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Abstract 

This work discusses spectral element methods in R 2 on 
triangular subdomains for application to problems in geo- 
physical fluid dynamics. Methods using triangles as their 
subdomains are of interest because it is easier to break 

irregularly shaped domains into triangles than the more 
commonly used rectangular subdomains. Dubiner has de- 
rived a basis which is optimal for man•v engineering ap- 
plications where diffusion plays an important role. His 
'modified' basis gives sparse matrices for both the weight 
matrix and the Laplacian operator, making it ideal for 
semi-implicit schemes which treat diffusion implicitly and 
advection explicitly. Large scale geophysical fluid dynamic 
simulations have different requirements than for engineer- 
ing applications; methods optimal for one class of problems 
are not necessarily optimal for the other. This work uses a 
different basis set. an 'interior-orthogonal' basis, which re- 
tains the most important properties of his 'modified' basis, 
but gives a weight matrix which is simpler. 

Key words: triangles. spectral element, geophysical fluid 
dynamics. 
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I Introduction 

There are two main reasons why spectral element tech- 
niques have been used recently for geophysical fluid dy- 
namics (GFD) applications. First, spectral elements have 
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Figure 1: Mode numbers on the reference triangle. 

stronger geometric flexibility than spectral methods that 
use a single expansion for the entire globe. Second, spectral 
elements are much easier to implement on today's gener- 
ation of supercomputers, massively parallel architectures, 
than their globally spectral counterparts. 

Geometric flexibility is especially important in GFD. 
Even in the most complex engineering application, such 
as a jet engine with moving parts, the length scale of the 
geometry usually remains fixed and is relatively smooth 
since it has been manufactured by humans. In contrast, 
an ocean basin has a fractal boundary. The coast twists 
and turns on multiple length scales from the width of a 
continent to the lee of a breakwater. Indeed, each grid 
refinement in an ocean basin leads to a longer perime- 
ter and can give significantly different boundary-element 
orientations. While there are no horizontal boundaries in 

the atmosphere, the bottom topography is as irregular and 
multi-scaled as a sea bottom. This type of geometry is dif- 
ficult to represent with rectangular subdomains and can 
lead to skewed rectangles with non-uniform spatial reso- 
lution. This is a strong motivation for exploring spectral 
elements whose subdomains are triangles. 

In addition to the convenience and ease with which do- 

mains can be triangulated using unstructured gridding 
techniques, it is well known in the finite element commu- 
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Figure 2: Spatial mappings 

nity that the stability of numerical schemes on quadrilater- 
als degenerates as the vertex angles become more acute. It 
has been shown that triangles, however, do not have this 
problem. Triangles whose angles approach zero can still 
give a convergent algorithm (see, for example, Babu•ka 
and Aziz [1]). 

Previous work with spectral element methods in GFD 
and other branches of fluid dynamics typically used quadri- 
lateral subdomains. This allows the use of a tensor product 
basis so that grid-to-spectral transforms can be calculated 
by partial summation [2] at a cost of only O(N a) opera- 
tions. This technique is crucial to having an efficient nu- 
merical algorithm in multi-dimensional problems. A non- 
tensor product basis, as usually employed with triangular 
finite elements, has a cost proportional to O(N 4) which is 
an order of magnitude higher. Also, at higher order the fi- 
nite element non-tensor product basis becomes dependent 
and ill-conditioned. 

One approach for using higher-order polynomials on tri- 
angles is to map each triangle of the physical domain into 
a square in the computational domain. There are two 
difficulties with this method. The first problem is that 
mappings from a triangle (with three corners) to a square 
(with four corners) map one corner into two. This im- 
plies these mappings will introduce non-physical singular- 
ities into the problem which interfere with achieving the 
exponential convergence rates of the high order polynomi- 

als. The second problem is that by mapping one corner 
into two there will be dense grid packing in one corner of 
the physical domain, see Figure 2. This excessively small 
grid size severely limits the maximum time step via the 
CFL condition. 

