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Abstract 

Pseudospectral and high-order finite difference methods 
are well established for solving time-dependent partial dif- 
ferential equations by the method of lines. The use of high- 
order spatial discretizations has led in turn to a concomi- 
tant interest in high-order time stepping schemes, so that 
the temporal and spatial errors are of comparable mag- 
nitude. Explicit Runge-Kutta methods are widely used 
in practice, but a difficulty encountered with these is the 
loss of accuracy that results from wrong specifications of 
intermediate-stage boundary conditions. The best pre- 
scriptions to date can do no better than achieve third- 
order accuracy for general nonlinear problems. On the 
other hand, if these artificial boundary values are not ex- 
plicitly prescribed but are computed by integrating the 
semi-discrete equations at the boundary, the maximum al- 
lowable time step is significantly reduced. The remedy 
proposed here is to prescribe analytically those values that 
would result from applying the Runge-Kutta solver at the 
boundaries, and hence maintain accuracy without incur- 
ring further step size restrictions. We describe in detail 
the implementation for hyperbolic equations, and present 
both scalar and vector examples. 

1 Introduction 

A principal advantage of the method-of-lines approach 
for solving time-dependent partial differential equations 
is that it allows one to consider separately the issues re- 
lated to the spatial and temporal discretizations. It is com- 
mon practice to use standard ordinary differential equation 
(ODE) solvers for the time evolution, and among these, the 
one-step Runge-Kutta (RK) methods are a popular choice. 
A Runge-Kutta method constructs the numerical solution 
as linear combinations of approximations, usually of order 
lower than the scheme, computed at stages intermediate 
to the discrete time levels. Suppose we wish to solve 

(1) ut =?u, 

where u(t) may be a vector and where .• is some operator 
acting on u. Given u m, the numerical solution at time tin, 
an explicit s-stage RK method forms intermediate values 
u (•), u (2), ..., u © according to 

i--1 

(2) u 
j=l 

from which the approximation at time level t,•+• = t,•+At 
is assembled, 
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u '•+• = u • + At • bi.•'u (i) . 
i----1 

The order and stability properties of the method are deter- 
mined by the particular values of the coefficients aij and 
bi. Our interest here is in (stable) methods which, for suffi- 
ciently smooth problems and sufficiently small time steps, 
are of order p > 3 for general nonlinear .T'. Such meth- 
ods are particularly valuable when the ordinary differen- 
tial equations originate in the semi-discretization of partial 
differential equations. High accuracy is needed to reduce 
phase errors in the computed solution, and especially im- 
portant in long time integrations, so that time stepping 
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schemes of error comparable to the spatial discretization 
are used. In what follows, we assume that the dominant 
error is due to the time stepping, and that the spatial accu- 
racy is of order at least as high as the Runge-Kutta method 
in question. 

Suppose the problem (1) does come from a partial dif- 
ferential equation. Then u depends on other variables such 
as x, .T' involves spatial differential operators (or their dis- 
crete counterparts), and boundary conditions supplement 
the initial value problem. Given a time-dependent Dirich- 
let boundary condition, 

(4) u(xo,t) = g(t), 

it is usual to prescribe u• +• = g(t,•+•), where the sub- 
script denotes the numerical value at x0. The question 
now arises of what boundary conditions, if any, to impose 
on the intermediate values. This problem is not so trivial 
as it may first appear, and there are two basic approaches 
[1, 21 . The first is to ignore the given boundary condition 
(4) and to compute u(0 *) by extending the inner Runge- 
Kutta scheme up to the boundary (one-sided stencils may 
be used with finite difference methods, whereas the dis- 
crete differentiation operator is automatically defined for 
pseudospectral discretizations). With this approach, the 
formal order of accuracy is preserved, but the step size 
one may take is significantly smaller than that allowed if 
intermediate boundary values are explicitly enforced [1]. 
The second approach is to explicitly prescribe intermedi- 
ate stage boundary conditions, but it is not immediately 
obvious what these should be. A few specific formulations, 
known in the literature, are summarized below. 

