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Abstract 

A projection scheme based on the pressure correction 
method is discussed to solve the Navier-Stokes equations 
for incompressible flow. The algorithm is applied to the 
continuous equations, imposing a proper boundary condi- 
tion on the pressure correction step. The resulting velocity 
and pressure satisfy the original equations, except for the 
tangential boundary condition for the velocity, which is 
satisfied with second-order accuracy in time. For the spa- 
tial discretization the spectral element method is chosen. 
The high-order accuracy allows the use of a diagonal mass 
matrix resulting in a very efficient algorithm. The scheme 
is applied for simulating shear-layer flow. Proper outflow 
conditions are formulated in terms of the unknowns of the 

decoupled system. These conditions seem to be suitable 
for non-parallel outflows, not causing any severe stability 
problems. 
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1 Introduction 

Calculating the solution of the Navier-Stokes equations 
for unsteady incompressible fluid flow is still a major chal- 
lenge in the field of computational fluid dynamics. The 
Navier-Stokes equations form a set of coupled equations 
for both velocity and pressure (or, better, the gradient of 
the pressure). One of the main problems related to the 
numerical solution of these equations is the imposition of 
the incompressibility constraint and, consequently, the cal- 
culation of the pressure. The pressure is not a thermody- 
namic variable as there is no equation of state for an in- 
compressible fluid. It is an implicit variable which instan- 
taneously 'adjusts itself' in such a way that the velocity 
remains divergence-free. The gradient of the pressure, on 
the other hand, is a relevant physical quantity: a force per 
unit volume. The mathematical importance of the pres- 
sure in an incompressible flow lies in the theory of saddle- 
point problems (of which the steady Stokes equations are 
an example), where it acts as a Lagrangian multiplier that 
constrains the velocity to remain divergence-free [3]. 

For the solution of unsteady Navier-Stokes flow, per- 
haps one of the most successful approaches to-date is pro- 
vided by the class of projection methods [2], [5]. Projection 
methods have been developed as a useful way to obtain 
an efficient solution algorithm for unsteady incompress- 
ible flow. In this paper, projection methods are considered 
that are applied to the set of continuous equations, yielding 
methods for implementing algorithms. By decoupling the 
treatment of velocity and pressure terms, a set of easier- 
to-solve equations arises: a convection-diffusion problem 
for the velocity, yielding an intermediate velocity which is 
not divergence-free; and a Poisson equation for the pres- 
sure (or a related quantity). There are, essentially, two 
approaches for continuous projection methods: fractional 
step methods and pressure correction methods. 

The fractional step method [11], [12], is based on a full 
splitting of the treatment of the pressure/incompressibility 
constraint and the diffusion in different sub-steps. The in- 
termediate step leads to a Poisson equation for the pressure 
at the new time-level. While the pressure is well-defined 
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up to an arbitrary constant by the original equations, it is 
less so when directly expressed in terms of a Poisson equa- 
tion. This is because, in the latter case, the necessity arises 
to formulate a non-trivial boundary condition for the pres- 
sure. The choice of the pressure boundary condition is an 
aspect that is much discussed in literature [4], [11], [18]. 
The obvious theoretical choice for the pressure boundary 
condition is a .Neumann condition derived from the normal 

component of the momentum equation. The form in which 
this boundary condition is implemented is important not 
only because of the overall accuracy, but also because of 
the efficiency of the numerical scheme. This aspect still 
has much room for improvement. 

Pressure correction methods [8], [10], consist of a ba- 
sic predictor-corrector procedure between the velocity and 
the pressure fields. Using an initial approximation of the 
pressure, the momentum equation can be solved to obtain 
an intermediate velocity field. This velocity, in general, 
does not satisfy the divergence-free constraint and must, 
therefore; be corrected. By taking the divergence of the 
momentum equation and enforcing the incompressibility 
constraint, a Poisson equation for the pressure correction 
(the difference between the new and the old pressure) is 
obtained. Using the pressure correction, the new velocity 
field can then be computed. An advantage of the pressure 
correction technique is that, contrary to the full splitting 
approach, the final velocity is guaranteed to satisfy the 
incompressibility constraint; of course, this is only true 
for the velocity in the continuous (semi-discrete) formu- 
lation. A drawback of this approach is that, in order to 
ensure divergence-freedom, a homogeneous Neumann con- 
dition for the Poisson equation for the pressure correction 
must be used; which clearly is not valid for the pressure 
itself [20]. 

