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Abstract 

A donhain decomposition method is proposed for the nu- 
merical solution of the viscous compressible time-depen- 
dent Navier-Stokes equations. The solution technique con- 
sists of a Fourier- Chebyshev collocation method combined 
with a patching method. The computational domain is de- 
composed into subdomains in the vertical direction only. 
The elliptic problems coming from the viscous terms are 
solved iteratively by means of the Chebyshev procedure. 
Density is matched with a simple upwind procedure, while 
the velocities and the temperature are handled with the 
influence matrix method. Numerical examples are per- 
formed on both stationary - Rayleigh-B•nard convection 

and time-dependent (the so-called "mixing layer") com- 
pressible viscous flows. The method may be extended to 
three-dimensional flows with non-periodic directions. 

Key words: spectral methods, domain decomposition, 
viscous compressible flows. 
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I Introduction 

Domain decomposition methods have become popular in 
the last years [1]. The motivation is at least twofold. First, 
these methods are well suited to handle complex geome- 
tries. Second, they naturally lead to algorithms adapted 
to parallel computers. However, in the framework of spec- 
tral methods, there is a third motivation since domain de- 
composition methods are also a way to handle flows with 
strong gradients. In this case, the main gradients of the 
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flow are embedded in a subdomain that can follow the gra- 
dients. Moreover, in each subdomain, a transformation of 
coordinates may be used to increase the global accuracy. 

The adaptive coordinate transform based on the min- 
imization of some norms was first introduced in [2] and, 
independently, in [3]. In [2], a coordinate transform was 
chosen to minimize the weighted second Sobolev norm of 
the solution. The numerical method was proven to be 
efficient to compute steady non-axisymmetric as well as 
unsteady axisymmetric flames. In [3], the same norm - 
the weighted second Sobolev norm - was used to simu- 
late a two-dimensional plane flame moving into a reactive 
medium. The histogram of the Chebyshev expansion of the 
solution proves that spectral accuracy has been reached. 

In [4], mappings are used to solve a linear hyperbolic 
equation with a Fourier or a Chebyshev method. The so- 
lution obtained with a mapping adapted with the norm 
displayed much fewer oscillations than the solution without 
mapping. It turns out that the best results are obtained 
with the H2-norm. 

In [5] and [6], the authors compare three functionals: the 
weighted Sobolev norms introduced in [2] and [3], the non- 
weighted norm, and the functional proposed in [7]; which is 
an upper bound for the maximum norm of the spectral in- 
terpolation error. They found that, at least for the studied 
cases, the choice of a specific functional is not too critical. 
However, the crucial point is the actual evaluation of the 
functionals. They selected the best way to perform this 
computation. This numerical procedure is used to simu- 
late the temporally growing compressible mixing layers. 

However, such a method cannot handle several stiff gra- 
dients on the same domain: the effect of the presence of 
one gradient is to bring most of the collocation points in 
the vicinity of the strong gradient. It may result in a lack 
of resolution elsewhere. In other words, there is only one, 
or sometimes two, parameters in the mappings, making 
them not flexible enough for some complicated solutions. 
This is the reason the domain decomposition strategy may 
be useful in simulating these flows. 

The domain decomposition strategy may be used in two 
ways: applying it to methods of variational type and ap- 
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plying it to patching methods. Examples belonging to 
the first type are the spectral element method [8] and the 
method described in [9]. In these methods, one defines 
a large number of subdomains, with a small number of 3. 
collocation points, without transformation of coordinate. 
The accuracy is obtained by increasing the number of sub- 
domains rather than the number of points in each subdo- 
main. The second type of methods - the patching methods 
- uses a relatively small number of subdomains with a large 
number of collocation points in order to reach spectral ac- 
curacy. In each subdomain, self-adaptive transformations 
of coordinate, which depend on one or more parameters, 
may be used. The values at the interfaces are solutions of 
a system which can be solved directly or iteratively. 

The first application of a spectral multi-domain method 
for viscous compressible flows was presented in [10]. The 
method imposes a global flux balance condition at the in- 
terface. This scheme is applied to one-dimensional super- 
sonic viscous compressible reacting flows up to Mach 11. In 
the middle domain. a mapping is used and the parameter 
is adjusted by hand. 