Drawing on ideas from Orszag's [3] important work in 
spherical harmonics, Dubiner [4] has overcome these diffi- 
culties. Dubiner's basis is well suited for solving the Navier 
Stokes equations for moderate Reynolds numbers where 
the time step is limited by diffusion. His method gives a 
sparse element matrix for both the weight matrix and the 
Laplacian operator. This is optimal for the implementa- 
tion of a semi-implicit scheme (where the advective terms 
are treated explicitly and the diffusion terms are treated 
implicitly). 

The physics of fluid dynamics on planetary scales can 
be very different from mechanical and aeronautical ap- 
plications which are often dominated by acoustic waves 
and/or diffusion processes. The Reynolds number for most 
GFD application is very large (• 108), so the solution is 
principally driven by advection. Dissipation in large scale 
GFD models is usually employed to control computational 
noise rather than to represent physical dissipation which 
is much smaller. Filtering or a damping proportional to 
the biharmonic operator is often used in place of the usual 
viscosity proportional to the Laplacian operator. Also, as 
the grid size is reduced, dissipation is reduced making the 
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CFL limit for diffusion as large or larger than the limit 
for advection so there is little advantage to treating the 
diffusion terms implicitly. Most oceanographic spectral el- 
ement models (e.g. Ma [5], Iskandarani [6]) are explicit in 
contrast to the semi-implicit methods usually employed by 
engineers. 

For these reasons, Dubiner's 'modified basis', which was 
designed to calculate the Laplacian operator implicitly at 
every time step, is not optimal for many large scale fluid 
problems. A better method for geophysical calculations is 
to exploit the orthogonality of the basis as much as possi- 
ble. making the structure of the weight matrix more sparse, 
and thus making the calculation cheaper. To that end, this 
paper discusses alternatives. 

In section (2) we will discuss Dubiner's 'modified' basis 
and how to manipulate it and give a sample formulation for 
the heat equation. Section (3) presents several versions of 
an 'interior-orthogonal' basis and discusses its advantages 
and disadvantages. Finally, section (4), contains some re- 
marks.b 

2 Dubiner's basis 

In this section, we discuss Dubiner's 'modified' basis, ex- 
plain why it is successful for approximating solutions to 
time-dependent partial-differential equations, and give a 
brief example of its implementation. In Dubiner's paper, 
he discusses the implementation of this basis, but a more 
thorough discussion along with applications to the incom- 
pressible Navier-Stokes equations is given by Sherwin and 
Karniadakis [7]. The basis is broken up into interior 
modes, edge modes, and vertex modes as shown in Figure 
1. This boundary-conscious basis allows for a reasonable 
means of coupling the elements together while still enforc- 
ing C o continuity along the boundaries. 

We first note that there are two mappings involved in 
using this basis. The first mapping is from any arbitrarily 
oriented triangle to a reference triangle. The second is from 
the reference triangle to a reference square. The second 
mapping is shown in Figure 2 and is: 
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2 
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Here, the ½•'•(x) is a Jacobi polynomial defined •vith 
the inner product 

/' (12) (1 - x)'•(1 + x)O½,•'O(x)½•'O(x)dx. 
1 

Next we briefly discuss a few of the important properties 
of this basis. 
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2.1 Forward/backward transform 
We define the backward transform as the transform 

through which the value of the function at each grid point 
(quadrature point) is obtained when the spectral coeffi- 
cients are known. We give the transforms in the mapped 
(square) domain. 

1--2 

(13) u(wi, zj): • amn g mn(Wi, Zj), 
].--2 

1--2 1-2 

where i,j • K, and the space K is 
1--2 

(14) K = {(i,j)l ¸ < i < K, 0 _• j • K}. 

