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Abstract 

An efficient high-order solution for a boundary and inte- 
rior layer problem which is applicable to multi-dimensional 
problems is presented. The solution is a combination of 
a global penalty spectral element solution obtained on a 
coarse grid and a local one dimensional analytical approx- 
imation. The solution is further improved numerically on a 
coarse grid. Results for interior and boundary layer prob- 
lems are presented. 
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1 Introduction 

Singular perturbation problems arise in many problems, 
including solid mechanics, fluid flow, heat transfer and 
semiconductor devices ([1],[2],[3]), when the highest deriva- 
tive in the differential equation under consideration is mul- 
tiplied by a small parameter e. The solution to such prob- 
lem exhibits a boundary layer within the domain with a 
characteristic width which is a function of the small param- 
eter e. Solutions for this type of problem can be obtained 
by numerical methods, asymptotic techniques [4] or mixed 
methods [10] which are based on a combination of numeri- 
cal and asymptotic solutions. However, numerical solution 
of a singular perturbation problem is increasingly difficult 
as e becomes smaller. Indeed, a large number of grid points 
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are required to resolve the boundary layer if e << 1. In 
order to overcome this difficulty an adaptive mesh com- 
bined with non-conforming meshes can be used(J5], [6], 
[4]). High order numerical solutions can be obtained, e.g., 
by 'mortar spectral elements' ([7], [8]). Asymptotics is use- 
ful if it is possible to expand the solution in terms of the 
small parameter e. For singular perturbation problems the 
asymptotic solution is usually composed of an inner solu- 
tion, ui, which is valid in the neighborhood of the boundary 
layer and an outer solution, Uo, which is valid far from the 
boundary layer. The accuracy of the asymptotic approxi- 
mation is of O(eJ+•), where e is the small parameter and 
j is the order of the asymptotic expansion. Flaherty and 
O'Malley [9] developed an algorithm which solves numer- 
ically for the inner and outer asymptotic solutions using 
a standard numerical method. On the other hand, the 
'booster method' [10] combines an asymptotic solution of 
O(e j+•) [9] with known discretization methods. An im- 
provement of the numerical solution by factor of O(eJ• +•) 
can be obtained. An implementation of the method for 
finite elements (ASFE) was done in [11]. This approach is 
difficult to implement for multidimensional problems with 
complex geometries, because an asymptotic solution is not 
always available to replace the analytical solution. A more 
accurate procedure, albeit much more expensive one, is 
to replace the asymptotic inner solution by a multidimen- 
sional numerical inner solution [12]. 

Here we present an alternative way to obtain efficient 
solutions for boundary and interior layer problems which 
is applicable to d-dimensional problems with d _> 1. An 
approximate solution, UA, which is constructed by an inner 
and an outer solution, is calculated. The outer solution, 
Uo, which is valid far from the boundary layer, is a function 
of x • • C T• d. It is calculated numerically within the 
domain on a coarse mesh (Sec. 3). The inner solution, 
ui, which is valid in the neighborhood of the boundary 
layer, is assumed to be a function of x E • C T• • (Sec. 
4). The solution for UA is computationally low-cost both 
because its outer component is calculated numerically on a 
coarse grid and because its inner component is defined on a 
one-dimensional domain and calculated analytically. This 
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soluti6n is used as a first approximation and is improved 
by solving a modified equation numerically on the same 
coarse grid as for the outer solution (Sec. 5), yielding an 
accurate composite solution to the problem. 

Overview of the method of so- 

lution 

Let us consider a boundary value problem for the partial 
differential equation: 

(1) eV2u + V. Vu + au = f 

where u,f,V, are functions of x • • c T4 d d is the , 

number of space dimensions, e is a small positive parameter 
and a is assumed to be negative. We further assume that u 
is twice differentiable while f(x) may have a finite number 
of jump discontinuities. 

Let Fb be the part of the boundary, F -= 0i2, which 
supports a boundary layer, and let F a be the complement 
of r'b in F. 

We assume that Dirichlet boundary conditions are im- 
posed. 

u = Ub or, I'b 

(2) u = Ug rg 

and lead to a unique solution of the problem. 
The solution of (1)-(2) may have two types of layers: 

interior or boundary layers. Boundary layers are located 
at boundaries of the domain (i.e. I'b). Their thickness 
and location depend on the angle between the character- 
istic curves of the reduced equation (obtained by setting 
e to zero in (1)) and the boundary [1]. Interior layers ap- 
pear at the interior discontinuities of f(x) and preserve the 
smoothness of the solution at these locations. 

