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Abstract 

.Most numerical schemes are implemented on uniform grids. 
But often uniform grids, in an attempt to resolve fine- 
scale features, use a fine uniform mesh and over-resolve 
areas of the domain. Methods which use non-uniform grids 
usually maintain the same grid for all time steps. These 
algorithms require an a priori knowledge of the regions 
which need a smaller mesh size. There are two possible 
types of problems where these methods fail to provide an 
optimal grid. The first is when the area needing a smaller 
mesh is unknown before the computation. The second is 
when the area needing greater resolution moves throughout 
the domain. The method provided here will efficiently find 
the computational grid and adapt the grid so that the grid 
is always optimal. 

Key words: ENO schemes. adaptive grid, •vavelet analy- 
sis. 
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i Introduction 

Essentially Non-Oscillatory (ENO) [1, 2] schemes are good 
high-order methods for problems with sharp gradients and 
shocks. However, these high order schemes obtain a so- 
lution at the cost more cpu time. These schemes require 
nmltiple cpu intensive if-then statements to be executed at 
each data point and each time step. To reduce the number 
of computations this method was designed to find an op- 
timal grid •vhich gives uniform accuracy using a minimal 
number of cells. Section 2 describes many of the concepts 
and terms associated with ENO schemes. 

The method purposed here is an Adaptive Grid Essen- 
tially Non-Oscillatory (AGENO) scheme. More specifi- 
cally, AGENO is the application of an adaptive grid to 
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a finite volume ENO scheme. The grid adaption compo- 
nent dynamically changes the grid in order to maintain a 
nearly uniform truncation error throughout the domain. 
The uniform error enables the scheme to use a minimal 

number of cells. 

Admissible grids are of the form xj+i - xj + 2-JA, 
where j = 0..J. (J and A are user parameters.) Based 
on these grids, refinement and coarsening processes are 
defined. Refinement is defined as dividing a cell in half; 
Coarsening is defined as the combination of two adject cells 
of equal size. 

To demonstrate how the decision whether to refine or 

coarsen the grid is reached, consider the first order central 
difference approximation to the first derivative of f(x). 

(1) f'(xg) f(xj+•)- f(xj) + (xj+• - xj) .( = f •) 
xj+• - xj 2 

where • • [xj,xg•_•]. Also let f9 be an approximation to 
I/"(•)l, Now for a given tolerance e, if (xg+•-xj) _< 2e/fj. 
then 

(2) f'(xj) - f(xj.•) - f(x•) <_e + O ((z'9+• - x9)2). 
Therefore the truncation error is less than e plus a quan- 
tity than decays like A 2. But if (xj+• - xj) _> 2e/fj, then 
the truncation error is too large and the grid needs to be 
refined. The requirements for whether to coarsen the grid 
are similar. While the above construction is for first order 

finite difference, Section 3 describes an analogous construc- 
tion for high order finite volume computations. 

The tests for refinement and coarsening also require 
if-then statements. Therefore when and where to apply 
these tests needs to be considered fully. These decisions 
are based on the characteristics of the PDE being solved. 
Advection, diffusion, and the non-linear effects associated 
with the PDE influence these decisions. Proper application 
of refinement and coarsening tests ensures that cpu time is 
still minimized. Section 4 describes the actual procedures 
which change the grid and their application. 

The results in one dimension demonstrate the consider- 

able cpu time that can be saved using AGENO. AGENO 
applied to Burgers' equation used one eighth the number 

329 



330 ICOSAHOM 95 

of ceils and took one tenth the amount of cpu time com- 
pared to ENO (section 5). Applying AGENO to Euler's 
gas equations with discontinuous initial conditions lead to 
cpu time of one third of the uniform fine grid computation. 

2 ENO schemes 

This paper describes describes an adaptive grid algorithm 
which is applied to essentially non-oscillatory uniformly 
accurate scheme for the solution of one dimensional hy- 
perbolic systems of conservative laws. 

(3) + = 0 0) = 0(x) 

Here u = (u•. u2,...,um) r is the state vector and F(u), 
the flux, is a vector valued function with m components. 
Let 

a F(•) (4) . 
Since this paper is only concerned with hyperbolic sys- 
tems. A(u)has m real eigenvalues, {h;.(u) xm and a com- Jk:l 

plete set of right and left eigenvectors, {r•(u)}• and 
{l•.(u)}• •_ Furthermore assume that r•l• = 5jk 1' ' 

Examples 2.1 

i. Iniscid Burger's equation F(x) = x 2, 

ut + (u2),,.=O 

ii. One dimenional Euler gas equations for conservation 
of density. momentum and energy 

wt + F(w)., = 0 

with 

where p is the density, m is the momentum, and E is 
the enrgy. Also 

F(w) = P 

Pu 

with u - m/p (velocity) and P = (3, - 1) (E - 1 t9U2 • 
(pressure) and */ is the polytropic gas constant. 

2.1 PDE attributes 

In order to design an adaptive grid algorithm for a numer- 
ical method, it is important to understand the PDE which 
it is solving. This section briefly describes the different 
characteristics of PDE, so that refinement and coarsening 
of the grid can be done intelligently. 

Advection-the wave-like propagation of features through- 
out the domain. Fine-scale features will propagate 
throughout the domain, requiring either refinement and 
coarsening of the grid. 

Non-linear effects-formation of fine structure from other- 

wise smooth data. The formation of shocks and con- 

tact discontinuities are both examples of non-linear effects. 
This will may require refinement of the grid anywhere in 
the domain. 

Dissipation-viscous forces smoothing out features in the 
domain. This will only require coarsening of the grid any- 
where in the domain. 

2.2 Cell averages 

Instead of solving the partial differential equation (3). the 
cell averaged formulation of the partial differential equa- 
tion is solved instead. The cell averaged formulation is 
obtained by integrating the PDE over any connected sub- 
set of the domain. ie. for the probleln on [0, 1]. integrate 
over [a,b], where 0 _< a < b _< 1. This yields the cell 
average form of the PDE 

(5) d-• u(x,t)dx = F(u(b,t))- F(u(a,t)). 
Now discretize using the points x;+l/2, where x_i/.2 = O, 

xx+t/2 = 1, and xj_i/2 < x;+t/2. Furthermore define 

(6) ag(t) = u(x,t)dz. 
•X3--1/2 

and 

X3-1-1/2 -o u(x, O)dx. (7) 
This produces the more familiar cell average form of the 
PDE 

(8) 

d 

Zg:(t) + F(u(xj+i/2,t)) - F(u(x;_t/2,t)) = 0 
-o 

Physically this can be thought of as the quantity •vithin 
cell j changes by the amount of the quantity entering from 
the left and exiting from the right. 
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2.3 Formalization of grid 

With the discretazition defined above, additional grid def- 
initions are necessary. Let Cj = [xj-1/2, Xj+l/2]. Restrict 
the cell sizes such that, 

(0) Icjl = 2 -w' •x •lc•l = 1. 

where wj • [0, S], A = •. R is the coarsest resolution 
and S is the number of levels of refinement. Also define 

xj = (x;-1/2 + xj+1/2)/2 and Aj = (x•-1/2 - Xj+l/2). 
The set of all grids •vhich meet these conditions is defined 
as •0. Equation (6) can be re-written as 

(10) a;(t) = • u(z, t)dx. 
Throughout A will be referred to for the analysis some 
interpolation errors. To obtain more exact error quantities, 
products of different A•'s should be used instead of the 
products of A. But it is the feeling of the author that it is 
sufficient to bound the errors using A. 

