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Abstract 

By combining the support-operators method with the 
mapping method, we have derived new mimetic fourth- 
order accurate discretizations of the divergence, gradient, 
and Laplacian on nonuniform grids. These finite differ- 
ence operators mimic the differential and integral identi- 
ties satisfied by the differential operators. For example, 
the discrete divergence is the negative of the adjoint of the 
discrete gradient and consequently the Laplacian is a sym- 
metric negative operator. •Ve analyze the loss of accuracy 
in the approximations when the grid is rough and include 
numerical examples demonstrating the effectiveness of the 
higher order methods on nonuniform grids in one and two 
dimensions. The analysis and examples are for fourth- 
order finite difference methods, but the approach can be 
extended to create approximations of arbitrarily high or- 
der. 

Key words: finite-difference, high-order, non-uniform 
grids, sensitivity, numerical analysis, partial differen- 
tial equations. 
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1 Introduction 

The main goal of this research is to construct local high- 
order difference approximations of differential operators on 
nonuniform grids that mimic the symmetry properties of 
the continuum differential operators. Partial differential 
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equations (PDEs) solved with these mimetic difference ap- 
proximations often automatically satisfy discrete versions 
of conservation laws and analogies to Stoke's theorem that 
are true in the continuum and, therefore, are more likely 
to produce physically faithful results. These symmetries 
are easily preserved by local discrete high-order approx- 
imations on uniform grids, but are difficult to retain in 
high-order approximations on nonuniform grids. We also 
desire the approximations to be local and use only func- 
tion values at nearby points in the computational grid. 
These methods are especially efficient on computers with 
distributed memory. 

We desire the methods to be high-order. The use of 
higher-order approximations reduces the number of points 
needed in the discretization and consequently reduces the 
computational cost to achieve a desired accuracy [9, 4]. 
This savings is inversely proportional to the number of grid 
points raised to the order of the method. Also, because 
the number of grid points in a calculation increases with 
the power of the dimension, the higher-order methods are 
extremely effective in higher dimensions. If, however, the 
higher-order approximations are less accurate or less stable 
than low order methods on rough grids, then all of the 
advantages may be lost. 

A straight-forward method to construct high-order ac- 
curate approximations to the derivatives of a function de- 
fined on a nonuniform grid is to construct and differentiate 
a Lagrange interpolating polynomial [7]. On nonuniform 
grids, the difference approximations to the gradient opera- 
tor grad, and the divergence operator, div, generated by 
Lagrange interpolation are rarely mimetic. Furthermore, 
their composition to form the Laplacian operator is often 
not negative definite. 

If, however, the grid and function are first mapped to 
a uniform grid, the derivatives approximated there using 
Lagrange interpolation, and the results then mapped back 
to the original nonuniform grid, the resulting finite differ- 
ence approximations can be shown to be mimetic, provided 
that at each step of the process the symmetry relationships 
are preserved. In expressing these discrete approximations, 
special care must be taken to preserve the symmetry rela- 
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tionships between differential operators. It is these sym- 
metry relationships that maintain the physical properties 
such as the conservation laws satisfied by a PDE in di- 
vergence from. In this paper, we derive an approach that 
preserves these relationships and guarantees that the re- 
sulting high-order approximations are mimetic. 

The accuracy of the approximations depends as much 
upon the smoothness of the grid as the smoothness of the 
function being differentiated. Thus, a fourth-order approx- 
imation on smooth grids degenerates to lower order on 
rough grids. V•re analyze this loss of accuracy and ver- 
if•v that it occurs gracefully. We also verify that even on 
relatively rough grids, the fourth-order discretizations are 
computationally more efficient than the standard second- 
order discretization. 

•Ve first derive high-order mimetic approximations in 
one space dimension analogous to the divergence, defined 
at the nodes, and the gradient, defined in the cells. The 
discrete operators are required to be the negative adjoints 
of each other. The second derivative (Laplacian) is ap- 
proximated by the composition of the first-order operators 
and consequently is a symmetric operator. This approach, 
based on the support-operator method [18, 19], guarantees 
that the resulting difference scheme preserves the symme- 
try properties. For example, the conservative property [13] 
for PDEs in divergence form is automatically preserved on 
nonuniform grids. 

The construction and analysis of the higher-order 
schemes in 1D proceeds by first using Lagrange interpo- 
lation to construct higher-order approximations on a uni- 
form grid and then using the mapping method [10, 20] 
to extend the approximation to nonuniform grids. The 
resulting approximation in 1D is then shown to be an ex- 
ample of a support-operator [18, 19] method, and conse- 
quently the scheme is mimetic. In 2D we also use the 
mapping method to construct the discrete analog of the 
divergence and directly use the support-operators method 
to construct finite-difference approximations for the gra- 
dient, and consequently in 2D these approximations are 
mimetic. 

The accuracy of high-order approximations on nonuni- 
form grids is sensitive to the smoothness of the grid. The 
importance of errors introduced into second-order differ- 
ence schemes by nonuniform grids has been extensively 
studied [1, 3, 5, 6, 12, 14, 15, 16, 17, 21], but there has 
been little analysis or numerical comparisons for higher- 
order approximations on nonuniform grids [8, 9]. 

When generating a grid for a complex domain, it can be 
difficult to generate a smooth grid. Because of this, it is im- 
portant to understand the impact of roughness in the grid 
on the quality of the approximations. In 1D we prove ana- 

lytically, and confirm numerically, that the approximations 
we propose are fourth-order accurate on smooth grids and 
that the accuracy of the approximation decreases slowly as 
the smoothness of the grid decreases. The numerical veri- 
fication is first done using an analytic transformation, with 
a jump in one of its derivatives, to map the grid. Next, we 
numerically study the accuracy of the difference approxi- 
mations on a sequence of random perturbations of different 
order with respect to the uniform grid spacing. Numerical 
investigations of truncation errors and accuracy in 2D are 
in general similar to 1D, but truncation errors in 2D are 
much more sensitive to grid quality. 

After defining the notation and basic ideas, we construct 
the higher-order mimetic approximations and analyze their 
errors and compare their accuracy and efficiency in numer- 
ical experiments. 

2 Discretizations in 1D 

The domain for the functions to be discretized, without 
loss of generality, can be chosen as the unit interval. This 
interval is divided into cells with endpoints called nodes. 
We denote functions defined at the nodes as nodal func- 
tions. These functions are analogous to vector functions, 
while cell functions are analogous to scalar functions de- 
fined at some point within the cells. 