Domain decomposition for inviscid compressible flows 
have been investigated by Kopriva [11], who successively 
studied multidomain in one and two-directions of a two- 

dimensional space. In the latter case, the solution in com- 
plex geometries is obtained using a combination of patched 
and overset grids. The extension to viscous flows is pre- 
sented in [12], where a two-dimensional, nonoverlapping 
multidomain spectral collocation method is applied to sub- 
sonic and supersonic flows over a fiat plate. In each subdo- 
main, linear, non-adaptive transformations of coordinates 
are used and time marching is explicit. (1) 

In this paper, •ve present a multidomain patching tech- 
nique for the full Navier-Stokes equations. The depen- 
dent variables are expanded on the Fourier functions in 
the horizontal homogeneous direction and on the Cheby- 
shev polynomials in the vertical inhomogeneous direction. 
The features of our method are as follows: 

which reflects the continuity of the function and its 
first normal derivative at the interface. 

In each subdomain, a self-adaptive transformation of a 
coordinate is used. Indeed, since strong gradients may 
occur in the middle of the subdomain, a transforma- 
tion of coordinate is used to bring the mesh points in 
the vicinity of the gradient. These mappings need to 
be self-adaptive because these gradients move in time. 
Consequently, the parameters of these mappings are 
recalculated frequently during the computation. This 
technique leads to a better accuracy. The parameters 
of the mappings are optimized by minimizing the H i 
norm, as in [5]. 

The numerical algorithm is first tested against a steady 
state of the compressible Rayleigh-B•nard convection. 
This solution is used as a test of the multidomain method, 
since no strong gradients occur. Then, simulations of 
the time-dependent Kelvin-Helmholtz instability, in which 
strong gradients occur in the middle of the central subdo- 
main and move in time, are carried out and analyzed. 

The next section recalls the basic equations. The algo- 
rithm is described in Section 3. Numerical applications are 
reported in Section 4. 

2 Governing equations 

We use the full Navier-Stokes equations under the form 

Op 
-- •- •7 ipU i ---- O, 
Ot 

Opui 
(2) 
The energy equation is written for the total energy E, it 
reads 

1. Time marching is done with a semi-implicit third or- (3) 
der Runge-Kutta scheme in a low-storage formulation 
[13], [14]. The advective terms are treated explicitly 
and all diffusion terms are handled implicitly. Since 
transport coefficients are constant, the implicit stage 
is performed in the Fourier space by means of a Cheby- 
shev iterative scheme [15]. This procedure allows us 
larger time steps. 

The vertical direction is decomposed into nonoverlap- 
ping subdomains. Density is matched with a simple 
upwind procedure. The velocities and the tempera- 
ture are handled with the influence matrix method 

, 

0•-- •- •7ipui E + AT 
•-BT•7i•7iT •- CT•7i ((•ijuj) , 

where o'ij is the viscous stress tensor. 

(4) 25 u o-ij -- •7iu j -•- •7ju i - • iJ •7œ œ. 
The system of equations is close with the perfect gas law. 
The thermal conductivity and the dynamic viscosity have 
been taken constant and the values of the constants ap- 
pearing in the Eqs.(1-4) will be specified below, in the nu- 
merical applications. 
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3 The numerical method 

3.1 The domain decomposition method 

The physical variables p, u = (u, v) i and E are expanded 
on each subdomain, on the Fourier functions in the hori- 
zontal homogeneous direction, and on the Chebyshev poly- (7) 
nomials in the vertical inhomogeneous direction. The tem- 
poral discretization is the third order, low storage, semi- 
implicit Runge-Kutta scheme [13], [14]. All diffusive terms 
are handled implicitly in the Fourier space by means of a 
Chebyshev iterative procedure according to [15]. 

The system of the full Navier-Stokes equations is incom- 

pletely parabolic, since the equation for the density is hy- (8) 
perbolic. The matching of the density requires only the 
continuity of the function. A simple scheme for this reads 

r/ps+• (zb,s+l) if v < 0 
P (Zt.s) = r]Ps (Zt.s) + 

(1 - 7) Ps+x (zb.s+x) if v > 0 
for s=l, .... S-l, 

where zt..• (resp. zb,s) is the upper coordinate (resp. lower) 
of the interface of the subdomain s, and S is the total 
number of subdomains. The parameter r• is a real number 
between 0 and 1. The value r• - 1 corresponds to a pure 
upwind scheme. In this case, the density equation is solved 
in the subdomain number 1, without boundary conditions. 
In the second domain the equation is solved by using the 
value of the density of the previous domain, at the inter- 
face, as a boundary condition. For any value different from 
r• - 1, Eq.(5) is an averaging procedure between two ad- 
jacent subdomains. The parabolic equations require the 
matching of the function and its first derivatives. Several 
solution techniques are available (for a review, see [13]) 
and we chose. for the simulations reported here, the influ- 
ence matrix technique used in the domain decomposition 
framework in [16] and [17]. Since all diffusive terms in the 
full Navier-Stokes equations are nonlinear, these terms are 
separated into two contributions as 

100'ij _ ( • 1 ) 00'ij 100'ij (6) p Oxj ps + Ps Oxj 

where p = p (x, z, t) and ps -- p s (z). This does depend 
upon the z-coordinate and thus may be close to the total 
density. The difference between p - Ps is only due to the 
variation of the density in the x-direction. The first part 
is treated explicitly, while the second is handled implic- 
itly. This splitting has been suggested in [18] and used by 
several authors [19]. 

