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Abstract 

In this work we present a general approach for develop- 
ing high-order compact differencing schemes by utilizing 
the governing differential equation to help approximate 
truncation error terms. As an illustrative application we 
consider the stream-function vorticity form of the Navier 
Stokes equations, and provide driven cavity results. Some 
extensions to treat non-constant metric coefficients result- 

ing from mapping from a physical to a reference domain 
and to 3D potential problems are considered. Supporting 
numerical studies showing the higher-order rates of con- 
vergence and the local superconvergence at the nodes are 
presented. 
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1 Introduction 

The standard strategy for generating higher-order differ- 
ence schemes is to expand the stencil (see, for example, 
Leonard [8] or Castillo [4]). This has the obvious disad- 
vantages of creating larger matrix bandwidths, complicat- 
ing the numerical treatment near the boundaries and in- 
creasing communication requirements for implementation 
on parallel computer architectures. In light of the prob- 
lems caused by non-compact finite difference schemes, it 
is desirable to develop a class of schemes that are both 
high-order and compact. Hirsh [7] conducted numerical 
experiments with a class of high-order compact schemes in 
which the first and second derivatives are treated as un- 

knowns. This results in a mixed method and the approach 
is different than in the present work. 
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It is known that compact difference approximations ex- 
ist for certain operators that are higher-order than stan- 
dard schemes. As an example, for the 2D Laplacian, the 
difference coefficients at the nine grid points correspond- 
ing to the compact patch of four cells surrounding a given 
node can be selected so that the second-order truncation 

error terms cancel [19]. More generally, by utilizing the 
governing differential equation it is possible to produce 
alternative lower-derivative expressions equivalent to the 
higher-order truncation error terms [12]. These alterna- 
tive expressions can then be differenced compactly on the 
stencil, and this leads to a family of compact higher-order 
difference schemes [9, 10, 11, 1]. 

In the present work we provide a general formulation 
and approach for developing such higher-order compact 
(HOC) schemes for the prototype steady elliptic diffusion 
and convection-diffusion problems. We consider the exten- 
sion to problems with non-constant convection coefficients 
and apply this strategy for the decoupled stream-function 
vorticity formulation of the Navier-Stokes equations. Com- 
parison studies of the higher-order compact methods and 
standard methods for the driven cavity problem are made. 
We also examine the effects of non-constant metric coeffi- 

cients associated with mapping from a nonuniform grid on 
a physical domain to a uniform grid on a reference domain. 
Finally, we present a compact higher-order scheme for the 
Poisson equation in three dimensions. 

2 High-order compact schemes 

To introduce the basic idea, let us consider the elementary, 
steady, 1D convection diffusion equation, 

(1) d2& d•- - dx-- W +c = f, 

where ½ is the transport variable of interest and c and f are 
smooth functions of x. We define •x½i,n -- 1,2 to be the 
standard central difference operator for the n-th derivative 
of ½ at point i on a uniform grid of mesh size h. Central 
differencing (1) yields 

(2) -- •x20i q- CiSxOi -- Ti -- fi, 
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where •-i is the local truncation error at node i, 

h2 [ d3• d40] h- O(h4). (3) •-i: • [2c• 3 d2;4 i 
•% seek to approximate the leading term in (3) and 

include it in the difference formulation to yield an O(h 4) 
method. Assuming the solution is sufficiently regular, we 
may accomplish this by differentiating (1) to yield 

d3 q5 i [d20 dc d½ df ] dx 3 -- c•'x2 h- dx dx •x i' 
which can be approximated compactly as 

d30 i (4) dx 3 

and similarly 

d4o 

= 
-- 

-- 

: Ci6x20i h- 6xCi6x(•i -- 6xf i h- O(h2), 

d 0 dc d 2 & d 2 c dO d 2 f ] c d--•-3-.3 + 2 dx dx 2 • dx • dx d:c2 i' 

030 i • 2 Ci •x 3 + 26xc,6•:0i + 6xCi6xqSi- 
6•fi+O(h2). 

