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Abstract 

A high-accuracy finite-difference scheme is used to solve 
the two-dimensional time-domain Maxwell equations gov- 
erning the propagation and scattering of electromagnetic 
waves. The scheme uses a seven-point spatial opera- 
tor with an explicit six-stage time-marching method of 
Runge-Kutta type. Boundary formulations are given for 
perfect conductors and interfaces between dielectric me- 
dia with differing permittivities. Numerical experiments 
are performed for pulsed plane waves incident on a di- 
electric square and a perfectly-conducting cylinder using 
Cartesian and curvilinear grids, respectively. The results 
demonstrate the general usefulness of the high-accuracy 
scheme and its superior efficiency relative to a second-order 
scheme. 
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Introduction 

One of the more promising areas of application of high- 
order finite-difference methods is in the numerical simu- 

lation of wave phenomena, which has recently become an 
area of considerable interest. Future prospects in computa- 
tional electromagnetics and aeroacoustics are discussed in 
Refs. [9] and [7], respectively. Numerous researchers have 
demonstrated the inadequacy of low-order finite-difference 
methods for accurate simulation of long-range wave prop- 
agation with reasonable grid densities. Consequently, sev- 
eral high-accuracy finite-difference schemes have recently 
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been developed specifically for simulating wave phenomena 
[2, 3, 6, 8, 10, 13, 14]. In general, these new schemes are 
analysed in a one-dimensional context or in two dimensions 
on square grids. However, in most practical problems of 
interest involving waves, scattering phenomena are impor- 
tant. The geometry of the scattering object can be com- 
plex. Consequently, the numerical formulation of bound- 
ary and interface conditions for complex geometries is an 
important aspect of high-accuracy schemes for simulating 
wave phenomena. 

There are three basic approaches for applying a finite- 
difference or similar method to complex geometries: Carte- 
sian (or rectilinear) grids, curvilinear grids, and unstruc- 
tured grids. Cartesian grids have several advantages. 
Finite-difference schemes are typically most accurate on a 
regular grid. Furthermore, generation of Cartesian grids is 
relatively straightforward. In contrast, generation of curvi- 
linear grids can require considerable effort. For complex 
geometries, multiple curvilinear grids are usually required, 
either patched together or overlapping. The major ad- 
vantage of curvilinear grids is in the treatment of bound- 
aries and interfaces, which normally lie along grid lines. 
Cartesian grids require complicated boundary treatments, 
especially if high-order accuracy is to be maintained. Un- 
structured grids, which are normally associated with finite- 
element methods, are often less expensive to generate than 
curvilinear grids. However, higher-order accuracy can be 
difficult to obtain. The finite-difference methods presented 
in Refs. [2, 3, 6, 8, 10, 13, 14] cannot be used with unstruc- 
tured grids. 

Based on Fourier error analysis, the finite-difference 
scheme presented in Refs. [13] and [14] is among the most 
promising for simulating linear wave phenomena [15]. It 
is intended for simulations in which high accuracy is re- 
quired for waves being propagated over relatively large 
distances. The scheme produces dissipative and dispersive 
errors which are of roughly equal magnitude. Accurate 
results can be obtained for waves propagating over five 
hundred wavelengths with less than seventeen grid points 
per wavelength. This result, obtained using Fourier error 
analysis, applies to wave propagation on uniform Cartesian 
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grids without reflection or other scattering phenomena. 
There has been little research on the impact of nonuniform 
and curvilinear grids on the accuracy of such methods. 

In this paper, the high-accuracy finite-difference scheme 
presented in Refs. [13] and [14] is applied to two problems 
involving the propagation and scattering of electromag- 
netic waves. The first involves a pulsed plane wave inci- 
dent on a dielectric square, the second involves a pulsed 
plane wave incident on a perfectly conducting cylinder. 
The dielectric square permits the straightforward applica- 
tion of a Cartesian grid while a curvilinear grid is used 
for the cylinder. The objectives of the present work are 
1) to demonstrate the usefulness of the present bound- 
ary formulations for perfect conductors and interfaces be- 
tween dielectric media with different permittivities, and 
2) to compare the efficiency of the high-accuracy finite- 
difference scheme with that of lower-order schemes for 

problems involving scattering and curvilinear grids. Al- 
though the emphasis here is on electromagnetic waves, the 
finite-difference scheme, the boundary formulations, and 
the conclusions are equally applicable to acoustic and elas- 
tic waves. The paper is organized in the following man- 
ner. First. the Maxwell equations are given. Next, the 
finite-difference scheme is presented, including the spatial 
operator and the time-marching method. The interface 
formulations are then described. Finally, numerical results 
for the two test problems are presented and some conclu- 
sions are drawn. 