2.4 Reconstruction 

Equation (8) requires the evaluation or F(u(xj+l/2,t)). 
However only a knowledge of fij is available. Therefore a 
reconstruction of u(x) from fij is required. Define R(x; a) 
as the interpolating polynomial of degree p which recon- 
structs u(x) from a. Also let Rj(x: •) be the interpolation 
polynomial of degree p which reconstructs 'u(x) on the cell 
Cj. Then R(x; i•) = Rj(x; •) for x • Cj. 

Properties 2.1 Reconstruction via. ENO Interpolation 
R(x; •) satisfies: 

i. At all points x for which there is a neighborhood where 
u(x) is smooth 

(11) /I•(x; •) : •L(•) -•- O(h p) 

ii. R is conservative. 

(12) R(x•;•) -aj 

iii. R(x:a) is essentially non-oscillatory. 

(13) TV(R(x; •)) Z rv(7./)-•- O((A)P) 

Property iii ensures that the reconstruction R is essen- 
tially non-oscillatory. This guarantees that R(x) does not 
have Gibbs-like oscillations of (.9(1). However R(x) may 
have oscillation on the order of Ap. [2, 3, 4]. 

2.5 Conservative numerical schemes 

Equation (8) gives rise to a semi-discrete numerical 
scheme, 

(14) d 

where •j+1/2 is an estimate of F(u(xj+s/2)). Define 

(15) ]j+l/2: •'[Rj(•rj+l/2,t),Rj+l(•rj+l/2,t)] . 

9r[u, v] is called the numerical flux. There are two condi- 
tions on the numerical flux. 

i. Consistency 

•[•, •,]: F(•) 

ii. Lipschitz Continuous 

Ioqr'[ tt, •;1] -- oqr'[ t•, u2]l _< KlVl - v21 
I•[ul, v] - •[u.o. vii 5 tCtux - u2l. 

2.5.1 Specific fluxes 

Define the first order reconstruction Rj(x, a) - aj. Using 
this example of a reconstruction will make examples of 
specific fluxes easier. 

Examples 2.2 (Scalar flux functions) 

ß Lax Friedrich 

1 

oSr'[•j, fij+l] : • (F(•j+I) 
a = max 

ß Local Lax Friedrich 

1 

ß ?[•j,•j+l] = • (F(fij+l) + F(aj) q- o•)(•j+ 1 - •j)) 
% - max IF(u(x))l 

.r • C• 

ß Godunov 

min•, <,•< a,+• F(u) 
if • > •j+l 
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ß •oe 

The computation of the flux function for a system of 
equations is not much different than for scalar equations. 
The most common flux used for systems is the Roe flux. 
The Roe flux requires that the absolute value of the Ja- 
cobian Matrix A(u) to be computed. The first example 
is the extension of Roe's scalar flux function to systems. 
This flux function does violate entropy conditions of the 
PDE. Therefore Roe's scheme with an Entropy fix is also 
presented. For further information see [4, 3, 5]. 

Examples 2.3 (System flux functions) 

Roe (without Entropy fix) 

For Roe's scheme a value /t(u•, u2) is computed such 
that A(a(u•.u2)) satisfies the mean value relation 

(16) F(u2) - F(u•) = A(f•(u•,u2))(u2 - u•) 

Then the fiuz function can be define as 

I "• ..•[lI1. 122]-- • F(u•)+F(u:)- • • I•(•)lr•(• ) 
k=l 

k=l 

Roe (with Entropy fix) 

/3• is a non-negative quantity measuring the violation 
of the entropy condition in the k th characteristic 
3,5]. 

2.5.2 Time integration 

Equation (14) is a system of ordinary differential equations 
for the variables aj. To solve these systems any of the 
many ODE solvers can be used. The third order Total 
Variation Diminishing Runge-Kutta [6] was used for all 
computations performed for this paper. 

2.6 ENO interpolation 

The goal is to create an interpolation algorithm which sat- 
isfies properties 2.1. This has been accomplished by Harten 
el al. [3, 2, 4]. Since only the cell averages of the function 
u(x) are known, the reconstruction must be carried out 
using u(x)'s primitive function. Define 

(19) U(x) = u(y)dy. 

Using the values aj, U(x) is know at the distinct points 
Xj+•/2, 

(20) = ) + 

Interpolation is carried out on the points Uj+•/2 = 
U(xj+•/2). 

Now consider the interpolation which is carried out on 

cell j. For obvious reasons the points xj-•/2 and xj+•/2 
must be used. Using just these two points. the interpola- 
tion of U(x) is second order and the reconstruction of u(x) 
is first order. For a pth order reconstruction. a (p + 1) "t 
order interpolation of U(x) is required. Therefore for a 
order reconstruction, p + 1 points of Uj+•/2 are required. 
Adding the requirement that the p + 1 points are all next 
to each other, there are p possible stencils. 

The algorithm for determining the smoothest polyno- 
mial is defined recursively. Once the smoothest qtb order 
polynomial has been found, the (q + 1) "t order polynomial 
is easily determined. 

ii. 

Given a qt• order polynomial V•(x,q, lq(j)) defined 
on the cell C• which interpolates U(x) at the points 
{xj+z•(j)_•/2,... xj+z•j+•+•/2}, then 

(21a) U,, = Vj(x•,q, lq(j)) 
(2lb) s=j+lq(j)-l/2,...,j+lq(j)+q+ l/2 

lq(j) is a pointer to the left-most cell used for the qth 
order interpolating polynomial on cell j. 

Compute 

(22a) Uœ : U[Xj+lq(j)_3/2... Xj+lq(j)+q+l/2] 
(22b) U• -- U[x•+t•(j)_x/2... 3•j+lq(j)+q+3/2] , 
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where U[... ] are the standard un-even divided differ- 
ellces. 

