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Abstract 

We develop a unified approach for dealing with open 
boundaries and patching of non-overlapping subdomain 
boundaries when performing simulations of the unsteady, 
three-dimensional, compressible Navier-Stokes equations 
given in conservation form. The appropriate boundary 
operators are derived by utilizing linearization and local- 
ization at the boundaries, and enforced through a penalty 
approach. 

We apply a polynomial collocation method as a spatial 
approximation scheme and prove the semi-discrete initial- 
boundary value problem asymptotically stable through an 
energy method. The scheme converges uniformly to the 
limit of vanishing viscosity and, hence, remains valid also 
for the Euler equations. 

The {zersatility of the scheme is demonstrated for multi- 
domain solutions of quasi-one-dimensional transonic nozzle 
flows and for flow around an infinitely long circular cylin- 
der. 
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I Introduction 

The issue of the application of spectral methods to prob- 
lems involving complex geometries has been a subject of 
active research in the last decade. Spectral methods re- 
quire interpolation at the nodes of a Gauss type quadrature 
formula. Thus, the mesh points are predetermined and in- 
flexible. In particular, the distribution of grid points is 
denser in the neighborhood of boundaries. This fact leads 
to considerable difficulties, even in one dimension, since 
for many problems the information is given in points dif- 
ferent from those required by the spectral method. This 
fact manifests itself more severely when dealing with multi- 
dimensional problems and seems to limit the applicability 
of spectral methods to simple domains. 

A powerful method used to overcome the limitations of 
spectral methods is the use of multi-domain techniques, in 
which a complex domain is decomposed into several geo- 
metrically simpler subdomains. An additional advantage 
of this approach is that multi-domain spectral methods are 
well suited for coarse grain parallel computing, with each 
subdomain being assigned to an individual processor. 

The natural question posed by the multi-domain ap- 
proach is how to specify appropriate patching conditions 
between the subdomains. For purely hyperbolic problems, 
it is well known that patching through the characteristic 
variables leads to a stable approximation. However, for 
dissipative wave problems the procedure is considerably 
more complicated. 

Naturally, we must require the patching conditions to 
lead to a well-posed, continuous problem in each subdo- 
main. For wave problems of dissipative type, the problem 
must, in order to be compatible with weak boundary lay- 
ers, remain well-posed even in the limit where the dissipa- 
tion vanishes and the problem becomes purely hyperbolic. 
In addition to this, we wish that the discrete approxima- 
tion of the problem is asymptotically stable, and that the 
boundary conditions are easily implemented. 

For general non-linear problems the issues of well- 
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posedhess and asymptotic stability are very complicated 
and for most problems only very little is known. However, 
as discussed by Kreiss and Lorenz [1], we may, for a large 
class of operators, simplify the problem significantly if the 
solutions are smooth. It was shown that in this case it is 

sufficient to consider the questions of well-posedness and 
asymptotic stability for the linearized and locally constant 
coefficient version of the full problem with homogeneous 
boundary conditions. 

In this paper we present a unified approach for deal- 
ing with open boundaries and subdomain boundaries when 
performing simulations of the three-dimensional, com- 
pressible Navier-Stokes equation in conservation form. The 
presentation is partly based on results from [2, 3] where 
similar problems are treated in detail. The emphasis will 
be on, essentially, one dimensional patching schemes. How- 
ever, by •vriting the Navier-Stokes equations in general 
curvilinear coordinates we obtain a scheme that is also ap- 
plicable to multi-dimensional problems, provided patching 
is required along one coordinate axis only. 

In the development of the scheme, we apply the energy 
method to the linearized, constant coefficient version of 
the continuous problem to obtain energy inequalities which 
bound the temporal growth of the solutions to the initial- 
boundary value problem. This approach allows us to derive 
a novel set of boundary conditions of Robin type, which 
ensure the complete problem to be well-posed. This result 
is obtained for the Navier-Stokes equations given in general 
curvilinear coordinates. 