The conventional method views u © as an approximation 
i-1 

to u(t,• + ciAt) where ci = Y•j=• aij, and sets 

(5) U• ¸ -'- g(trn J• Ciht) 
at the end of each time increment. The connection be- 

tween the ith stage and time t,• + ciAt is somewhat vague, 
however, since an order p method does not necessarily have 
u (i) -- u(t,• +ciAt) +O(AtP+•). In fact, this strategy turns 
out to be a rather poor choice. For fixed CFL number • and 
general RK methods, the accuracy is reduced to second or- 
der across the domain [1]. A second strategy augments the 
ordinary differential equations at the interior nodes with 

(6) u•(t)=gi(t) 

at the boundary. If the operator .T' were independent of 
At, the formal order of the RK solver would be retained. 

lroughly, the ratio of the time step to the grid spacing at the 
boundary. ¾Ve shall make this more precise in the context of our 
numerical experiments. 

When operating with a fixed CFL number, however, the 
relationship between At and Ax results in a degradation 
of accuracy to third order, even for the case of constant 
coefficient scalar problems. 

A third strategy, proposed by Carpenter et al. in the con- 
text of hyperbolic problems, essentially amounts to replac- 
ing every application of .T' in the Runge-Kutta algorithm 
with a time differentiation at the boundary [1]. For exam- 
ple, the classical four-stage fourth-order method (RK4) 

u (•) = u -• 
1 

u (2) = u -• + •At.T'u (•) 
1 

u (3) = u -• + •At.T'u (2) 
u(4) _ u-• +At)ru © 

At 2.T.u(2) .T.u(4) urn+ ! = U rn + -•-- (.T'u (•) + + 2.T'u © + ) 
is supplemented by the intermediate boundary conditions 

1 
u? ) : 55tg 

1 i 1 At2gii 72• 3) = g(trn ) -[- •Atg (trn) -[- • (trn) 
At2 /i At3 i/i t . u[ 4) = g(t•) + Atgi(t.•) + -•-g (t•) + •-g ( 

This procedure may be viewed as augmenting the inner 
equations with the boundary system 

I • __ gill Uo(t) = v(t),v'(t) w(t),w'(t) (t). 

In general, the strategy integrates ut = .T'u at the bound- 
dkg(t) 

ary, and then replaces .T'•u with d t • . 
When .T' has no time dependence, this is exactly what 

is needed and the Runge-Kutta method retains its formal 
order of accuracy. When .T' depends on time, however, ei- 
ther explicitly or implicitly through some nonlinearity, the 
recipe is not quite right, and one can generally get no bet- 
ter than third order out of it. There is a simple reason 
for this difference. Carpenter's strategy holds in the time- 
independent case because it is exactly the Runge-Kutta 
method of the interior applied at the boundary. For the 
time-dependent case, the agreement between the bound- 
ary and interior treatments is only approximate, and this 
inconsistency forms a barrier to attaining higher order. 
The conventional boundary treatment deviates still fur- 
ther from the Runge-Kutta algorithm and, as a result, its 
order is even lower. 

The main point of this paper is that a Runge-Kutta in- 
tegrator with a high order of accuracy for pure initial value 
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problems will very likely lose this advantage unless the in- 
termediate boundary data exhibits the same time errors as 
the intermediate stage values of the Runge-Kutta method 
are designed to do. A second point is that, for reasons of 
numerical stability, it is preferable to derive analytic for- 
mulas for these intermediate boundary values rather than 
simply apply the Runge-Kutta solver there. The paper 
is structured as follows: in section 2, we explain the ba- 
sic principle and prove that the formal order is preserved 
if the boundary procedure follows the Runge-Kutta steps. 
Nonlinear conservation laws are discussed in Section 3, and 
we close in Section 4 with some general remarks. 