(23a) U[xj...xj+k]= 
U[xj... - 

X j+ k -- Xj 

(23b) U[xj] = U(x;) 

Uœ is the smoothness of the (q+ 1) st derivative if the next 
point added to the stencil is Xj+lq(j)_3/2. Similarly Us is 
the smoothness of the (q+ 1) st derivative if the next point 
added to the stencil is Xj_klq(j)4_3/2. 

iii. If lULl < Iu, l then the algorithm will 
add the point Xj+lq(j)_3/2 to the stencil. 

If IU, l _> lULl then the algorithm will 
add the point Xj+lq(j)+q+3/2 to the stencil. 

Therefore 

lq(j) - i if lULl < IU•l (24) lq+•(j) = lq(j) if IUsl _> lULl 
Defining lq+ • (j) defines the polynomial 
1• (x, q + 1,1q+•(j)). 

Once the desired order has been reached, the function 

u(x) can easily be recovered. 
d 

(25) R•(x. a) = •xxV•(:c.p, lp(j)) 
Step 3 will choose a stencil which will avoid crossing a 

shock if possible. If U(x) is in ½*• then 

1 d • 

(26a) U[x•,... ,xj+•] = k! dx • U(•) 
(26b) • • [X.•,Xj+I] 

If u(q)(x) is discontinuous within the interval [xj,xj+t], 
then fork_•q 

(27) U[xj,... ,x•+k] -- O (Aq-•[uql) 
where •uq 1 is the jump in the qtn derivative. Now consider 
two intervals, the first [xj•, xA+• ] where the function U(x) 
is smooth and the second [x j2 , xj2+• ] where the function 
U (q) (x) has a discontinuity. Then for A sufficiently small 

Harten [3] shows that where u(x) is smooth 

(28) dq dq O(/Xp+l-q) dff:q Rj(x; a) -•- •q U(x) -•- 
for q = 0,... ,p. Harten also showed that the reconstruc- 
tion Rj (x; a) is essentially non-oscillatory. 

Note: Since all interpolation is of order p, reconstruction 
is of order p+ 1. The notation l(j) will denote the quantity 
lp+l(j). 

2.7 Reconstruction accuracy 

Let Rj(x;•) be a function of order p which esti•nates 
the function u(x) on the cell Cj given the cell aver- 
ages •j. Then for x • Cj and u(x) smooth for x 6 
[Xj-l(j)-x/2, Xj-l(j)+p+X/2], then 

(29) Rj(x;a) : u(x) + ]•tl(P)(•j) 
j-l(j)+p+l/2 

II (x- 
k----j-l(j)-l/2 

where •j • [Xj_l(j)_l/2, Xj_l(j)+p+l/2 ] , and ]C is a constant 
independent of u(x) and the cell sizes, l(j) • [0...p]. 

However if u © (x) is discontinuous for 
x • [Xj_l(j)_l/2, Zj_l(j)+p+l/2 ], then the error will not be 
bounded so nicely. In this situation, the error can be larger 
around the discontinuity, and therefore the grid should be 
refined. The algorithm developed will refine around dis- 
continuities. 

2.8 Reconstruction for systems 

The reconstruction described so far is for scalar recon- 

struction. It may appear that the reconstruction for a 
system could be simply applied on each component of 
tt = (Ul, tt2,... , Urn) T. However many people have noted 
that applying reconstruction to the characteristics provides 
a better approximation. Therefore define the reconstruc- 
tion Rj(x, •) as 

(30a) V j = y'].{a•}i li(aj) k 

i 

(30b) R;(x, a)= y•.{Rj(x,•J)},r•(a9) k 

i 

Harten [3, 4] shows the results of applying the ENO inter- 
polation on the components and characteristics. Both give 
good results, but the characteristic method provides much 
better results. 

3 Error control 

Most schemes are design to have a certain order of ac- 
curacy. The goal in designing this scheme is to create 
a method which has nearly uniform accuracy throughout 
the domain while using a minimal number of cells • The 
nearly uniform accuracy is obtained by refining the grid in 

•Schemes usually have a certain order of accuracy such that the 
error decays like h p at points where the solution is smooth. The 
goal of this scheme is to have the error distributed throughout the 
domain. 
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areas •f lower accuracy, and coarsening the grid in areas 
of higher accuracy. 

First consider the truncation error when u(x) is smooth. 
The error term in equation (29) is controlled by two fac- 
tors, u(P)(x) and the sizes of cells {Ck ij-l(j)+p This •k=j-t(j)' 
requires an estimate of u(P)(•). Define Qj(a) and 
crt.(j, Cj-p/2, . . . , Cj+p/2) such that 

j+p/2 

(31) QJ(•) = Z % 
k=j-p/2 

Q j (•-4) = 0, for q -- 0,...,p - 1, and Qj (•) = p!. Then 
Qj(•) •-• •(P)(xj), and Qj(a) • TI(P)(•j) for •j 

3.1 ch.(j) specifics 

O'k(j. C3-p/2 .... , Cj+p/2) is a whole class of filters. The co- 
efficients are a function of the p neighboring cells. Because 
of the dependence on these cells there are many coefficients 
to compute (roughly pP + 1.) Even so the computational 
costs are not great because all these coefficients can be 
pre-computed and stored. 

3.1.1 Relationship to wavelets 

Lee Jameson [7] developed an algorithm which has a sim- 
ilar goal to this algorithm. The goal was to find a method 
to which would determine an optimal computational grid 
on which to compute a finite difference scheme. Jame- 
son used wavelets to determine the computational grid. 
Wavelets (See [8, 9.10, 11]) are compactly supported bases 
functions which also have multi-resolution analysis prop- 
erties. One important characteristic of xvavelets is that 
the wavelet basis function is orthogonal to the polynomi- 
als 1. x. x 2 ..... x q, for some specified q. Jameson used 
wavelet transforms to determine the local regularity of a 
function v(x, t). With a knowledge of the local regularity 
of the function an optimal computational grid was com- 
puted. Because of the time evolution of the solution v(x, t) 
a re-computation of the optimal grid was required peri- 
odically. This re-computation involved interpolating the 
function from the optimal grid onto a uniform fine grid. 

Example 3.1 Let the computational grid be the points 
{0, 1/16, 1/8, 1/4, 1/2, 1}. For the re-computation of the 
grid, the discrete function v•, defined on the computation 
grid, needed to be interpolated onto the finest uniform grid, 
x = j/16 for j = 0, 16. Then a new computational non- 
u,iform grid was computed. 

Jameson's work showed that this computational grid 
would provide a solution equally accurate as the solution 

computed on the uniform fine grid. Jameson*s algorithm 
used far less computations. But the interpolation onto 
the uniform fine grid for the re-computation of the opti- 
mal grid required more computations marginally slows the 
algorithm down. 

The filters rrk(j) designed here are similar to those of 
wavelets. The discrete filters •k(j) are orthogonal to the 
cell averages of the polynmn{als 1, x, x 2, ... , x p-1 But 
because they are designed to be applied to all the possible 
non-uniform grids in •0, the need to interpolate onto the 
uniform fine grid has been eliminated. 

