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Abstract 

Advection-diffusion equations are often used as kernels for 
the simulation of various kinds of problems. When dealing 
with Navier-Stokes problems for instance the ratio of the 
advective part to the diffusive one is represented by the 
flow Reynolds number. Domain decomposition methods 
based on Dirichlet/Neumann iterations are effective only 
when the diffusive part is dominant, whereas if the con- 
vective part becomes more relevant the natural interface 
conditions may produce instabilities. 

Moving from these considerations we apply the adap- 
tive methods ADN and ARN for the simulation of prob- 
lems which develop internal or boundary layers holding the 
s•noothness of the numerical solution and keeping a very 
effective rate of convergence. 
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1 Introduction 

In this paper we are interested in some applications of the 
adaptive schemes introduced in [5]. These schemes were 
proposed to solve Advection-Diffusion (AD) equations in 
the framework of nonoverlapping multidomain partitions. 

These equations could be the numerical kernel of var- 
ious kinds of problems. In particular, in this paper we 
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will investigate the simulation of incompressible Navier- 
Stokes equations in case of high Reynolds number. Since 
the diffusive part of the equation depends on this number, 
whereas the convective part is associated to the velocity 
of the flow, we may therefore have to treat AD equations 
that are donfinated by advection. 

It is well known that in the domain decomposition frame- 
work the classical Dirichlet/Neumann method can perform 
very poorly when equations are dominated by convection. 
These instabilities are due to treatments of interfaces which 

although being mathematically correct, are inconsistent 
with the hyperbolic limit of the advection-diffusion equa- 
tion. 

In the following we give a short outline of the paper. 
In Section 2 we illustrate the advection-diffusion equa- 

tion and its weak formulation with several choices of 

boundary conditions. 
In Section 3 we recall the classical Dirichlet/Neumann 

method and the adaptive methods proposed in [5] called 
ADN and ARN methods. Moreover we extend the analy- 
sis to the case of subdomain partitions with internal cross 
points (i.e. a common point of four subdomains) 

In Section 4 we illustrate the behavior of the adaptive 
schemes when dealing with vector fields which form dif- 
ferent angles of incidence with the interface. Simulations 
of physical problems with boundary layer are shown using 
different subdomain partitions. 

In Section 5 we investigate a nonlinear time dependent 
extension of the AD equation. We use the ARN method 
at each time level and we show that the numerical solution 

holds its smoothness although it develops an internal layer 
during the time evolution. 

Finally, in Section 6 we consider the approximation of 
the incompressible Navier Stokes equation. W'e make use 
of a projection method introduced by Chorin in [6] and 
Temam in [18]. We show, as numerical test, a simulation 
of the so called driven cavity. 

All the numerical experiments refer to a discrete approx- 
imation by spectral collocation methods. 

423 
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2 The differential equation 

2.1 The advection-diffusion boundary 
value problem 

We consider the boundary-value problem: 

(1){L,u-=-eAu+b.Vu+au=f inf• u = g on oqf• 

where a > 0, f• is a two dintensional domain with boundary 
0•2, b, g and f are given functions. 

Let us consider a partition of f• by M non intersect- 
ing open subdomains f•i i=I,...,M and denote by F,,3 = 
0•2, • Of•j i, j=i,...,M the common boundary between f•i 
and •2• (see Fig. 1). 

Under these assumptions, problem (1) can be refornm- 
lated as follows: 

Find {u• =_ ul•,} i:l,...,M such that, setting {f• _= 
fl_o.,}: 

where 

0 u, _Sb.n,u 8=0orl, 'I'l•)(u•') -- • 0 n• 
n• is the outward normal unit vector to cgf•, and o de- 
notes the normal derivative on 0•2i. 

Both choices of 6: 0 and 8: 1 are suitable. 

