced by the particle was not solved until much later. The 
determination of the drag force, or equivalently the set- 
tling velocity, of a spherical particle in a viscoelastic fluid 
has attracted much attention in recent years for a num- 
ber of reasons. The first concerns the experimentally ob- 
served changes in behaviour from Newtonian flow. Jones 
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et al [14] investigated experimentally the dependence of 
the normalised drag on the sphere on the Deborah num- 
ber and on the ratio 3 of the radius of the sphere to that 
of the containing cylinder. Their experiments with a mal- 
tose syrup/water based Boger fluid and a Newtonian fluid 
of equivalent yiscosity showed that a substantially higher 
drag could be observed for the Boger fluid in the limit- 
ing cases of 3 very small or almost unity. Much smaller 
drag values were observed for some intermediate values 
of 3. Secondly, there is the practical importance of the 
problem as seen in its use as a simple rheological test for 
industrial fluids (see [1], for example). Thirdly, the prob- 
lem is useful in gaining insights into settling in particle 
suspensions. Finally, this problem has been chosen as a 
benchmark problem in computational rheology [12] for the 
comparison of different numerical methods since it gener- 
ates a complex flow field without introducing the problems 
associated with corner singularities. 

At the present time finite element methods, streamline 
upwinded finite element methods and boundary element 
methods (see [5], [8], [13], [15], [21], [25], [30] for example) 
have been used to solve the system of coupled non-linear 
partial differential equations that arise from viscoelastic 
flow problems, and good agreement has been obtained al- 
beit for small (< 2.0) values of the Deborah number when 
the Maxwell and Oldroyd B constitutive models have been 
used. In 1994, Debae et al [9] did a comparison of four 
stress-velocity-pressure algorithms to calculate solutions 
to benchmark problems, including that of the flow of a 
Maxwell fluid around a sphere. These algorithms were 
tested with three different methods of integration of the 
constitutive equations: the Streamline-Upwinded/Petrov- 
Galerkin (SUPG) and Streamline-Upwind (non-consistent) 
(SU) methods introduced by Brooks and Hughes [4], as 
well as a Galerkin method. In the Galerkin formulation 

the largest Deborah numbers were obtained for the Elastic- 
Viscous Split Stress (EVSS) method of Rajagopalan et al 
[20]. 

The application of spectral methods to viscoelastic flow 
problems is comparatively recent, having first been used 
in this way in 1987 by Beris et al [3] to solve the flow of 
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a Maxwell fluid through eccentrically rotating cylinders. 
Since this time spectral methods have enjoyed extensive 
application to viscoelastic flow problems. The importance 
of the present paper is in its contribution to the growing 
literature on the numerical simulation of viscoelastic flow 

past a sphere in a cylinder and the opportunity that this 
presents for a comparison of spectral methods with other 
numerical techniques. The use of spectral methods with 
domain decomposition techniques combines the flexibility 
of the finite element method with highly-accurate spec- 
tral methods. The spectral element method is based on a 
variational formulation of the problem in which the inte- 
grals are approximated using Gaussian quadrature rules. 
The choice of compatible velocity and pressure approxi- 
mation spaces ensures that there are no spurious modes 
in the pressure representation. Spectral element methods 
have been used in the viscoelastic context by Van Keme- 
nude and Deville [27] who compared the results of their 
spectral element method with the 4 x 4 SUPG finite ele- 
ment method on the perturbed channel flow problem with 
a Maxwell B fluid. Their spectral element method was 
also compared with other numerical methods for the flow 
of the Maxwell B fluid in a wavy tube. In another paper, 
Van Kemenade and Deville [28] compared their method 
with the EVSS method on slightly perturbed viscometric 
flows in a channel. They found that the computational 
cost of the spectral element method was less than for the 
EVSS method. The method was also used to study flow 
resistance in a periodically constricted tube. Spectral el- 
ement methods xvere used recently by the present authors 
I18] in order to solve for the flow of an Oldroyd B fluid 
past a sphere in a tube. 

