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Abstract 

Direct sinrelations of small- and finite-amplitude distur- 
bances in spatially periodic plane Poiseuille flow were per- 
formed. The ability of three high-order finite difference 
methods to predict the proper behavior of the disturbances 
was under investigation. The proposed procedure allowed 
to conclude about the spatial resolution and time-step re- 
quired bv those schemes to produce numerically accurate 
results. 
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1 Introduction 

During the last years, an increasing number of Navier- 
Stokes solvers has been reported with which unsteady 
flow solutions have been sought. Most of these numeri- 
cal schemes are at least second-order accurate (based on 
local truncation analysis), which is accepted to be a min- 
imum requirement for any numerical scheme purporting 
to perform physically meaningful unsteady simulations [3]. 
Irrespectively, difficulties arise when aiming to assess the 
accuracy of the numerical predictions making use of avail- 
able results on unsteady fluid flow. Similar problems con- 
cerning the numerical solution errors and their estimation 
assume even stronger significance in large-eddy simulations 
(LES). In the context of LES, so that effective testing of 
subgrid-scale models can be achieved, one must be able to 
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separate the issue of numerical scheme accuracy and the 
evaluation of the subgrid-scale model assumptions. 

Spectral methods are the most natural option for a nu- 
merical scheme to carry out the above mentioned simu- 
lations, because of the high accuracies of these methods. 
However, finite-difference schemes present easier imple- 
mentation and extension to complex geometries, despite 
that their accuracy level is often inadequate. To investi- 
gate the ability of established finite difference methods to 
provide the correct description (concerning damping and 
phase accuracy) of relevant standard problems is, there- 
fore, a subject of great relevance. With this goal in mind, 
the problem of the evolution of finite-amplitude distur- 
bances seems to be an appropriate background to enable 
such investigations to generate significant information on 
the effectiveness of the numerical methods, when these are 

applied to real situations ranging from hydrodynamic in- 
stability to turbulent flow simulations. 

It must be mentioned that the issue of finite-amplitude 
stability has been the object of systematic investigations. 
Among these we emphasize the work of Fasel [41, Orszag 
and Patera [13, 14], and Orszag and Kells [•2], deeming 
the problems of boundary layer, plane Poiseuille and Cou- 
ette flows. See also Patera and Orszag [15] for the case of 
pipe flow. In earlier years, limited computer resources have 
forced other researchers to the use of approximate meth- 
ods. However, reliable results have been provided, e.g., by 
George and Hellurns [6], for the case of two-dimensional 
plane Poiseuille flow. 

The present work presents a methodical evaluation of 
the performance of finite difference schemes in which the 
two-dimensional Navier-Stokes results reported by George 
et al. [7] have been used as a reference for the transient 
behavior of finite-amplitude disturbances. There is not 
any a priori excuse for the choice of a two-dimensional 
test case. However, as pointed out by Jim•nez [8], two- 
dimensional cases are simpler to compute and still relevant 
understanding can be gained from such analyses. In Sec- 
tion 2, the governing equations and the numerical schemes 

389 



390 ICOSAHOM 95 

are described. The following temporal discretizations were 
employed: quadratic Leith, Crank-Nicholson and Adams- 
Bashforth. These discretizations were used together with 
third-order (using quadratic upstream interpolation) and 
fourth-order (fifth-order upwind-biased approximations for 
the convective terms only) spatial accuracy. In Section 3, 
a careful characterization of the test cases (including val- 
idation via linear stability theory) is given. The last two 
sections report the results and main findings of the present 
study. 

2 Numerical formulation 

2.1 Governing equations 

The conservative form of the continuity and momentum 
equations for incompressible flow, expressed in Cartesian 
coordinates (x.y) with corresponding velocity components 
(u. v) and p the pressure. are given by 

(1) ux + vy = 0 

1 

1 

(3) vt ß (uv).• • (vv)y: -Pu q- •ee (v•x q- vyy), 
where subscripts indicate partial differentiation, the 
Reynolds number Re = •oa, with Uo standing for a char- 
acteristic velocity. h for a characteristic length and u for 
the kinematic viscosity. 

The primitive equations (1) - (3) will be integrated in 
time by the well known pressure-correction method which 
requires the solution of a Poisson equation. A staggered 
grid system will be used for the discretization of the gov- 
erning equations. In the presence of solid boundaries, no- 
slip conditions will be imposed for velocities. All the al- 
gorithms to be presented here are based on a conservative 
control-volume formulation. 