2.2 Variational multidomain formulations 

and interface conditions 

To start with, let us define 

Moreover, let us set 

H•(f•):{ulu•H •(f•) ß u=0on 
and 

tq• (n) = {ulu • tq • (n) ß u: g on On} 

(see [10]). 
Let us consider problem (1) in case of 5=0. 
The weak form of (1) (which is formally obtained multi- 

plying the first equation by a test function v 6 H i (f•) and 
using the Green formula) is: 

Find u • Ho 1 (f•): 

V u. V v +(b. V u) v+a uv]df•= 

Now, if we set: 

(4) 

Jfn, [s Vu. Vv +(b.Vu) v+a uv]dfh 

is readily seen that (3) is equivalent to the following mul- 
tidomain problem: 

Find {u i •-• ulf2, } i=i,...,•Vl such that. setting {f, _= 

(•) 

0 / • (•, •) = f•,dU• w, e H• (n•) 

u, = g on Of• • Ofh 

ui = uj on F,.j 

Z ap (ltl, ½I) ---- • fl½Id•l 
/--1 /=1 

where i. j = 1, ..., M. 

ß is the space of traces on F = [Ji.j=• F,.j of the fi•nc- 
lions of H• (f•) (see [10]), and 0• denotes any possible con- 
tinuous extension of ;v to •2i (e.g., its harmonic extension). 

Note that from (5) we can easily deduce (2). As a matter 
of fact, counterintegrating by parts the last equation of 
(5) and using the previous equations, we obtain the flux 
balance condition: 

Ou Ou 
(6) e-- + •-- = 0 on Fi,j 

Oni Onj 

When 8=1, we provide a different weak formulation of (1). 
which is alternative to (3). The difference stands from the 
fact that this time we also integrate by parts the convective 
term, and obtain: 
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•'-•5 
F4,5 

I '441 F,2 F4,s 
r2,3 r3,4 

Figure 1: Two examples of computational regions partitioned into non overlapping subdomains (M=5) 

aø(u.v)_ = /[-: I7 u. V v - div(bv) u +a uv]dD= 

The multidomain formulation of (7) still takes the form 
(5), provided now •)is used instead of ½}0) and a i 
instead of a½ (u, v), where: 

(8) a i 

In turns, this is now the weak formulation of (2) and the 
transmission condition in the current case reads: 

( ) Ou _ b ß niui + *•j b . njuj = 0 S Oni 
(9) on 

3 Subdomain iterative methods 

3.1 Multidomain methods based on 

Dirichlet/Neumann iterations 
For the sake of simplicity we split the domain D into two 
non overlapping subdomains 12• and 122 and denote by F•,2 

their interface. Then the Dirichlet/Neumann subdomain 
iteration procedure for problem (1) reads: 

for a given value A •, we look for a sequence u/k with k _>1 
and i=1.2 such that: 

Ls u• k =f• inQx u• = g on 0f• f3 0fi• 
'u• •' -- A k on Fl.2 

(10) 

where 

L, u2 k -- f2 in D2 u• = g on OD f-) 0122 
,,,(0), k, •[0) Ul k 0 •2 tu2•+ ( )= on 

A k+l _____ 0 U2 d- (1 - 0) A k on 

Choosing a suitable parameter 0 > 0 is necessary to 
achieve convergence. 

For the convergence analysis in case of a self adjoint 
operator see e.g. [1, 8, 11]. 

When s tends to zero the effectiveness of the Dirich- 

let/Neumann method can deteriorate (see [5]). This is due 
to the fact that the interface conditions can be inconsis- 

tent with the hyperbolic limit of the Advection-Diffusion 
equation. In [5] we have proposed two different approaches 
to avoid these instabilities. 

The first approach (Adaptive Dirichlet Neumann 
method, ADN for short) is simply based on an adaptive 
choice of the Dirichlet and Neumann interface conditions 

according to the direction of the vector field b. 
Indeed, when b.n r is positive on a side of the inter- 

face Neumann conditions are there imposed. whereas when 
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b.n r is negative Dirichlet conditions are in order (here n r 
represents the outward normal unit vector to the interface 

The second approach (ARN for short) comes directly 
from the variational formulation (7) of the differential 
problem (1). 

This new approach has been named Adaptive Robin 
Neumann method as it replaces Dirichlet interface con- 
ditions with the Robin ones. 