2 The general recipe 

A Runge-Kutta method of order p will not in general have 
u (i) = u(t,• + ciAt) + O(AtP). The algorithm relies on 
a systematic cancellation of lower order errors made at 
intermediate stages to recover the full accuracy at the dis- 
crete time levels. If the intermediate values are modified 

at order less than p, the necessary cancellations may fail to 
take place and the overall accuracy reduced. This is espe- 
cially true when assigning values to the boundary nodes. 
The discrepancy between what is assigned and what would 
have been computed from the internal scheme (integrating 
ut = • at the boundary) is reflected in the numerically 
computed space derivatives and, with At being related to 
the grid spacing through a CFL-type relationship, there 
follows a global reduction in the space-time order. A de- 
tailed examination of this process for the advection equa- 
tion discretized by finite difference schemes can be found in 
[1]. The correction proposed there turns out to be a simple 
example of the general remedy: to examine the boundary 
values as the Runge-Kutta method would compute when 
no intermediate-stage boundary conditions are prescribed 
(and full order is achieved). and to enforce these, to O(At p) 
at least, using the differential equation to obtain analytic 
expressions. 

Consider the one-dimensional scalar equation, 

= f(u)ux, u(0, t) = g(t), 

with f(u) < 0 on 0 _< x _< 1. The first step in the method 
of lines procedure is the spatial discretization which in- 
volyes replacing the continuous variable x by the discrete 
variable _x = Ix0 = 0, xx,...,x2v_x,XN = 1] T. Here, 
and in what follows, underscores denote vectors in 
while subscripts indicate the grid location. Matrices, in 
•(.v+x)x(•¾+x), are capitalized and D represents the dis- 
crete differential operator defined on all N + I grid val- 
ues. If we step the semi-discrete system forward using the 

classical Runge-Kutta integrator RK4, without imposing 
intermediate boundary values, the fully discrete method is 

u(1) _ u m 

_u(2) = _u(x) + -•F(_u(X))D_u (x) 
_u(3) - _u(1) + -•F(_u(2))D_u (2) 
_u(4) - _u(X) + AtF(u(3))Du (•) 

At (F(_uO))D_u(•) + 2F(u_(2))D_u(2 ) 
+ 2F(u(3))Du_ (•) + F(u(4))D_u ©) + 5m+xe_0 . 

Here F(_u) -- diag(f(uo),f(u•),...,f(uN)), e_o -- 
11,0,0,...,0] T. and 5 "•+• is defined so as to reset the 
physical boundary condition at the end of the time step. 
Since we assume that the spatial discretization is at least 
fourth order, for smooth solutions and sufficiently small 
time steps, the leading term in the local error due to the 
time stepping is O(At•). 

Imposing intermediate-stage boundary conditions dur- 
ing the time increment results in a local modification of the 
above Runge-Kutta algorithm at each intermediate stage, 
viz. 

v(1) _- urn 

v (2) = v_(h) + -•F(v(X))Dv__ (x) + _e (2) 
v (•) = v (•) + -•F(v(2))Dv__ (2) + _e (3) 
v (4) = _v (x) + AtF(v(•))Dv (•) + _e © 

At (F(_v(•))Dv(X) 2F(v_.(2))Dv(2 ) v_ •+x : v_( h )+•- + 
+ 2.F(v_(3))Dv (3) + .F(v(4))Dv_ ©) + em+X_e.o 

where _e (i) - e(i)e_o are chosen to impose the desired arti- 
ficial boundary values and e '•+x sets vo(t,•+x) - g(t,•+l). 
These modifications can be viewed as small input pertur- 
bations in the Runge-Kutta algorithm whose sum effect on 
the intermediate function values can be written 

v(0 = u(0 + 

where 

-- 

•(•) 
-- 

•(•) 
-- 

- 0 

= e(2) 

= •(a) + _•F(v__(2))D?) + 
At•(2)F'(u(2/+(9(2)i(2))Du(2) 
2 
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_•(4) = •(4) q_ AtF(v(3))D•(3) 
q_AtP © F' (t/© q_ (•(3)•(3))DT/(3). 