2 Governing equations 

The Maxwell equations governing electromagnetic waves 
are: 

(1) %7. D = p 

(2) V.B : 0 
0B 

(3) VxE = 
ot 

OD 

(4) 
where E and H are the electric and magnetic field intensi- 
ties, D and B are the electric and magnetic flux densities, 
J is the current density and p is the charge density. The 
constitutive relations are: 

(5) D = eE 
(6) B = /•H 

where e is the electric permittivity and/• is the magnetic 
permeability. We restrict our attention to linear isotropic 

homogeneous non-conducting media with no charge den- 
sity (p = 0). Under these conditions, e and/• are positive 
real scalar constants and J = 0. We consider a nondimen- 

sional form of the equations such that e = /• = i in free 
space. Furthermore, we assume that the initial conditions 
and any incoming waves satisfy the divergence relations. 
Hence these relations need not be enforced numerically. 

In two dimensions, the Maxwell equations can be de- 
coupled into two sets of equations, the transverse mag- 
netic (TM) set involving the z component of the electric 
field and the x and y components of the magnetic field, 
and the transverse electric (TE) set involving the x and 
y components of the electric field and the z component of 
the magnetic field. Without any loss of physics, we will 
consider only the TM formulation. which can be written 
as 

oq - oq (7) 0'•- + A + 1•10y 
where 

Dz 

= 0 

o o 
o o o 

-1/e o o 

o o 
g -- o o , 

0 0 0 

and Dz, B•, and By are Cartesian components of D and 
B, respectively. The above equation assumes constant ma- 
terial properties. If the material properties are spatially 
varying, then source terms are introduced. 

In order to apply a finite-difference method, the domain 
must be discretized using a grid. With a rectilinear grid, 
the above equations can be discretized directly. With a 
curvilinear grid, the equations are transformed into a recti- 
linear computational space. The Cartesian coordinates are 
mapped to curvilinear coordinates •(x, y), r/(x, y) such that 
the resulting grid is uniform and square with A• = At/= 1. 
In general, the mapping is defined by assigning integer 
curvilinear coordinate values to each grid node, although 
an analytical mapping can be used for some geometries. 
The transformed equation is 

aq ~ofoq avaq 

- o½ aQ on OQ 
oy on 
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The metrics of the transformation can be found numeri- with 

cally if no analytical mapping is available. For details see, 
for example, aef. [1]. Equation 8 can be rewritten in the (15) 
following form: 

oq • •_• oq (9) O•- + A + I• Or/ 
where 

(lO) 

and 

(11) = 

= o 

• Oy i• Ox 
k• o o 
•' •a '• 'v 0 0 e Ox 

3 Numerical method 

Our objective is to solve for the total electric and magnetic 
field intensities within dielectric media for arbitrary waves 
entering the computational domain. The high-accuracy 
finite-difference scheme of Refs. [13] and [14] consists of a 
seven-point spatial operator together with an explicit six- 
stage time-marching method of Runge-Kutta type. The 
spatial operator is divided into an antisymmetric compo- 
nent. i.e., a centered difference operator, and a symmetric 
component. which provides a small amount of dissipation. 
The symmetric component is added to provide stability 
and to damp spurious high wavenumber components of 
the solution. A detailed analysis of the method, including 
stability and error analysis is given in Refs. [13] and [14]. 

On a uniform grid with xj = jAx, the antisymmetric 
component of the spatial operator is 

1 

(12) •-(Zl (•j+l -- •j--1)] 

where at = 3/4, a2 = -3/20, aa = 1/60, and u• = u(x•). 
The symmetric component is 

1 

= [d0 + + + 
(la) +dt (%+• + u•._•) + dour] 

where do = 1/10, d• = -3do/4, d2 = 3do/10, and 
d3 = -d0/20. The complete operator, which is fifth-order 
accurate, is applied as follows: 

I•I:XIAI x-• 

where X is the matrix of right eigenvectors and A the 
matrix of eigenvalues of .•.. The y-derivative operator uses 
the matrix [l•l[, which is formed in an analogous manner. 
When curvilinear coordinates are used, the matrices [,&[ 
and II•l[ are used. 