This sum can be computed in O(N •) operations using 
the partial summation technique since the basis is a tensor 
product. The function along each edge can be computed 
independent of the interior basis since the interior basis is 
zero along each boundary. 

• define the forward transform as the transform which 

gives the spectral coefficients when the solution at each 
quadrature point is known. The grid points are chosen to 
be the Gaussian quadrature points (see the next section). 
The forward transformation is obtained by taking the inner 
product with respect to each side of Equation (13). 

• 1-2 .1--W 
/f (1•) • 1 1 amn g m/n/ g mn(• 

The factor of •-w (•) is a result of the mapping kom the 
triangle to the square. The integrals are e•luated using 
Gaussian quadrature as discussed in the following section. 

2.2 Warped product and Gaussian inte- 
gration 

The integrals in Equation (15) can be broken into the prod- 
uct of two line integrals. Dubiner refers to this property 
as a 'warped product'. This reduces the cost of comput- 
ing the area integrals from O(Ni •) to O(2Ni) where Ni is 
the order of the quadrature. For an accurate calculation 
of the integrals, the order of the integration needs to be 
greater than the maximum degree of the polynomial in 
1--2 

g ,•(w, z), denoted by N. 

1 /1 1-2 1_•_ z)( )dw = 
-1 -1 

(16) 1 1 1 Zarnn[ gm(z)gm,(z)dz] 
--1 

' [/• l•rn• (W)½rn'n' (W) ( 1'-• ) •w ] 
with 

1 1 1 N• 1 1 ( Zl )grn, ( gl )•210'0 
-1 I=0 

1 2 2 N• 2 2 1.0 = 
--1 I•0 

The weight factor is included in the quadrature: •:3 ø.•ø are 
the weights for the standard Legendre polynomials using a 
Lobatto grid and •:•,0 are the weights for the a = 1, • -- 0 
Jacobi integration on a Lobatto grid. 

We point out that there are roughly twice as many 
quadrature points as basis functions. This can be thought 
of as using a triangular truncation for the series while em- 
ploying a square mesh to perform the integration. 

2.3 Non-linearity and differentiation 

For non-linear terms it is standard practice to transform 
to physical space to compute the derivatives. From the 
discussion in the previous section this would appear to be 
a computationally intensive operation. However, Dubiner 
points out that in physical space, you are in the same space 
that is spanned by the Lagrange polynomials (typically 
used for spectral element methods on rectangular domains) 
of the same order which can be computed very rapidly, 
O(N) per differentiation per point. The Jacobi-Lagrange 
polynomials, also called Cardinal functions. on a Lobatto 
grid are defined as 

(1- (17) C?• (x) = 
[(1- xj - 

where the t indicates differentiation. Taken at the Lo- 

batto roots the derivatives have the following analytic form 
where • = a + •: 

c•C•/• (•l ) I n(n+•/+l)-- (•+2) 
2 2•+4 

i n (n+•/+l)- (•/+2) 
-- 2 

.•(x•) -- 

-- :•(x• )(x• -x•) 
2 -- -2xj(½•/3)"(xj) + (1 - xj)½(i,j) 

l=j =0 

l=j=N 

i•j 

i=j 
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Then. for example. the derivative can be computed by 

(18) 
o G' 

( TM ) = ) 

2.4 Spatial resolution 

As mentioned previously, this basis uses a triangular trun- 
cation in the modes but requires a square grid of points 
to perform the quadrature. This means there is dense grid 
packing in the 'singular' corner. One might think the error 
would be nonuniform across each triangle, with a higher 
spatial resolution in this corner, but this is not the case. 
Therefore, our time step is not hmited by the excessive 
grid spacing in the densely packed corner. 

The reason this basis does not over-resolve the singular 
2 

corner is the (1 - w) '• factor in S,•,•(w). This factor is a 
function of two parameters: the vertical coordinate, w and 
the mode number of the horizontal direction. This means 

as the wave number, m, increases, the factor (1 -w) '• 
decreases and thus acts like a scaling variable to reduce 
the amplitude of the w basis. Figure 3 shows the (6,2) 
basis function. The amplitude and variability of the basis 
is not large along the degenerate edge (near w = 1). 