Here, /•(i) = 
diag(•i) g(i)) F'(u) = diag(f'(uo) f•(UN)), and ,'ø ø' N ' 

.. (i) < 1. These ex- e © = diag(0o ©, .,07) with 0 _< Oj _ 
pressions easily follow using Taylor's theorem under the 
assumption that f is continuously differentiable. If the 
numerical procedure is run with a fixed CFL ratio, that 
is. with At/Ax constant for a finite difference method on 
a uniform grid or AtN 2 constant for a pseudospectral ap- 
proximation, then, near the boundary, the effects are of 
the order of the input perturbations, 

•(•) = 0 
-- 

= 
•(3) __ O(6(2),6(3)) 
_•(4) __ 0(6(2), 6(3), 6(4)). 

Away from the boundary, they are weaker: zero for finite 
difference schemes since D is band-limited, and smaller by 
a factor At for pseudospectral methods since the entries of 
D decay as N --ø off the diagonal. 

At the end of the time step, v m+• = u '•+• + i'•+•, 
where the elements of i'•+• are O(e (2), e ©, e(4),e '•+•) in 
the neighbourhood of Xo = 0, and zero (finite differences) 
or one order higher (pseudospectral) away from it. If e (2), 
e ©, and e (4) are O(Atq), then for q > 5, fourth order accu- 
racy is retained. For 1 <_ q < 4, the local truncation error 
is O(At q) near x0, and O(At q-•) (pseudospectral) or zero 
(finite differences) away from it. In both cases, however, 
the boundary error restricts the global error to O(Atq) [5]. 
Consequently. the order to which the prescribed boundary 
values deviate from those of the free Runge-Kutta method 
determines the order of the fully discrete scheme. To re- 
tain fourth order accuracy using RK4, the imposed values 
should agree to O(At4). 

In terms of formal order, it would be enough to use 
a Runge-Kutta method without imposing intermediate 
boundary values. However, the stability of the scheme is 
noticeably reduced since .F involves (high-order) spatial 
differentiation operators, and the inclusion of the bound- 
ary points is enough to produce a significant reduction in 
the maximum allowable time step. Consequently, while 
artificially imposed boundary values should agree with the 
numerical ones that would be obtained through recur- 
sive computations .F.F....Fu, the spatial derivatives of u 
should be expressed as far as possible in terms of g(t) and 
its time derivatives. If O r is time-independent, each iterate 
u © is some linear combination of u, ut, utt, and simply 
replacing every application of .F by a time differentiation 

would be enough. This is the generalization of Carpenter's 
scheme, and we shall refer to it as the "linearly consistent" 
strategy. For time-dependent operators, Oru © no longer 
neatly corresponds to u © and its specification in terms of t , 

g(t) becomes more complicated. In what follows, we con- 
sider the definition of "fully consistent" strategies for the 
solution of conservation laws. 

3 Conservation laws 

3.1 The scalar case 

If we solve the scalar equation 

ut- f(u)u• 

using a Runge-Kutta method, the computations are easily 
traced by using the inverse relation 

1 

(7) u•: - f(u) ut 
to express higher-order space-time derivatives and interme- 
diate values as algebraic functions of u and its time deriva- 
tives. The classical fourth-order Runge-Kutta method. for 
example, becomes 

u (2) = u+-•-ut 
u (3) -- u + 

2 

At f(2) 
-- u+ ----ut + -- 

2 f 

u © = u + Atf ©u? ) 
f(3) 

= u+ At--•-ut 

At2 f(2) 
4 io. 

At2 f(3) (f(2) fut 2 2 f•ut 2 + -• 2 f3 _ f(2) f(2)futt) 
At 3 f(3) (-2 f•(2) • 4 f4 ffuut 3 + 2 fu (2)f2ututt 

-2 f(2)ffuut 3 _ 6 f(2)ffuututt 
+f(2) 2 f(2) 2 3 f Uttt q- 6 fuUt) 

At4 f(3)fu2) 2 2 

-1 8 f4 (f•2ut4 -- 2 f fuut2utt + f utt ) 
where f denotes f(u(t)), f(2) denotes f(u(2)), f(3) denotes 
f(u(3)), and so on. 