3.2 Accuracy of Q•(a) 

This section computes estimates on the accuracy of (•j (x) 
to estimate u ©(x) for x • Q•. It is easy to find such an 
estimate for when u(x) • ½P+•. The estimate is not as 
nice for u(x) ½ ½P+•, but this does not hurt the algorithm, 
rather it helps the algorithm. 

½q is the space of continuous functions which have q con- 
tinuous derivatives. 

½q[9,] is the space of continuous functions which have q 
continuous derivatives for x 

3.2.1 u(•v) • C p-q-! 

In order to find the accuracy of Q3 (•,). define 

34P/2 

(32) •2j= [_J C•.. 
k=j-p/2 

From the definition of •l,(j), it is obvious that 

(33b) • G • 

where •l is independent of u(z) and p. Also 

(343) •(P)(•j) • •(P)(•j) + •2 •(p+l)(•j) 
(34b) •j • C) 

(34) 

where •2 also is independent of u(x) and p. Therefore 

(3s) = + ) 
(3b) 
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3.2.2 Non-smooth u(x) 

In the previous section, it was shown that Qj(2) • '•(P)(xj) 
when u(x) is smooth. Now consider the case where u(q)(x) 
is discontinuous for x • Cj. Define the sequence of func- 
tions Hq(x) such that 

(36a) 

(36b) 

(36c) 

H(x) is Heavyside function 

no(x): n(x) 

Hq+l(.r ) = / Hq(y)dy 
Then rewrite u(x) as 

(37) u(x) = u•(x) + A Hq(•) 

where u,•(x) • C •. Then 

(38) Qj(8) = Qj(2s) + A Qj(•q) 

From [3, 4]. 
(39) Qj(•rq) = o(Aq--p) ' 

For su•ciently small A, equation (38) can be rewritten as 

(40) Q3(f)--O(AAq-P). 

Therefore Q•(•) is a good estimate of /t(P)(.r) if 
,(.r) • ½•+•I•91. and otherwise Qj(a) is large. It is easy 
to veri•,that Qi.(a) will also be large for k • [j- p/2, _< 
3 + p/2]. Also if there exists a discontinuity in u(P)(x) for 
x • •2j then Qj will be large. 

3.3 Error indicators 

The error term in equation (29) is a combination of u(P)((•) 
and a function of the cell sizes, therefore define 

(41) •j = 111ax { x6C• 

j+p/2 

II 
k= 3 -p/2 

6• is a function of the cell sizes which, when combined with 
an estimate of u(P)(x), gives an upper bound on the error. 
5• can either be pre-computed and stored. In practice this 
is not done. To save the small amount of memory needed 
a quick estimate is used. 

p/2 

(42a) e= Z wi/p 
k=-p/2 

Then define 

(43) Qj :Sj max {IQki} 
ke [j-p/2.j+p/2] 

Qj is an bound on the error resulting frmn a centered sten- 
cil to reconstruct u(x) on cell Cj. The magnitude of Qj 
will determine whether cell Cj is refined or coarsened. 

3.4 Centered stencil use 

All estimates of the error are computed using a centered 
stencil. But why use a centered stencil to compute Qj and 
-- 

Qj when the reconstruction in section 2.4 is done using 
ENO interpolation? 

Qj is an estimate for interpolation over cell j. The ENO 
-- 

reconstruction error will be bounded by Qj if the centered 
stencil is chosen from the p possible stencils. There are two 
possible ways that ENO could choose a centered stencil. 

The first is if there is a discontinuity in u © (x) for :c • 
C•., [0 < q < p]. The algorithm would like to divide any cell 
which has a discontinuity within it. Fortunately both Qj 

-- 

and Qj will be large, and cell Cj will be divided. Moreover, 
Q• will be large for j - p/2 _< k _< j + p/2. Therefore the 
cells {Cj_p/2,..., Cj+p/2} will also be divided. 

The cells which are refined around cell Cj above are a 
buffer zone of higher resolution. A buffer zone is a region 
of non-required higher resolution next to a region judged 
to need higher resolution. 

Examples 3.1 (Buffer zone) 

If for x • [.3, .4] the domain needs to be refined. it is 
better to refine an area larger than [.3..4]. The actual 
buffer zone is not described i, terms of a dista•ce. 
but is only defined vaguely as a zo, e of non-required 
higher resolution. 

ii. The need for a buffer zone can be see, by examining 
the following problem. 

Ux -- gt 

u(x,t =O) = {0 if x<.5 I ifx_>.5 

If there is no buffer zone present, this computational 
grid will only have a very few small cells right at the 
shock. But the advection of the shock will move the 
shock into the neighboring larger cells. However with 
a buffer zone, the shock will move into the small cells 
of the buffer zone. 
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Another way the ENO reconstruction could use a cen- 
tered stencil is if the function u(x) • C p+• [F•j]. If this is the 
case then Qj provides a good bound on the reconstruction 
error. 

However what if ENO chooses a non-centered stencil? 

Then the centered stencil reconstruction error bound, Q j, 
is a rough estimate of the ENO reconstruction error. Both 
the smooth and non-smooth cases are examined. 

First consider the case where there is a discontinuity in 
u © (x) [0 <_ q < p] in the cell Ck•j and C'k C F•j. Because 
of equation (40), Qj will be large. The stencil for cell 
C, 9 will be non-centered, because the ENO interpolation 
will avoid using cell C•. ENO will avoid cell C• because 
an interpolating polynomial using cell C'• would be oscil- 
latory and violate property 2.1.iii. Therefore Qj will be 
larger than the actual reconstruction error using ENO re- 
construction. Therefore the estimate Qj will be also larger, 
causing cell C',j to be refined. The refinement of Cj creates 
a buffer zone around cell C•:. This buffer zone is the same 
buffer zone described several paragraphs ago. 

Also consider the case where u(x) • CP+I[['•j]. Then 
there are many possible stencils for which the ENO inter- 
polation might use for reconstruction. Instead of trying 
to determine how close Qj might be to an actual error 
bound. consider that Qj acts as a warning light for when 
refinement might be necessary. Without kno•ving more in- 
formation about u(x) for x • f•j or which stencil the ENO 
interpolation would choose, no bound can be obtained for 

-- 

the ENO interpolation Instead the estimate Qj is used as 
a rough estimate. To determine whether this estimate is 

-- 

useful or not consider that Q• probably is a good estimate 
to the reconstruction error from the ENO interpolation. If 

-- 

anything Q• is larger than the actual error, because ENO 
interpolation seeks the smoothest polynomial. To get a 
better bound, significantly more computations will be re- 
quired to compute the ENO interpolation and then find the 
error bound. Therefore Q9 will be used as the indicator 
for refinement and coarsening of the grid. 