Relations (4) and (5) can be combined with (3) to yield 
the new truncation error expression: 

h 2 

Ci(•xfi h- (•.•fi I q- O(h4), 

which we can use to increase the accuracy of our approxi- 
mation (2). The resulting high-order compact scheme is 

-- Ai6x220i q- Ci6xOi -- Fz h- O(h4), 

where 

h 2 

(7) = 1 + - 
h 2 

h 2 

(9) Fi = fi + • (6•fi - ci6•fi) . 
The asymptotic convergence of the HOC formula ob- 

tained by dropping the O(h 4) term from (6) has been ver- 
ified previously [17]. We present here convergence results 
for the model problem c(z) = 10, f(x) = 0 on (0, 1) with 
boundary conditions ½(0) = 0, •(1) = 1, which has ex- 

e cx --1 
act solution 0 = •_•_œ. Figure i shows the experimental 
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Figure 1: Convergence for 1D convection diffusion, c = 10. 

asymptotic convergence rate m of the error E at the point 
x = 0.75 for the central difference scheme (CDS), upwind 
difference scheme (UDS) and the HOC scheme, computed 
by using the results for the meshes h = •2, h = •4' These 
experimental rates match the theoretical rates. 

In addition to greater accuracy. HOC schemes may sup- 
press or eliminate spurious numerical oscillations that arise 
in more standard lower-order schemes. For example, the 
HOC scheme for the homogeneous 1D convection-diffusion 
equation with constant convection has been proven non- 
oscillatory [12, 15] for all values of the product ch. This is 
demonstrated in Figure 2 for the case c = 50, h = 1/8, 
which clearly violates the well-known cell-Peclet condi- 
tion, ch < 2. Obviously, the CDS solution exhibits non- 
physical oscillations in the solution, while the HOC solu- 
tion is smooth. 

The curves in Figure 3 correspond to bounds on the con- 
dition number for each of the 3 schemes (CDS, UDS, and 
HOC) for the 1D convection diffusion problem. Here, we 
have graphed the bound as a function of cell-Peclet number 
ch. For a given ch the values of the curves give condition 
number bounds for large N (small h) for each of the re- 
spective methods. Clearly, utilizing the HOC correction 
terms results in a slightly higher condition number, which 
implies that an iterative solver should require more itera- 
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Figure 2: CDS and HOC solutions for c = 50, h = 1/8. 

12 I I HOG 
CDS --- / 

10 ......... 

8 

.. . J ...... .,/'[ 4 '" - • .... - 

• - ........... ( ...... •: ..................... 

0 I 
-10 -5 0 5 10 

ch 

Figure 3: Condition numbers for CDS, UDS and HOC in 
1D as a function of ch. 

tions to solve an HOC system than it would for CDS or 
UDS systems for the same problem data and grid. Some- 
what surprisingly, however, HOC formulations have been 
demonstrated [16] to solve faster than CDS or UDS using 
gradient-type solvers. This may indicate that HOC eigen- 
values are more tightly clustered or that HOC is particu- 
larly well-suited for diagonal scaling, which was utilized in 
the aforementioned experiments. This result, coupled with 
the fact that HOC schemes allow for much coarser grids, 
give HOC schemes a considerable performance advantage 
over more conventional schemes. 

3 Stream function vorticity 

As an illustrative practical application we consider the 
HOC solution of the stream function (•))/vorticity (•)form 
of the 2D Navier-Stokes equations for steady, incompress- 

ible flow. The governing equations are 

(10) -q72½ = (, 
(11) -q72(+ ReV. q7( : f, 

where f is a forcing function, the velocity V = ui + v), 
where { and ) are unit vectors in the x and y directions, 
respectively, and Re = --• is the Reynolds number, with 
U a characteristic velocity, L a characteristic length scale, 
and v the kinematic viscosity of the fluid. The governing 
equations are augmented by the auxiliary relations 

(12) u = Oy' v = Ox 

For the purposes of this study, we will consider wall bound- 
ary conditions, as these present some difficulty in maintain- 
ing high-order accuracy. The velocity relationships (12) 
can be used to relate any velocity boundary conditions to 
the stream function. For a wall boundary moving tangent 
to its surface with a constant velocity V•,, the no-slip. no- 
penetration condition becomes 

(13) On = +V•, O'•' = O, 
where n is the direction normal to the wall, and s is tangent 
to the wall. The latter equation implies ½' is constant on 
the boundary. Transport equations (10) and (11). together 
with velocity relations (12) plus boundary conditions (13) 
complete the mathematical description of the fully coupled 
stream-function vorticity problem. 