At an inflow boundary, given u(xo, t) = g(t), every term 
on the right hand side is known exactly so the analyti- 
cal expressions can be explicitly imposed at intermediate 
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stages. In doing so, there is no need to express f(2), f(3), or 
f?) in terms of u, ut, utt, ..., since they may be evaluated 
without degrading the stability properties of the scheme 
(that is done by the iterated x-differentiation). Neverthe- 
less, it is instructive to do so here and examine the Taylor 
series expansions, 

At 

u (2) = u+-•-ut 
At At • 

- 2f•ut + 2ff•utt) ut 
At 4 

+o(it 
At • At • 

• 3 

At4 (6f•Au;• + 24 • 4 4 
2 9 2 2 9 4 +12 f fuuU;Utt 33 2 - f/jututt+ f'A•ut 

+6 f•ututtt) + O(At•). 

Xote that the first intermediate value of the conventional 

treatment differs from the one above in the O(At •) term. 
Accordingly, the resulting scheme is expected to have or- 
der two. If u'(xo, t) = g'(t) is adjoined to the equations of 
the interior, the difference occurs at the O(At •) term, for 
a third-order approximation. Further examination shows 
that Carpenter's scheme is exactly the Runge-Kutta se- 
quence problems when f does not depend on u. For non- 
linear problems, however, the second and third interme- 
diate boundary values differ at the O(At •) term, and so 
third order accuracy is anticipated. 

Example: We solve the nonlinear equation ut = (u•)• 
on the domain 0 • x, t • 1, for the exact solution 

x 

t) = _ t)' 
A Legendre pseudospectral approximation on N+ 1 Gauss- 
Lobatto-Legendre collocation points is used to approxi- 
mate space derivatives. The classical fourth order Runge- 
Kutta integrator is used for the time stepping, subject to 
conventional, u • (1, t) = g• (t), linearly consistent, fully con- 
sistent, and no intermediate boundary treatment at the in- 
flow boundary x = 1. At x = 0, the solution is identically 
zero, and causes no interference with our results. With a 

-2 CFLnumber fixed at At=N , the errors at timet= I 

very nicely demonstrate the predicted convergence rates of 
2, 3, 3, 4, and 4 respectively (Fig. 1). [] 
When the CFL ratio is increased to 6.5, the instability 

10 '5 

• 1040 
uJ 

10 -15 , , I , i 

10 -3 10 -2 10 4 
Time Step 

Figure 1: Log-log plot of the L2 errors at time t = 1 for 
the nonlinear equation ut -- (u2)•, computed using con- 
ventional (-), u•(1, t) = f(t) (-.),a linearly consistent (...), 
fully consistent (o), and no (4-) intermediate conditions at 
x = 1. The discretization was Legendre pseudospectral in 
space, with N = 3,..., 27, marched forward with RK4 and 
a fixed CFL ratio At = l/N:. 

associated with free intermediate boundary conditions be- 
comes apparent. Table I lists the CFL number (integer) 
at which each algorithm exhibited arithmetic overflow with 
polynomial degree N = 25. A four-fold gain is achieved by 
imposing some intermediate boundary conditions. 

We make one note here, that the vanishing of f(u) at the 
point (1, tin) causes no real difficulty. A simple remedy is 
to take a few very small time steps without imposing any 
boundary conditions at the intermediate stages. 