When applied to an ordinary differential equation 
(ODE) of the form 

du 

dt = f(u,t) 
the time-marching method is given by the following: 

(16) 

u (•) 

u (2) nq._oz 2 = U n -+- ha2f (•) n+al 

t•(3) . 

(4) . ;(a) 

u(S) 

(s) 
u.+• = u. + h f•+•, 

where h = At is the time step, t• = nh, u• = u(t•), and 

f(k) , (k) ah) n+• = f t• + 

With a• = 1/6, a2 = 1/5, aa = 1/4, a4 = 1/3, and 
as = 1/2, the method is sixth-order accurate for linear 
homogeneous ODE's and second-order otherwise. When 
applied to wave propagation problems together with the 
spatial operator given above, this method is generally 
somewhat more accurate than the classical fourth-order 

Runge-Kutta method for a given computational effort, de- 
spite its lower formal order. Furthermore, this method 
requires only two memory locations per dependent vari- 
able while the fourth-order Runge-Kutta method requires 
three. Thus this six-stage method combines excellent accu- 
racy with low memory requirements. Its stability contour 
(shown in Ref. [14]) is adequate for the nonstiff problems 
of interest here. 

4 Interface and boundary treat- 
ment 

Our approach is to treat dielectric media with differ- 
ent constitutive properties as distinct subdomains coupled 
through appropriate interface conditions. Therefore, we 
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consider three distinct boundary types, an interface be- 
tween different dielectrics, a boundary at the surface of 
a perfect conductor, and an artificial outer boundary re- 
sulting from the need for a finite domain. In each case, a 
locally one-dimensional characteristic formulation is used 

[41 . The system of equations is decomposed into character- 
istic variables representing incoming and outgoing waves 
along a direction normal to the interface or boundary. For 
example, for a constant-x boundary at the right side of a 
subdomain, the incoming waves are associated with k- 
and the outgoing waves are associated with •+, where the 
matrices .•+ are given by 

A + - 
2 

Similar expressions are obtained at constant-y boundaries 
and in curvilinear coordinates. In the latter case, the ma- 
trices ,i+ and l•l + are formed. Upwind difference oper- 
ators are then applied. The terms representing outgoing 
waves are differenced using conventional sixth-order one- 
sided and biased operators. For the incoming waves, the 
following fifth-order operators are used: 

1 

60Ax [-3u0 - 119ul + 255u2 - 240u3 
q-155u4 -- 57u5 q- 9u6] 

(19) 

1 

60Ax [9u0 - 66u• + 70u2 - 60u3 
q-75u4 -- 34u5 + 6u6] 

Note that these numerical boundary schemes are different 
from those given in Refs. [13] and [14], which proved to be 
unstable on some curvilinear grids. 

4.1 Dielectric interfaces 

At the interface between two isotropic dielectric media, the 
following conditions must be satisfied: 

(20) Etl = Et2 

(22) Dn• = Dn2 

(23) B• = B• 

where the subscripts 1 and 2 distinguish the two media 
(note that the field intensities and flux densities can be 
double-valued on the boundary), and the subscripts t and 
n designate the components tangential and normal to the 
interface, respectively. In the TM case, E and D point 

out of the plane and thus the third condition is satisfied 
automatically and the first condition simplifies to 

(24) 

The procedure used to enforce these interface conditions 
will be described for an interface lying on a line of constant 
• with the positive • direction pointing from medium 1 to 
medium 2. Generalization to other cases and to Cartesian 

grids is straightforward. The curvilinear grids are con- 
structed such that the interfaces always lie along grid lines. 
Furthermore, the grid lines are orthogonal at boundaries 
and interfaces. The characteristic variables associated with 

outgoing waves are extrapolated from the interior of each 
subdomain on either side of the interface. These are cou- 

pled with the interface conditions to determine the field 
values on either side of the interface which are used as 

boundary conditions in the respective subdomains. This 
procedure permits the grid in each subdomain to be gen- 
erated independently. This is an important consideration 
since the grid resolution requirements are dependent on 
the material properties. 