2.2 Discretization schemes 

Finite difference methods intended to investigate problems 
involving hydrodynamic stability and transition or the sim- 
ulation of turbulent flows have to meet a number of require- 
ments in order to ensure successful calculations [3]. It is 
known that, when solutions are of periodic nature, the 
numerical method must be at least second-order accurate 

(including initial and boundary conditions), based on lo- 
cal truncation analysis [2]. However, spatial second-order 
accuracy may still be inadequate for the above mentioned 

simulations to be performed using realistic computational 
grid sizes [17]. The migration of those schemes to higher 
order of accuracy, although desirable, brings along the is- 
sue of stability. High-order accurate finite difference meth- 
ods are often plagued by numerical instability, taking the 
form of unphysical oscillations which corrupt the expected 
solution. Nevertheless, the lack of robustness exhibited by 
such methods may be combated. Employing high-order 
upwind-biased finite difference schemes, the undesirable 
non-physical effects such as artificial viscosity may be ex- 
cluded or at least minimized to acceptable level, while its 
basic stable convective sensitivity property is retained. In 
order to enable the investigation of physical instabilities 
(unstable waves), the transient character of the flowfield 
must also be resolved accordingly. Further, Fasel [4] indi- 
cates that second-order accuracy for time derivatives is an 
additional requirement. 

In the next paragraphs a succint description of the dis- 
cretization schemes used in the reported calculations is 
given. 

Scheme A employs the third-order accurate QUICK for- 
mulas [9] to approximate the convective terms occurring 
in equations (2) and (3). A three-point upstream-weighted 
quadratic interpolation is used to obtain each grid cell wall 
value individually, in accordance to a conservative formu- 
lation. The consistent treatment of the diffusion is equiva- 
lent to central differencing. A Leith-type of temporal dis- 
cretization is also employed, making use of Lagrangian in- 
tegrals to derive the finite difference expressions. as shown 
by Leonard [9]. The resulting explicit formula for convec- 
tion and diffusion, for example in the one-dimensional case 
with u• > 0 is given by 

= u2-_ 

(4) 
1 1 •2 ß 

- - x + 3u_, _ 

where C is the Courant number, 'y denotes the non- 
dimensional diffusion coefficient and the superscripts in- 
dicate the time level. The use of quadratic upstream in- 
terpolation allows to obtain third-order truncation error 
in time, as long as Re remains high. Further details for 
the application of this method, known as QUICKEST, to 
two-dimensional fluid flow problems, were given by Pereira 
and Sousa [16]. 

In scheme B, the convective terms are also approxi- 
mated using the third-order accurate QUICK finite dif- 
ference formulas and the diffusion terms are discretized 
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using second-order accurate central differencing. However, 
in this case, the simulations advance the variables in time 
using the second-order accurate implicit Crank-Nicholson 
tinhe-stepping method for the viscous terms, while the 
second-order accurate explicit Adams-Bashforth method 
is applied to convective terms. Once again, for the one- 
dimensional case with ui > 0 one may write 

_ •3• _ • (•+• (5) u• +• - u•+7, ", H/•-•) +• ' +M/•) 

+ 3u? - 7u?_ + 
(6) 

xU = - 2u? + 
Scheme C employs high-order finite difference approx- 

imations for all terms arising in the set of equations (1) 
- (3). The algorithm is explicitly advanced in time us- 
ing the second-order accurate Adams-Bashforth method. 
First-order accuracy on the viscous terms is tolerated be- 
cause the problems to be investigated are at large Re. Sim- 
ilarly to the aforementioned schemes, one may write 

- • raH.• _ H/•-•) + M/•. 

Here the convective terms Hi are approximated using fifth- 
order accurate upwind-biased differences. The first-order 
derivatives arising in the non-linear terms are discretized 
using seven-point stencils, originating the corresponding 
discrete contributions to Hi. For example, in the one- 
dimensional case with ui > 0, one writes 

(8) [ Ou 2 --6u•-2 +60U,+l +40ui -- 120u,_• +30uz-2 --4u,-a 
The finite difference contributions to the diffusive terms 

M•, arising from the second-order derivatives, are obtained 
using fourth-order central differences approximations as 

[O2u] • --u,+2+16u,.•-30u,+16u,_i--u•_2 (9) L• 
The pressure gradient terms in equations (2) and (3) are 

also discretized using high-order finite differences. Fourth- 
order of accuracy was required for the approximation of 
first-order derivatives, but one should note the implications 
of using a staggered grid system, yielding 

(10) i-• 24•x 
The divergence operator arising in equation (1) mw be 

obtained by the application of the finite difference approxi- 
mation to a first-order derivative in each spatial direction. 
Requiring fourth-order accuracy, the central differencing 
formula reads 

12Ax 

Scheme C also employs a fourth-order accurate dis- 
cretization of the Poisson equation that arises in all these 
numerical schemes using the pressure correction method. 

It should be mentioned that, due to the staggered grid 
arrangement, the u and v velocity components are some- 
times required at locations where they are not available. 
For consistency, a cubic interpolation technique based on 
Lagrange polynomial method, which is fourth-order accu- 
rate, is used. 