4 Grid adaption 

4.1 Actual computational grid 

Initially •0 may seem to be the best set to use, but •0 
admits •nany undesirable grids. Some of these undesirable 
grids are polarized grids which can be created created by 
refinement and coarsening of even grids. An example of a 
polarized un-even grid is where w2i - 0 and w2•+• = 2. 
This grid is less desirable than a uniform grid with wi - 
1. Beyond existence of polarized grids, initial numerical 
computations often created these grids. To eliminate these 

polarized grids from the set of admissible grids, define G• C 
•0. 

Definition: G• is a subset the set grids of G0 such that given 
a grid g E G• and Ci is a cell of g with wi < S, then the 
grid which is the result of dividing cell C• in half is also a 
member of G•. The grid with wi -- 0 for i = 1...R is in 

Figure 1 provides a detailed example of the set Gt. This 
should provide a good example of the grids contained in 
G•. Figure 2 shows some examples of grids which are in 
G0 but not in G•, plus some more examples of grids in 
G•. Both of these figures should help provide a clearer 
understanding of the set G•. and why it is necessary to 
use this subset of G0. G• does not eliminate all polarized 
grids nor does it eliminate all undesirable grids. but it does 
provide a better computational grid than G0. Enforcement 
of this requirement is difficult and requires additional if- 
then statements. Therefore application of the coarsening 
algorithm is restricted. 

4.2 Adaptive procedures 

4.2.1 Refinement 

Now with a measure of the error, the cell sizes can be 

adjusted to control the error of the scheme. Given a 
user-defined tolerance, TOL(• 10-'•), for refining a cell 
if >TO•,, then refine cell C'j. Refinement consists 
of creating two cells out of cell j. Refinement requires in- 
terpolating aj to find the cell averages of the two new cells. 
This should be done using an ENO interpolation. 

Denote the refinement process as a mapping 7'4: 
G. ie. 7-4 maps one grid into another, and xvhich new grid it 
maps to is dependent on the function u(x). By inspection, 
it is obvious that T4 ß G0•G0 and T4 ß G•-•G•. 

4.2.2 Coarsening 

While it is important to keep the error within bounds, min- 
imizing of the number of cells is just as important. There- 
fore combining cells, or coarsening of the grid, is necessary. 
If IQj(u)] <tol and IQj+• (u)l < tol, then combine the cells 
Cj and Cj+•. (tol is a user supplied cut-off for combining 
cells , 10 -•) This coarsening of the grid will be denoted, 
c. 

-- 

Other than checking IQj½)l, there are a few other things 
which need to be checked before combining two cells. For 
two adjacent cells to be combined, they must have the 
same size. Without this requirement, newly formed cells 
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grid # 1 

grid #5 [ 

grids 5.1 - 5.4 
][ 

[ 

E ][ 

grids 4.1 - 4.3 

[---] [---] [ ][ 

E 3[---][ ][ ][ 
[-•-] [ ][ 

grid #2 
][ ] 

] 

] 
] 

] grid #4 

grids 3.1 .a - 3. l.d grids 3.2.a- 3.2.f 

• HH HH[-•] 

HHHH[ ][-•t 

•]HH[ ] H [--] 
HH[ 1[ ]HH 

HH[ ]HH[ 

grids 3.3.a- 3.3.d 
•HHHHHH 
HH[ ]HHHH 

HHHH[ 

[--]•-•[.--][--]•-•[.--][ ,, ] 

grid 3.4 

Figure 1: Example of •'t for R = 1 and S = 3. The first element in G• is the grid with only one cell (grid •1). The 
second element results from splitting grid #1 into two equal sized cells (grid y•2). The next three grids in G• result 
from splitting both cells of grid #2 (grid •$), the left cell of grid #2 (grid •4), or the right cell of grid #2 (grid •5). 
Working on grid #3, there are many different combinations of cells to split. Grids 3.1.a - 3.1.d result from splitting 
only one of the cells in grid #3. Grids 3.2.a - 3.2.f result from splitting any two of the cells in grid #3. Grids 3.3.a - 
3.3.d result from splitting any three of the cells in grid #3. Grid 3.4 results from splitting all four of the cells in grid 
#3. Now consider the different ways to split the smaller two left cells of grid #4. The three different possibilities for 
this splitting of cells from grid #4 results in grids 4.1 - 4.3. (Note: Splitting the right cell of grid #4 would result in 
grid #3.) A similar splitting of the two smaller right most cells of grid #5 produces grids 5.1 - 5.3. IG•] = 26 for R = 1 
and S = 3. Also IG•I = 677 for R = i and S = 4. 
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Example #1 

r '1 grid 1.a 
r -It- ]r 'it' '1 grid I b 
r' 'lE '11' 3E ] grid 1 c 

Example #2 
I1 '1 œ '1 r '1 grid 
C lC •C ]C ]C ]C ] grid 2.b 
[---3[ ]Ml' '1 [--•-] C 3['•'3 grid 2 c 

Figure 2: Examples of grids in G0 which are excluded from Gr. Example 1 (R -- 1 and S - 3): Grid 1.a and grid 1.b 
are elements of G1, grid 1.c is not. Grid 1.c is undesirable because the rapid change from a very small grid cell to a 
larger grid cell back to a very small grid cell. Grid 1.c cannot be created by refining grid 1.a. Grid 1.b is the equivalent 
of Grid #3 in previous figure and is a more desirable grid. One reason that grid 1.b is prefered over grid 1.c is that 
there is less change of cell sizes, while giving equivalent approximation errors. Example 2 (R = 3 and S = 3): Grids 
2.a and 2.b are both elements of G1. Grid 2.c is not in G1 and is undesirable because to the rapid change from cells of 
size 1/24 to cells of size 1/3. Grid 2.b is a better choice of grids over grid 2.c because grid 2.b lacks any change in cell 
size over the entire domain, while grid 2.c rapidly changes. Grids such as 1.c and 2.c only occur if the user does not 
monitor the coarsening subroutine to exclude these undesirable grids. 

would not have widths consistent with equation (9). The 
next requirement on joining two cells is that the resulting 
grid be in •. 

4.3 Procedures applications 

4.3.1 Resolution boundaries 

There are three different procedures which are used to 
change the grid. Generic refinement and coarsening have 
just been discussed. These procedures are applied to the 
entire grid and are the basic methods for updating the 
grid. While using only these two procedures to change the 
grid will work. it is inefficient. The PDE's advective forces 
move structures throughout the domain and require many 
checks of the grid. Using a knowledge of the PDE, a more 
efficient algorithm can be designed. 