The matrix influence method is applied to the temper- 
ature and to the two components of the velocity. The 
method for a scalar variable is given in [16] and in the 
latter case, it is generalized as follows. The solution is 
decomposed as 

s s s s 

n s = H s q- AlU 1 q- A2il 2 
s s 

+A}u}+A4u 4 for s=l,...,S 

The A• are real coefficients which have to be determined 
with the continuity conditions. The velocity •s is the so- 
lution of a non-homogeneous elliptic problem 

d2• s d-U s 

dz 2 cr,• s - n,• d--J- = S,•, 
d2U s d• s 

dz 2 cr,• s - n,• dz -S'•'s=I'"'S' 
with homogeneous Dirichlet boundary conditions 

(9) aS(z,s) :0, =0, 1,...,s. 

The u• are solutions of homogeneous problems 

2 s dv• d Up 
dz 2 rr,uUp - n,u dz = 0, 

(10) 2 s d Vp du} 
dz 2 cr,•v• -- •,• dz = 0, 

fors=l,...S, and p-1,2,3,4 

with non-homogeneous Dirichlet boundary conditions 
written as 

(11) 
U--; ( Zb, s) -- •lp , •; ( Zt,s ) -- •2p 
--s (Zb,s) __ (•3p •; (Zt,s) -- •4p Up , 

for s-1,...S, and p-1,2,3,4 

The problems defined by Eqs.(8-11) are one-dimensional, 
linear with variable coefficients. It is well-known that the 

matrix associated to this system is ill-conditioned. As a 
result, it is solved with the Chebyshev iterative procedure 
detailed in [15]. The physical boundary conditions are of 
the general form 

du 

O•i,u•Z Z (Zb,1) -+-•l,uU(Zb,1) -- 0, 
(12) 

du 

(z,,s) + Vs,u (z,,s) = o, 
and the same set of equations for the vertical velocity. The 
matching conditions read 

II s (Zt,s) ---- U s+l (Zb,s+l) , 8: 1,...,S- 1, 

(13)duS duS+l (Zb.s+l) $--- 1,... S- 1 dz (z•,s)- dz ' ' ' 
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Rayleigh V.•a• MaChmax Pmax Truax Pmax a•max a•min (divu)max (divu)min 
number 

1000 15.125 0.175 0.068 0.063 0.051 75.595 -75.595 5.141 -10.246 

Table 1: Characteristics of the Rayleigh-B•nard steady solution. The Rayleigh number is equal to 1000, Z - 1, m - 1, 
the Prandtl number and the adiabatic index are equal to 0.71 and 1.67, respectively. The norm of the velocity is V. Pmax, 
T,•a•, and Pmax are the maximum of the relative fluctuations of the density, temperature and pressure, respectively. 
The vorticity is o: and divu is the divergence of the flow. 

The set of Eqs.(12, 13) is a linear algebraic system of 4S 
equations. The resolution provides the A's that allows us 
to build the solution in each subdomain through Eq.(7). 

3.2 The adaptive coordinate transform 

As already stated, the representation of a strong gradient 
anywhere in the domain [-1, 1] requires a huge number of 
polynomials unless a transformation of coordinate of the 
form z = f (•,a) is used, where a is a real parameter. 
The physical z-space is mapped, by the function f, in the 
computational i-space. In this new space, functions which 
exhibit rapid variations in the physical space, have a slow 
variation, provided the parameter a is correctly chosen. It 
has been shown [2], [3] that the optimal choice is obtained 
by minimizing the interpolation error. This one is bounded 
by the norm of the solution itself through the inequality 

for cr _> 1/2 and 0 

The inequality (14) provides a criterion to select the best 
value of the parameter a. The practical computation of the 
weighted Sobolev Hi-norm is detailed in [5]. The criterion 
applies to one variable or a combination of variables. This 
choice depends upon the flow. Our numerical experiments 
show that the best choice is the horizontal velocity for 
the Kelvin-Helmholtz flow. This is agreement with Ref.[5]. 
There is no very strong gradient in the Rayleigh-B•nard 
convection, as a result, all variables, except the density, 
lead to the Gauss-Lobatto mesh. 