In this paper a projection method, related to the pres- 
sure correction approach, is given in order to circumvent 
the above problem concerning the pressure computation 
I221. Also, it has been shown that the resulting velocity 
and pressure satisfy the original Navier-Stokes equations, 
except for the tangential boundary condition for the ve- 
locity, which under certain conditions of smoothness, is 
satisfied with second-order accuracy in time [22]. For the 
spatial discretization, a high-order Galerkin spectral ele- 
ment method [15], [20], that exhibits excellent properties 
(small numerical diffusion and dispersion) for convection- 
dominated flows is chosen. 

The outline of the paper is as follows. Section 2 presents 
the numerical scheme to solve the Navier-Stokes equa- 
tions. The equations are first split according to an op- 
erator splitting procedure that decouples the treatment 
of convection and diffusion [16], [21], including the pres- 

sure term temporarily in the viscous part of the equations. 
Next, the velocity treatment is alecoupled from the pressure 
treatment by applying the projection algorithm. In section 
3 special attention is given to outflow boundary conditions 
with respect to the projection scheme. In section 4 the 
scheme is used to simulate the development of instabilities 
in a shear-layer flow. Finally, in section 5 conclusions are 
drawn. 

2 Numerical method 

2.1 Projection methods 

In this section the projection scheme for the Navier-Stokes 
equations is given. The solution algorithm can be applied 
either to the continuous or the discrete system of equa- 
tions. In the latter case, the boundary conditions are al- 
ready built in directly in the weak or variational formu- 
lation, thereby eliminating the need to formulate a spe- 
cific boundary condition for the discrete pressure Poisson 
equation. In this case the choice of the element for the 
velocity and the pressure is important with respect to the 
well-posedness of the system. As is well-known from the 
theory of saddle-point of problems, a discrete form of the 
Brezzi-Babu•ka condition [1] must then be satisfied for 
obtaining a unique velocity and pressure. For a high-order 
spectral element approximation this means that the de- 
gree of approximation for the pressure must be taken two 
degrees lower than that of the velocity [14]. 

On the other hand, applying the decoupling procedure to 
the continuous equations leads to a more straightforward 
scheme, since in that case the original problem is reformu- 
lated into several new (and simpler) problems. The theory 
of saddle-point problems is, then, no longer applicable; as 
a consequence the degree of approximation for velocity and 
pressure can be taken to be the same, yielding a simpler- 
to-implement numerical scheme. In that case however, the 
resulting Poisson equation requires a boundary condition. 
It has been shown in [22] that in the continuous projection 
scheme presented below, the use of a homogeneous Neu- 
mann boundary condition for the Poisson equation is valid 
and, even, essential in obtaining a divergence-free velocity 
field. 

2.2 The projection scheme 

Consider the Naylet-Stokes equations in primitive vari- 
ables for incompressible flow in an open and bounded do- 
main f• with boundary I • and with, for now, only essential 
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boundary conditions 

+ (u. V)u- (v. V)u + vp = f 

(1) 
•7.u=O 

in 

in 

u = g on r, 

u(x, O) = Uo in f•. 