3.1 HOC formulas 

The HOC approximation to this system of equations can be 
derived in the same manner as for 1D convection diffusion 

and can be found in [18]. The HOC scheme for (10)is 

(14) 
2 h 22 

_ 

1 + 'i-5' + % + 

The HOC approximation for (11) is more complicated due 
to the non-constant convection velocity. It can be ex- 
pressed conveniently in the form 

(15) 
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where the coefficients Aij, Bi;, Cij, Dij, Fij and Gij are 
given by 

]./2 

: + 5 - 
h 2 

h 2 
2 dij 5y] cij, Cu = cu + • [5• + 5• - •uS• - 

h 2 

Dzj = dij + • [• + • - cij•x - dij•y] dij, 
h 2 

= + + - - 
Gij = 5yCij -- cijdij + 5xdij, 

and we let cij ---- Re.uij, and dij = Re.vij. We must 
also approximate the velocities u and v to a consistent 
degree of accuracy with respect to the rest of the numerical 
approximation. The HOC formulas are 

h 2 

(16) ui; ----- 6•c'•j + • (6y•ij + •½i•) + 0(•4), 
h2 

which are to be used in the vorticity transport equation. 
Compact approximations to the normal boundary con- 

dition • = •,. that maintain the same high-order of 
accuracy present a nontrivial challenge. This relation- 
ship requires one-sided differencing of ½ which in turn 
yields truncation error terms of O(h), O(h2), and O(h 3) 
which must be approximated compactly to yield an O(h 4) 
method. Still, such an approximation is possible. For ex- 
ample. consider a vertical wall on the left side of a rectan- 
gular cavity. After some algebraic manipulation, the HOC 

approximation to - • •J = Vl; 

(lS) --(•x •lj -- -]- 6 x 

h3 (1•½ Vlj•y- (•y2)] Clj -+-O(]g4) ---- 24 

h3 /•+c2 O(h4), vtj - •-• • • %v•j -f•) + 
where the operator 6•+ denotes one-sided forward differ- 
encing. Similar conditions can be derived for the remain- 
ing three walls of a rectangular cavity and lower-order ex- 
pressions (which will be needed later) may be obtained by 
dropping the appropriate higher-order terms in (18). 

Boundary conditions at the corners are handled in a sim- 
ilar manner. The restricted geometry at the corners pre- 
vents the derivation of a fourth-order compact formula, 

but a third-order approximation is possible. For example, 
at the upper left corner (xl y•), we can approximate ' On 

in both the horizontal and vertical directions. Summing 
these results and replacing high-order terms with appro- 
priate difference expressions, we obtain 

h /,2 

(19) + + + - = 
--Ul• • -- Ul• I-- 

h• [•;UlM + •;•1,•] + O(h3) 6 ' 

3.2 HOC results 

In the present work we use a decoupled block iterative 
scheme to solve the stream function vorticity system. Solu- 
tion proceeds from an initial vorticity iterate by first solv- 
ing (14) for •b with Dirichlet boundary conditions, using 
the current values for •b and • to update the velocities us- 
ing (16) and (17). Then these values are used in (15), (18), 
and (19) to solve for •, at which point the iterative proce- 
dure can be repeated. In practice, successive iterates may 
have to be under-relaxed in order to converge. That is to 
say, if • is the stream function computed from the first 
half of the decoupled algorithm, then ½ at iteration level 
n + 1 is given by 

½n+1 __ a:½' + (1 - w)V n, 

where • is the relaxation factor. 

To illustrate the O(h 4) accuracy, we construct a test 
problem with known solution by specifying the stream- 
function 

• -- --8(X -- 2•2)2(•/ -- y2)2 
on the unit square • = (0, 1) 2. The corresponding vorticity 
function, derived from equation (10), is 

( = 16[(6x 2 - 6x + 1)(y - y2).o + (x - x2)2(6y2 - 6/7 + 1)], 

and the velocities, derived from (12) are 

u = -16(x- x2)2(y-/72)(1- 2y), 
v = 16(x- x2)(1- 2x)(y- y2)2. 

This model problem was designed so that the no-slip, no- 
penetration condition holds for the velocities u and v on 
the boundary. The flow is driven by the forcing function 
f, which is constructed by substituting the above func- 
tions (, u and v in (11). In the following numerical test 
we solve the linear Stokes flow problem, Re = 0, to bet- 
ter isolate the effect of the choice of boundary condition 
accuracy. The fourth-order scheme is applied in the inte- 
rior and O(h2), O(h 3) and O(h 4) boundary conditions are 
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Figure 4: HOC vorticity error convergence plot on the 
boundary for the (•'. () model problem with Re = O. 
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Figure 5: HOC vorticity error convergence plots at the 
midpoint for the (•. () model problem with Re = O. 

compared. Figures 4 and 5 show the vorticity error at a 
representative boundary point (x = 0.5, y = 0), and at 
the midpoint (x = y = 0.5) respectively for a succession 
of meshes and for each of the following implementations 
of the wall boundary conditions: O(h 2) boundary condi- 
tions are labeled :'SECOND" in the plots, O(h 3) bound- 
ary conditions are labeled "THIRD," and O(h 4) boundary 
conditions are labeled "FOURTH." The experimental con- 
vergence rates at the stated points are computed as in the 
1D example. and are seen to agree with the theoretical 
rates. 