Consider the set of cells which are on the interface be- 
tween two different resolutions. Define the set 13 as 

(44) 13 = {Cilwi < wi+• or tvz < wi-•} 

Example 4.1 
Cor•,sider the PDE ut = us with initial conditions such 
that the right part of the domain needs one level of refine- 
ment to maintain accuracy. Then wi = 0 for i: 1... No 
andwi= l fori=(No+ l)...N. Then 13={CNo}. 

These cells will be called the boundary cells. If the the 
problem is purely advective, then the only cells which need 
to be refined are contained in 13. Checking only the cells 

in 13 eliminates a majority of the computations that would 
be needed to check the entire grid. 

Example 4.2 
Consider the PDE 

(45a) 

(45b) 

Outside the region [.5, .6] the cells will be large. and within 
the region [.5, .6] the cells will be very small. The boundary 
cells will on the boundary of the region [.5, .6]. As the 
merical method steps forward in time, the features in the 
region [.5, .6] are going to propagate to the left. In order 
to maintain proper resolution, the first large cell to the left 
of the fine-scale features will need to be refined 2. This cell 
will be in 13. As time progresses, the set 13 will move to the 
left, just in front of the propagating wave. 

4.3.2 Complete refinement 

This procedure of checking the boundary between resolu- 
tion will ensure proper resolution will maintained for the 
advective forces. But boundary refinement will not ensure 

2The actual application to this problem will also have a buffer 
zone. So in fact the propagation of the features will move into the 
smaller cells of the buffer zone. Therefore the boundaries cells are 

actually used to adjust the buffer zone, keeping it ahead of the fine 
scale features. 
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proper resolution of fine scale features which are the result 
of the non-linear effects of the PDE. Consider Burger's 
equation with u(x,t = 0) = sin(2•rx). The smooth initial 
conditions will lead to B be empty, but it is well known that 
a shock will form and refinement will be needed. There- 

fore, non-linear effects require complete refinement of the 
domain. The entire domain will be checked every TR time 
steps. TR • [5, 50]. 

4.3.3 Complete coarsening 

While it is important to keep the number of cells to a nfini- 
mum, performing the coarsening algorithm is a costly com- 
putation. The additional computations needed to perform 
C arise from the requirement that C: (71 --• (71. Therefore 
complete refinement 3 is done less often. The entire grid is 
coarsened every Tc time steps. Tc • [10, 50]. 

4.4 Number of computations 

Let .\• be the number of cells used for a uniform grid 
ENO scheme. and lYa be the average number of cells used 
by an AGENO scheme. Let T be the number of inter- 
roediary steps for the Runge-Kutta time stepping algo- 
rithm. h) is ratio of the time to perform 1 if-then to the 
time to perform 1 multiplication,. Io is estimated to be 
5. [See table 11 The number of computations per time 
step on an uniform grid will be N•T(2p + Io). [See ta- 
ble 2] The total number of computations for only the 
time stepping for the AGENO scheme will be 2pN•T. 
Let the average number of cell which are refined and 
coarsened as {Ro' N•,} and {Co' Na}, respectively. The 
number of computations for the total refinement will be 
No [2p + 2Io + Ro(2p + 5 + I0)] and will be only be per- 
formed every TR time steps. The number of computations 
for the coarsening will be .¾• [2p + Io(2 + Co(5p + 4))] and 
will be performed every Tc time steps. Define {Bo ß N•} 
and { B•. N• } as the average size of B and the average num- 
ber of boundary cells refined, respectively. The number of 
computations to check the boundary will be N•.Bo(2p+Io) 
and to refine the boundary will be Na ß B•(2p + 5 + Io). 
The boundary checking is performed every TB time steps. 
Therefore for an adaptive grid with N• cells the number 
of computations will be 

:•, {2pT q- [2p q- 2/0 q- R0(2p q- 5 q- 2/0)]/T• 
+ [2p+ I0(2 +Co(5p+4))]/Tc 

(46) + Bo ( 2p + Io ) /TB + Bi ( 2p + 5 + Io ) /TB } 

3Complete coarsening works on the entire grid the same as com- 
plete refinement 

Values used 

for Computations 
T 3 

p 4 
R0 .01 
Co .01 
Bo .1 
B1 .01 
T/• 10 
Tc 50 
Ts I 

Table 3: Values used for comparison of number of com- 
putations needed. T, p, are the actual values used form 
computations. R0, Co, B0 and B1 are conservative aver- 
ages of actual values recorded solving Burger's equation 
with initial value a square wave. 

Using the values from table 3, if N• < 1.12N•, then 
the number of computations to be reduced. This is a very 
reasonable requirement, and is easily satisfied. 

All these computations assume that the number of time 
steps for the adaptive grid and the uniform grid are the 
same. This is not necessarily going to be true. The adap- 
tire grid will allow the largest time step be taken each 
time. Consider Burger's equation with initial conditions 
u(x,t = 0) = sin(2•rx). Initially the adaptive grid pro- 
gram will use a coarse grid, which xvill allow a larger time 
step. As the shock develops, and the grid is refined, the 
time step will be reduced. The uniform grid computation 
will need to use the same smaller time step for all steps. 

5 Applications to the inviscid 
Burgers equation 

The AGENO scheme xvas applied to Burger's equation 
with periodic boundary conditions. 

(47a) ut(x,t) + (u2(x,t))x = 0 

I 2 sin(27rx) (47b) u(x,t = O)- õ + õ 
Three different sets of run-parameters were used to demon- 
strate possible settings. (See Table 4). The final results of 
number of cells used, number of cells added and joined, the 
size of B and the number of time steps needed are shown 
in table 5. 

The figures on page 341 are the results from run-2. Fig- 
ure 3 show the solutions at t = 1.5, t = 2.5, and t -- 5.0. 
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Table of constants 
Constant Definition Typical Values 

R the number of cells on the coarsest resolution 32-128 

$ the number of level of refinement 3-6 

T the number of steps to perform I full time step 1-4 
p the order 3-5 
I0 ratio of the time to perform 1 if-then • 5 

to the time to perform 1 multiplication 
1¾• the number of cells for a uniformly fine grid R 2 s 
,,¾• the average number of cells used per time step 

R0 ß ]• the average number of cells refined each full refinement time 0 - .1 
Co ß No, the average number of cells combined each coarsening time 0 - .1 
B0 ß N• the average size of B over all time steps 0 - .125 
B• ß Na the average number of boundary cells to be refined each time 0 - .02 

TR the number of time steps between full refinements • 5 - 30 
Tc the number of time steps between coarsening • 15 - 50 
T•3 the number of time steps boundary refinements 1-2 

Table 1: List of constants which are used in computations 

Figure 4 show the pointwise errors for the solutions in fig- 
ure 3. Figure 5 plots the cell sizes at the chosen times. 
Figure 5 shows that refinement not only took place around 
the shock, but that coarsening also took place behind the 
shock. At t = 2.5 and t = 5.0 the method uses all four 

levels of refinement to ensure accuracy around the shock. 
But at t = 1.5 (when the shock just formed and is small in 
magnitude.) figure 5 shows that only two levels of refine- 
ment are used there. 