Problem (1) has often been considered as a test case 
for different numerical schemes. It is known that most 

of numerical methods fail when the cell Reynolds number 
•.•r becomes larger than O(1). Here Ax is a typical length 
between two grid points and v = maxn(x)(IVI). 

In brief, the steps of our new algorithm are: 

(i) The numerical solution of (1) on a fixed coarse grid is 
obtained with a special set of boundary conditions, to 
serve as an approximation for the outer solution, Uo 
(Sec. 3). 

(ii) A set of one-dimensional boundary layer equations 
arising from (1) are solved on rays starting at each 
point of I'b, advancing along the inner normal at that 
point(Sec. 4). 

(iii) The outer solution, Uo, and inner solution, ui, are 
matched to obtain an approximate composite solution, 
UA (Sec. 4). 

(iv) Correction terms are computed and added to the right 
hand side of the discrete approximation of (1). The 
corrected discrete approximation is solved to obtain 
an improved solution, u_• (Sec. 5). 

(v) Any discrepancy between the improved solution, w, 
and the approximate solution, UA, is reduced by re- 
peating steps (ii) to (v) (Sec. 6). 

In section 7 we present numerical results for problems 
exhibiting interior or boundary layers. 

3 Outer solution 

The aim of the present section is to describe the calculation 
of our approximation to the outer solution Uo. The solu- 
tion of (1), subjected to natural boundary conditions on F• 
and to the original Dirichlet boundary conditions on Fg, is 
obtained numerically using a spectral method with poly- 
nomial basis of degree N in each of the d-space dimensions. 
The calculated solution, Uo, is smooth and converges to the 
exact solution far from the boundary layer when N • oc 
for fixed e. 

A penalty spectral element formulation is used for the 
solution of Uo. The spectral element method [13] is chosen 
since the outer solution is expected to be smooth (with- 
out large gradient) and therefore this method can achieve 
an accurate solution with a minimal number of degrees of 
freedom. The Dirichlet boundary conditions on F• are im- 
posed as penalty terms. The reason for choosing a penalty 
method will be discussed below. 

Applying the weighted residuals method followed by 
Green's theorem to (1)-(2) results in the following weak 
formulation for u • (H[(i2))a: 

f• w f d i2 
w, 

In the above equation, ,k -- 0 yields natural boundary 
conditions on F• while large ,k forces essential (Dirichlet) 



Mixed Analytical/Numerical-Spectral Element 317 

boundary conditions on Fb. The formulation (4) is applica- 
ble both to the outer solution, Uo, and to the improved so- 
lution, ur (see Sec. 5). After discretization by the penalty 
spectral element approach, an approximate solution ,u h, is 
sought such that: 

(4) 

n 

e:l 

/ fp. e wh(V•7uh)d•e + / /f2e aWhuhd•e + 

Vw h ß (•0•(n')) d 

where •h is the approximate solution obtained by Lagrange 
interpolation of order N at the Gauss-Lobatto-Legendre 
points and, is the total number of elements. The integra- 
tions in (5) are performed by employing Gauss-Lobatto- 
Legendre ,..i•adrature leading to a set of algebraic equa- 
tions. 

The penalty method as presented here is more efficient 
for the numerical treatment of interior layers than is a 
standard spectral element method. In the latter case, ad- 
ditional assembly is required, while in the present approach 
the same spectral element matrices are needed for both the 
outer and the improved solutions. These matrices only dif- 
fer by the terms which are multiplied by h. 

4 Inner solution 

The outer solution is valid only far from Fb and thus should 
be corrected by an inner solution, ui, which is valid near 
the boundary Fb. In order to investigate the solution in the 
neighborhood of Fb we first employ for the two-dimensional 
case a coordinates transformation x = (x, y) --* (•, •/). For 
a point x close to Fb let us define a coordinate system (•, •/) 
originating on the nearest point x0 on Fb to x. Let •/be the 
coordinate tangential to Fb and let • be the fast variable 
in the orthogonal direction of Fb normalized with respect 
to e. The transformation (x) -• (•, •/) for f• C 7• 2 is given 
locally near Fb by: 

(•) x(•, .) = Xo + • 

where n = [- 0-20•o]. The inner solution, ui, is obtained 
by substituting the asymptotic expansion: 

•-/i(•; f) = •-•(Ui)n •n 

into (1) and collecting the leading-order terms. Unless we 
encounter a corner region, we obtain a one-dimensional 
second-order differential equation with a local coordinate 

The inner solution, ui, satisfies the boundary conditions: 

u•(• = o, v) = v•(v - Uo(• = 0, v 
Ui( • '• C•, 7]) = 0 

(•) vvß r• 

where the values for Uo are taken from the outer solution 
process which was obtained in Sec. 3. 