Under the same assumptions used for the Dirich- 
let/Neumann scheme we can formulate the ARN method 
as follows: 

for a given value A •, /• and u• we look for a sequence 
u½. with k _>1 and i=1,2 such that: 

L• u• = f• in 
___ 

= o• F• n 

(11) 

where 

on r• n 

and 

• k+l : 0 Ul k q_ (1 -- 0) •t k on r• •'t 

We have set F} n =- {xEF1,2 ß b.nl<0} andF• •t • 
{x G F•,2 ' b.n• ) 0} 

We remind that the interface conditions required in this 
approach still impose the continuity of the solution along 
the interface provided b.nl • 0 (and then we can still 
look for a numerical solution in HJ (fi)). 

The formulation (11) differs slightly from the one in [5] 
for what concerns the rel•ation procedure. In this c•e we 
apply the procedure on the whole Robin interface operator 
•) i=1,2, 

(e O•-b-nlu•) =-0 (e O•-b.n2u•) + On • On 2 

(1--O) e On2 -b.n2u 2 onF1,2 
and not only on the second part 

eOn• b nlu• +b.n2 

(0 u• + (1 - 0 ) u 2 on rl, 2. 

F14= I'41 Cp 

•"•1 F12= F21 
Figure 2: The partition of [2 with an internal cross point 

Figure 3: The effect of the vector field b t = (1, 1) 

3.2 Multidomain formulation with "cross 

points" 

In this Section we will illustrate the implementation of 
the adaptive schemes proposed when the computational 
domain [2 is partitioned in at least four subregions with a 
common vertex (the so called cross point). 

For the sake of simplicity, let us consider a domain f• 
partitioned in four subdomains as in Fig. 2. 

When using Dirichlet/Neumann schemes the choice of 
interface conditions for internal cross points is a very cru- 
cial problem. In general ones should impose a Dirichlet 
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condition on each subdomain and then correct this value 

using a particular equation related to the variational for- 
mulation of the differential problem (see [12]). 

Using ADN and ARN methods, we would like to avoid 
the Dirichlet condition on each subdomain and at the same 

time we would like to use the adaptive conditions even at 
the internal cross point. 

To start with, let us consider the boundary value prob- 
lem (1) where f• is a computational domain partitioned as 
in Fig. 2. 

For simplicity let us suppose to deal with b t -- (1, 1). 
Recalling the effects of the vector field b in the choice 

of interface conditions in the adaptive schemes,ADN and 
ARN, we have a situation that can be represented as in 
Fig. 3. 

Then the ARN scheme proposed reads as follows: 
for given values A• ø, u• and u4 ø, we look for a sequence 

u, •, with k _> I and i = 1, 2, 3, 4 such that: 

(12) 

in 
on Of• • 
on 
on F14 
on Cp 

or,(1) / W32 •,U3) : --kI/•)(/Z2 k-l) 
W34 [/-/3) -- 

•l'•(•t w tI'(1)% • = 'd3'2=12 (/Z3 k) + 34 14 k 3) 
re(l) .-(1), k--l\ --•:23'•21 (U2 k-l) --0343W41 [U 4 ) 

in •3 
on (• N øq•3 
on F32 
on F34 
on Cp 

k 

L• Up = fp in k 

Up = g on 0fi •10•2p 
=pl -- :': lp \"'1/ on Fpl 
•D(o)(up• ) .,.(o), k, on Fp3 =p3 = -- W3p [/23 ) 
k (A1 • + u3•)/2 on Cp /gp -- 

where p = 2, 4, A1 • = OUl i + (1 - 0)/•1 k--1 on F12 [.J F14 and 

(,) Ou _ 6b.niju with nij the unit normal vector ,r o (u) = • O-•ij 
from •2• to •2j. 

We remind that the weights Odij are related to the Gauss 
Lobatto quadrature weights according to the variational 
formulation of the differential problem. 

The ADN scheme can be obtained in a very easy way 
from the ARN one substituting Robin conditions with 

Dirichlet conditions and taking Wp3 -- Wap = 1/2 with 
p = 2, 4 in the second step of the scheme (12). 