Consider the domain [0, 1] and the irregular grid with 
nodes {xi, i = 1,...,M}, with xi < xi+• . The size of the 
grid is measured by Ax = max•<i<.•t_• Ixi+• --xil. In one 
dimension, discrete vector functions have one component, 
1•; = (WX, 0, 0), with values defined at the nodes WX = 
{WX•, WX2,..., WXM}. 

Within a cell with end points xi and xi+•, •ve introduce 
the point &i+l/2' On uniform grids, the point & is the 
midpoint •i+1/2 : •i+1/2 • (Xi+i -Jr- xi)/2 of the cell, and 
it is near the midpoint on nonuniform grids. The point 
•i+1/2 is the location where the discrete scalar function 
values U = (U3/2, '", U•w-•/2), are defined. (An exact 
definition of •:•+x/2 will be given later.) 

2.1 The mapping method. 

The mapping method [10, 20, 8] assumes that the grid is 
given by a mapping X, 

where the •i give a uniform grid, with mesh spacing h = 
1/(M- 1) in the interval [0, 1] which is called logical space 
(the grid is called the logical grid). The first derivative is 
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defined by 

df df(dx) -1 (2) 
This approach transforms the problem of approximating 
a derivative on a nonuniform grid to approximating two 

d dx uniform grid. derivatives, • and • on a 
The same technique can be used to construct an approx- 

imation of the second derivative by using the chain rule 

(3) dx 2 - dE 2 dE dE dE 2 • ' 
where all derivatives are approximated on a uniform grid, 
or it can be constructed as a composition of the discrete di- 
vergence DIV and gradient GRAD operators. The chain 
rule direct approach does not preserve many of the sym- 
•netry properties of the Laplacian, such as the divergence 
form. and is considerably more complicated in higher di- 
mensions. Therefore we will only consider constructing 
the higher derivatives as a composition of the elementary 
operators DIV and GRAD. 

The accuracy of the difference approximations con- 
structed by the mapping method depends on both the 
continuity of the function defined on the grid and on the 
smoothness of the gird. In solving PDEs; often it is natu- 
ral to require that the function being differentiated, f(x), 
is smooth. but the grid may be prescribed by a process 
where we cannot assume that X(E) is smooth. Conse- 
quently f(•) = f(X(•)) may not be smooth, even when f 
is well-behaved as a function of x. Therefore, estimates of 
the truncation error for high-order approximations must 
include an analysis based on both the smoothness of the 
function and the transformation. 

If D E approximates d/dE on a uniform grid to o(hq), 
where h = •i+• - •i, then the approximation of D• on a 
nonuniform grid 

DE/(E) + O(h) De/(E) O(h) (4) D.f(x) = Dg = D E X(E) + 
f(E) = 

is also O(hq). 
If second-order central-differences are used to approx- 

itnate the derivatives on the logical grid in (2) then the 
truncation error is, in general, first-order with respect to 
Ax, but if the transformation is smooth, then the trunca- 
tion error is O(h2). 

2.2 The support operators method 

•Ve introduce two discretizations for the first derivative 

based on the projections of the gradient and divergence 

operators. In higher dimensions, the gradient grad op- 
erates on a scalar function to produce a vector function, 
while the divergence div operates on a vector function to 
produce a scalar function. In one dimension, a vector func- 
tion w - (wx, 0, 0) has only one component and div is the 
derivative of this component. The grad is the usual deriva- 
tive of a scalar function. We require the approximations 
to satisfy symmetry properties that come from an anal- 
ogy to the higher-dimensional divergence, gradient, and 
Laplacian. In the continuum, the divergence and gradi- 
ent are negative adjoints of each other, div* -- -grad, 
and the Laplacian is given by A -- div grad. The ad- 
jointhess requirement on the divergence and gradient im- 
plies that the Laplacian is a negative symmetric operator. 
One goal here is to construct high-order discrete analogs, 
DIV and GRAD, of the divergence and gradient so that 
DIV* - -GRAD and then use LAP = DIV GRAD as 

an approximation of the second derivative. The approxi- 
mations constructed are fourth-order, but the construction 
can be extended to create approximations of arbitrarily 
high order. 

One of the most costly parts of many simulations is the 
inversion of the discrete Laplacian. Some of the most effi- 
cient methods for solving these equations require the dis- 
crete Laplacian to be a negative definite, symmetric op- 
erator. Mimetic discretizations of the Laplacian or, more 
generally, symmetric elliptic operators, automatically pro- 
duce discrete operators that are symmetric and negative 
definite [18, 19]. 

The integral identity 
In the support-operator method, the approximations of 

the divergence and gradient must satisfy a difference ana- 
log of integral identity 

(5) /v udiv v• dV + /v(•,gradu) dV - 
u (•,•) •S. 

This identity can also be written in terms of inner prod- 
ucts, 

(6) (f,g)H=/wfgdV, (& g>x =/w(& g) dV. 
For functions which are equal to zero on the boundary, the 
integral identity (5) is 

(7) (u, div •:)s + (gradu, t•)• = 0, 

that is, differential operators div and grad are negative 
adjoints of each other: 

(8) grad = -div*. 
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A discrete analog of the adjoint relationship (8) can be 
found by introducing the following inner products in spaces 
of discrete functions: 

(9) (F, G)H• = •. Fi+x/• Gi+•/• VCi+x/• 
i 

and 

(10) (X, = , 
i 

where the volumes of the cell VCi+•/2 and the volumes 
of the nodes VNi depend upon the mapping and must be 
defined consistently for each of the numerical methods. 

If the discrete functions are zero near the boundary, then 
we will define the operator GRAD from the following dis- 
crete identity 

• U•+1/2 (DIV [•)i+1/2 VCi+I/2 

i 

or 

(11) (U, DIViP)Ha + (GRAD U, •)•a =0, 
and, consequently, the discrete operators are also negative 
adjoints of each other: 

(•a) gaa• = -•XV*. 

(13) 

and 

2.3 Difference approximations 

The error estimate for the Lagrange interpolant of order n 
(using n + 1 points) for a smooth function f is 

If(.r)- œ•(x)l _< max•(f•+•(•)) (. + 1)! 

(14) df 7; + O , 
where 5 is a point in the interpolation interval, and R is 
some constant which depends on the interpolation points 
and scales as h •. Thus La gives a third-order approxi- 
mation for the first derivative on nonuniform grids. On 
uniform grids fortunate error cancelation makes this ap- 
proximation fourth-order at the midpoint of the center cell, 
and formula for approximation of first derivative becomes 

--fi+2 + 27 fi+• - 27 fi + fi-• 
(15) (D• f)i+•/2 = 24Ax 

The analogous sixth-order formula is 

(16) (Dxf)i+•/2 = 
{-9 
+2250 f•+x - 125 f•+2 + 9 f•+a}/(1920 Ax). 