Tables 6, 7. and 8 show the errors and cpu times for these 
runs compared to uniform grid computations. All times are 
from computations on a Sparc 10. Two different errors 
were computed. The first error is the L2 norm between 
the exact solution and the computed solution on 768 evenly 
spaced points throughout the domain. The second error, 
L._;. is the L2 norm between the exact solution and the 
computed solution on the set of evenly spaced points at a 
distance greater than .03 away from a shock. 

5.1 Euler gas dynamics 

The AGENO scheme was applied to the one dimensional 
Euler gas equations for conservation of density. momentum 
and energy 

w, + = 0 

with 

Burger's Equation - Time = 1.5 
Non-Adaptive (ENO) 

Cells L2 L.; Time Steps 
48 4.1 X 10 -2 1.0 X 10 -2 1 sec 38 
96 2.3 X 10 -2 3.0 x 10 -3 3 sec 77 
192 1.4 x 10 -2 8.9 x 10 -4 9 sec 153 
384 7.4 X 10 -3 2.8 X 10 -4 34 sec 306 
768 5.4 X 10 -3 8.8 X 10 -5 129 see 612 

Adaptive (AGENO) 
Cells L2 L2* Ti•ne Steps 
run-1 1.5 X 10 -2 1.1 X 10 -3 1 sec 50 
run-2 1.5 x 10 -2 1.1 x 10 -3 1 sec 50 
run-3 4.0 X 10 -3 1.4 x 10 -4 8 sec 215 

Table 6: Errors and cpu times for Adaptive and Non- 
Adaptive computations using high-pass filter based adap- 
tive grid ENO scheme applied to Burger's equation at 
t= 1.5 

where p is the density, m is the momentum, and E is the 
energy. Also 

F(w) = + (0) P 

Pu 

with u = m/p (velocity) and P = (7- 1)(E- • o 5pu-) 
(pressure) and '• = 1.4 is the polytropic gas constant. The 
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Figure 3: Solutions to Burger's equations at times 1.5, 2.5 and 5.0 with initial conditions u(x,t = 0) = 1/3 + 2/3 sin(z'). 
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Figure 4: Computed errors 
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Figure 5: Cell Sizes 
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Number of computations 
Procedure Multiplies Additions if-then Points Regularity a 

ENO b p p p N T 
Computation of Qj(u) p p 0 N 1/T•? or 1/To 

-- 

IQ2_()I > roL 0 0 1 N 1/rR 
[Qg(u)[ < tol 0 0 1 N 1/Tc 
Refinement c p p + 5 0 or p Ro 1/TR 
Coarsening d 0 5 5p Co 1/To 

Find Boundary 0 0 1 N 1/Ta or 1/Tc 
Check Boundary p p 1 Bo 1/TB 
Refine Boundary p p + 5 0 or p B• 1/TB 

'ZNumber of times per time-step this subroutine needs to be called. 
bFor computation of F,: (u) 
CDepends on whether method is a fixed stencil or ENO 
'lExtra computations required to ensure that C: •l -' •l 

Table 2: Table listing number of computations required to perform each of the different processes used in this adaptive 
grid method. 

Burger's Equation Run-Parameters for Computations 
Run Coarsest Levels of Break Join Break Join 

Variables # of Cells Refinement Time Time Increment Increment 
run-1 48 4 10 50 10 -• 3 x 10 -6 
run-2 48 4 30 75 10 -* 3 x 10 -6 
run-3 96 3 10 50 10 -* 3 x 10 -• 

Table 4: User supplied constants for application of AGENO scheme to Burger's equation 

initial conditions are 

(48a) p(x,t:O)= {1'0 ifx < 1/2 0.1 if x> 1/2 
(4Sb) m(x,t = 0)=0.0 

(48c) E(x,t=O)={2.5 ifx < 1/2 .25 if x>1/2 

Both third order AGENO scheme and a uniform grid 
third order ENO scheme with equivalent resolutions were 
applied. The AGENO scheme used 37% the number of 
cells as the ENO scheme and 36% of the cpu time. Again 
all times are from computations on a Sparc 10. Figure 6 
plots the AGENO solution versus the ENO solution. The 
solutions are indistinguishable from each other and provide 
a good estimate of the exact solution. 

Table 9 provides the parameters which where used for 
the AGENO computations and table 10 provides numeri- 
cal results of number of cells used, cpu time, and average 
number of cells added, number of cells joined, and size of 

boundary. Unfortunately AGENO fails to combine enough 
-- 

cells. In figure 7 the error indicator Q• is plotted at t: .4. 
While the solution looks constant between the shocks. the 

computed solution has small oscillations on the order of 
A a which cause the grid to remain over-resolved. To over- 
come this problem a modification of the error indicator will 
be required. Even so, AGENO produces a solution in one 
third the time of typical ENO scheme. 

6 Conclusion 

The AGENO scheme described here provides a quick al- 
gorithm for adapting the computational grid. By using a 
quick centered difference approximation to the error, the 
grid is easily changed to always be optimal. 

This adaptive grid algorithm has been applied to test its 
robustness on other type schemes. Flux limiter schemes. 
finite difference and finite element schemes all proved suc- 
cessful tests for the adaptive grid algorithm [12]. However, 
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Figure 6: Solution to Euler gas equations using both AGENO and ENO. 
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Figure 7: Qj for solution of Euler gas equations at t = .4. Notice that in the active part of the solution, Qj fails to 
decay enough to allow coarsening. 
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Burger's Equation Run Results 
Run Final 'Initial Final Average Tinhe Average Average Average • of Time 

Variables Time Cells Cells Cells (sec) • Added # Joined Boundary Steps 
1.5 48 70 53 1.0 4.0 n/a .64 50 

run-1 2.5 48 96 136 13.0 1.15 3.36 8.83 144 

5.0 48 81 114 34.0 0.49 2.40 6.16 1463 

1.5 48 70 53 1.0' 4.0 n/a .64 50 
run-2 2.5 48 91 71 1.0 6.1 12.0 3.82 224 

5.0 48 145 187 29.0 1.42 9.00 4.61 1243 

1.5 96 239 197 8.0 4.14 3.75 3.33 215 

run-3 2.5 96 145 187 22.0 1.55 10.67 4.79 622 

5.0 96 129 162 53.0 0.70 7.97 4.19 1641 

Table 5: Results of using AGENO scheme. The figures are various results of running AGENO on Burger's equation. 