The second problem studied was the lid-driven cavity 
flow. a standard test case for steady Navier-Stokes compu- 
tations with numerous published results that can be used 
for comparison purposes. This problem is complicated, 
however, by the presence of two corner singularities [6]. 
We consider the unit cavity again with horizontal lid ve- 
locity u = 1, v - 0 along the top. On the remaining sides 

The HOC (•b, () approximation provides highly accurate 
results for the driven cavity when O(h 3) boundary con- 
ditions are used. Somewhat surprisingly, though, O(h 4) 
boundary conditions result in isolated oscillations in the 
vorticity on the moving wall. More complete results can 

be found in [18], but some conclusions are summarized 
here. The fourth-order boundary conditions can lead to 
oscillations in the vorticity solution along (and only along) 
the moving wall if the cell-Peclet condition, Re ß h < 2 is 
violated. An example of this is depicted in Figure 6. This 
is most likely due to the presence of the convective term 
tangent to the wall in (18). Supporting this conclusion 
is the fact that no oscillations appear on stationary walls 
(where this term is zero) and no oscillations appear at all 
if third-order BCs are utilized by neglecting the high-order 
term which contains the convective contribution. 

For this reason, third-order boundary conditions were 
used to solve the driven cavity problem. In a similar vein, 
at the two upper corners where singularities exist, lower- 
order corner boundary conditions worked best. Therefore, 
O (h 2) B Cs, the lowest-order approximation which still uti- 
lize the vorticity were used at the corners. 

As an example of HOC driven cavity results, we present 
results for the relatively convective case of Re = 1000 on 
a coarse grid of 41 x 41. For such data, the CDS solution 
is wildly oscillatory and not included. The UDS yields 
smooth but inaccurate results. We compare our HOC re- 
sults to the fine-grid (129 x 129) second-order results of 
Ghia, et al [5]. Figures 7 and 8 show cross-sections of the 
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velocities on the interior of the cavity, and Figure 9 shows 
the vorticity along the moving wall. Clearly, the HOC 
results are far superior to the UDS results and achieve ac- 
curacy comparable to the reference results using roughly 
10• of the number of grid points. 

4 Some extensions 

The HOC examples shown so far give promising results, 
but there are some undesirable restrictions. For exam- 

ple, the approximations described above require uniformly 
spaced meshes. Also, HOC schemes offer the greatest 
promise for 3D applications, but the algebraic complexity 
of these numerical schemes grow with problem dimension 
and complexity. In this section we hope to address some 

of these issues and give an indication of future areas of 
research in the area of HOC finite differences. 

4.1 Nonuniform grids in 1D 

It is common practice in numerical methods to map the 
given problem from the physical domain •2 to a reference 
domain • and to solve the transformed problem approx- 
imately on • using a uniform difference grid. Since the 
HOC methods have been constructed for uniform grids, 
this mapping formulation is a natural approach for ex- 
tending the ideas to nonuniform grids. However, as we 
shall demonstrate, there are additional considerations that 
must be addressed for the compact schemes to remain high- 
order. 
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As a first step, we restrict the treatment to the 1D case 
and again consider the model convection diffusion equation 

(20) d 2o + u(x) = 
with the familiar boundary conditions 0(0) = 0, 0(1)= 1. 
Let us construct a map x = x(•) to transform (20) from a 
graded mesh on 0 _< x _< I to a uniform mesh on 0 _< • _< 1. 
The transformed equation is simply 

(21) - •xx d• '7 + • d x 2 ] • = • ' 
where •(•) = 0(x(•)), a(•) = u(x(•)), •0(•) = g(x(•)), and 
the metric coefficients • and •d•-•-2i now enter the formula- 
tion. It is well known that the metric coefficients in (21) 
must be approximated accurately. Here, we are specifically 
interested in retaining accuracy within the high-order com- 
pact framework. 