These one-dimensional problems are defined for each V 
on the boundary. They are to be solved along rays orthogo- 
nal to the boundary Fb and originating at grid points lying 
on F•. 

The resulting inner solution gives the approximate solu- 
tion: 

(7) u•(x;•)=Uo(X)+•,•(•(x)..(x)) 

which is an O(e) approximation through ft. 
For the two-dimensional case, the values of the outer 

solution are updated twice: first, after computation of the 
x-boundary layer, and then after computation of the y- 
boundary layer. This second update mostly affects the 
solution in the corner where the x and y boundary layers 
meet. The extension to three-dimensional problems is then 
straightforward. A more accurate procedure, albeit more 
expensive, is to use a two-dimensional inner solution in 
corners. 

5 Improved solution 

The 'booster method', introduced by Israeli and Ungar- 
ish ([10]), exploits analytic asymptotic approximations (or 
possibly other approximation methods) to obtain an ac- 
curate global approximation to the solution of a partial 
differential equation on a coarse grid. The method is sum- 
marized as follows: 

For a linear partial differential equation: 

(s) Z(u) = i i• • 

subject to appropriate boundary conditions, a numerical 
solution u• is usually obtained directly from: 

(•) Z.(u•) = f. i• • 

where L• and f• are the discretized approximations for L 
and f. Instead, in the 'booster method', we use an approx- 
imate analytic solution, u• of (8) to obtain an improved 
solution ur from: 
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The error of the improved solution obtained by the booster 
method is bounded by: Ile•ll _< klle•,ll. lieAll (see [10]). 

Equation (10) can be used in order to improve both the 
approximate solution, uA, which was calculated in Sec. 4 
and a spectral element solution of (1)-(2). 

6 Summary of the algorithm 

6.1 

The 

1. 

The function u,•(x) satisfies (14) and thus, belongs to the 
space spanned by the spectral element basis. Therefore 
u,•(x) can be expressed as: 

(15) urn(x) = Ix(urn) 

where Ix is the spectral-element interpolation operator 
based on Legendre-Gauss-Lobatto points. The analytical 
approximation is composed of the numerical outer solu- 
tion, Uo, and the analytical inner solution, ui(•(x)r/(x), so 
that: 

Steps of the algorithm (16) 
algorithm proposed here is summarized as follows: 

The outer solution, u0, to (1) is obtained numerically 
on a coarse grid using (5) and letting/k tend to zero. 

2. The inner solution, ui, is obtained analytically accord- 
ing to Sec. 4. 

3. The two solutions, u0 and ui, are matched according 
to (16) to obtain an "analytic" approximation, u•, to 
the exact solution(16). 

4. Equation (10) is solved (on a coarse grid) using an (17) 
appropriate choice for X. 

5. The outer part of ui is substituted into uA and step 
2 is repeated until convergence is attained. The outer 

(lS) part of u• is calculated by subtraction of ui from uz. 

6.2 Interpolated solution 

The numerical solution, u•, is a discrete solution calculated 
at the nodal points of the elemental grid. Intermediate val- 
ues for the solution, u•(x), cannot be obtained by direct 
interpolation using the spectral element basis since the so- 
lution does not belong to the space spanned by this basis 
(Ill!). An alternative procedure to calculate the value of 
•i(x) is as follows: 

(11) Ku[ = f + (KuA - fA) 

or alternatively: 

K(u•r - u•4 + K-•f •4) - f 

u• = (ui - u• +K-•f •) 

(12) 

If we define: 

(13) 

then 

•(x) = •o(X)+•(•(x).,(x)) 
= •x(Uo) +•(•(x).,x)) 

The inner solution, ui, is analytical and continuous in •(x) 
but it is discrete in V(x). As a result we can write for each 
discrete point Vn an analytical solution ui (•, V•). The inner 
solution at V • V• can be calculated by a one-dimensional 
Lagrange interpolation formula of order N. That is because 
of the restriction that the variation of the inner solution in 

the V direction is determined by the outer solution which 
is spanned by the spectral element basis. 