Numerical methods for solving viscoelastic flow prob- 
lems may be divided into two classes - coupled and de- 
coupled ,nethods. In the coupled approach the system of 
partial differential equations is linearised using Newton's 
Inethod. The linearised equations are discretised and then 
solved simultaneously using a sparse matrix solver, for ex- 
ample. In the decoupled approach time-splitting meth- 
ods are generally used to march the system forward in 
time to a steady state solution, if one exists. Decoupled 
methods have the advantage of being able to solve prob- 
lems with finer discretisations since they break the prob- 
lem down into a number of smaller subproblems. They are 
ideal, therefore, for simulating computationally intensive 
3-D transient flows. Coupled methods are prohibitively 
expensive for these types of problem. The disadvantage of 
decoupled methods would seem to be that, at least at the 
present time, it is not possible to reach as high a limiting 
value of the Deborah number as for corresponding coupled 
methods. 

The main disadvantage of Newton's method, seen par- 
ticularly in three dimensional applications, is the size of 
the JacobJan matrix that needs to be computed at each 
step. As a cost effective alternative to the full Newton 
method the present paper uses a modified generalised min- 
imal residual (GMRES) method and this is explained in 
section 4. The GMRES method was originally proposed 
by Saad and Schultz [22] and developed for viscoelastic 
flow simulations by Fortin and Zine [10]. The method is 
used with an approximate Jacobian in each Newton step 
and allows us to decouple the computation of the velocity 
and pressure from that of the stress tensor. The time split- 
ting method originally proposed by Chorin [7] and Temam 
[26] and used by the present authors in conjunction with 
spectral elements for the flow of an Oldroyd B fluid past a 
sphere in a cylinder (see [17], [18]) is outlined in section 3. 
This latter scheme completely decouples the velocity and 
pressure computations. The upper bound encountered on 
the Deborah number De in [17] and [18] was approximately 
0.6 and this is typical of decoupled methods. The results 
from the GMRES method are compared with those ob- 
tained in [18] in section 5. 

2 Geometry and governing equa- 
tions 

The governing equations are those of continuity, momen- 
tum and the constitutive equation for the stresses. Within 
a flow of a fluid of Maxwell or Oldroyd type, with velocity 
everywhere finite, there may exist infinite stresses exerted 
by supposedly infinitely extended polymers. In the numer- 
ical simulations using these models a build up of large poly- 
mer extensions may be observed which gives rise to large 
elastic stresses and eventual numerical breakdown. The 

difficulty of infinite extensibility may be obviated by us- 
ing, for example, the Chilcott-Rallison constitutive model 
[6] which incorporates a finite degree of extensibility for the 
polymers. In this model a single parameter, the maximum 
extensibility of the dumbbells, L, controls the plateau of 
the extensional viscosity at high extension rates. 

The equations of motion and continuity for unsteady, 
inertialess flow are 

0v 

(1) P at - -vp + 2v2v + v. (A - I), 
(2) v.¾ = o, 

where p is an arbitrary isotropic pressure, •]1 is a polymeric 
viscosity, •2 is a solvent viscosity, • is a characteristic 
relaxation time for the fluid, p is the fluid density, v is the 
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velocity vector and the tensor A represents an ensemble 
average over the distribution space of the dyadic product 
RR of the dumbbell configuration vector R. The function 
f(R) is a nonlinear force law, dependent upon the length, 
R. of the dulnbbell configuration vector. 

The evolution equation for A is 

(3) A + f-•-•A(1)= I, 
where the subscript "(1)" in (3) denotes the upper- 
convected derivative. 

The problem geometry is shown in Fig.1. A rigid sphere 
of radius a falls with terminal velocity U along the cen- 
treline of a cylindrical tube of radius R. In the numerical 

simulation of this problem it is assumed that the flow is ax- 
isymmetric and creeping and that the sphere is motionless 
with the tube wall moving with speed U instead. 

Figure 1: The problem geometry 

The Deborah number for this problem is defined by 

• U 
De - 

The nonlinear set of equations (1).(2),(3) is the one that 
is solved. 

3 A time splitting scheme. 

Time splitting schmnes have the advantage of enabling the 
different operators in a system of partial differential equa- 
tions to be treated by appropriate methods of solution. 
In the present context time splitting methods are used as 
a means of deternfining the solution of the corresponding 
steady problem. In this respect they may be viewed as it- 
erative techniques. In general. nonlinear operators such as 
the convection operator are treated explicitly while linear 
operators such as the diffusion, gradient and divergence 
operators may be treated implicitly. 