To maintain the analogy that vector functions are de- 
fined on the nodes and scalar functions are defined on cells, 
the discrete divergence DIV maps nodal functions to cell 
functions and the discrete gradient, GRAD operator maps 
cell functions to nodal functions. The two simplest natural 
approximations of these operators are 

(17) (DIV I/P)i+•/2 = 

and 

(18) (GRAD U)i = _Ui+•/2 - Ui-•/2 
•i+1/2 -- •1i-1/2 

The first formula is second order approximation on any 
grid, and second formula is first order on non-smooth grid 
and second order on smooth grids. 

High order discrete divergence operator DIV 
On a uniform grid (15) gives 

(DIV I/P)i+•/2= 

(19) -WXi+2 + 27 WXi+x - 27 WXi + WXi_x 
24 VCi+i/2 ' 

with the cell volume, VCi+i/2 -- h, a fourth-order approx- 
imation for the divergence at •i+•/2 = (•i + •i+•)/2. 

On a nonuniform grid, using this formula in (2) 
for smooth functions and transformations, the mapping 
method approximation for the divergence with the cell vol- 
ume 

(20) 
VCi+i/2 = 

(-xi+2 + 27xi+• - 27xi + xi-x)/24, 

is O(h 4) accurate at the image of •i+•/2, Jq+•/2 = 
X(•+1/2). Usually •:i+•/2 • xi+i/2 -= (xi + xi+l)/2. Be- 
cause the difference between :•i+1/2 and Xi+l/2 iS O(/kX2), 
this distinction only plays a role for high-order methods. In 
our truncation error analysis we are careful to ensure that 
the mid-point projection is the image under the transfor- 
mation of the mid-point in logical space and not the center 
point of the central interval. If the function X(•) is not 
known explicitly, then this point can be approximated by 
Lagrange interpolation to fourth-order by 

(21) •i+•/2 • (-xi+2 + 9xi+x + 9xi - xi_•)/16. 

On rough grids, the denominator VCi+i/2, given by (20) 
can vanish. That is, even though X is a one-to-one map- 
ping, the numerical approximation of the map may not be, 
causing the difference approximation to fail. Luckily, this 
only occurs on very rough grids. 
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The volume VC (and VN) must be positive to ensure 
that the expressions (2.2) (10) satisfy the axioms of an 
inner product. To illustrate how this failure can occur, 
consider the function ui = I for i = io and ui = 0 for all 
other i, then 
(22) u)h = VCo+/2 , 
which must be positive. When a volume VC is zero or 
negative the length of a nonzero vector is zero or negative, 
and the expression given in (2.2) does not satisfy the ax- 
ioms of an inner product. Similar results hold for the inner 
product of discrete vectors. This can produce some non- 
physical consequences. For example, some quantity which 
is always positive in the physical model, such as energy, 
can be zero or negative. Thus, to use the mapping method 
for sonhe given grid, one must check that VC and VN are 
always positive. 

High order discrete gradient operator GRAD 
The formula (15), translated by 1/2, 

(GRAD U)i 
-Ui+3/2 + 27 Ui+•/•. - 27 Ui_•/2 + Ui-3/2 

24 VNi 

with the nodal volume. Vi•} = h, is a fourth-order approx- 
imation for the gradient on a uniform grid. 

On a nonuniform grid, using 

V.V,. = -J:i+3/2 + 27•i+½/2 - 27•_•/2 + •i-3/2 
24 

provides a fourth-order approximation at the image X(•i), 
that is at 

3 Truncation error analysis 
We define the truncation error as the difference between 

the projection to a grid point of the derivative of a smooth 
function and the discrete difference approximation of the 
derivative using values of the smooth function projected to 
the grid points. The cell projection operator, p•, maps a 
smooth scalar function to discrete cell-valued functions: 

(1) (p• u)i+•/• = ui+•/• = u(•i+•/•). 
The nodal projection operator, P•, maps a smooth vector 
function to its values at the nodes 

(2) (Ph 71•)i = 7•i • •(•i). 

If • is a smooth vector function, then the truncation 
error of the discrete divergence •mv is the nodal function 

d• 

(3) ½mv• = Ph(•) - DIV (P• •). 

If u is a smooth scalar function, the truncation error of 
the discrete gradient •crt•D is 

(4) •GRAD TM = GRAD(p• u)- P•(d•). 
The approximations (17) and (18) are second order on uni- 
form grids, but the approximation to the gradient is only 
first order on nonuniform grids. One goal of this paper is 
to derive higher-order analogs of these discrete operators. 

The accuracy of the discrete divergence, gradient and 
Laplacian operators depend upon the smoothness of the 
grid transformation. In this section, we present results of 
the truncation errors analysis for DIV, GRAD and LAP 
(details can be found in [2]) on grids generated by an an- 
alytic transformation with different levels of differentiabil- 
ity, and on randomly generated grids. We describe the 
analytic grid transformation as C • when the first k deriva- 
tives of the map are continuous. (In our examples, the 
k + I derivative has a jump discontinuity). For our ran- 
dom grid examples, the identity map is perturbed by a 
random multiple of h •. 

If f is a C •-• function and the k-th derivative is 
bounded, then 

•-• f(J)(x) hJ F• h • 
(5) f(x 

j=0 

where F• is some average value of f(•). For a C ø mapping 
with bounded derivative, by Taylor series expansion about 
the point xi, we can express 

(6) 

where Ci• are bounded by the first derivative of X. 
For a C • mapping with bounded second derivative, we 

have 

= 
where Ci• are bounded by the second derivative of X. 

DIV and GRAD error analysis 
The truncation error for the fourth order operator DIV, 

operating on a smooth function •(x), is obtained by Tay- 
lor series about •i+1/2' The image of the midpoint in log- 
ical space plays a critical role in our analysis. Because, in 
general, the mapping is not known explicitly, it is impor- 
tant to accurately approximate this image in analyzing the 
truncation error of the fourth-order methods. We use the 

definition (21) for •i+1/2. 
For a C ø mapping •mv are order h. The same result 

is obtained for •a•D. For a C x mapping (7), •DIV is 
order h 3, but truncation error for GRAD is only order h 2. 
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Mapping GRAD DIV LAP 
C O 1 1 0 

C • 2 3 1 

C 2 3 4 2 

C 3 4 4 3 

C 4 4 4 4 

Table 1: Theoretical estimates for the order of approxi- 
mation of the fourth-order discrete operators, analyzed in 
section 3, as a function of the smoothness of the map. 

These results can be extended to non-smooth grids. We 
define the O(h k) random grid by 

(8) xi = • 4- h k Ri , 

where the Ri's are random numbers uniformly distributed 
in [-1/4, 1/4]. 