Near solid boundaries the overall accuracy of the method 
is reduced. Grid points lying next to the boundaries where 
no-slip conditions are imposed, are treated using either 
second-order accurate finite difference stencils (pressure 
gradient and viscous terms, and both the divergence and 
Laplacian operators) or a third-order accurate upwind- 
biased scheme (convective terms) which may be written 
as 

2u•_•+3u,-6u,_•+u,_2 

for the one-dimensional case •vith u, > 0. 

3 Test cases 

Aiming to evaluate the accuracy and robustness of the nu- 
merical schemes presented in the previous section. two test 
cases are carefully described here. 

3.1 Small-amplitude disturbances 
The first test case consists in the calculation of the evo- 

lution of small-amplitude disturbances in channel flow. 
It is our ultimate objective to make available numerical 
schemes which are able to accurately perform the simu- 
lation of finite-amplitude disturbances. However. before 
committing oneself to carry out this kind of simulations, 
the above referred methods must be applied to a closely 
related problem allowing results validation. In the case of 
small- amplitude disturbances, exact solutions are avail- 
able from linear stability theory (LST). 

The flowfield is initialized as 

u (x, y, t) 
(13) v(x, y, t) 
where (•,•) represent an eigensolution of the Orr- 
Sommerfeld equation for Re = 7500 and wavenumber 
ct = 1.00. The parameter z defines the amplitude of the 
disturbance and therefore it must be small. The value of 

z = 0.001 has been used. A supercritical Reynolds number 
(Re > Re•,Rec = 5772.22 with ct = 1.02 [11]) has been 
chosen in order to investigate the ability of the numeri- 
cal schemes to describe the behavior of linearly unstable 
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disturbances. As a basis for the comparison with the eigen- 
solution, the energy associated to the perturbation in the 
channel is computed at each time step. It may be defined 
as 

(14) z(t) = + dx dy, 
1y0 

and the monitorization of the quantity •oo' where E0 = 
E(t = 0), altows to assess the accuracy of the employed 
schemes. In accordance to LST, •o is expected to grow in 
time as ½2crt, where rr = 0.002235 [10]. It is further envis- 
aged that this preliminary test will indicate the adequate 
numerical grid sizes to be used later in the simulation of 
finite-amplitude disturbances. 

3.2 Finite-amplitude disturbances 

The second test case comprises the development of an ini- 
tial disturbance which was also superimposed to the fully 
developed laminar channel flow solution, analogously to 
what expressed by equation (13). However, in this case, 
the perturbation takes the following form 

= fy(a, cos(.) 
(1,5) 5(z,y) = cf(a.y) sin(cx), 

where f(a, !l) is a function given by 

(16) f(a,y)_ f. [cosh(ay) cos(ay)] cosh(a) cos½) ' 

with • = 0.105 and c• = 1.05 for Re = 4000. The constant 

f• is a normalization factor so that the maximum value 
of f(a.0) is unity and a is a root of the transcendental 
equation 

(17) tanh(a) + tan(a) = O. 

The above defined function belongs to a class of orthog- 
onal functions which satisfy four boundary conditions (the 
function together with its first derivative vanishes at the 
ends of the chosen interval, i.e., at the solid walls of the 
plane channel in the present case). The details in the 
derivation of this type of functions may be found in Chan- 
drasekhar [1, Appendix V•. Solutions of the above indi- 
cated form have been sought by George et al. [7] using a 
spectral method [6]. They have found that the fluctuation 
amplitude of the disturbance shows a small decay followed 
by a sustained slow growth. This behavior hoists up this 
test to a very effective estimation of the damping and phase 
accuracy inherent to a particular numerical scheme [5]. 

4 Results 

The numerical simulation of a small-amplitude distur- 
bance has been performed using the three finite difference 
schemes already described, employing three computational 
grid sizes. The numerical grid is equispaced in the stream- 
wise direction but stretched in the wall-to-wall direction. 

The stretching of the mesh was obtained through a mild 
geometric progression (an expansion rate of 1.05 was em- 
ployed). 

Figure i shows the behavior of the perturbation energy 
in the channel, given by equation (14), as a function of 
the non-dimensional time. The (exact) solution from LST 
corresponds to the solid line, showing an amplification of 
about one order of magnitude during the simulation time. 
For a (16 x 65) computational grid, amplification was ob- 
tained only for scheme C. However, it can be seen that too 
much dissipation occurs. When a (32 x 65) grid was used, 
amplification of the initial disturbance occurred for all the 
three schemes. Yet, whereas scheme C complies with the 
exact solution for the actual spatial resolution. this grid 
still demonstrates inadequacy for schemes A and B, which 
exhibit considerable damping errors. Employing these lat- 
ter two schemes, a (64 x 65) grid was found to be required 
for the reproduction of the LST solution. 