Provided the map is regular and non-degenerate (so that 
d-X" • 0) we can write (21) convenientIv in the form rig' • 

(22) d2c} d• - + = 
where 

(23) C(•): dx dx 2 f(•)_ •0 

Equation (22) is in exactly the same form as (1), so we 
can apply the previous HOC scheme in (6) to the mapped 
problem. However, note that the coefficients in (7)-(9) 
involve differences of the rational expressions in (23) and 
these, in turn, contain first and second derivatives of the 
transformation function. This implies not only more com- 
putational work to implement (6), but also raises some im- 
portant open questions concerning the effect of the trans- 
formation and difference approximations in the compact 
formulation. 

Consider the model 1D test problem again. To illustrate 
the idea let us introduce the mapping function 

(24) x(() = • + 2 sin w•, 0 5 • • 1, 

where V is the grading p•ameter. The map is invertible 
for I•/•< 1; • > 0 corresponds to compression (clustering) 
to the right and similarly to the left for 7 < 0. In the 

• which corresponds following calculations we choose 7 = • 
to a moderate grading to the right. 

The test problem was computed on a sequence of uni- 
• • • for u = 20. The error formly refined grids h = 4, s .... eq 
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Figure 10: Convergence results for 1D convection diffusion 
on a nonuniform grid with exact metrics, u = 20. 

was computed in the same manner as the 1D example on 
uniform grids at representative grid point xi = x(•i = 
0.75), and is graphed in Figure 10 against mesh size h 
on a log-log scale for the central difference scheme (CDS). 
upwind difference scheme (UDS) and high-order compact 
(HOC) scheme. The calculations for the high-order scheme 
utilize full knowledge of the analytic map (24) to compute 
the metric derivatives • and dd2•-• exactly. and the optimal 
superconvergent O(h 4) rate is obtained. 

In practice, the map may not be specified analytically 
and the metric coefficients may have to be differenced. We 
examine the effect of this approximation using the grid 
from the preceding test. That is, we take precisely the 
nonuniform grid generated by (24) and evaluate the en- 
tries in (23) at each point by locally differencing for dd-•x 
and dd•. This would be a natural approach given an ar- 
bitrary graded mesh {xi}. The results for the compact 
formula (6) with this approximation are summarized in 
Figure 11. Note that the effect of approximating the met- 
ric derivatives by differences is to degrade the asymptotic 
rate of the HOC scheme reducing it to O(h2), although for 
the case u - 20 the HOC scheme is almost an order of 

magnitude more accurate than for the CDS. 
This is encouraging, but the mesh gradation is mild and 
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the Peclet number of 50 is quite moderate so the boundary 
layer near x = I is relatively modest. The ability of the 
method to function with more strongly graded meshes and 
at higher convection levels is therefore relevant. In fact, if 
faithful representation of the layer structure is desired then 
the mesh should be graded so that there are a few grid 
points guaranteed to lie within the layer. Figure 12 shows 
the boundary layer results for 1D convection diffusion on 
a nonuniform grid with u: 500, 7 = 0.9 and h = 1/40. 
Clearly there is excellent agreement with the exact solution 
using only a few points to resolve the layer. 

If the map x(() is not known explicitly, it may have been 
generated by the numerical solution of some differential 
equation (as in PDE grid generators). It is then possible 
to recover the full O(h 4) estimate suggested by (6) in a 
manner analogous to the •vay in which the HOC scheme 
was developed for the governing transport equation. To 
illustrate this idea, let us introduce the boundary value 
problem 

d2x 
(25) + •r2z = •r2•, 

d• 2 

•vith boundary conditions x(0) = 0, x(1) = 1, which cor- 
responds to a Helmholtz PDE grid generator in 1D with 
a positive source term proportional to •. The exact so- 

lution is precisely the grading function x(•) in (24). Let 
us assume now that the grid (and indirectly the map) is 
generated by solving (25) accurately using a uniform grid. 
Now (25) can be used as an auxiliary relation for the differ- 

ence approximation of the metrics • and d2g • at grid point 
i. Specifically, we can use HOC methodology to derive 

which are O(h 4) approximations to the metric derivatives 
of interest [17]. 

Figure 13 shows the convergence results for the case 
where the metrics are computed using this auxiliary 
equation •. The HOC method does in fact recover the op- 
timal O(h 4) result. 

•As an alternative to utilizing a relation such as (25) in this way, 
one could simply use more adjacent grid points to approximate the 
metric derivatives more accurately. While this is counter to the goals 
of a compact representation, it may be acceptable since the grid 
metric coefficients can be computed explicitly prior to constructing 
the HOC stencils. This implies that the HOC scheme (6) can be 
constructed even for very irregular grids in 1D where there is no 
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Figure 13: Convergence results for 1D convection diffusion 
on a nonuniform grid with approximated metrics using an 
auxiliary equation, u: 20. 