On order h random grids both •DIV, •GRAD are order 
h. For order h: random grid •DIV is third-order, but 
similar to case of C • mapping •GRAD is only second-order. 

The cases for higher-order smoothness of the analytical 
grid and high order random perturbation of the uniform 
grid. are handled similarly. and results are summarized in 
Table 1. 

LAP error analysis 
Because DIV = -GRAD*, the Laplacian, LAP = 

DIV GRAD, is symmetric and negative (but may not be 
negative definite). }Ve now estimate its truncation error 
in terms of the truncation errors for the divergence and 
gradient. 

For a uniform grid, the superposition of DIV and 
GRAD is 

(LAP U)•+•/2 = 
1 

576 h 2 (Ui+7/2 - 54 Ui+5/2 4- 783 Ui+3/2 
-1460 Ui+•/2 + 783 Ui_l/2 - 54 Ui-3/2 + Ui-5/2) ß 

On a nonuniform grid, the explicit formula for the high 
order LAP operator is extremely complex. In practice, 
e.g. when programming the operator on the computer, we 
define the Laplacian on nonuniform grids as a composition 
of the discrete DIV and GRAD operators. 

Combining (3) and (4), 

(9) QDIV GRAD tt = 
I)DIV (grad a) - DIV 

The truncation error of the first term on the right side 
of this equation is the same as for DIV, but the trunca- 
tion error for the second term is one order less than for the 

GRAD. Because this truncation error was estimated by 
using the estimates for the individual operators indepen- 
dently, there may be some undetected cancellation and the 
truncation error may be less_ than these estimates. How- 
ever, the numerical results for random grids confirm that 
the estimates are, in fact, optimal. Similar results can be 
obtained for the operator grad div and its approximation 
GRAD DIV. 

Although the truncation error for the Laplacian may 
reduce to O(1) on rough grids, the convergence rate for the 
solutions of elliptic boundary value problems and parabolic 
diffusion equations remains at least second order in all the 
numerical experiments we performed with the methods. 
This has been proved for similar methods in [11]. 

In summary, on the rough grids the truncation error 
for LAP is one order less than that of GRAD, and, for 
smooth enough grids (C •, C2), the truncation error for 
DIV is one order higher than the truncation error for 
GRAD, for very smooth grid (C 3 and higher) for both 
operator truncation error is fourth order. 

4 Discretizations in 2D 

4.1 The mapping method 

In 2D we also need to approximate the operators div 
and grad. The derivation of a discrete approximation of 
derivatives using the mapping method approach beans by 
assuming that there is a transformation 

(1) 
x = = ¾(6, 

between the physical region and a unit square in logical 
space. Given such a transformation and two positive inte- 
gers, M and N, set A• = 1/M and At/= 1/N. The points 
(xi,j, yi,j) given by 

:Ci,j : x(i A•, j At/), Yi,j = y(i A(, j 
0<i<M, O<j<N, 

form a grid on the physical region. 
The first and second derivatives of a function can be 

expressed directly as a function of the derivatives on a 
regular reference grid and the mesh metrics of the map 
from the physical (x, y) grid to the reference (•, r/) grid. 
Using this straight-forward definition we have 
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ix •lx 0 0 0 

•y T]y 0 0 0 

•xy Vxu •x•u •x% + • •% 
2 •YY •UY • 2• • 

where 
0 0 

If the derivatives of the map are not known explicitly, 
then they too must be expressed in terms of derivatives on 
the uniform reference grid. 

Using the Jacobian, J, of the map and its derivatives, 

and 

J = x•y v-xvy • , 

J• -- xs•y v + x•y•v - x•vy • - xvy• , 

J,• = x•vy v + x•yvv - xvvy • -- xvy•v , 

the mesh metrics can be expressed as derivatives on the 
(•, n) reference grid. 

(2) 

and 

-- yv/J, •y---xv/J, rlx--y•/J, 

= (-JcY• + JYv•. + J.Y•Y. - JY•Yv/J3 , 

- (J•x.y. - Jx•.y. - J.x.y• + Jx..y•)/J 3 , 

= (-Jcx• + Jx.x•. + J•x•x. - Jx•xn)/J 3 , 

- (J.x•y• - Jx•.y• - J•x•y. + Jx•yn/J 3 , 

= (-J.x• + Jx•x•. + Jcx•x. - Jx•x•xn/J • . 

The derivative approximations generated by this ap- 
proach can be combined to give accurate approximations 
for the GRAD, DIV and LAP on a smooth grid, but the 
resulting approximations, in addition to being extremely 

complicated, will not be mimetic. Instead, we again use 
a combination of the mapping method and the method of 
support-operators to generate high order mimetic finite dif- 
ference approximations for the GRAD and DIV. These 
can then be composed to approximate the Laplacian. 

The formulas for the operators DIV and GRAD still 
contain derivatives of transformation and JacobJan at dif- 

ferent points. If we know mapping analytically we can eval- 
uate derivatives explicitly. The grids may be generated nu- 
merically (see, for example, [10]), or obtained from another 
calculations, such as occurs in Lagrangian fluid dynamics. 
For these cases we know only the coordinates of nodes: 
xi,j ,Yi,j. That is values of the functions X(•,r/),Y(•,r/) 
at the nodes •i, •j. The derivatives of the transformation 
can be defined using finite-difference approximations of (2). 
These approximations should be at least the same order 
accuracy as the GRAD and DIV operators. 

4.2 The support-operators method 

For a discrete description of the vector field we will use 
Cartesian coordinates, •- (AX, AY). Therefore, differ- 
ential operator divergence is 

(3) aiv _• = OAX OAY + 
Because the operator div is in divergence form, its approx- 
imation is constructed on the basis of the conservative or 

symmetric form of the transformed derivatives (see, for 
example, [10] ), 

Ou 

and 

Therefore, for derivatives which form a divergence, we 
get 

OAX 

(4) Ox - {(AX Yv)• -(AX Y•)v} /J 
and 

OAY 

(5) •yy ={(AYx½)v-(AYxn)•}/J. 
Therefore, the problem of approximation of the operator 

div is reduced to approximation of the first derivatives of 
AX, AY and x, y with respect to logical variables •, V on 
a square grid. 

Because we want to find an approximation for the op- 
erator grad, which preserves adjointness to the operator 
div in the discrete case, we consider how the main inte- 
gral identity (5) works in the differential case. For the 
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first integral we have the following expression in terms of 
coordinates •, 

(6) /v u div •dV = 

To understand the expression for components GX = 
Ou/Ox and G1/ = •u/c9y of the vector gradu , obtained 
by using the integral identity, we write the following ex- 
pression for the second integral 

(v) ,(•., grad u) dV = 
f, (AX . Gx + A1/ . J av. 