The first step in the solution method is to apply an oper- 
ator splitting technique for unsteady convection-diffusion 
problems, including the pressure term temporarily in the 
viscous part of the equation. Thereto the momentum equa- 
tion is written in the following form 

-- =7)u+Cu-Vp+f, 
au 

(2) at 

with D = (V-t/V) as the diffusion operator and C = -(u. 
V) as the non-linear convection operator. Equation (2) is 
written in terms of an integrating factor in C [16], [21] 

0 

(3) 07 (Q(ct*'Ou) = Q?*'t)(T)u- •7p-{- f), 
With •Q(t',t) = _Q(t',t) C and Q(t*,t*) = Z. The 'Stokes' 
equation (3) is integrated using an implicit backward dif- 
ferences scheme with time-step At [7]. This yields the 
following semi-discrete system 

30 un+l k (t,• 4- x ,t,• +l - i ) -- Zi----1 /•i•c un+l--i 
At 

(4) = T)u•+• _ •7pn+l + fn+l. 

' ' un+l-i(i = 1,2,...) To evaluate the terms Q(c t•+• t•-x-i) 
the following associated initial value problem is solved 

{ aa(s) _ ca(s), as 

a(O) = u "+:-i, 

0 < s < iAt, 

from which it follows that 

/tn+l 
Q• ' •u '•+•-i = fi(iAt). (6) 

Problem (5), according to the non-linear convection, is 
solved using a three-step explicit Taylor-Galerkin scheme 
also used in [9]. This scheme is, for linear systems, third- 
order accurate in time. The initial condition is fi0 = 

u•+•-i; a time-step As such that At = jAs with j an 
integer is used. The semi-discrete convection step then 

becomes 

--T(u .v)a 
(7) fi•+« = tim AS,~m+•_ , -•;u •.v)a•+• 

fi•+• = tim _ As(fi•+•. V)fi•+•. 
After introduction of the simpler notation fi•+•-i = 
Q(t'*+•-•'t•)u•+i-i equation (6) leads to 
(8) fi•+•-• = fi•(•+•). 

For a second-order backward differences scheme, equa- 
tion (4) reads as follows 

• u•+• - AtDu•+• = 2fi• - 2 
-AtVp •+• + Atf •+• in •, 

(9) V. u •+• = 0 in •, 
un+l : gn+l on r. 

The projection scheme proceeds • follows (see [22])' 

ß Calculate an intermediate velocity field u* by choosing 
the pressure at the previous time-level 

•u*-•t•u* = 2a •-ka •-• 
2 2 

(10) - AtVp • + Atf •+•. 

The intermediate velocity field u* is, in general, not 
divergence-free. The quantities fi• and fi•-• are cal- 
culated according to the convection problem (7), (8). 

ß The velocity at time-level n + 1 can be obtained by 
subtracting (10) from the original momentum equa- 
tion (9). This yields 

3 U n+l -- U* 
= + •(u•+•-u *) 

- v 
A quantity, q, is computed by solving the Poisson 
equation resulting by taking the divergence of equa- 
tion (11) 

3V-u* 

(•2) V2q=2 At 
with: 

(13) q = p• -p•+• + vV. u* 

ß According to equation (12) a new velocity satisfying 
V. u •+• = 0 can be computed from 

(14) u •+• =u* 2 -•AtVq. 
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ß Finally, the pressure at the time-level n + 1 is com- 
puted from (13) as: 

(15) pn+l = p• + q _ v,V ß u*. 

Some comments on boundary conditions are in order. A 
general and consistent choice is to adopt for the inter- 
mediate velocity u* the original boundary conditions at 
the time-level r• + 1; that is to choose u* = gn+l on I'. 
Due to the continuous formulation an 'artificial' boundary 
condition must be formulated for equation (12). In the 
above scheme a homogeneous Neumann boundary condi- 
tion arises in a natural way. The solvability constraint for 
the Poisson equation (12) reads 

V2q dF• = 2At 

(16) 3 / u* - n. dE = 0, 
2At 

due to the global mass constraint and the assumption that 
u* = g•+l on F. On the other hand 

(17) V"•q dF• = •nn dr. 

Therefore, the easiest way to satisfy global divergence- 
freedom is to impose a homogeneous Neumann condition 
for the Poisson equation (12). 