4.2 3D Poisson 

An O(h ø) conspact scheme for Laplace's equation in 2D has 
been available in the literature for sonhe time [19, 2]. Here, 
we present a construction for the 3D Poisson equation on 
a structured grid, leading to an O(h 6) scheme for the case 
where the necessary derivatives of the source term can be 
obtained explicitly and O(h 4) where differencing is used to 
compute these derivatives. 

Consider the Poisson equation 

for specified forcing function f in 3D domain F• with ap- 
propriate boundary conditions on c9F•. Using the same 
approach as in the rest of this work, a sixth-order HOC 

specified algebraic mapping function or PDE grid generator a priori. 
For example. the mapping x(•) could be constructed for a set of 
points {x•} using the Lagrange basis on the domain. 

approximation to (26) on a uniform grid is 

(27) 

ijk 
where V '4 is the bi-harmonic operator. The resulting sten- 
cil involves all 27 grid points surrounding an arbitrary in- 
terior node, including the 8 corner points, and is depicted 
in Figure 14, along with the resulting matrix coefficient 
entries. 

z 

3 14 

3 8 

1 

x 30h2 

Figure 14: 27-Point O(h •) HOC Stencil. 

Equation (27) is O(h •) accurate only if the higher-order 
derivatives of f can be computed analytically. If this is 
not the case (equation (10) is a good example) then we are 
limited to O(h4). Neglecting the O(h 4) terms from (27) 
yields a simpler stencil, depicted in Figure 15, that does 
not involve the 8 corner nodes of the associated cube. 

As a 3D test case we constructed a problem with a non- 
zero forcing function. For the domain F• = (0, 1) 3 with 
4> - 0 on the entire boundary &F• and forcing function 

f = -37r 2 sin 7rx sin 7ry sin 7rz, 

the exact solution to (26) is 

sin rrx sin 7ry sin 7rz. 

The results for central differencing, fourth-order compact 
(HOC4) and sixth-order compact (HOC6) are presented in 
Figure 16. The sequence of mesh sizes is h - • • • 1 2 • 4' 6• •' 
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10 , 

1 

Figure 15: 19-Point O(h 4) HOC Stencil. 

and • and rather than measure the error at a single point, 
we examine a more global measure of the error, namely 

E __ eijk 
N 

where .¾ is the total number of grid points and eijk = 
o•.3•,. - o(x•. y3. z•). The predicted convergence rates were 
achieved. 

5 Conclusions 

In this study we describe a strategy for developing HOC 
difference formulas and demonstrate the performance of 
such schemes for representative problems in one, two, and 
three dimensions. The methods are appealing since they 
provide high accuracy on coarse grids and this can signifi- 
cantly impact CPU time, particularly in 2D and 3D appli- 
cations such as the viscous flow example where results on 
a 41 x 41 HOC grid are superior to those in the literature 
for a 129 x 129 grid using a more conventional method. 
We have also shown that the methods may be more robust 
insofar as numerical oscillations are concerned. 

Some extensions to nonuniform grids obtained by map- 
ping are also considered and we are presently extending 
the approach to certain classes of nonlinear problems. The 
present treatment considers only equilibrium problems but 
clearly can be applied to evolution PDEs. Indeed there are 
often related studies in the literature (e.g., see [8, 14]). In 
some sense the ideas here are related to superconvergence 
theory which is a topical research area in finite element 
analysis, but primarily as a post-processing technique [3]. 
There have also been some related investigations of Petrow 
Galerkin finite element schemes where similar high nodal 
accuracy is attained [13, 20]. Clearly, there are many 

le-01 

le-02 

le-03 

le-04 

le-05 

le-06 

CDS * 
m=1.86 ..... 

HOC4 + 
m=3.89 

HOC6 [] 
m=5.89 - - - 

le-07 • ........ 
0.10 1.00 

h 

Figure 16: Convergence Rates for 3D model problem. 

issues that still need to be investigated with regard to 
these higher-order compact schemes. These include their 
use for multi-grid problems, post-processing strategies and 
mixed methods (for example, we have recently extended 
the method to mixed methods for elliptic problems). Fi- 
nally, we remark that the main difficulty we perceive is the 
formidable algebra that must be carried out to formulate 
the method for more complex PDEs. Symbolic manipula- 
tors hold some promise here but have not produced useful 
results to date. 
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