•.z A (64x65) 
-- 4•-4• A (32x65) •:• / 
- • B(64x65) • .• • 

• z '5. • '• •_• -- • • • - -- 

O 29• '>50 3 :o 

Figure 1: Energy growth rates for the numerical schemes. 

Based on the results provided by this preliminary test, 
the computational meshes to be used in the simulation of 
the proposed finite-amplitude disturbance problem have 
been selected. Therefore, a (32 x 65) grid will be used in 
conjunction with scheme C, while (64 x 65) control vol 
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umes are expected to be required for an accurate simula- 
tion when schemes A and B are employed. 

The finite-amplitude disturbance simulations have been 
performed following the strategy delineated in Subsection 
3.2. As mentioned earlier, the results reported by George 
et al. [7] will be used as reference solution. 

Figure 2 displays the results obtained with scheme A. It 
can be observed that the numerical method is very much 
demanding in terms of the Courant number. In fact, this 
parameter had to be reduced to very small values (C = 
0.05) before the method could produce acceptable results. 
For the chosen spatial resolution, numerical dissipation and 
dispersion are seen to seriously corrupt the solution when 
the Courant number is increased. Actually, for Courant 
numbers above 0.2, sustained growth of the disturbance 
could not be obtained employing this method. 

The results obtained xvith scheme B are portrayed in Fig- 
ure 3. In contradistinction to scheme A, scheme B is much 

less stringent with respect to the time step. The Courant 
nmnber could be increased up to C - 0.4 without resulting 
in any noticeable change in the computations. The com- 
parison of the behavior of the present solution with the one 
reported by George et al. [7, Figure 1], clearly shows that 
the temporal and spatial resolution are adequate to accu- 
rately resolve the present flow problem. Gao and Leslie 
[5] have also performed these same calculations utilizing 
a similar numerical discretization. Our results employing 
the (64 x 65) grid are clearly less damped and show a larger 
phase change in the period of simulation than the ones re- 
ported by the mentioned authors. However, they have used 
a spatial resolution of (32 x 64) grid nodes only (actually 
the computational mesh was (32 x 4 x 64)). For this rea- 
son, the results of a sample computation using a (32 x 65) 
grid were included in Figure 3. These compare well with 
the results of Gao and Leslie [5], unequivocally indicating 
inadequate spatial resolution. 

Figure 4 shows the results produced by the application 
of scheme C. It has been observed that, for the present 
scheme. a spatial resolution of (32 x 65) is sufficient to yield 
accurate results. Further, the simulations were found to be 
nearly insensitive to the Courant number, up to C = 0.4. 

Finally, Figure 5 summarizes the results obtained em- 
ploying the three numerical schemes under scope, for a 
realistic Courant number (C = 0.2) if one bears in mind 
the aim of carrying out real fluid flow calculations. The 
solutions obtained with scheme B are very close to those 
generated by scheme C, but they require the double of 
control volumes. 

5 Conclusions 

An accuracy comparison of high-order finite difference 
schemes has been performed. The first scheme (QUICK- 
EST) employed a quadratic Leith-type of temporal dis- 
cretization together with the third-order accurate QUICK 
formulas for the approximation of the convective terms. 
The second scheme used the same spatial discretization 
but the time-stepping procedure was constructed using the 
Crank-Nicholson/Adams-Bashforth method. In the third 
scheme, Adams-Bashforth was used again for the time ad- 
vancement of variables; fourth-order accuracy was required 
for spatial discretization but, for the convective terms, 
fifth-order accurate upwind-biased differences were used. 

The finite difference methods were evaluated using two 
test cases: the evolution of small- and finite-amplitude dis- 
turbances in spatially periodic plane channel flow. The 
results obtained for these test cases allowed to quantify 
the grid and time-step requirements in order to obtain ac- 
curate results. As a reference for the comparison, linear 
stability theory and spectral method solutions have been 
used. The following conclusions were drawn: 

For the same spatial resolution, the QUICKEST 
•cheme required very low Courant numbers (C < 
0.05) to avoid that damping and phase errors cor- 
rupted the solution; 

. The second scheme has shown to be insensitive to the 

Courant number (at least up to C = 0.4; however, 
the method is still quite demanding with respect to 
grid requirements, as accurate results could only be 
produced employing a (64 x 65) computational grid: 

. The third finite difference scheme investigated in the 
present work demonstrated the ability to accurately 
perform the simulations embraced by the test cases 
employing only 50% of the control volumes required 
by the remaining methods; small sensitivity to the 
Courant number effect was also apparent from the 
simulations reported herein. 
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