4 Numerical results 

4.1 The Rayleigh-B•nard instability 

We first simulated the Rayleigh-B•nard convection as a 
test of the domain decomposition method since there is no 
strong gradients in this flow. The fluid layer is extending 
from Zo to Zo + d, where Zo is the altitude and d the layer 

thickness. The vertical z axis is directed downwards so 

that the gravitation represented by the vector g = (0, g) is 
positive along this direction. The equations are classically 
written under a dimensionless form by using d as the unit 
of length so that the fluid extends from Z -x to Z -x + 1, 
where Z = d/zo. The units of density and temperature 
are the values at the top of the layer, p (Zo) and T (Zo), 
respectively. The unit of time is given by the viscous time 
scale d2p (Zo)//•, where/• is the constant dynamic viscosity. 
Moreover, we choose a zero temperature at the origin so 
that the basic conduction state, obtained by canceling O/Or 
and the two components of the velocity u and v in the 
Navier-Stokes equations, reads [15] 

(15) To (z) = zZ, Po (z) : [zZ] m, 

where m is the polytropic index. The equation of state is 
the perfect gas law. The constants introduced in Eqs.(1-4) 
are expressed as 

Au :'•../(o'(m-t- 1)2 Z2 Im-•_ 1 */-•11) , 
(16) B•=i,C.•=O,C•=A•(Z(m+i)), 

where • is the Rayleigh number, the Prandtl number is • 
and 7 is the adiabatic index. The boundary conditions are 
of Neumann type for the velocity and of Dirichlet type for 
the temperature. 

(17) v=0, O•u=O on z=Z -•,Z -•+1 T=i,Z+i on z=Z-•,Z-•+i 

A steady solution characterized by a Rayleigh number 
equal to 1000, Z = 1, m = 1, a Prandtl number and 
the adiabatic index equal to 0.71 and 1.67 respectively, 
has been computed. This solution h• also been obtained 
with a single domain pseudo-spectral code [20] and it is 
used here • a test of the multidomain method. The mesh 

is made of two subdomains, the interface is located at 
z = 1.5, 26 Chebyshev polynomials and 32 Fourier func- 
tions have been used in each subdomain. Some character- 

istics of the solution are given in Table 1. The differences 
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between the multi and single-domain are very small. This 
solution has been obtained for three values of the toler- 

ance of resolution of the elliptic problems: 10 -s, 10 -1ø 
and 10 -12. The formula (5) is mainly used with r/ = 1. 
However, the choice r/- 0.5 has been tested and does not 
affect this steady state. 

This solution has also been obtained with 2 domains 

and the interface located at z = 1.67. In this case, 37 and 
17 Chebyshev polynomials with 32 Fourier functions have 
been used in each domain. In all cases, the matchings of 
the functions are exact. The error on the first derivatives 

across the interface is defined as 

' + ' ,s = 1,...,s-1. tis t/s+ 1 
(18) 
This quantity is of the order of 10 -1ø for the velocity and 
the temperature. We have checked that spectral accuracy 
has been reached by looking at the decay of the coefficient 
of the expansions in the Chebyshev-Fourier space. The 
vorticity contours of this steady convection are shown in 

.•_ 2.01 
'01 1, 

0.0 0.5 1.0 1.5 2.0 2.5 

X-axis 

Figure 1: Contours of the vorticity in the Rayleigh-B•nard 
flow. 

Fig. 1 and contours of the divergence are in Fig. 2. Note the 
smooth contours of these quantities, obtained by derivation 
of the primitive variables. 

In these steady solutions, matchings of the second 
derivatives of the velocity and temperature are very good. 
It depends on the tolerance of resolution of the elliptic 
problems defined by Eqs.(8-12). For a tolerance of 10 -s, 
the accuracy is of the order of 10-2; for a tolerance of 
10 -12, the errors are only of 10 -5 - 10 -6. 

4.2 The Kelvin-Helmholtz instability 

This flow has received much attention in the last years, due 
to its application in Scramjet conception. Direct numeri- 
cal simulations have been carried out using either finite- 
difference type method and spectral methods [5]. The 

2.0 

1.0 

0.0 0.5 1.0 1.5 2.0 2.5 

X-axis 

Figure 2: Contours of the divergence in the Rayleigh- 
B•nard flow. 

method used in this reference has been detailed in the in- 

troduction. It is based on a Chebyshev expansion in the 
two directions and an adaptive mapping in the vertical di- 
rection. The domain decomposition method described pre- 
viously has been run on this configuration. We present in 
this section some simulations of this flow. From a numeri- 

cal point of view, the interest comes from the presence of 
large gradients of horizontal velocity in addition with the 
unsteady character of this configuration. The basic state 
is found by assuming, as in the boundary layer approxima- 
tion, that the pressure is constant and the total enthalpy 
is constant with the Prandtl number is equal to one. 