Note that in the projection scheme both the velocity 
and the pressure are predicted in the first step, and then 
corrected in the remaining three steps. It can easily be 
shown that the solution (u n+l, pn+l) of the scheme is con- 
sistent with that of the original system (9). Equation (14) 
also ensures that the normal component of the boundary 
conditions for u '•+1 is satisfied on the boundary; the tan- 
gential component of the boundary condition can not be 
satisfied exactly. However, it can be shown that if the ac- 
celeration au -SF on I' and the source term are continuous in 
time (sudden starts and sudden sources are not allowed), 
the tangential boundary condition for the velocity is satis- 
fied with accuracy O(At "•) [22], yielding a second-order in 
time consistent projection scheme. 

2.3 Spectral element discretization 

Application of a Galerkin spectral element discretization 
to the semi-discrete projection equations is performed in 
the standard way. As already stated in section 2.1, there is 
no need to satisfy any form of the discrete Brezzi-Babu•ka 

condition as the decoupling procedure is applied to the con- 
tinuous equations, leading to uncoupled problems for both 
velocity and pressure. Therefore, the degree of approxima- 
tion of the pressure can be taken as equal to that of the 
velocity, resulting in a numerical algorithm that is simple 
to implement. The fully discrete form of the projection 
scheme thus becomes: 

ß Calculate u* by solving 

(•M+AtD) u* = 2Mfin-•Mfi n-1 
(18) - AtQp '• + AtMf '•+1, 

with M the (diagonal) mass matrix, D the diffu- 
sion matrix and Q the gradient matrix. The col- 
umn pn contains the pressure components at t = t n. 
The column f also contains the contribution of non- 

homogeneous boundary conditions. The columns fin 
and fi'•- • are calculated through the solution of 

fi,•+« = fi,• As _lC,•fi,•, --•-M 

(19) - •-M 
1 _ 1 

•1 m+l = •1 TM _ AsM-1Cm+•um+.•, 

where C"•+« and C"•+« denote the convection matrix 
i 1 

at time levels ra + 5 and m + ,-2, respectively. 

Calculate q by solving 

3 Lu* 

(20) Kq-- 2 At' 
with K as the Laplacian matrix and L as the diver- 
gence matrix. 

Calculate u n+• via 

(21) u n+l = u* 2 - õAtM-1Qq. 

ß Calculate pn+l via 

(22) pn+l = p• + q _ •M-1Lu.. 

From the above system it can be seen that it is essential 
that the mass matrix M is diagonal, since, then; the equa- 
tions (19), (21) and (22) do not involve the solution of a 
system, but only the calculation of matrix-vector products 
which can be performed on elemental level. For high-order 
methods the use of a diagonal mass-matrix is a valid ap- 
proach with respect to accuracy, as is shown numerically 
in [19]. 
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Note that after spatial discretization divergence-freedom 
of the final computed velocity is only satisfied in the weak 
sense. Also, the use of the diagonal mass matrix can fur- 
ther decrease the accuracy with which the incompressibil- 
ity constraint is satisfied. However, the numerical results 
presented in [22] suggest that for a high-order method this 
loss of accuracy is not severe. 

3 Outflow boundary conditions 

In this section special attention is given to the formulation 
and implementation of boundary conditions if there is an 
outflow boundary, as is often the case in numerical flow 
simulations. The problem of shear-layer flow discussed in 
the next section also has an outflow boundary. In the 
case of projection methods the implementation of outflow 
boundary conditions is not trivial. 

Assume, for simplicity, that the outward (normal to the 
outflow) boundary Fer is parallel to the x-axis (in two di- 
mensions). The most commonly used outflow boundary 
conditions in the context of Galerkin methods read 

(23) p-u-- - 0 onFer, 
Ov 

(24) cqx ---- 0 on Fer, 
where u - (u v) T. Equations (23), (24) specify zero stress (33) 
or 'traction free' boundary conditions, which are natural 
for the weak formulation of the Navier-Stokes equations. 