The four components of the constitutive equation (3) 
are discretised in time using the backward Euler scheme on 
the full system of equations by freezing the velocity field at 
the previous time step. In order to solve the momentum 

and continuity equations the time-splitting or projection 
scheme of Chorin [7] and Temam [26] is used. This scheme 
completely decouples the diffusion and pressure compu- 
tations. The diffusion term is treated implicitly in the 
current formulation. The pressure is determined so that 
the velocity field at the end of the current time step is 
divergence-free in a weak sense. 

The superscript on a variable denotes the time incre- 
ment. We denote by At the time step. Let (vø,p ø, A ø) 
be the initial approximation at time t = 0. The approx- 
imation at time t = (r• + 1)At is determined from the 
approximation (v",p ", A '•) at the previous time t - nat 
by the following scheme: 

Stage 1. 

(1+ -- 

(4) 

Atf(R))A•+ • + At (v •- X7A •*+• - 57v •. A "+• 

Atf(R) -A •+• . (X7v•) r) = 2rh--I + 

Stage 2. 

V '• __ V n 

At 
: 57. rhf(R)(A• _ I), 

Stage 3a. 

V n+l -- V* 

(6) P( At ) = -57p•+• + r/2572v '•+l, 

Stage 3b. 
(7) 57 ß v '•+• = 0. 

The spectral element method is applied to Stage 3 of 
the backward Euler scheme. The velocity field is chosen to 
belong to the space X = H0• (f2) x H0• (9.) and the pressm'e 
to the space L2(f2). The variational formulation of (6)-(7) 
is therefore: Find (v,p) ( X x L:(f2), such that 

/Jfo. P /jf•,(v . w)r dr dz 
- (pv.w). = X7 (v*.w). &. 

(s) v w x, 

(9) //o.(57 . vq)r dr dz = O, 
where we have dropped the time level n + 1 from the su- 
perscript on v and p. The vector of test functions w is 
taken to be either (w•, 0) or (0, tv•) where w, and u': are 
test functions in H•(f•). 
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4 A modified GMRES method. 

The variational formulation for the steady form of (1)-(3) 
is: Find (v,p,A) • X x L2(Q) x L/t(Q), such that 

-- -h• (f(R)(A - I)' Vw)rdrdz, 
10) V w • X, 

11) /f•(V.vq)rdrdz=O, V q • L2(f•), 

/f.o. (A + ' d"dz= /ft' O ddz, 
(12) 

where LA (f•) is the space of symmetric tensors whose com- 
ponents are square integrable. 

For a given tensor A equations (10) and (11) represent a 
steady Stokes problem. The solution of this problem may 
then be regarded as a function of A, i.e. the velocity v 
and the pressure p depend on A. Therefore, we can write 
(12) in the matrix form 

(13) Ev(A)A = by(A), 
where the subscript v(A) indicates that the matrix E and 
the right hand side vector b depend upon v. This is a 
nonlinear system of equations for A. We can write this 
system in the form 

=o, 

and then solve it using Newton's method: 
1. Let Ao be an initial guess. 
2. For n _> 0, solve J•6A = -F(A•) 
3. Set An+l: An + 5A 
4. Continue until convergence. 
In the above J• is the Jacobian matrix of F. 

The GMRES method is applied to the solution of step 
2 for 6A: 

(14) Jnt•2•k -- --•(2•kn). 