It has traditionally been found difficult to apply bound- 
ary conditions of Robin type when doing pseudospectral 
simulations of non-linear equations. Here, we show how 
to implement the boundary conditions as a penalty term, 
which allows for enforcing open boundary/patching condi- 
tions of a very general type. An attractive feature of this 
approach is that we may prove asymptotic stability of the 
semi-discrete scheme, thus gaining confidence in the com- 
puted results when addressing unsteady problems where 
long time integration is required. 

A multi-domain scheme, where the patching of sub- 
domains is based on a penalty method, is strictly local in 
space and time, thus making it well suited for implementa- 
tion on contemporary parallel computer architectures with 
distributed memory. 

Several schemes for calculating the multi-domain solu- 
tion of viscous compressible flows have recently appeared 
[4; 5, 6]. However, the emphasis has been on methods for 
steady state problems. All previous methods for viscous 
flows are based on applying a separate treatment to the 
inviscid part of the equation; in most cases using methods 
known from the Euler equations, and applying a separate 

treatment to the viscous part of the equation. This second 
contribution is then applied as a correction to the result 
obtained from the inviscid patching. 

The main difference between the previously proposed 
methods and the one developed here is that we develop 
a patching which accounts for the inviscid and viscous 
part of the equation simultaneously. Emphasis is directed 
towards developing methods that can handle general un- 
steady flows, and we apply high order explicit time integra- 
tion schemes to verify that the proposed method, indeed, 
is well suited for simulating unsteady flows. 

The remaining part of the paper is organized as fol- 
lows. In Sec. 2. we introduce the penalty method and 
demonstrate the idea for the scalar wave equation. Sec- 
tion 3 contains the central parts of the paper, where well- 
posed boundary conditions to the three-dimensional, com- 
pressible Navier-Stokes equations in conservation form are 
derived and a semi-discrete asymptotically stable penalty 
method for enforcing these conditions is proposed. This 
leads to Sec. 4 where we present several examples of the 
use of the proposed scheme when addressing one- and two- 
dimensional compressible flow problems. Section 5 con- 
cludes with a brief summary. 

2 The penalty method 

Prior to developing the scheme for the compressible Navier- 
Stokes equations, we illustrate the idea behind the penalty 
method for the scalar problem 

{ ut--,ux I1_<1, v(x,0) = h(x) , 
v(1, t)=g(t) 

where A > 0. We wish to solve this problem using a Legen- 
dre collocation method. The choice of the Legendre basis 
is made merely to simplify the example. The main results 
carry over to other polynomial collocation methods, e.g. 
Chebyshev methods. The Legendre interpolation opera- 
tor, IN, is defined as 

N 

.l'NV(X) ---- • u(xi) fi(x) , 
i=0 

where A (x) are the Legendre-Lagrange interpolating poly- 
nomials [7], and xi denotes the Legendre-Gauss-Lobatto 
collocation points. We seek a solution, u(x, t), such that 

Ou Ou 

• =• at x=xi, i• [0...,N-I] . 
The usual way to impose the boundary condition is to en- 
force u(xN) = g(t). However, this approach does not take 
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into account the fact that the equation should hold arbi- 
trarily close to the boundary. To circumvent this problem, 
Funaro and Gottlieb [8, 9] developed the penalty method 
which enforces the boundary conditions, as well as the 
equation at the boundary. They propose to use the scheme 

where 

(1) 

au = x Ou _ rQ+(x) [u(1) - g(t)] • Ox ' 

Q+(x) -- (1 + x)PJv(X ) 
2P•(1) 

Here, PN is the Legendre polynomial of order N. Note 
that Q+(x) equals zero at all the collocation points, ex- 
cept the endpoint, XN = 1. By using the penalty method, 
the boundary condition becomes a part of the equation, 
although it also implies that the boundary condition is en- 
forced only weakly. 