Euler Gas Equations Parameters 
Coarsest Levels of Break Join Break Join 

# of Cells Refinement Time Time Increment Increment 
12 4 10 50 10 -5 3 x 10 -6 

Table 9: User supplied constants for application of AGENO scheme to Euler gas equations 

because of the nature of the non-uniform grid generated, 
it is not possible to apply this adaptive grid technique to 
pointwise ENO schemes. 

One possible improvement could be the rate at which 
points are added. Many times the grid is refined as many 
ti•nes in one area. This leads to areas areas of complete 
refinement and areas of no refinement. Because of this 

the method •night be improved if, instead of the cell being 
divided into only two cells, cells are divided into possibly 
four ceils. The only reason why dividing into two ceils was 
the close relationship between this and wavelets. Dividing 
into four ceils may decrease the number of computations 
used. 

Another area of possible improvement is the time step- 
ping procedure. This procedure applies a Runge-Kutta 
ODE solver on the system of ODE's for the time evolution 
of the cell averages. The At for the Runge-Kutta is con- 
trolled by the minimal size of all the cells Cj. Therefore 
if one small area of the domain is completely refined, then 
the smallest At is used for the evolution of all cells. In- 

stead of applying the Runge-Kutta the same to all cells, 
a more intelligent plan of applying the Runge-Kutta ODE 
solver differently for each size cell might be better. Con- 
sider just one level of refinement and a forward Euler ODE 
solver. Since the smaller cells require a time step of half 

that of the larger cells. apply the forxvard Euler twice on 
the smaller cells, and only once on the larger cells. This 
will require special treatment of the boundaries between 
resolutions to ensure proper application. 

The next project is applying this algorithm in higher 
dimensions. The first step was to develoop a non-uniform 
grid WENO scheme (weighted ENO Scheme.) Then using 
the grids and grid adaption techniques from this paper to 
produce a AGENO scheme for higher dilnensions. The first 
step is complete, and the application of the AGENO grids 
and grid adaption techniques is producing some interesting 
grids and encouraging results. 
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Euler Gas Equations Run Results 
Run Final Initial Final Average Time Average Average Average :• of Tinhe 
Type Time Cells Cells Cells (sec) • Added • Joined Boundary Steps 

AGENO .4 26 106 71 40.0 8.9 1.0 10.2 82 

ENO .4 192 192 192 118.0 n/a n/a n/a 82 

Table 10: Run results from the application of both ENO and AGENO to the Euler gas equations. Notice the cpu time 
is reduced by a third. 

Burger's Equation - Time = 2.5 
Non-Adaptive (ENO) 

Cells L2 L2* Ti•ne Steps 
48 8.4 x 10 -2 3.3 x 10 -3 1 sec 64 
96 5.3 x 10 -2 8.5 x 10 -4 3 sec 128 
192 4.6 x 10 -2 9.5 x 10 -5 14 sec 255 
384 2.2 x 10 -2 2.8 x 10 -5 57 sec 510 
768 1.6 x 10 -2 5.6 x 10 -6 215 sec 1020 

Adaptive (AGENO) 
Cells L2 L• Time Steps 
run-1 1.4 x 10 -2 1.2 X 10 -4 12 sec 444 
run-2 1.4 x 10 -2 1.4 X 10 -4 4 sec 224 
run-3 1.4 x 10 -2 1.4 x 10 -5 22 sec 622 

Burger's Equation - Time = 5.0 
Non-Adaptive (ENO) 

Cells L2 L• Time Steps 
48 5.8 x 10 -2 4.5 x 10 -3 2 sec 128 
96 4.7 x 10 -2 5.2 x 10 -4 7 sec 255 
192 2.6 x 10 -2 3.3 x 10 -5 28 sec 520 
384 1.9 x 10 -2 7.8 x 10 -6 110 sec 1020 
768 1.5 x 10--" 2.0 x 10 -6 442 sec 2040 

Adaptive (AGENO) 
Cells L2 L• Time Steps 
run-1 1.3 x 10 -2 1.3 x 10 -• 39 sec 1463 
run-2 1.3 x 10 -2 1.4 x 10 -5 29 sec 1243 
run-3 1.3 x 10 -2 1.7 x 10 -6 53 sec 1641 

Table 7: Errors and cpu times for Adaptive and Non- 
Adaptive computations using high-pass filter based adap- 
tire grid ENO scheme applied to Burger's equation at 
t=2.5 

Table 8: Errors and cpu times for Adaptive and Non- 
Adaptive computations using high-pass filter based adap- 
tive grid ENO scheme applied to Burger's equation at 
t= 5.0 

References 

S. Osher and C. W. Shu. Efficient implementation 
of essentially non-oscillatory shock capturing schemes. 
Journal of Computational Physics, 77:439-471, 1988. 

[2] Ami Harten, B. Engquist, Stanley Osher, and Suku- 
mar R. Chakravarthy. Uniformly high order accu- 
rate essentially non-oscillatory schemes, II. Journal 
of Computational Physics, 83:231-303, August 1987. 

[31 Ami Harten and Sukumar R. Chakravarthy. Uni- 
fornfiy high order accurate essentially non-oscillatory 
schemes, III. Journal of Computational Physics, 
71(2):231-303, 1987. 

[4] Anti Harten and James M. Hyman. Self adjusting grid 
methods for one-dimensional hyperbolic conservation 
laws. Journal of Computational Physics, 50(2):235- 
269. May 1983. 

[5] 

[6] 

[7] 

[8] 

[9] 

P. L. Roe. Approximate riemann solvers, parameter 
vectors• and difference schemes. Journal of Computa- 
tionl Physics. 43:357-372. 1981. 

S. Osher and C. W. Shu. Efficient implementation of 
essentially non-oscillatory shock captu,'ing schemes II. 
Journal of Computational Physics, 83(1):32-78. 1989. 

Lee Jameson. On the wavelet-optimized finite dif- 
ference method. ICASE Report, (94-9, NASA CR- 
191601), 1994. Submitted to Journal of Computation 
Physics. 

Ingrid Daubechies. Orthonormal basis of compactly 
supported wavelets. Comm. Pure Appl. Math., 
41:909-996, 1988. 

S. Mallat. Multiresolution approximations and 
wavelet orthonormal bases of /2(r). Trans. Amer. 
Math. Soc., 315(1):69-87, September 1989. 



346 ICOSAHOM 95 

[10] S. Mallat. A theory for multiresolution signal decom- 
position: The wavelet representation. IEEE Trans. 
Pattern Anal. and Machine Intel., 11:674-693, 1989. 

[11] Ingrid Daubechies. Orthonormal bases of compactly 
supported wavelets. Communications on Pure and 
Applied Mathematics, XLI:909-996, 1988. 

I12] Robert Bruce Bauer. An efficient adaptive grid algo- 
rithm:II. To appear. 