2.5 Boundary coupling 

Each side is represented by a Jacobi polynomial, x'x ;On , 
which has been carefully devised so that it is zero at all 
vertices and on the two other sides. The interior modes 

are also zero on the boundary of the reference triangle. 
This makes for a relatively straight forward coupling be- 
tween the elements. We use the word 'relatively' because 
depending on which sides are abutting, some of the modes 
of one side may actually be opposite in sign to the modes 
of its adjacent side. 

2.6 Example 

As an example of how to formulate problems using this 
basis, consider the heat equation, 

Ou 02u 02u 

(19) Ot -- Ox 2 + • Oy2' 

with the initial condition, 

(20) u(x, y) = sin(•rx) 
for -l<x_< 1,-1_<y_<1. 

and time varying boundary conditions, 

u(x,y)= e -2tsin(rrx) on y=-I and y=l 
u(x,y)= 0 on x=-I and x=l 

We assume our domain is • with P subdomains. 

(21) u•P=i•. =•q 

with the requirement (to couple the boundaries) that 

(22) f• n •qj = O•id 

where f•i and f•j are connected and f•i,j is their common 
boundary. 

We take the inner product of both sides of Equation (19) 
and apply the divergence theorem (formally) to obtain the 
weak form, 

/•_• /nOuO•OuO• (23) • df• = - O-• O-• + • • df•, 
Here, the overbar indicates the function is a test function 

Note the boundary terms are zero along the outer 
boundary and the contribution along element faces can- 
cel because the outward unit normals of abutting triangles 
are equal and opposite. 

With 3rd-order Adams-Bashforth time integration we 
have, 
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Figure 4: A one dimentional slice of the solution at y = 0 
compared xvith the exact solution, e -t sin(rrx), at t = .9 
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On every subdomain fie we employ Dubiner's basis set. 
The formulation can be written as, 

p 
(28) Zc=I Zm'n' 3 

where IV • is the weight matrix, 

(29) 

and R•'(m ', n') is a combination of warped product inte- 
grals and metric coefficients from the mappings. 

Figure 4 shows a one-dimensional slice of the solution 
for y = 0 and x = -1 to 1 at t = .9 for two triangles. The 
solution is identical for any arrangement of the triangles. 

See Wingate [8] for the details of applying this method 
for geophysical fluid dynamics simulations. 

3 Dubiners interior- orthogonal 
basis. 

In this section we discuss a different basis set, an 'interior- 
orthogonal' basis. The interior modes are orthogonal to 
each other, unlike the 'modified' basis where they are semi- 
orthogonal. This 'interior-or.thogonal' basis can be classi- 
fied in a similar way to the 'modified' basis. 

Interior: 

1--2 

(30) g ran 

Edge 1: 

1--2 

(31) g On 

Edge 2: 

1-2 

(32) g -•o 
l+z 1 - • 

1-to' (•+•) ,1+ 

m_>l 

Edge 3: 

1-2 

(33) g mN-,• 
l+z, 

1-w l+w. 2,• 

-- 

Vertex 1' 

(34) 

Vertex 2: 

1-2 1 --Z 1--W 
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1-2 (l+w (36) g oN = ,'-•---)- 
This basis has a weight matrix that looks like Figure 

(5). It is diagonal and has two boundary bands along the 
top and left side. The border exists because the bound- 
ary bases are not orthogonal to themselves or the interior 
modes. However, this system has a simpler structure than 
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Interior-Boundary Interior-Interior 

Figure 5: Weight matrix for the 'interior-orthogonal' basis using !27 edge functions. 

the 'modified' basis whose weight matrix is shown in Fig- 
ure (6). 