The parameter r is then to be determined such that the 
semi-discrete initial boundary value problem is asymptot- 
ically stable. Without loss of generality we may assume 
g(t) = 0 [1], and obtain a sufficient condition for stability 
through the use of an energy argument as 

•=0 i=0 

N 

(2) -• • •(xi)Q +(xi) u(1)•i 5 0 , 
i•0 

where •i are the Legendre-Gauss-Lobatto weights [7]. 
Using the Legendre-Gauss-Lobatto quadrature formula, 
Eq. (2) becomes 

ld 1 

2 d• I1•11• = • [u•(1) - u•(-1)] - •u•(1) 5 0 , 
wh• •: 2/•(• • 1) and I1' II • •Xgnme• •he L•-norm. 
Hence, asymptotic stability may be obtained if • is chosen 
such that 

• •(• + 1) 
- 2• 4 

We note that for N • • the penalty method is equivalent 
to the traditional approach. Although not relevant for this 
simple problem, it is important to realize that since the 
boundary operator is applied • an independent part of 
the equation we may impose even very complicated types 
of boundary conditions in a straightforward and consistent 
manner when using the penalty method. 

The only difference between the Legendre and the 
Chebyshev collocation scheme is that the expression for 
• may not be found by analytical means in the latter c•e 
[8, 10]. 

In [9] the penalty method is extended to systems of hy- 
perbolic equations, and it is shown that the results carry 
over when the boundary conditions are imposed through 
the characteristic variables. 

3 The compressible Navier-Stokes 
equations 

Consider, now, the non-dimensional, compressible Navier- 
Stokes equations in general curvilinear coordinates 

__ O•i 1 (a) oq+ = 
Ot O•i Reref 

Here, and in the remaining part of the paper, we will use 
the summation convention unless otherwise stated. The 

curvilinear coordinates, (•1, •, •a) • f•, are defined as 

and related to the Cartesian coordinates, (x•,x2,x,), 
through the transformation Jacobian 

The state vector, q, and the inviscid flux vectors are de- 
fined as 

q = Jq , Fi = JFj , 

where we have introduced the symbols 

•_ 0• • Ou• T•_ OT Ox• ' u• = o• ' - 0• ' 
and likewise for the Cartesian velocity components, 
(u•,u=,ua), and the temperature field, T, which will be 
introduced shortly. The Cartesian components of the vec- 
tors are given • 

q __ 

p 

pu2 

pu3 

E 

, Fi-- 

pui 

pului + 5•i p 
pu•ui + 5• p 
puaui + 5•i p 

(E + p)u• 

Here, p is the density, E is the total energy, p is the static 
pressure and 5ij represents the Kronecker delta-function. 

The total energy 

(1) E = p T '•- •UiU i , 
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and the pressure are related through the ideal gas law 

P= (7-1)pT , 

where 7 = Cp/Cv is the ratio between the heat capacities at 
constant pressure (Cp) and volume (cv), respectively, and 
is assumed constant. 

The viscous flux vectors are in a similar manner defined 
as 

with 

= JFj •i , 

0 

7'2•1X i 

7-X3Xt 
.yk OT 

Considering only Newtonian fluids, the elements of the 
symmetric stress tensor are given as 

loci Ou) 
Here,/2 is the dynamic viscosity, h is the bulk viscosity and 
k is the coefficient of thermal conductivity. The velocity 
flux and the temperature derivatives are obtained as 

Oui • j OT • i 
Ox• = ui •k , Oxi = T •k ß 

The equations are normalized using the reference values, 
ttref = •, Pref = /5, Pref : /5•2, Tref: a2/Cv, where (/5, 6) 
is some characteristic state, and a reference length L. This 
yields a Reynolds number as Re = PaLIft and a Prandtl 
number as Pr = Cpfi/[c. Note that the Reynolds number 
in Eq.(3), R%ef (based on the reference values) is, in gen- 
eral. different from Re. In the remaining part of the paper 
we shall refer to the latter as the Reynolds number unless 
clarification is deemed necessary. With this normalization 
we need to specify the Mach number, M, the Reynolds 
number, Re, the length scale, L, and a dimensional tem- 
perature, To. 