1 

u = •Tanh (2z), v -- 0, 
(19) T = 1 + 3'- 1 •2r 2 (1- 4u 2) 2 ' 

i 1 

A•, 47M2 , B•, Re' C.,• O. 
(20) 

AT-- (?--1-•--•) BT = -- CT=4(^/--1) 3/I2 ? ' Reef' Re 
Regarding the boundary conditions, both the horizontal 
velocity and the temperature are of Neumann type 

(21) v = 0, 0zu = 0, cqzT = 0 on z = zb,1, zt,$. 

The code h• be run on a Kelvin-Helmholtz flow defined 

by a Reynolds number equal to 400, a Mach number equal 
to 0.8 and a wavelength of 20. The Prandtl number is 
1 and the adiabatic index is 1.4. Three runs have been 

c•ried out with 3 subdomains with 72 Fourier functions 

and 5•/5•/5•, 5•/73/5•, •/5•/• Chebyshev polynomi- 
als. The interfaces are located at z = •4. The match- 

ings of the functions are exacts. The error on the first 
derivatives, computed with the formula (18), is of the or- 
der of 10 -m for the velocity. Since mappings •e adapted 
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Discretization Vraax Machraax Pmax Truax Praax (•d/P)raax (•d/P)rnin 
51/51/51 0.64141 1.0695 0.32357 0.13266 0.35080 0.01072 --0.85754 
51/73/51 0.64141 1.0691 0.32423 0.13343 0.35011 0.01089 --0.85762 
91/51/91 0.64124 1.0692 0.32298 0.13245 0.35000 0.01023 --0.85763 

Table 2: Characteristics of the time dependent Kelvin-Helmholtz solution, at t - 40, computed on three domains. The 
interfaces are located at z - +4. The Reynolds number and the Mach number are equal to 400 and 0.8 respectively. 
The wavelength of the initial perturbation is 20. The Prandtl number is 1 and the adiabatic index is 1.4. The potential 
vorticity is (w/p). 

on the horizontal component of the velocity, the error on 
the matching of the first derivative of the temperature is 
slightly larger: of the order of 10 -s. The results of these 
three runs are very close to each other: notice that the 
meshes are not the same in these three test cases. This so- 

lution has been computed by [5] using their adaptive pro- 
cedure on a single domain. The comparison is performed 
by looking at the evolution of global quantities, such as the 
vorticity thickness, and some characteristics of the solution 
reported in Table 2. The vorticity thickness is defined as 

(22) •,j,• = • , 
where the overbar denotes the average in the x-direction. 
Its evolution is represented in Fig.3 and is very good agree- 
ment with the thickness reported in [5]. The vorticity con- 
tours of this unsteady solution are represented in Fig. 4 
and contours of the divergence are displayed in Fig. 5. The 
importance of the velocity gradients are revealed in Fig. 6. 
These gradients justify the use of both domain decompo- 
sition and self-adaptive coordinate transformations. 

In these time-dependent simulations, especially when 
the spatial resolution is not high enough, the second deriva- 
tives deteriorate as time goes on. However, in the results 
presented in the paper, the errors remain acceptable. 

5 Conclusions 

One of the first examples of domain decomposition, as- 
sociated with a self-adaptive coordinate transformation, 
for the numerical solution of the viscous compressible flow 
simulations has been described. Numerical applications 
to stationary and time-dependent two-dimensional viscous 
compressible flows have been carried out. 

One of the difficulties is that the number of mesh points 
has to be large enough to ensure accurate derivatives at the 
interfaces. In this way, the coefficients of the influence ma- 
trix are precisely computed. As the solution becomes stiff, 

2.0 

1.0 

0 10 20 30 40 

time 

Figure 3: Evolution of the vorticity thickness in the Kelvin- 
Helmholtz flow. 

the number of mesh points needed can be very large. An 
approximate solution of the influence matrix linear system 
and the equations of the continuity of the second deriva- 
tives, might be a way to overcome this difficulty. 

The extension to three-dimensional flows with two ho- 

mogeneous directions is straightforward. Generalization to 
multiple non-periodic directions is also possible. 
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Figure 4: Contours of the vorticity in the Kelvin-Helmholtz 
flow at t -- 40. 
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