In a formulation where a Poisson equation for the pres- 
sure (or a related quantity) has to be solved, as is the case 
with projection methods, equations (23), (24) are often 

imposed as (34) 
(25) p = 0 on 

(26) c9x = 0 on 
Ov 

(27) 0--• = 0 on r•. 
It can easily be seen, however, that if a strong incompress- 
ibility is supposed, condition (27) imposes that the second 
component of the velocity be zero at the outlet, which is 
too strong [13]. Therefore, this possibility is not considered 
here. 

The projection method used in this paper involves equa- 
tions in terms of an intermediate velocity u* and a quantity 
q related to the pressure. Therefore, equations (23), (24) 
must be reformulated in order to obtain conditions on these 

variables. Equation (23) implies on the time-level n + 1 
OUn-4-1 

(28) P'•+• - • Ox = 0 on F•r. (35) 

Using equations (12), (14) of the projection scheme, the 
second term in this equation can be written as 

OU n+l l•U* __ 2 cq2q• 

Ou*• (02q3•'.u *) (29) = - Oy 2 ' 

on the outflow boundary Combining equation (29) 
with equation (15) yields 

Ou* 2_, 02q 
(30) pn + q _ • Ox •/•r•-•y• = O. 
Next, if the natural boundary condition for the Helmholtz 
equation (10) for u*, which reads 

(31) p--xx =0 onrer 
is imposed, it follo•vs that 

2 O•q 
(32) q - •Aty = 0 on Fer. 
This admits the solution 

q = 0 on 

So, it is valid to use equations (31) and (33), which in a 
strong sense ensure that equation (23)is satisfied. 

Finally, using equation (14) the condition (24) can be 
reformulated as 

Or* 2AtO (Oq) Ox õ =0 onrer. 
If it is assumed that q = q•(t)q2(x, y) (which is the case 
with the spatial discretization used), it can be shown [22] 
that q = O(At) and, therefore; that the the second term 
in (34) is O(At2). Thus, without loss of the second-order 
accuracy • = 0 implies that ø•+• - 0 which ensures cqx -- 

that equation (24) is also satisfied. 

4 Shear-layer flow 

Consider a mixing-layer in the (x, y)-plane in the domain 
0 •_ x •_ 8,-0.5 _• y _• 0.5. At t - 0 the velocity and 
pressure fields are set to zero. The boundary conditions at 
the inlet, top and bottom boundaries, read 

( u(y,t)=•(t) l+0.5tanhj , 
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with 5 = 0.005. In order to ensure a smooth start-up the 
velocity 6(t) is smoothly increased for 0 < t < 1 as 

(36) 6(t) = 0.5 (1 - cos(2vt)), 

and from t = 1 on set to 1. At the outlet, stress-free 
outflow conditions are described. The formulation of these 

conditions is discussed in the previous section. 
In Figure 1 the streamlines are shown of the computed 

velocity field at time-levels t = 2, 6,10,14,18 on a mesh 
of 12 x 8 spectral elements of order 8. The viscosity y is 
take such that the Reynolds number based on the distance 
between the upper and lower walls equals Re = 1000. The 
results seem to be fair: during the initial transience (t < 1) 
the flow spontaneously sheds a travelling wave which is am- 
plified and convected through the whole domain. In order 
to get a clearer (and more honest) picture of the flow it is 
visualized by convecting a scalar field c (for example the 
color) with the flow using the three-step explicit scheme for 
the non-linear convection step of the projection method, 
see equation (7). Initially, c is set to y, and the boundary 
condition c = y at x = 0 is imposed. This representation 
of the flow can be seen in Figure 2 where plots of the scalar 
field c are given, again at time-levels t = 2, 6, 10, 14, 18. 

It is clear from Figure 2 that especially around the inter- 
elemental boundaries some wiggles are created. These re- 
suits seem to indicate that further numerical experiments 
with a stabilized scheme for the convection may be use- 
ful for these kind of stability studies. Also, for this scalar 
convection the mesh consists of only 12 x 8 elements of de- 
gree 8. Although sufficient for the total flow problem (see 
below) this may not be enough for the pure convection 
problem. Nevertheless, the whole picture of the instability 
development is adequately represented. 