Integrating by parts in (6) and comparing terms near AX 
and .4I / in the transformed (6) and (7) we can conclude 
that 

Ou 
__ ---- __ 

and 
Ou 

4.3 Difference approximations 

In the discrete case, to construct discrete analogs of div 
and grad xve use a combination of the mapping and the 
support-operators method. Using the mapping method we 
approximate the operator div based on the formulas (4), 
(5). \Ve then use the support-operators method and the 
integral identity to obtain the expression for the discrete 
grad. analogous to the formulas (8), (9). The approxi- 
mations of the derivatives for div and grad can not be 
chosen independently; the approximation for grad follows 
from the approximation for div and the integral identity. 
This procedure allows us to keep adjointness of discrete 
operators similar to the differential case. 

Therefore, the problem of constructing finite-difference 
operators DIV and GRAD in 2D is reduced to construc- 
tion of some set of one dimensional operators, which will be 
analogs of the derivative in • and r/directions, and projec- 
tion operators to project values of functions in one location 
to another (for example projections from the centers of the 
edges to center of the cell and so on). 

We also require that the finite-difference approximations 
on rectangular grids coincide with the one dimensional ap- 
proximations considered in the first part of this paper. 

AXial+l/2 

id+l 

ij 

A Yi+ I/2j+ I 

Ui+l/2d+l/2 

AY i+I/2j 

i+ld+l 

•L• i+ ld+ l/2 

i+ld 

Figure 1' The stencil for the discretizations. 

Spaces of discrete functions 
To describe vector 2{ = (AX, AY). we introduce the 

discrete spaces: space Hi,which we use for description of 
component AX of the vector •, is described by values on 
the middle of the edge (i, j)-(i, j + 1) in logical coordinates, 
that is, in point 

(•i, 0.5(•i.3 -{- V,j+l)) ß 

And space Hr•, which we use for description of component 
AY, is described by values in the middle of the edge (i, j) - 
(i + 1,j) in logical coordinates; That is, in point 

(•i, 0.5(7]i.j '•- /•iU+I) ) ß 

Therefore, discretization of the vector field is 

•= (AX, AY); AX • H•, AY • H•. 

For description of scalar functions we use space HC, 
xvhich is described by values of the scalar in the middle of 
the cell in logical coordinates. that is, in point 

(0,5 (•i + •i+1), 0'5("i,j + 

Therefore discretization of scalars is U • HC. Discretiza- 

tions for vector and scalar functions are shown on figure 
1. 

Such discretization will be consistent with one dimen- 

sional considerations, because space H• corresponds to a 
nodal discretization for the 1D (dependent only on x) c•e, 
and space HC corresponds to cell-centered discretization. 

Operators D• and D• 
To obtain fourth order approximations for div and grad 

on smooth grids we use one dimensional analogs of deriva- 
tives and projection operators. Again we need two analogs 
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of the first derivative O/Of: 

D• : H f --> HC, 

The expressions for these operators follow from one dimen- 
sional considerations: 

(Di A()i+l/2,j+l/2 -- 
{ -A•i+2.j+l/2 + 27 A(i+l,j+l/2 
-27A•i,i+•/2 + A•i-x.j+x/2} /(24h). 

(D•U)i.i+l/2 -- 
{-Ui+3/2.i+1/2 '-[- 27 Ui+l/2,j+l/2 
-27 U•_•/•4+•/2 + Ui_3/2,j+l/2 } / (24 /*/). 

Similarly, we introduce differentiation operators D• and 
D• 

D v'Hr•-•HC; D,•'HC•H•. 
XX• also define projection operators, 

with the same stencils as D• and D•. Formulas for the 
projection operators are similar to 1D formulas such (21). 

(• A•)i+l/2j+l/2 = 
{ -A•i+2,j+l/2 + 9 A•i+l,j+l/2 
+9 A•i.j+•/2 - A•i-•,j+•/2 }/16, 

The definitions for operators Pv and P• are similar. 
If we use sixth or higher order approximations of the one 

dimensional operators, then we obtain approximations of 
correspondent order for div and grad on smooth grids. It 
is important to note that the form of DIV and GRAD 
operators are the same. For example, the s•th order for- 
mula for the operator D5 can be obtained from Lagrange 
interpolation and has the following form: 

1 

(D• A•)i+l/2.3+l/2 : 1920 h' 
{ -9 A•,-2,j+l/2 + 125 A(i-l,j+l/2 - 2250 A(i,j+l/2+ 

If we know the transformation and its derivatives, then 
the operator div can be approximated by 

OAX[ • (Di AX)i+i/2,j+i/2 -- Ox Xi+l/2,j+l/2 
•i+1/2,j+1/2 

(10) 

(11) 

where 

and 

1 {[D• (AXyv)]i+l/2.j+•/2 - Ji+l/•,i+•/• 

[D v ((P•(P• AX)) Y•)]i+l/2,j+l/2} ' 

OAY] • (Dy AY)i+i/2.j+i/2 = Oy :•i+1/2,j+1/2 
tOi+ l /2,j + l /2 

1 

J/+•/2o+•/2 {[D, (AYx•)]i+•/2.j+•/2 
((Vi(V. AV) ) 

•7i+1/2.j+1/2 -- X (•i+1/2.j+1/2, r]i+l/2,j+l/2) 

•i+1/2,j+1/2: Y (•i+1/2.j+1/2' •i+1/2.j•-1/2) ß 

Stencil for AX and AY for fourth order DIV operator is 
shown in figure 2. 

Discrete operator GRAD 
To obtain the GRAD operator we use a discrete analog 

of the integral identity. The first integral can be approxi- 
mated as follows 

(12) /v udiv.,•dV • 
•Ui+l/2,j+l/2 {{[D• (nxjJ•l)]i+l/2,j+l/2- 
i,j 

[D, (P;(P• AX) y•)]i+l/2,i+•/2 } + 

[D• (P;(PvAY) x,)]i+•/2,j+,/2}} h 2 
Because we are trying to approffimate the Cartesian com- 
ponents of the operator grad, the approximation for the 

-2250 A•i+l,j+l/2 - 125 A(i+2,j+l/2 '+' 9A•i+3,j+l/2} ß second integral can be written as 

This is convenient for programming, because if one decides 
to change from a scheme of one order to another, one only 
need change the formulas for one-dimensional operators. 

Discrete operator DIV 

(13) v (.•, grad u) dV • 
E 0.5 (AXi,j+•/2 GXi,j+•/2+ 
i,j 
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- AX /J o - Ar 
Figure 2: The stencil for AX and AY in the fourth order 
DIV. 