In order to apply the interface conditions, we require 
Dzl, Dz2, Btl, Bt2, Bnl and B•2, where 

a: - 
Ox 

and 

(26) B.= 
oø--• Bx + •Bu y 

Fø_X + a-i • 
Oy Ox 

The normal component of the magnetic flux density at the 
interface, which is single-valued according to equation 23, 
is determined using sixth-order interpolation. Thus we re- 
quire four equations in order to determine D,•, D,2, Btl, 
and Bt2. Two equations are provided by sixth-order ex- 
trapolation of the characteristic variables associated with 
waves leaving each medium. Hence we extrapolate the fol- 
lowing quantity from medium 1 to the interface: 

(27) w• + = 

where r•z = v/-•. The following quantity is extrapolated 
from medium 2: 

(28) wf: rli2Dz2 -- Bt2 

Note that the quantities extrapolated depend on the orien- 
tation of the local (•, r/) coordinate system at the interface. 
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The remaining two equations are provided by the interface 
conditions. which for this case are written as follows: 

(29) e2Dz• - etDz2 = 0 

(30) lt2Btl - lzlBt2 -- 0 

These four equations can be solved for D:•, Dz2, Btl. and 
Bt2. The Cartesian components of the magnetic flux den- 
sitv ('an then be calculated from the normal and tangential 
colnponelltS. 

4.2 Perfect conductors 

At the surface of a perfect conductor, the component of the 
electric field tangential to the boundary and the compo- 
nent of the magnetic flux density normal to the boundary 
must be zero. For the TM case. this gives 

(31) 

We also require St at the boundary. This is determined by 
sixth-order extrapolation of the appropriate characteristic 
variable frown the dielectric medium to the boundary. For 
example. if the perfectly-conducting surface lies along a 
grid line of constant •. with ( increasing as the boundary 
is approached. then w •- is extrapolated and, since D- = 0. 

, 

(32) Bt = 

on the bonndarv. where St and w + are defined in equations 
25 and 27. respectively. The Cartesian components of the 
magnetic flux densits- are then determined using the fact 
that B,, = O. 

4.3 Artificial boundaries 

The outer boundaries are handled using locally one- 
dimensional characteristic boundary conditions. As it is 
well known that this approach leads to significant spurious 
reflection. other methods are being examined. However, 
for the results shown below, the spurious reflections do not 
affect the solutions. The incident field is specified outside 
the computational donmin. Therefore, the terms repre- 
senting incoming waves are known outside the domain and 
the numerical boundary schemes given in equations 18 and 
19 are not required at such boundaries. 

5 Results and discussion 

5.1 Dielectric square 

We first consider the problem of electronmgnetic scattering 
from a dielectric square. As shown in Figure 1, the domain 

I I 
0.4 0.6 1.0 

Figure 1' Sketch of dielectric square. 

extends over 0 _< x _< 1, 0 _</1 _< 1 with the square locateel 
at 0.4 _< x _< 0.6, 0.4 _< // _< 0.6. The pernfittivity of the 
square is four times that of free space. With this geom- 
etry. the interface conditions are applied along grid lines 
even with a Cartesian grid. The corner singularities are 
treated by an averaging operator. Results are presented 
for a Gaussian pulse approaching the dielectric square at 
45 degrees. The incident electric field is given by 

] [ -1 (•cos + ysin + 1/2 -- t) 2 Ez(x.y.t) =exp [2a2 • 7 • 
with a = 0.05. In all cases. the time step is chosen to 
produce a Courant nulnber of unity outside the dielectric 
square, where the Courant nmnber is defined as cAtlAx 
and the propagation speed, c. is unity in free space. Since 
the propagation speed in the square is half that in fi'ee 
space. the Courant number in the square is one half. 

Figure 2 shows contours of the electric field intensity at 
t = 1.4 computed using the high-accuracy finite-difference 
scheme on an equispaced grid with 400 intervals in each di- 
rection. Negative values of electric field intensity are shown 
by dashed contours. The contours obtained on a 100 by 100 
grid displayed in Figure 3 show little difference from those 
obtained on the finer grid. In contrast, Figure 4 shows re- 
suits computed using a finite-difference scheme consisting 
of second-order centered differences with a small amount 

of artificial dissipation coupled with fourth-order Runge- 
Kutta time nmrching. again on the 100 by 100 grid. These 
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Figure 5: Error in the electric field intensity as a function 
of the uumber of nodes in the grid. 
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Figure 6: Electric field intensity on the diagonal of the 
dielectric square. 

r 

Figure 7: Sketch of perfectly-conducting cylinder. 