In order to examine the influence of the mesh on the 

total flow problem computations are also performed using 
8 x 8 and 16 x 8 elements of degree 8. All meshes are 
sufficiently refined around the line y = 0 and at the inlet. 

Figure 3 shows the time-series of the second component 
of the velocity at the point (x, y) = (4.1, 0). The results of 
the computations using 12 x 8 and 16 x 8 elements are ab- 
solutely comparable. The result of the computation using 
8 x 8 elements, however, is qualitatively different. In the 
case of the fine meshes the initial spontaneous shedding is 
damped, and for t > 50 the flow is practically steady. This 
region is, therefore, not shown nor computed. In the case of 
the coarser mesh the time-series represents a quasi-steady 
periodic flow. The power spectrum of the signal, given in 
Figure 1, shows a single frequency of about 0.7. These re- 
suits seem to confirm [6], [17], that if the mesh of spectral 
elements used is not sufficiently fine, spurious oscillations 
can be created which resemble a periodic regime. 

Figure 1: Streamlines of computed velocity field at time- 
levels: t = 2, 6, 10, 14.18 (top to bottom). 

Figure 2: Representation of the computed flow field by 
passive scalar convection at time-levels: t = 2, 6, 10, 14, 18 
(top to bottom). 
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8 by 8 elements 
0.4 

-õ 
• -0.2 
-0.4! 
0.4 

5 10 15 
time 

12 by 8 elements 

2O 

>, 0.2 

> -0.2 

> -0.2 I 
-0.4•) 

5 10 15 
time 

16 by 8 elements 

2O 

0-051 
8 by 8 elements 

time 

x 10 -3 12 by 8 elements 
-2 

0 
time 

x 10 -3 16 by 8 elements 
-2 ' 

- 

4O 5 10 15 2O 5O 
time time 

Figure 3: Time-series of the second component of the computed velocity at location (x, y) - (4.1, 0) for three different 
meshes. The left column contains the time history up till t - 20 the right column contains the time history from t - 20 
on. 

5 Conclusions 

A spectral element projection scheme for the Navier-Stokes 
equations is discussed. The main advantage of this method 
is that it allows the reformulation of the system into an- 
other one consisting of two Helmholtz (three in the 3-D 
case) equations and one Poisson equation. The last set 
can be soh, ed relatively effectively without the necessity of 
introducing an additional iteration loop (as it is the case 
with the Uzawa-like algorithms) by means of a direct or 
iterative method. A second advantage is that this scheme 
suggests an easy and consistent choice of no-slip boundary 
conditions for the intermediate velocity (u* in our nota- 
tion) and the intermediate pressure correction (q in our 
notation) boundary condition. Moreover, it can be shown 
[22] that under some smoothness conditions for the acceler- 
ation Ou/Ot on F the resulting velocity and pressure satisfy 
the original coupled system up to an O(At 2) error in the 
tangential boundary condition for the velocity. 

x 10 -3 power spectrum 
8 

o15 .5 
frequency 

Figure 4: Power spectrum of the time-series of the second 
component of the computed velocity at location (x, y) = 
(4.1, 0) for 8 x 8 elements. 
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A set of free-outlet boundary conditions in terms of the 
new variables (u* and q) is derived, too. The computations 
show that these outflow conditions are not too restrictive 

and allow the convection of vortices out of the computa- 
tional domain. 

The scheme discussed above is validated, simulating the 
development of instability in a shear layer. It is shown 
that the insufficient resolution of the spectral element mesh 
can cause spurious oscillations in the flow which can be er- 
roneously interpreted as oscillations of a physical origin. 
The flow pattern is visualized by a convection of an ini- 
tially given passive scalar field. Using the same space 
and time discretization as for the convective part of the 
Navier-Stokes equations, it yields acceptable results on 
a relatively coarse mesh without the introduction of an 
artificial dissipation. The presence of low-amplitude but 
spurious oscillations in this scalar field, however, indicates 
that even the finest spectral element mesh used in this 
study may not be fine enough to resolve all the details of 
the flow field. 
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