If we introduce the booster term 

with 

•(x) = A•(u•) 

Then, the improved solution u• is expressed as: 

uz(x) = Ix(uo) + ui(((x)) + I.v(K-•f '4) 
(19) = Ix(uo + K-•f A) + ui(•(x)) 

7 Numerical results 

7.1 Two-dimensional 

boundary layer 
problem with 

Here we apply the method described above to the two- 
dimensional convection-diffusion problem: 

(20) 

e•72u + V. •7u = 0 

•(•, o) = o 
•(•, •) = v• 
•(0, y) = o 
u(1.y) = v• 

x • (0,1)0' 

(14) Ku,• - f where V -- (1, 1). 
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For this problem we seek an asymptotic solution com- 
posed of an outer solution. no. and an inner solution. ui, 
as follows: 

(21) = 

The solution for Uo is two-dimensional and is computed as 
described in Sec. 3. For the inner solution (setting n = 0 in 
(21)) the following one-dimensional differential equation 
must be soh-ed in the direction normal to Fb' 

d2 u• 
(22) --+-- = 0 Vr/•F6 

d( 2 d• 

The solution to (22). subject to the boundary conditions 
(6). is: 

= - = 0. 
(23) 

and the approximate solution. u.4. is: 

(24) 

<4(x) = Uo( = o, 
Vq • Fb 

In Fig. -l-a we plot a reference solution of (20) obtained 
by nmnerical solution of (20) on a very fine grid. In con- 
trast. the results for a coarse numerical solution. u,. using 
one spectral element of order _\:•. = _\-• = 13. are plot- 
ted in Fig. 1-b. The latter solution oscillates throughout 
the domain. Increasing the number of elements with fixed 
.\:•.. _Vv leads to smaller wiggles in the solution because of 
the reduced coupling between the elements as compared 
with a fifilv spectral solution. In Fig. 1-c we plot the 
improved solution ut obtained using the same coarse grid 
mesh (_V,. = .\':• = 13) as for the fully spectral solution 
u,,. The error distribution arising from the fully numerical 
solution. u,,. and from the different stages of the solution 
are presented in Fig. 2 a-d. The error of the numerical 
solution is ][e,•[]x = 0.13 (Fig. 2-a). The error of the 
present solution after the first analytical correction (ob- 
tained on the edge x = 0) is still large on the boundary 
(the edge//= 0) on which the correction has not yet been 
performed (Fig. 2-b). As expected. the error norm after 
the correction on all boundaries (Fig. 2-c) attains its max- 
inmm value near the corners (ll*ll, = 0.17). Using the 
mixed analytical numerical procedure (10) leads to a final 
solution with error norm IlelIx - 4 10-2(Fig. 2-d). 

In order to show the efficiency of the present solution, 
the value of k = Ile•ll,•/lle•[I,•' [leA[l ,,-as estimated for 
various polynomial degrees and several values of e. The 

05 
0 

-0.5 
-I -I 

-0.5 

2 • 

0.5 
0 

4).5 4).5 

0.5 
0 

05 1 

0 0 0.5 
-0.5 4).5 

-I -I x 

Figure 1: Solution for a two dimensional problem (e = 
8 10-3). (a) Reference (high resolution) solution (b) Nu- 
merical (spectral) solution u,•, N = 13 (c) Improved solu- 
tion u•. N = 13. 
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Figure 2: Error distribution (e = 8 10-a). (a) Numerical solution IIc•11• = 0.13 (b) First correctionllell•: 
Second correction IIc•411• -- 0.17 (d) Improved solution IIc•11• - 4 10 

= 0.97 (c) 
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boundary conditions were chosen so that an analytical ref- 
erence solution can be found. The results for k are sum- 
marized in Table 1. 

For all the values of N and e considered here, k is found 
to be O(1). For sufficiently small values of e, the method 
shows an improvement over the fully numerical method. 
The approximate solution is weakly affected by the poly- 
nomial degree of the outer solution since the error eA is 
composed of the error of the numerical outer solution and 
the error of the inner analytical solution, which is domi- 
nant. 