3.2 The vector case 

Now suppose that g E •'•, and we have the nonlinear 
hyperbolic system 

•t = F(•)• 

where F(ff) E •nxn. The intermediate values for the clas- 
sical Runge-Kutta method are then 

•(•) = ff +-•-ut 
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Intermediate CFL--1 CFL=6.5 Overflow 

Boundary At CFL # 
Treatment 

L2 L• L2 L• (N=25) 

Conventional 2.3279 2.1662 2.0402 1.8399 28 

Solve u'(1, t) = g'(t) 3.1646 2.8873 2.8841 2.6075 31 

Linearly Consistent 3.3426 3.1312 3.0544 2.8499 31 

Fully Consistent 4.0029 4.0011 3.7895 3.7873 34 

None 3.9929 3.9923 .0030 -0.2490 7 

Table 1: Convergence rates for the Legendre-RK4 Solution of ut = (u2)x, based on linear least squares fit to the log-log 
errors at time t = 1, when using polynomials of degrees N = 3, ß ß., 27. Results are presented for CFL numbers N2At = 1 
and X2At = 6.5. The table also lists the CFL ratio (integer value) at which the numerical procedure with N - 25 
resulted in arithmetic overflow. 

At (o) At2 (2)- /•(3) : • + •-F • •7• + -•--F u•t 

5 © : //+A tF(3)ffx + 2 

and all terms on the right can be written without reference 
to space derivatives. Letting B(ff) = r-l(a), we may fom 
in sequence: 

which, together with the relation if?) = •7• +l/2Ati•t, can 
be inserted into the expressions for if(a) and if(4) above to 
obtain the correct intermediate behaviour at the boundary. 

This behaviour is explicitly known only when all char- 
acteristics at x0 are flowing into the domain. More typi- 
cally, the given boundary conditions will be fewer in num- 
ber than the unknowns. Obtaining exact expressions for 
the intermediate values is as hard as solving the original 
problem, so numerical values of unspecified components of 
i and their time derivatives must be used. •Ve can accept 
an O(At p) error in the intermediate function values; this 
is entirely consistent with the error in the numerical ap- 
proximations. Temporal derivatives are needed at lower 
orders; specifically, an O(At p-k) approximation of the kth 
time derivative is required. These may be calculated from 
stored values at previous time levels together with the cur- 
rent numerical value of if. Weights for one-sided difference 
approximations are easily computed using Fornberg's al- 
gorithm [3]. 

Example: The shallow water wave equations for the 
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height of a fluid h(x, t) and its velocity u(x, t), 

..-. 

u t G u u 0 ' x 

where c is the gravitational constant, have an exact solu- 
tion 

t) = 2v/-5½ - 

where • = 1 + 3x/-St and H represents the equilibrium 
height. Defining 6 = u+2v/-• and •) - u-2v/-• converts 
the system to characteristic form, 

( ̧  ) 1 (30+•) 0 ) (:) (0) U' + • 0 o + 3z;, = 0 ' 
t x 

The problem could in fact be solved for the characteristic 
variables but, for the sake of generality, we continue to 
solve the system (8) for the primitive variables h and u. 
Boundary conditions are, however, imposed through the 
characteristics for reasons of stability [4]. With c = H = 1, 
0(x. t) flows to the right for 1 _< x _< 3/2, while •(x, t) flows 
to the left. so that one boundary condition is required at 
each endpoint. For illustration, we take a common sort of 
specification 

h(1,t) = g•(t). •(3/2, t) = g2(t) 

for which the characteristic boundary conditions become 

rS(1, t) = 4x//'•t)+½(1,t), ½(3/2, t) = 292(t)-O(3/2, t). 

These are imposed as follows. Consider the point xo - 1 
(the point x.v - 3/2 is treated similarly). Having calcu- 
lated u• and h• '• numerically by applying the Runge-Kutta 
method at all points, the boundary values are adjusted as 

Exactly the same sequence is followed at intermediate 
stages, using the numerically computed values of U(o ¸ and 

The linearly and fully consistent schemes require approx- 
imations to the first three time derivatives. The derivatives 

of •)o are computed using •p•-4, W•-a .... , •p•: from these 
those of 6o may be formed, 

0• •_ 4d&v/øg•(t,•) + -- 
Ot • dt • Ot • ' 

and subsequently the approximations to the derivatives of 
h• and u•. Starting data is generated by taking a few 
very small steps without imposing intermediate boundary 
conditions. For the conventional treatment and integrat- 
ing the boundary conditions, which need exact values at 
intermediate times, the boundary conditions are imposed 
directly on the primitive variables h and u. There is no 
exact value, not even an O(At p) approximation, of u(1, t) 
at time tin+l/2 say, so that ½(1, tm +At/2) cannot be com- 
puted (although it could be extrapolated from stored val- 
ues). 