For more general vector fields b the generalization of 
the scheme is straightforward. The only exceptions are 
those related to a vector field orthogonal to one edge of 
the subdomains (i.e. in Fig. 3 ½ =0, 7r/2, 7r, ...). In such a 
case we could impose the interface conditions as if b was 
ingoing (or outgoing) to one subdomain. For instance, if 
b t = (1, 0) (i.e. ½ = 7r/2) we can arbitrary decide to require 
the interface conditions as if b t = (1 +v, 0) with v > 0 (and 
therefore we can use scheme (12)). 

4 Numerical results 

In this section we want to study the behavior of the adap- 
tive methods proposed when the vector field b forms dif- 
ferent angles of incidence ;vith the interface F. It is ;yell 
known that this angle influences the effectiveness of several 
subdomain iterative schemes when dealing with convective 
dominated equations (see [17, 2]). 

We consider a computational donrain f] =(-1,1)x(0.1) 
partitioned in two subdomains with common interface F = 
{(as, y) : as=0, 0<y< 1}. 

The domain decomposition methods introduced before 
can be implemented using any kind of finite dimensional 
method to approximate the boundary value problems in- 
duced on each subdomain. 

Here, we use the spectral collocation method with a weak 
treatment of boundary and interface conditions. For de- 
tails see, e.g., [4, 13, 7]. 

The boundary value problem considered is 

cos q 

u = g on Of] 

Note that the magnitude of the vector field b is equal 
to one independently of the angle ½ (see Fig. 4 and 5). 
To start with, we consider as test function u(x, y) = e '•+y, 
the right hand side f and the boundary values are com- 
puted accordingly. The numerical approximation is based 
on the spectral collocation method using 10x10 nodes in 
each subdomain. 

The stopping criterion is fulfilled when the difference be- 
tween two subsequent iterates is less than 10 -•ø (Euclidean 
norm of the relative error). 

We can see in Fig. 6 that the optimal number of ADN 
iterations grows smoothly as far the angle • tends to zero, 
whereas in ARN method if g is close to zero the conver- 

gence rate deteriorates when e gets large. Such behavior 
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(-1,0) 0 

(1,1) 

Figure 4: Vector field b with an angle of •r/4. 

70 • 

60 • O ADNg =1.E-4 
] • [] ARN• =1.E-4 

50 •- • •, ADNg=I.E-3 
X ARN_____• =1.E-__3 

NIT 3O 

10 

0,00 0,01 0,02 0,05 0,10 0,20 0,39 0,79 1,57 

radiant (•) 

(1,1) 
¾¾ 

1 f 2 

(-1,0) 0 

Figure 5: Vector field b with an angie of •r/2. 

is strictly related to the Robin interface conditions •I l) 
imposed. Involving the normal derivative weighted with 
the viscosity z. the Robin condition deteriorates the con- 

vergence as far ]b--•nrl grows on the interface. In this case 
the conditions 9? ) and 910) tend to be the same (in par- 
ticular 91 •) converges to 9? )) and ARN method becomes 
unstable. 

The convergence of the ARN method, however, looks 
optimal even in the case of b .nr=0 when z gets small 
(see in Fig. 6 the curve relative to e = 10-4). In this 
case actually both the interface conditions involved by 9? 
and 91 l) can be written as follows (we recall that a weak 
treatment is in order), 

Figure 6: Number of iterations for ADN and ARN methods 

(14) 
w L, u• +0(• ) Onx -- 

(f2 - œE 

XVe remind that (14) is the weak formulation of the Neu- 
mann condition ([4]) and therefore co and • are related to 
the weights of the Gauss Lobatto quadrature formula. 

In ARN method co is exactly one of them xvhereas 
is still a weight of the Gauss Lobatto formula but it is 
nmltiplied by a factor dependent on the magnitude of 
in the computational subdomain •2i. Thus, when z is close 
to zero the condition (14) tends to be the natural outflow 
condition for the hyperbolic limit of the advection-diffusion 
equation, which reads, 

(15) Lo u• = f• 

In the second test problem we consider the same differ- 
ential operator as in (13). In this case, however, we are 
interested in a physical problem with boundary layers. 

Then we prescribe the numerical solution to be zero on 
the boundary of the computational domain and the right 
hand side f equal to one. 