N •) e =• 0.01 0.008 0.005 0.003 

Ile•tl• 3.50 10 -• 5.40 10 --1 1.14 100 2.19 100 

11 ]le.411• 3.31 10 -1 1.74 10 -1 8.29 10 -2 3.10 10 -2 

]!eIIl• 3.55 10 -2 2.49 10 -2 2.38 10 -2 1.69 10 -2 

k,c 0.306 0.265 0.251 0.248 

Ilenl]• 1.01 10 -1 1.61 10 -1 3.29 10 -1 5.04 10 -• 

14 I!eAll• 3.30 10 -1 1.72 10 -• 8.25 10 -2 3.11 10 -2 

l]eiIl• 1.10 10 -2 9.20 10 -3 1.21 10 -2 5.13 10 -3 

k• 0.33 0.33 0.44 0.32 

Iter•[l• 4.80 10 -2 8.80 10 -2 2.20 10 -1 4.00 10 -1 

16 IleAt]•c 3.1 10 -1 1.74 10 -1 8.22 10 -2 3.09 10 -2 

l[elit•; 1.80 10 -2 6.43 10 -3 6.15 10 -3 4.8 10 -3 

k• 1.21 0.42 0.34 0.38 

]lenl]• 2.03 10 -2 6.00 10 -2 1.46 10 -• 3.17 10 -1 

18 IIeAll•c 3.02 10 -1 1.69 10 -1 8.11 10 -2 2.99 10 -2 

I[et[l• 1.73 10 -2 5.03 10 -3 3.12 10 -3 2.52 10 -3 

k•c 2.85 0.49 0.26 0.27 

Table 1: Comparison between the various stages of the 2-d 
solution and a numerical solution. 

The efficiency of the improved solution compared to a 
fully numerical solution can be evaluated using the results 
plotted in Fig. 3. We assume that the number of opera- 
tions which are needed for a numerical solution is of order 

of p3 where p is the total number of degrees of freedom. 
For e = 3 10 -3 and N - 11 the error obtained from the 

improved solution is Iletll -- 1.69 10 -2. In order to get a 
numerical error similar to the error of the improved solu- 
tion, the polynomial degree of the spectral solution would 
have to be increased to N m 35 (see Fig. 3) (even with the 
highly efficient boundary layer resolution of such a poly- 
nomial spectral method). This result means that the ratio 
between the number of operations for the two solutions is: 

ß 352 3 
(25) ef fo.oo3 ,• (2-•i-7) • 130 

10 4 

10' I ß ½=0.003 A ½=0.005 

10 ø 

. _ _ ?•¾:3_8•_-_2 _• 

.... -::--:-_::::-:--- ...... ••-• 
i • i I • , i i I i i ,•, [ , i , , , , i i i ' , r , i 

15 20 25 30 35 40 

N 

Figure 3: Efficiency of the improved solution. 

and for e = 0.005 (see Fig. 3): 

(26) 
252 3 

f f0.00 ( 2--i-ff ) 20 
The algorithm was also been applied to problems with 

different values of e in the x and y directions of •2. If 
the value of e is high enough in one of the directions the 
correction could be done only for the second direction in 
which e is small (see Figs. 4-5). In this case the source of 
the wiggles is from the x direction so that there is no need 
to correct the solution in the vicinity of the y boundary. 

When a % 0 in (1) and the velocity of the advection 
term is parallel to the boundary (V= [•, o]) two types of 
boundary layers are present: one of order e and a second 
one of order x/'•. In such a case we often need to improve 
only the solution near the boundary layer of order e. In 
Fig. 6 we present the results for a test problem: the ref- 
erence numerical solution is shown in Fig. 6-a. A fully 
numerical spectral solution based on a low order polyno- 
mial approximation (N-13) produces a large oscillatory 
error because of the x-direction boundary layer [0(e)]. The 
calculated outer solution, u0, is presented in Fig. 6-c and is 
free of oscillations. The hybrid solution can be calculated 
by matching this solution with a one-dimensional solution, 
ui (Fig. 6-d). This solution is much more accurate than 
the fully numerical solution which is based on the same 
coarse grid (Figs. 6-e,6-f). 
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Figure 4: Solution for a two dimensional problem with dif- 
ferent values of e (% = i 10-2,% = S 10-2). (a) Reference 
solution (b) Numerical (spectral) solution un, N = 13 (c) 
hnproved solution ,•, N = 13. 
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Figure 5: Comparison between various solutions and the 
reference solution at a fixed x coordinate (x = 0.92). (a) 
Analytical correction {l•A{Ioc = 0.184 (b) Numerical so- 
lution II•nll•= = 0.131 (c) Improved solution ll•tll• = 
4.9 10 -• 
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7.2 One-dimensional problem with an in- 
terior layer 