Figure 2 shows the error decay when the various bound- 
ary treatments are applied at CFL numbers 0.2, 2, and 3, 
while Table 2 lists the convergence rates as found by linear 
least-squares fitting. Fourth-order accuracy is obtained by 
the fully consistent treatment at all CFL numbers, and the 
method allows a time step far greater than that permitted 
when no intermediate boundary conditions are imposed. 
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Figure 2: Log-log plot of the L2 errors of the Legendre-RK4 solution of the shallow water wave equations at time t: 1. 
Fixed CFL ratios of 0.2, 2, and 3 were used for N = 5,-.., 25 in each case. The convergence rates for the different 
boundary conditions are listed in Table 2. 
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Intermediate CFL-0.2 CFL=2 CFL=3 Overflow 

Boundary at CFL # 
Treatment 

L2 L• L2 L• L2 L• (N=25) 

Conventional 3.3027 3.4850 2.9913 2.9101 2.1078 2.0313 3.196 

h'(1,t)=g•(t), u•(3/2, t)=g•(t) 3.6434 3.4850 3.2166 3.0047 2.4779 2.4089 3.264 

Linearly Consistent 3.6665 3.5594 3.2959 3.0961 2.7039 2.5564 3.230 

Fully Consistent 3.7887 3.6679 3.9146 3.9475 4.5357 4.5308 3.400 

None 3.7253 3.6014 ***** ***** ***** ***** 0.272 

Table 2: Convergence rates for the Legendre-RK4 Solution of the shallow water wave equations, with CFL numbers 
0.2, 2 and 3. In each case, the rate was calculated by a linear least-squares fit over those points where the L2 error was 
strictly decreasing as At was reduced. The last column lists the CFL ratios AtN • at which arithmetic overflow occured 
when solving the shallow water wave equations on an N = 25 grid up to time t = 1. 
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4 Conclusions 

In this paper, we have presented a logical and consistent 
principle for formulating intermediate boundary conditions 
for Runge-Kutta methods, and have demonstrated its use- 
fulness for the solution of nonlinear conservation laws. The 

basic idea is that prescribed boundary values at interme- 
diate stages should exhibit the same time errors as the 
Runge-Kutta method would compute when no intermedi- 
ate boundary conditions are imposed. The importance of 
matching interior and boundary errors has appeared be- 
fore. notably in connection with operator-splitting meth- 
ods [6], but appears not to be widely recognized in the 
Runge-Kutta context. For stability reasons, it is prefer- 
able to derive analytic formulas for the error terms than 
to form them using numerical space derivatives. Much re- 
mains to be done, ho•vever, to adapt this idea to problems 
in higher space dimension and for more general operators. 

We have confined our attention here to the temporal 
accuracy of the scheme, but similar arguments can be 
made regarding the spatial approximation. Our analysis 
at the boundary has completely ignored the presence of 
discretization errors in the interior. Artificial boundary 
conditions should ideally take this into account, so that 
the numerical solution over the full domain is as smooth 

as possible. The treatment presented here for the time er- 
rors should be complemented in space, possibly through 
the use of penalty methods. and remains the subject of 
future work. 

[5] B. Gustafsson. The Convergence Rate for Differ- 
ence Approximations to Mixed Initial Boundary Value 
Problems. Math. Comp., 29(130):396-406, 1975. 

[6] R. J. LeVeque. Intermediate Boundary Conditions 
for Time-Split Methods Applied to Hyperbolic Partial 
Differential Equations. Math. Comp., 47(175):37-54, 
1986. 
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