AXi+l.j+l/2 GXi+l,j+l/2 q- 
AXi+I/2.j GXi+l/2.j q- 

AXi+i/2.j+i GXi+l/2.j+l) VCi+l/2.j+l/2 , 
where VC•+l/2.j4-1/2 is the volume of the cell. 

A more general formula follows from the fact that 

/•(X, grad u)dV =/v (AX GX + AY GY) dV 
and the chosen type of discretization where AX relates to 
sides (i.j) - (i,j + 1); and AY relates to sides (i,j)- (i + 
•.j). 

The general formula is 

(14) fv(•7, gradu)dV • 
Y•AX,,3+I/2 GXi,j+l/2 VXid+I/2 + 

E AYi+i/2.j CXi+l/2,j VYi+i/2,j 

where 

Z VXi,j+l/2 -- V, y• VYi+i/2,j -- V. 
i,j i,j 

Formula (13) follows from the general formula if we choose 

VCi+i/2,j+i/2 q- VCi-1/2,j+i/2 
VXi'j+l/2 -" 2 

ß ,<>, ß 

Figure 3: The stencil for the GX component of the fourth 
order GRAD. 

and 

VXi+l/2. j •--- 
VCi+i/2.j+I/2 q- VCi+1/2.3-1/2 

If we know the transformation X((, r/), Y((, r/) explicitly. 
we can use the following formulas' 

VXi,j+l/2 : Ji,j+l/2 h2 
VYi+l/2,j = Ji+l/2.j h2. 

For the last choice of VX, VY we get 

(•5) 

GXi,j+l/2 = 

1 { [D•U] i,j+l/2 Yv Ji,j+l/2 

GY/+•/2,j = 

Ji+l/2,j i+l/2,j 

The stencil for GX is shown in figure 3. The stencil for 
G¾ is similar, we just need to turn the previous stencil 90 
degrees. 
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5 Numerical experiments 

We first verify the order of the truncation error estimates 
bv numerical experiments on the grids described in the 
previous section. We then solve the time-dependent heat 
equation to determine the convergence rate of the fourth- 
order spatial discretization, combined with a high-order 
time discretization. 

We show that the convergence rate for the maximum and 
mean-square norms are the same. We also confirm that the 
second-order method has a second-order convergence rate 
for all grids and that the fourth-order method has at least 
a second-order convergence for all grids. However, as the 
smoothness of the grid increases, so does the order of con- 
vergence for the fourth-order method. We finally demon- 
strate that on smooth nonuniform grids the fourth-order 
method is computationally more efficient that the second- 
order method for a prescribed accuracy. Furthermore the 
fourth-order method gives more accurate results when both 
use the same computational effort, even on rough grids. 

5.1 Numerical investigation of truncation 
errors 

The first examples are based on the analytic map 

(1) 

where 

0_<•_<r, -- 

d' 

•+• j! 
j=l 

, rg•51, 

k 

a = + - j• 
j=l 

is introduced for normalizing the mapping. The number 
of terms in the sum, k, is a parameter. This function 
produces a family of mappings with varying smoothness 
at the • = r. The C O grid is defined by setting bi = 1 for 
1 < i < k. The C 'x mapping is defined by settingbx =0 
and bi = 1 for i > 1. Smoother mappings are defined 
similarly. 

Next we construct rough grids using random perturba- 
tions of a uniform grid. We define the O(h •) grid by 

xi = •i + h k 

where the R,'s are random numbers uniformly distributed 
in [-1/4, 1/4]. 

The asymptotic truncation error Ea on a grid of M 
nodes, h = 1/(M - 1), is estimated by 

+ 

where q is the order of the error, and the constant c, the 
convergence-rate constant, is independent of .•¾I. 

In the numerical examples the truncation errors were 
evaluated on a sequence of grids h = 2 -• and the conver- 
gence rates estimated from the ratio between the norms of 
the errors (2) and 

hq 

(3) En/• = c • + O(hq+X) . 
The order of convergence q can be estimated as follows 

Ea 

(4) q • 1øg2 Eh/2 
The convergence rates were estimated using both the 

maximum norm 

M 

i=1 • 

and the mean-square norm 

- , 
$ i=1 

where Ui+x/• is the solution of the finite-difference scheme 
and u(x) is the exact solution. 

The truncation errors were computed by applying the 
discrete operators to a number of test functions includ- 
ing the sine, cosine, exponential, and polynomials for 
6 • r • 9. All of the convergence estimates agree with 
our theoretical analysis for grids generated using transfor- 
mations and for random grids. 

2D truncation error analysis. 
The truncation error was numerically investigated for 

the test function 

sin(2 •r x) sin(2 = •) 

with periodic boundary conditions on the unit square and 
the smooth periodic grid 

X(•, r/) = • + s sin(2 •' •) sin(2 •' q) 

¾(•, V) = V + s sin(2 • •) sin(2 • 

The grid for parameter s = 0.1 is shown in figure 4. 
The numerical investigations of the truncation error for 

these smooth grids confirm the theoretical expectation of 
a fourth order truncation error. 

We also investigated the truncation error on a non- 
smooth the random grid 

agi,j = •i,j q- l•,j )• ( h•) k 
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1 , ,, , 

08 

06 

0,4 

02 

o 
o 02 0,4 0,6 08 

Figure 4: Smooth grid in unit square. 

06 

04 

O2 

0 
0 0.2 04 06 08 1 

Figure 5: Random grid in unit square. 

y•,j -- rli,j + R7 , ,• (Arl) k 

where A• = 1/(3//- 1), At/= 1/(N - 1) are the steps in 
the logical grid, R -• ., R?. E (-0.5, 0.5) are random num- z.$ t, 3 

bets, k is the analog of smoothness of the grid, and A the 
parameter which determined the relative size of the per- 
turbations of the uniform grid. In figure 5 we present such 
a grid for k = 1 and A = 0.8. 

The numerical truncation errors for these rough random 
grids were different from ti•e one dimensional results in ta- 
ble 1 We found no direct dependence between the order of 
perturbation and the order of the truncation error as we 
found for the one dimensional case. This implies that in 
2D the order of the random perturbation is insu•cient to 
estimate the quality of the grid. But when the perturba- 

tion is O(h 3) or O(h4), the results coincide with the one 
dimensional case. 