The present algorithm can be applied to the solution of 
problems having interior layers. To illustrate this, let us 
consider the following one-dimensional problem: 

(27) •'%= - u = -c(x) x • (-0.5,0.5) 

The outer solution for this equation is calculated numer- 
ically as in Sec. 3 and the inner solution, ui(•), should 
satisfy the equation: 

d 2 •t i -- 
(28) dE: = Uo-C 
where z• is the location of the interior layer and ( = ½-•. 
For the inner problem it is convenient to use c(x) as an 
approximation for Uo since the difference between them is 
of O(e). The solution for (28) is: 

= 
(29) * (+) = 

The solutions to both equations should satisfy the condi- 
tions that u• = 0 for • -• oc so that ß 

= 
(30) = 

The coefficients A and E are evaluated after applying conti- 
nuity conditions to both the solution,uA, and its derivative 
so that: 

2A 

2E 

(31) 

dx 

dx 

As a first example we will consider the case where c(x) 
is discontinuous at x• = 0.5 ß 

(4x- 1) -o c(x) = -(4x- 1) 2 
if0<x<0.5 

-- 

if0.5<x<l 
-- 

In table 2 we present the maximal error at nodal points 
for different values of the polynomial degree,N, and e. For 
the particular differential equation under consideration the 
numerical solution does not produce wiggles for low values 
of e(Fig. 6) because it converges to a solution of linear 
algebraic equations for e -• 0. When the first derivative 

N• e2:• 2. 10 -5 1. 10 -5 5. 10 -6 2. 10 -6 

10 [[en][• 2.97 10 -: 2.31 10 -2 1.42 10 -2 5.93 10 -3 

l[eA][:x• 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.40 10 -5 

[]eI[]• 1.29 10 -5 9.15 10 -6 1.37 10 -6 2.39 10 -7 
k• 0.68 0.67 0.61 0.63 

11 [[enl[•x• 2.96 10 -• 2.73 10 -• 1.86 10 -• 8.39 10 -3 

][eA]l• 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.37 10 -5 

][ei]]• 1.76 10 -5 6.99 10 -6 2.20 10 -6 4.12 10 -? 

k• 0.92 0.81 0.74 1.00 

13 [[en][• 2.28 10 -2 2.96 10 -2 2.66 10 -2 1.49 10 -2 

]]eA[Ioo 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.40 10 -5 

][e•[]• 2.31 10 -• 1.29 10 -• 4.83 10 -6 9.97 10 -z 

k• 1.50 1.37 1.12 1.04 

15 [[en[]• 1.35 10 -2 2.48 10 -2 2.97 10 -2 2.22 10 -2 
,, 

]leAIl• 6.40 10 -4 3.20 10 -4 1.64 10 -4 6.40 10 -• 

Ilef]!• 2.85 10 -s 1.77 10 -s 8.44 l0 -6 1.72 10 -6 

k• 3.2 2.26 1.76 1.40 

Table 2: Comparison between the various stages of the 
solution and a numerical solution for discontinuous c(x) . 

of u was present in the equation, the numerical solution 
was less accurate and much more oscillatory (like the two- 
dimensional boundary layer case). A plot of the different 
steps of the solution is presented in Fig. 7 for the case 
e = 2 10 -• and N -- 15. The inner solution is discontinu- 

ous and decays to zero far from the boundary layer. Our 
final example is the case where c(x) is chosen so that it 
is continuous within the domain but has a discontinuous 

derivative at some point within the domain. •Ve choose 
c(x) = I x -0.51 so that: 

(32) U(o-)(xt) = U(o+)(xt) 

dx dx :0(1) 

For this problem the solution UA is: 

(33) uA = Uo + O(e)e -I•l 

From Table 3 we can see that for this example the im- 
proved solution is much more accurate than both the nu- 
merical and analytical approximations. As shown from 
(27) the numerical and the analytical approximations are 
of the same order for low values of e. For such problems 
it may be worthwhile to improve the results by using a 
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Reference solution 
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-! -0.5 0 0.5 1 

y 

(a) 