When • tends to zero the solution develops a boundary 
layer depending on the direction of the vector field b. For 
instance if ½ is equal to • the layer will be close to the 
right edge of the domain, whereas when ½ is equal to • it 
will develop on the top-right vertex of the dmnain (see Fig. 
7,8,9 and 10). 
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I 

0.5 

O, 

1 -1 

Figure 7: • - 10 -2, ½ = •r/2, 0 = 1, 6x6 and 9 iterations 

In each example we have used a different subdomain par- 
tition in order to capture the development of the bound- 
ary layer. Figures 7 and 8 refer to the following de- 
composition: •] =(-1,0.95)x(0,1) and •2 =(0.95,1)x(0,1). 
For the last two figures we have: •t• -(-1,0.95)x(0,0.95), 
f•2 =(0.95,1)x(0,0.95), [23 =(0.95,1)x(0.95,1) and •4 =(- 
1,0.95)x(0.95,1). We report in the captions of the figures 
the degrees of freedom used and the number of iterations 
obtained to get convergence using the ARN scheme. 

Notice that in the last two examples we have used a 
partition containing a cross point as described in the last 
section. 

To illustrate in particular the behavior of the conditions 
described in Section 3.2 we show in Fig. 11 the number of 
iterations with respect to the impinging angle •. Further 
we report in the round brackets of the legend the relaxation 
parameter 0. The numerical approximation is still based 
on the spectral collocation method using 12x12 nodes in 
each subdomain. 

The stopping criterion is fulfilled when the difference be- 
tween two subsequent iterates is less than 10 -m (Euclidean 
norm of the relative error). 

As we can see, the convergence rate deteriorates as far 
as the angle tends to zero. This is due to the fact that if 
b-n r tends to zero the Robin and Neumann conditions 
are very similar as previous explained. 

When s in not sufficiently small, using the ARN scheme 

Figure 8: s = 10 -3, • - •'/2, 0 = 0.98, 16x16 and 7 
iterations 

is equivalent to impose on both sides of the interface Neu- 
mann conditions and this produces instabilities which af- 
fect the effectiveness of the scheme. 

To avoid this lack of consistency we imposed a lower 
bound on b.nij. When lb-n/j[ is less than •/s (where •/is a 
fixed constant) we add to b.nij the quantity -•/s + b.nij 
(we recall that b.nij is less than zero because we are 
considering inflow boundary points). In practice the Robin 
condition imposed becomes: 

Ou 

ß •) (u): s a--•-•j + max (lb. 0s) u. 
We can see in Fig. 11 how • = 10 (see the round brack- 

ets in the legend) improves the rate of convergence of the 
scheme in case of small •. 

Finally in Fig. 12 we illustrate the behavior of the 
scheme with respect to the degrees of freedom. As we 
can see, when the impinging angle is small the correction 
introduced before doesn't seem to be still effective. 

Since no theory is available at the moment, we can just 
give some heuristic explanation to this bad behavior. 

When we increase the number of degrees of freedom 
the spectral approximation of the differential operator be- 
comes in some sense more elliptic. The eigenvalues of the 
pseudospectral operator actually grow like N 4 where N is 
the polynomial degree used in the approximation. 
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70 ]- I --O--ARN0'I) 
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50 1 I X--AP-•U.•) 40 
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oJ- 
[ 

4 8 16 32 64 128 500 5000 

k 

Figure 9: e = 10 -2 . • = rr/4, 0 = 0.96, 10x10 and 12 
iterations 

Figure 11: Number of iterations for ADN and ARN meth- 
ods with an impinging angie g = •r/k 

1.5 

0.5 • • 0.5 
1 

Figure 10: e = 2 10 -3, • -- •r/4, 0 = 1.1, 12x12 and 17 
iterations 

However the second order operator is multiplied by e and 
this allows us to treat the whole operator like an hyperbolic 
one when N is quite small. 

On the contrary when N grows the pseudospectral oper- 
ator is more elliptic and then the Robin condition involved 
in the ARN scheme is no more sufficient to ensure a fast 

convergence. 