5.2 Convergence rates for the heat equa- 
tion 

The time-dependent one-dimensional heat equation, 

Ou 02u 

(5) 0--•=divgradu= Ox2 , O < x < 2 •r , 
with periodic boundary conditions and the exact solution 

(6) u(x, t) ---- e-' sin(x), 

was solved to determine how the accuracy depends upon 
the smoothness of the grid. Five grids, each with M points 
were used; a uniform grid; a smooth periodic grid, 

(7) xi = 2•-(i- 1)h +0.2 sin(2 •' (i- 1)h). 

i = 1,.. 

and three random perturbations of the uniform grid, 

xl = 0, 

xi-27r(i-1)h+Ri2•rh s, i=2,...,M-1, 
XM = 2•r 

where the Ri; i - 2,..., 3//- 1 are random numbers, Ri G 
(--1/4, 1/4), and s = 3,2,1. 

The spatial derivatives were approximated by the 
second-order and fourth-order approximations constructed 
in this paper. The equations were integrated in time 
by a variable-order, variable-time step Adams-Bashforth- 
Moulton method to time accuracy of 10 -9, so that the 
errors related to time-integration are negligible. 

The accuracy of the solutions at t - I are displayed in 
Tables 2 and 3. The type of the grid is in the first column; 
the number of grid points, M, is in the second column; 
the next two columns give the maximum and mean-square 
error norms; and the estimated orders of convergence are in 
the next two columns. Note that the order of convergence 
for the maximum and mean-square norms are the same. 

The second-order method has a second-order conver- 

gence rate for all grids and the fourth-order method has at 
least a second-order convergence for all grids. However, as 
the smoothness of the grid increases, so does the order of 
convergence for the fourth-order method. 

We also conducted numerical experiments for the 2D 
heat equation on the presented grids with exact solution 

u(x, t) = e -s•r2 t sin(2 •-x) sin(2 •'y). 
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Type M max L2-norm qmax q2 
of grid norm 

Uniform 17 4.17E-03 7.43E-03 1.90 1.91 

grid 33 1.11E-03 1.96E-03 1.95 1.96 
65 2.86E-04 5.06E-04 - - 

Smooth 17 4.78E-03 8.06E-03 1.90 1.92 

grid 33 1.28E-03 2.12E-03 1.95 1.94 
65 3.29E-04 5.51E-04 - 

Random 17 4.61E-03 7.45E-03 2.02 1.91 

grid 33 1.13E-03 1.96E-03 1.97 1.96 
O(h 3) 65 2.87E-04 5.06E-04 - 

Random 17 5.73E-03 7.83E-03 2.14 1.97 

grid 33 1.30E-03 1.99E-03 2.10 1.97 
O(h 2) 65 3.03E-04 5.08E-04 - 

Random 17 9.36E-03 1.02E-02 1.96 1.91 

grid O(h) 33 2.40E-03 2.71E-03 2.38 2.23 
65 4.61E-04 5.75E-04 - 

Table 2: Convergence Analysis for Second-Order Scheme. 
The convergence rates using the maximum, q,•ax, and L2 
norm. q2 are computed on the series of grids with M -- 
17.33, and 65 points. 

Type I M max L2-norm qmax q2 
of grid norm 

Uniform 17 6.31E-05 1.12E-04 3.80 3.80 

gird 33 4.52E-06 8.02E-06 3.90 3.91 
65 3.01E-07 5.32E-07 - - 

Smooth 17 1.53E-04 2.24E-04 3.75 3.79 

grid 33 1.13E-05 1.62E-05 3.88 3.91 
65 7.66E-07 1.07E-06 - - 

Random 17 5.26E-04 5.04E-04 3.91 3.81 

grid 33 3.49E-05 3.59E-05 4.32 4.31 
O(h 3) 65 1.74E-06 1.80E-06 - - 

Random 17 1.41E-03 1.14E-03 3.04 2.64 

grid 33 1.71E-04 1.83E-04 3.40 3.36 
0(52 ) 65 1.61E-05 1.77E-05 - - 

Random 17 4.46E-03 4.02E-03 2.04 1.87 

grid 33 1.08E-03 1.09E-03 2.73 2.47 
O(h) 65 1.62E-04 1.96E-04 - - 

Table 3: Convergence Analysis for Fourth-Order Scheme. 
The convergence rates using the maximum, qmax, and L2 
norm, q2 are computed on the series of grids with M -- 
17,33, and 65 points. 

The numerical results show dependence of the error in 
2D on the quality of the grid similar to 1D case. That is 
for smooth grids we have a fourth order convergence rate, 
and for random grids the convergence rate decreases from 
4 to 2 when we decrease the "smoothness" of the random 

grid o s, from four to one. It is important to note, that the 
worst convergence rate we encountered was O(h2), even 
then truncation error is O(1). This fact is closely related 
to the nature of the heat equation and can be explained 
from a theoretical point of view similar to that in [11]. 

5.3 Efficiency of the second- and fourth- 
order methods 

When using these approximations to solve systems of par- 
tial differential equations, often the cost of applying the 
discrete operator is small compared with the cost of eval- 
uating the function that is to be operated on. For exam- 
ple, in a fluid dynamics calculation where the equation- 
of-state is evaluated by a table lookup, it may cost up to 
thirty arithmetic operations to evaluate the pressure at 
a mesh point. The five extra arithmetic operators for the 
fourth-order method compared to the second-order method 
is small compared to the large gain in accuracy. The real 
gain comes from requiring fewer mesh points in a calcula- 
tion that has the same accuracy. 

Also, when solving time dependent equations with ex- 
plicit method, the stability restriction for the time step is 
a function of the mesh spacing. For the heat equation, the 
stability bound depends approximately upon 1/min(Ax) 2 
Thus, if the time step is limited by the stability• rather than 
accuracy, the fewer mesh points required by the fourth- 
order method allows much larger time steps for the same 
accuracy. 

The fourth-order approximation of the Laplacian re- 
quires 2.6 times as many arithmetic operations as the 
second-order approximation (13 arithmetic operations for 
fourth-order versus 5 for the second-order method). We 
compared the two methods in solving the previous exam- 
ple by using M - 16 cells for the fourth-order method and 
2.6 M - 42 cells for the second-order method. The results 

in Table 4 for the max and L2 norm errors demonstrate 
that the fourth-order method is significantly more accu- 
rate than the second-order method on smooth grids. On 
rough grids, the fourth-order method is only slightly worse, 
even with far fewer mesh points. These results agree with 
similar comparisons of finite difference and finite volume 
methods on nonuniform grids [9]. 