Numerical solution (N= 13) 

0'5 0 
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Solution before correction (N- 13) Improved solution (N= ! 3 ) 
1 1 

0.5 0.5 0 0 • 

-0 5 -0.5 • -l -l 
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Y Y 

(c) (d) 

x direction layer at y=-0.86 

-- Numerical (N=! 3) 
0.8 

.... Reference 

0.6 
__ Improved (N=! 3) 

0.4 .- ..• 0.2 

-1 -0.5 0 0.5 
x 

(e) 

! 

0.8 
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0.4 
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o 
-1 

y direction layer at x=-0.34 

-- Numerical (N=! 3) 

.... Reference 

x,. ••• • ___ Improved (N=I 3) 
-0.5 0 0.5 

Y 

(f) 

Figure 6: Solution of a two dimensional problem with different types of boundary layer (ex = ey - 5 10-3; a -- -4; v = 
[1,0]). (a) Reference solution. (b) Numerical (spectral) solution Un, N = 13. (c) Outer solution Uo, N -- 13. (d) 
Improved solution ux, N = 13. (e) Comparison between the different solutions. in the x direction on a fixed line 
y = -0.86. (f) Comparison between the different solutions in the y direction on a fixed line x = -0.34. 
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Figure 7: Solution distribution for 0 < x < 0.5 (• = 2 10-5,N = 15). (a) Different stages of the solution (b) Error 
distribution 

N ,lj, e 2 ===> 1. 10 -5 5. 10 -6 2 10 -6 1. 10 -½ 7. 10 -7 
11 II'enll 0.399 0.544 0.698 0.783 0.818 

[leAll• 0,400 0.345 0.254 0.192 0.165 
II•ll• 8.0 10 -2 5.9 10 -2 3.38 10 -2 2.26 10 -2 2.24 10 -2 
k,o 0.5 0.314 0.19 0.15 0.17 

12 II•nll• 0.317 0.470 0.643 0.742 0.787 
IleAll• 0.413 0.377 0.291 0.224 0.193 
I{•l{• 8.5 10 -z 7.23 10 -2 4.3 10 -2 3.25 10 -2 3.28 10 -2 
ks 0.65 0.407 0.230 0.196 0.22 

14 Ile•ll• 0.182 0.328 0.526 0.651 0.704 
I1•111• 0.393 0.412 0.354 0.285 0.250 

7.7 10 -2 8.5 10 -2 6.32 10 -2 6.08 10 -'2 6.36 10 -2 
k•: 1.07 0.629 0.339 0.32 0.36 

18' {}e•l{• 4.14 10 -2 0.127 0.301 0.454 0.528 
II•All• 0.24 0.356 0.414 0.383 0.353 
Ilezll 2.98 10 -?' 6.33 10 -2 8.4 10 -2 7.1 10 -2 2.56 10 -2 
k,c 2.95 1.45 0.67 0.4 0.17 

Table 3: Comparison between the various stages of the solution and a numerical solution for discontinuous ac(x) dx ' 
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'mixed' numerical solution. Instead of solving for the orig- 
inal differential equation [see (21)] two new variables (u 
and the derivative of u) can be defined. The correction 
can then be computed only for the derivative of u. 

8 Conclusions 

The aim of this work was to present a high-order method 
that is general and efficient for the solution of multi- 
dimensional problems with both boundary and interior lay- 
ers. Our approach exploits the fact that the boundary layer 
can be treated as a one-dimensional problem to first ap- 
proximation. In this way the solution is straightforward 
and does not depend on the dimension of the problem. 
The calculated solution away from the boundary layer is 
obtained by using the spectral element method. In this 
way. the number of degrees of freedom required to obtain 
the solution is minimal, because the outer solution does 
not have a boundary layer and thus the spectral conver- 
gence is retained. In order to deal with both boundary and 
interior layers, we used a penalty spectral element method 
for the numerical solution so that the the outer solution 

and the corrected solution are calculated on the same grid 
and there is no need to change the structure of the co- 
efficient matrices. We believe that the new method will 

be useful for a variety of problems involving interior and 
boundary layers, including e.g. semiconductor device sim- 
ulations ([14]). 
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