Rather than compute and store the full JacobJan J• the 
approximation 

Jn•A • F(An + hSA) - F(An) 
h ' 

where h is some small number, will be used. For good 
preconditioning the choice of F is taken to be 

(15) = E Vo (by(A) - Ev(A)A), 

where v0 is the velocity field at some lower value of the 
Deborah number. To solve (14) using the GMRES algo- 
rithm we perform the following steps: 
1. Let 5A © be an initial guess for 5A 
2. Solve the two Stokes problems (10) and (11) with given 
stress fields An and A• = An + hSA © 
3. Compute the initial residual r0 from 

r0:_F(An)_F(A•) -F(An) 
h 

At the ith iteration, an orthonormal basis 
{v(•),..., v © } is constructed for the Krylov subspace 

/C• (r0) -= {r0, J7 •r0 } 

This is usually done using a modified Gram-Schmidt 
procedure. However, noting the observation of Walker [29] 
that the modified Gram-Schmidt procedure can fail to per- 
form well if the vectors on which it acts are not sufficiently 
independent, the basic GMRES code [2] has been modified 
by the authors so that the orthogonalization is based on 
the use of Householder transformations. 

At the ith iteration in the GMRES algorithm a correc- 
tion zi is determined in < v(1),..., v © > which solves the 
least squares problem 

MIN 
(16) 

z E/Ci(r0) 
II- - Jn(A(0) '"lg- z) IIo. 

If (16) is small enough then 5A - 5A © + zi. The GM- 
RES algorithm may thus be seen to be an inner iteration 
loop for every outer Newton step. Once convergence is ob- 
tained new velocity and pressure fields are computed from 
(10) and (11) and the procedure continued until all the 
variables have converged. 

In both the time splitting scheme and the GMRES 
method the flow domain • is divided into several spec- 
tral elements. These axe shown in Figure 2. Each of 
these elements is then mapped onto the parent element 
D = [-1, 1] x [-1, 1] using the transfinite mapping tech- 
nique of Gordon and Hall [11]. The variables are approxi- 
mated by finite sums of Legendre Lagrangian interpolants. 
The approximation spaces for the velocities and the pres- 
sure are chosen to be compatible, and there are no spu- 
rious pressure modes. The basis set for the components 
of stress is the same as that used for the velocities. The 

discrete variational problem is set up by approximating 
the integrals in the variational forms by Gauss-Legendre 
quadrature rules. 





292 ICOSAHOM 95 

Figure 5: rrr contour plot. De = 0.3. 

• -1.50 • 
0,00 - • 0,00 

Figure 6: rrz contour plot. De -- 0.3. 

5.2 Cost 

Table 2 shows the cost in CPU s on a SPARCstation 5 

and number of iterations required for convergence when 
the two schemes were used in order to compute flow at 
De = 0.3 for N = 4 and N = 6, starting from a NewtonJan 
flow field as the initial guess. A time step of At = 0.01 
was used with the time stepping scheme. It may be seen 
that the GMRES scheme is significantly faster than the 
time stepping scheme, even allowing for further efficiencies 
which could be incorporated into the time stepping code 
so as to speed up the execution time. For each of the outer 
Newton Raphson steps (9 for N = 4 and 6 for N = 6) in the 
GMRES scheme. the number of inner GMRES iterations 

required for the residual to be less than a pre-set tolerance 
(in this case 1 x 10 -16) decreased monotonically after the 
first few Newton steps, as is to be expected. For example, 
for the N = 4 calculation the number of GMRES iterations 

was 37, 41, 40, 38, 37, 34, 25, 14 and 12. This makes the 
GMRES iterative method an efficient solver for equation 
(14). 

N TSS [18] GMRES Scheme 
4 721.97s, 803 126.36s, 9 
6 2624.75s, 503 337.96s, 6 

Table 2: Comparison of the CPU times (s) on a SPARC- 
station 5 and number of iterations required in simulation 
of viscoelastic flow at De = 0.3 for the two schemes. 

Figure 7: rzz contour plot. De - 0.3. 

Figure 8:r00 contour plot. De = 0.3. 

6 Conclusions 

A GMRES spectral dement method has been used to com- 
pute the flow of a viscoelastic fluid past a sphere in a tube. 
The GMRES method is an affordable solution method for 

large systems of coupled nonlinear PDEs and the exces- 
sive expense of computing and inverting the full JacobJan 
in Newton's method has been avoided. Better agreement 
with the results of Lunsmann et al [15] has been obtained 
for Deborah numbers up to 0.6 when the GMRES- rather 
than the time splitting method is used on the same grid. 
The GMRES method is shown to be significantly faster 
than the time splitting method, although, disappointingly 
the limiting values of the Deborah number are modest. 
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