From this example, we conclude that for grids with vary- 
ing degrees of smoothness, the fourth-order method is gen- 
erally more efficient than the second-order method. 
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Type of grid M Order max-norm L2-norm 
Uniform 42 2 6.54E-4 1.15E-3 

16 4 6.31E-5 1.12E-4 

Smooth 42 2 7.54E-4 1.05E-3 
16 4 1.53E-4 2.24E-4 

Random grid 42 2 6.54E-4 1.15E-3 
O(h 4) 16 4 2.28E-4 2.12E-4 

Random grid 42 2 6.57E-4 1.15E-3 
O(h 3) 16 4 5.26E-4 5.04E-4 

Random grid 42 2 7.41E-4 1.16E-3 
O(h •) 16 4 1.41'E-3 1.14E-3 

Random grid 42 2 1.43E-3 1.53E-3 
O(h) 16 4 4.46E-3 4.02E-3 

Table 4: Comparison of accuracy of second- and fourth 
-order methods for the 1D heat equation. 

6 Conclusions 

We combined the support-operators method with map- 
ping, to derive new mimetic fourth-order accurate dis- 
cretizations of the divergence, gradient, and Laplacian on 
nonuniform grids. The discrete divergence is the negative 
of the adjoint of the discrete gradient and consequently the 
Laplacian is symmetric and negative. We verified our ana- 
lytical estimates of the truncation errors by computational 
experiments on both smooth and rough grids. The meth- 
ods displayed fourth-order truncation errors on smooth 
grids. and this accuracy degraded gradually as the smooth- 
ness of the grid degenerated. 

A numerical investigation of the order of convergence for 
the heat equation verified that the fourth-order method 
converges to at least second-order in even the roughest 
grids, and the order of convergence increases from 2 to 4 as 
the smoothness of the grid increases. Moreover, the fourth- 
order method was significantly more accurate than the 
second-order method when both methods used the same 

computational effort. 

Acknowledgments 

•Ve thank Blair Swartz for many helpful and simulating 
discussions. 

This work performed under the auspices of the US De- 
partment of Energy under contract W-7405-ENG-36 and 
the DOE/BES Program in the Applied Mathematical Sci- 
ences contract KC-07-01-01. 

References 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

J.E. Castillo and M.J. Shashkov, Grid Generation 
Methods Consistent with Finite-Difference Schemes, 
LA-UR-93-2932, Los Alamos National Laboratory, 
Los Alamos, NM, 1993. 

J.E.Castillo, J.M.Hyman, M.J.Shashkov and 
S.Steinberg, The Sensitivity and Accuracy of Fourth 
Order Finite-Difference Schemes on Nonuniform 
Grids in One Dimension, Computers Math. Applic., 
Vol. 30, No. 8, pp. 41-55, 1995. 

J.C. Ferreri and M.A. Ventura, On the Accuracy of 
Boundary Fitted Finite-Difference Calculations, In- 
ternational Journal for Numerical Methods in Fluids, 
4 (1984), a59-375. 

B.Fornberg and D.M.Sloan, A Review of Pseudo- 
spectral Methods for Solving Partial Differential 
Equations, Acta Numerica, Cambridge University 
Press, (1994), pp.203-263. 

R.G. Hindman, Generalized Coordinate Forms of 
Governing Fluid Equations and Associated Geomet- 
rically Induced Errors, AIAA J., 20 (1982), 1359. 

J.D. Hoffman, Relationship Between the Truncation 
Errors of Centered Finite-Difference Approximations 
on Uniform and Nonuniform Meshes, J. Cornput. 
Phys., 46 (1982), 469-474. 

J.M. Hyman and B. Larrouturou, B. The Numerical 
Differentiation of Discrete Functions Using Polyno- 
mial Interpolation Methods, Appl. Math. and Comp., 
10-11 (1982), 487-506. 

J.M. Hyman, Accurate Monotonicity Preserving Cu- 
bic Interpolation SIAM J. Sci. Star. Comput., 4 
(1983), 645-654. 

J.M. Hyman, R.J. Knapp and J.C. Scovel, High Or- 
der Finite Volume Approximation of Differential Op- 
erators on Nonuniform Grids, Physica D, 60 (1992), 
112-138. 

[10] 

[11] 

[12] 

P. Knupp, and S. Steinberg, Fundamentals of Grid 
Generation CRC Press, Boca Raton, 1993. 

H.-O. Kreiss, T.Manteuffel, B.Swartz, B.Wendroff 
and A.White, Supra-Convergent Schemes on Irreg- 
ular Grids, Math. Comput. 47, (1986), pp.537-554. 

D. Lee and Y.M. Tsuei, A Formulae for Estima- 
tion of Truncation Error of Convection Terms in a 



High-Order Mimetic Finite Difference Methods 361 

[13] 

[14] 

[15] 

[16! 

C17] 

[18] 

[19] 

[2oi 

[21! 

Curvilinear Coordinate System, J. Cornput. Phys., 
98 (1992), 90-100. 

S.K.Lele, Compact Finite Difference Schemes with 
Spectral-like resolution, J. Cornput. Phys., (1992), 
103, pp.16-42. 

R.W. MacCormac and A.J. Paullay, The Influence 
of the Computational Mesh on Accuracy for Initial 
l/blue Problems with Discontinuous or Non-Unique 
Solutions, Computers & Fluids, 2 (1974), 339-361. 

C.•V. Mastin, Error Analysis and Difference Equa- 
tions on Curvilinear Coordinate Systems, Large 
Scale Scientific Computation, Proceeding of a Con- 
ference Conducted by the Mathematical Research 
Center. The University of Wisconsin-Madison, May 
17-19. 1983, Edited by S.V.Parter, Academic Press, 
Inc.. 1984, pp. 195-214. 

C.W. Mastin and J.F. Thompson, Errors in Finite- 
Difference Computations on Curvilinear Coordinate 
Systems. Mississippi State University, Engineering & 
Industrial Research Station, MSSU-EIRS-ASE-80-4, 
1980. 

E.K. de Rivas, On the Use of Nonuniform Grids 
in Finite-Difference Equations. Journal of Compu- 
tational Physics. 10 (1972), 202-210. 

A.A. Samarskii. V.F. Tishkin, A.P. Favorskii, 
and M.Sh•. Shashkov, Operational Finite-Difference 
Schemes. Diff. Eqns., 17 (1981), 863-885. 

M. Shashkov and S. Steinberg, Support-Operator 
Finite-Difference Algorithms for General Elliptic 
Problems, J. Cornput. Phys., 118, 131-151, (1995). 

J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin, 
Numerical Grid Generation: Foundations and Ap- 
plications. North-Holland, Elsevier, New York, 1985. 

H.H. XVong and G.D. Raithby, Improved Finite- 
Difference Methods Based on a Critical Evaluation of 
the Approximation Errors, Numerical Heat Transfer, 
2 (1979),pp. 139-163. 



362 ICOSAHOM 95 