5.2 Perfectly-conducting cylinder 

The previous example shows the potential of the Cartesian 
grid approach for implementing high-accuracy schemes. 
Unfortunately. it is extremely difficult to develop stable 
and accurate boundary and interface lornrelations when 

the boundary does not lie along a grid line. One option is to 
impose the change in permittivity gradually [12]. However. 
this approach leads to significant errors which. although 
acceptable for a second-order formulation. preclude its use 
with high-accuracy operators. Other pronfising methods 
for handling interfaces include the finite-surface method 
[11] and the use of collar grids which overlap a Cartesian 
grid [.5]. However, both of these approaches are difficult to 
extend to higher order. 

We now consider an example using a curvilinear grid 
which consists of a pulsed waveform incident ou a perfectly- 
conducting cylinder. The geometry and a grid are shown 
in Figure 7. The polar grid extends out four cylinder radii 
froin the surface. The incident field is 

] E•.(x.y.t)=exp [2a2 + 15/2-t) • 
with rr = 0.3. For all of the computations, the time step is 
chosen to produce a maximum Courant number of unity. 
Grid metrics are calculated using the same operator as is 
applied to the spatial derivatives. 

The finest grid used has 480 grid intervals in the cir- 
cumferential direction and 320 in the radial direction. The 

solution computed using the high-accuracy finite-difference 
scheme on this grid is used as the reference in determining 
the errors produced on coatset grids. Contours of electric 
field intensity in the region near the cylinder at t = 8.8 are 
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Figure 8: Contours of electric field intensity computed us- 
ing high-accuracy scheme on 480 by 320 grid. 

shown in Figure 8. The solution computed using the high- 
accuracy scheme on a 120 by 80 grid is shown in Figure 9. 
Agreement with the fine grid results is excellent. Note that 
the jagged contours in Figure 9 are caused by the contour 
plotting; the solution itself is smooth. Figure 10 shows 
that the second-order scheme produces considerable error 
on the 120 by 80 grid. 

The electric field intensity along the dashed line in Fig- 
ure 7 is plotted in Figure 11. As in the Cartesian grid 
example, the solution computed using the high-accuracy 
scheme is substantially more accurate than that computed 
using the second-order scheme on a grid with four times as 
many nodes. Figure 12 shows the L2 norm of the error in 
the electric field intensity along this line for several grids. 
We have selected this line because the error for the ;;'hole 

domain is dominated by that occurring in the large cells 
at the top and bottom of the domain. The trends shown 
are independent of the line chosen. The solutions shown in 
Figure 11 are indicated by a 1 and a 2 in Figure 12. The 
relative efficiency of the two schemes is virtually identical 
to that obtained on the Cartesian grid. The error produced 
by the high-accuracy scheme on the 120 by 80 grid is less 
than one-fourth that produced by the second-order scheme 
on a 240 by 160 grid. For these solutions, the computing 
time of the high-accuracy scheme is less than one-fourth 
that of the second-order scheme and the memory require- 
ments are six times smaller. Once again, the high-accuracy 
solution computed on the 120 by 80 grid is slightly more 
accurate than the second-order solution on a grid with six- 
teen times as many nodes, which required over thirty-two 

Figure 9: Contours of electric field intensity computed us- 
ing high-accuracy scheme on 120 by 80 grid 

Figure 10: Contours of electric field intensity computed 
using second-order scheme on 120 by 80 grid. 
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0.5 

-0.5 

x 

Figure 11: Electric field intensity along the dashed line in 
Figure 7. 

10 '2 

, 

Number of Nodes 

Figure 12: Error in the electric field intensity as a function 
of the number of nodes in the grid. 

tintes more computing time and twenty-four tintes more 
computer memory. 

6 Conclusions 

We have implemented a high-accuracy finite-difference 
scheme to solve numerically the two-dimensional time- 
domain Maxwell equations. The interface formulation 
preserves the high accuracy of the interior scheme. The 
examples presented include both scattering from an in- 
terface between media with different permittivities and 
from a perfectly-conducting surface. Excellent results are 
obtained for Cartesian and curvilinear grids. The high- 
accuracy scheme proved to be substantially more efficient 
than a second-order scheme in terms of both computing 
time and computer memory. 
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