Since the normal derivative is a first order operator and 
since for first order operators the eigenvalues of the spec- 
tral approximation grow like N 2, we haxre chosen 0 • a 

linear function of N 2 (i.e. '• = --) obtaining a sensi- 
14 

ble improving in the convergence rate as shown in Fig. 12 
(the case labeled in the legend with a star). 

In the third test problem we consider a vector field b 
that changes direction along the interface F. In particular 
we have chosen 

(sin (•(2y- 1)) ) b = x (5(2y - 
Note that the magnitude of b is still equal to one. 
The computational domain and the test function are still 

those considered in the first example. Fig. 13 shows the 
number of iterations using ARN and ADN metho• for 
different choices of the relaxation parameter 0. ARN looks 
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0.50 0,55 0,60 0.65 0.70 0,75 0,80 0,85 0.90 

Figure 12: Number of iterations for the ARN scheme with 
an impinging angle q = •r/k, k=4 and 500 

tnore stable than ADN. Moreover in ARN method the op- 
timal relaxation parameter is bigger than the one of ADN 
and consequently less iterations are occurred to get con- 
vergence. 

The numerical approximation is still based on the spec- 
tral collocation method using 10x10 nodes in each subdo- 
main. Again the stopping criterion is fulfilled when the dif- 
ference between two subsequent iterates is less than 10 -1ø 
(Euclidean norm of the relative error). 

5 Extension to the nonlinear case 

In this section we are interested in the extension of the pre- 
vious approach to a time dependent nonlinear advection- 
diffusion equation. We consider the model problem, 

Ou 

zx u + ß v u+a, = / 
(17) in a x (0, r) 

where b(u) is a vector function depending on u. 
To advance in time, we introduce a finite difference tem- 

poral approximation. We note by u k the value of u at the 
time level (k At), where At is the temporal discretization 
parameter. 

We consider a semi-implicit scheme as follows: 

Figure 13: Number of iterations for ADN and ARN 
methods for the vector field b = (sin(.•(2y-1)), 
cos(•(2y- 1))) t 

Given u ø, solve 

(1)uk+ • uk+, •-•+a -,/X +b(u •) .V = 

(18) =/•+1 + A'• k = 0, 1 .... 
In this way at each time level we have to solve an 

advection-diffusion problem like the one faced in Sections 
3.1 and 3.2. 

Using ARN for instance the interface conditions between 
• and •2 become (for simplicity we report only the con- 
ditions relative to u• +•, the ones for u• +• are imposed in 
a similar way): 

s On• -b(u•)-n• = 
Ou k+l . u• +1 _• 2 +b(u•) n2 0n2 

0u• k+i 0u2 k+i 
Onl On2 

(19) 

ifb(ul•).nl<0 

otherwise. 
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k i=1,2 stands for the solution of We remind that here u i 
the i-th subdomain at the time level k. Then we can use 

the scheme (11) to approximate (18)-(19). 
We consider now a test problem in which 

(-1.-1) 2 a = f = O, b(u)= (•)e = 10 -5 and , , 

the initial condition is 

uø(x, y) = + y - - ax) 
Although initially smooth, the solution of this problem 

develops an internal layer at some finite time. This fact 
suggests to use a decomposition of • into three subdomains 
instead of two. This allows to capture the development of 
the internal layer. 

Then we consider •1 = (- 1, 0) x (- 1, 1), •2 = (0, 0.4) x 
(-1.1) and •a = (0.4, 1) x (-1, 1). 

As boundary conditions, we prescribe u(x,y,t) = 
uø(x, y) Vt > 0 for all points (x, y) belonging to the lower 
horizontal as well as the two vertical sides of •. Further, 
we require that the normal derivative must be zero on the 
upper horizontal edge of the computational domain. 

Each time level is solved with ARN method with a re- 

laxation parameter equal to one. We obtained a number of 
ARN iterations independent of the time level (i.e. 5 itera- 
tions). The numerical approximation in space is still based 
on the spectral collocation method using 16x16 nodes in 
each subdomain. Again the stopping criterion is fulfilled 
when the difference between two subsequent iterates is less 
than 10 -m (Euclidean norm of the relative error). 

The time step used in this computation is 1/2000. 
In Fig. 14 we have drawn the solution at different time 

levels T. 