Additional sparseness is rendered by using the a = 1 and 
/_? = 1 Jacobi polynomials for the edge functions. However, 
there is still a banded structure of bandwidth O(3N- 1). 
See Figure (7). 

Even more sparseness can be obtained by using the a = 
3 and • = 2 Jacobi polynomial (see Figure (8)), but this 
is a bad choice, since the boundaries cannot be coupled as 
easily due to the non-symmetric nature of the •'• Jacobi 
polynomial. 

The benefit of using the 'interior-orthogonal' basis over 
the modified basis is twofold. 

Storage: you need only save half of the upper square 
matrix and one of the boundary bands (since it is 
a symmetric matrix) and you only need to store the 
diagonal elements in the lower right hand block. The 
storage is higher for the modified basis because the di- 
agonal bandwidth is wider (and depends on the max- 
imum degree of the polynomials). 

LU factorization: it is very simple to rewrite stan- 
dard LU decomposition routines to take advantage 
of the diagonal part of matrix. The cost of invert- 
ing the lo•ver square matrix is only O(N). Sherwin 

uses the static condensation technique which costs 
O(kN3). With the 'interior-orthogonal' basis, the cost 
is O(kN•). 

NOTE: For N _> 4 the 'interior-orthogonl' basis always 
gives part of the stiffness matrix to be diagonal. The 'mod- 
ified' basis will give a full matrix for low degrees of N. 

NOTE: The first item, above, also applies to the global 
stiffness matrix. If the stiffness matrix is assembled by 
cycling through the boundaries and vertices before the in- 
terior modes, the structure of the global matrix will be 
similar to the form in Figure 5. 

The disadvantages are 

ß For both the 'modified' and the 'interior-orthogonal' 
basis the weight matrix must be stored (less for the 
'interior-orthogonal' basis). This is a disadvantage 
when compared to the spectral element method on 
rectangles where the weight matrix does not need to 
be stored. 

ß The 'interior-orthogonal' method gives a full element 
matrix for the Laplacian operator. 
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Boundary-Boundary Boundary-Interior 

\ Interior-Boundary Interior-Interior 

Figure 6: Weight matrix for Dubiner's modified basis. 

Boundary-Boundary Boundary-Interior 

Interior-Boundary Interior-Interior 

Figure 7: Weight matrix for the 'interior-orthogonal' basis using •'• edge functions. 
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Interior-Boundary Interior-Interior 

Figure 8: x•Veight matrix for the 'interior-orthogonal' basis using 123• '2 edge functions. 

4 Conclusions 

We have given an 'interior-orthogonal' alternative to Du- 
biner's originally posed 'modified' basis. Our motivation 
for using the 'interior-orthogonal' basis is that we are able 
to exploit more of the orthogonality between the modes, 
leading to a system of equations which is cheaper to solve 
for explicit methods. For large scale GFD applications, ex- 
plicit methods are more efficient for the time discretization. 
There are three advantages to the 'interior-orthogonal' ba- 
sis as follows: 1) For the interior-interior part of the weight 
matrix you need only store the diagonal elements and 2) a 
fast LU factorization which takes advantage of the diago- 
nal part of the weight nmtrix is simple to implement. Du- 
biner's 'modified' basis is optimal for problems which have 
processes in which diffusion plays a role equally as impor- 
tant as advection. For this type of process, the 'interior- 
orthogonal' basis would give a full matrix for the Laplacian 
operator which would be a disadvantage. 

In summary, we are motivated to use triangular subdo- 
mains because of the geometric complexity of our bound- 
aries (in GFD and other branches of fluid dynamics). 
While it is very cheap to use explicit methods on rectangu- 
lar domains (one need not even store the weight matrix), 
near these complicated boundaries rectangular elements 

are highly skewed; triangular elements allow a more uni- 
form discretization which permits the use of a higher time 
step. Looked at that way, the cost per element per time 
step is actually cheaper. 
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