We can see that the development of the internal layer 
doesn't affect the smoothness of the numerical solution. 

Moreover since the time-dependent solution changes its 
sign along the interface F•,2 we plot in Fig. 15 the de- 
pendence on time of the zero - point (i.e. the point where 
the vector field b(u) has a zero component with respect to 
the interface normal direction). We remind that this point 
indicates the exchange of the interface conditions in the 
ARN method at each time level k. 

-1 o•.•• 1 o 

1 

'•1 o•••11 1 

1 -1 

Figure 14: The solution of the nonlinear problem at time 
levels T-0.10-0.20-0.30 
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0d•)5 T 

0,6- 

0,55- 

0,5- 

0,45- 

0,4 • 
0,35 • 
0,31 

Figure 15: The y-coordinate of the zero-point from T=0 
sec to T =0.30 sec 

6 The use of adaptive methods 
in the framework of projection 
methods for Navier Stokes equa- 
tions 

In this last section we are interested in the approximation 
of the incompressible Navier Stokes equations 

(2o) 

0u 

ot 
-- -e A u+ (u.V) u+Vp = f in fl x [0, T] 

divu=0 in •x [0, r] u lt:o=uo 

For the simulation of the equation (20) we will consider 
the so called projection methods. 

These schemes have been proposed for solve the un- 
steady incompressible Navier-Stokes equations (see [6, 18] 
and some extensions in [9, 20, 19]). 

The simplicity and efficiency of projection methods ren- 
der them particular attractive. The idea behind these 
kinds of methods is to split the equation into intermedi- 
ate steps in order to decouple the viscous effects and the 
incompressibility condition. 

A rigorous error analysis for these projection schemes 
has not been available until recently. In Shen ([14, 15]) 
the author gave a first error analysis for some frequently 
used projection schemes. Although many authors have 
observed second order accuracy for the projection scheme 
presented in [20] only in the last few months Shen ([16]) in 
a further paper has established in a rigorous manner this 
property. 

To start with, we consider the following projection 
scheme derived from the one proposed in [3]: 

Given u ø = u0(x, y), we solve 

(21) 

fik+l _ u k 
At 

•lk+l -- g 

- , A fi•+l +B (fi•,fi•+l) + 
7X7 p& = fk+l 

in •2 

on c9•2 

(22) 

(23) uk+l = fik+l _ • A t •7 ((1 + vat) p•4-1 _ p•) 

where ,$ > 1 and B (u, v) = (u. V)v. 
Since we are interested in simulations of high Reynolds 

flows the diffusive part of the equation (21) is dominated 
by the convective one B (u, v). 

Then ARN and ADN methods can be easily adapted to 
effort the solution of each component of the vector equation 
(21). 

To solve equation (22) we use a classical Dirich- 
let/Neumann procedure. 

As numerical example, we want to show a simulation of 
a viscous, incompressible flow. We consider the so-called 
driven cavity problem. 

The data are as follows: •2 = (0, 1) 2 , s: 10 -a. f = 0. 
The boundary conditions 

are: u = 0 on c• {(x, 1)10_<x<l} and u = (1,0) • 
on {(x, 1)10 _< x _< 1}. Then the Reynolds number is equal 
to 1000. 

We split the computational domain • in two subdo- 
mains: •1 =(0,1)x(0,0.8) and •22 =(0,1)x(0.8,1). The nu- 
merical approximation is still based on the spectral collo- 
cation method using 24x18 nodes in each subdomain. 

Constants in scheme (21)-(22)-(23) are chosen accord- 
ingly to the so called non incremental version of the pro- 
jection scheme (see [9]). 

Then we have • -- 1, v = 0 and '7 = 1. The time step is 
At=l/20. 

For this simulation we have used the ADN method with 

a relaxation parameter 0 equal to 0.65 obtaining a number 
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Figure 16: Vector field distribution for the driven cavity, 
Re=1000 

of iterations (25/26) independent of the time level (except 
for the first few iterations when the fluid is not moving yet 
across the interface). 

In Fig. 16 we have shown the vector field distribution of 
the velocity for the example illustrated. 
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