We consider only atmospheric air and take 7 = 1.4 and 
Pr = 0.72 in all problems. To model the temperature 
dependence of the dynamic viscosity we apply Sutherland's 
viscosity law [11] 

•t(r) __ (r •3/2 rs q_s 

where we have/z, = 1.716 x 10 -5 kg/msec 2, R = 273 øK 
and S = 111øK for atmospheric air. Assuming that the 

Prandtl number is constant allows for modelling the tem- 
perature dependency of the coefficient of thermal conduc- 
tivity similarly, and in all simulations we adopt Stokes hy- 
pothesis (see e.g. [11]) to obtain A 2 = -X/z; although the 
analytic results are given for the general case. 

3.1 Well-posedness and boundary condi- 
tions for the continuous problem 

In order to develop the appropriate boundary operator, we 
begin by splitting the viscous flux vectors as 

3 

j=l 

where we introduce the vector, 1-I&• = JII&•;, defined as 

0 

•/(V•i. V•j)7.L• q_ X• V•j. U j q_ •/•31. Vii. u j 
+ xsfvs. + u 

(v5i. + 52v5. + 
•(V•j' H)(V•i' U j) + •(V•i' U)(V•j' U j) 

+ (V•i. V•j)(•u. u j + •kTJ5 ''' Pr ] 

with uJ = (u•, u•, u•). This splitting is equivalent to the 
one proposed in [12], although here it is given in general 
curvilinear coordinates. Borrowing the terminology from 
that work, we term the inviscid flux vectors as the hyper- 
bolic part of the flux. For i = j we obtain the parabolic 
part of the operator, while summing the parts with i y• j 
results in the mixed contribution. 

We continue by introducing the transformation JacobJan 

(4) Ai- o_ 
where we define 

qi = O•i 
This allows for writing Eq.(3) as 

where summation over indices is assumed as usual. Note, 
that by construction we have Bij -- l•ji. 

It is well known that Navier-Stokes equations, although 
being an incomplete parabolic system, support waves very 
similar to those encountered in the hyperbolic Euler equa- 
tions. For hyperbolic systems, Gottlieb et al. [13] have 
shown that enforcing the boundary conditions through the 
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characteristic variables of the system results in a stable ap- 
proximation. 

VVe will seek a boundary operator appropriate for enforc- 
ing ,boundary conditions in the El-direction. For simplicity 
we assume E1 mapped such that E1 E [-1, 1]. 

For Navier-Stokes equations, we linearize around a uni- 
form state, •t, by fixing •4i and Bij, and transform into 
characteristic variables by diagonalizing •41 through a sim- 
ilarity transform, A -- •q-l•41•q , where A is the diagonal 
eigenvalue matrix with Aii = •i and • and •-l are the ma- 
trix of right and left eigenvectors, respectively. We must 
require ]$] and ]$-•] to be bounded. Applying this, the 
symmetrized, linearized set of equations transforms into 

where • = 8-1q are the characteristic variables. We have 
introduced a positive definite, symmetrizing diagonal ma- 
trix, QT Q = diag[X, 2, 2•/(7- 1), 2, 1], where • = •• 
is the uniform state sound speed. Additionally, we define 
the symmetric matrices [2] 

The expression for the explicit entries in Bi•. may be ob- 
tained from [3], where the diagonalizing matrices, 8 and 
3-• are also given. 

The entries in the diagonal matrix, A, are found as 

and correspond to the velocities of the characteristic waves 
for the Euler equations. We have introduced the unit vec- 
tor. fl. pointing along • • 

Additionally, we obtain the characteristic functions, R, as 

• - •i + • (z + • - •i•i) 
(• - pa•)• - (• - p•l)• 

(• - pa•)•l - (• - pa•)• 
-(mi - p•i)ni + • 

where mi = pUi iS the momentum. Here Rx and R• cor- 
respond to co- and counter propagating sound waves, re- 
spectively; R2 and R4 represent vorticity waves whereas 
R• is an entropy wave. 

By defining a viscous correction vector, G, as 

• • = r• • + (rl• + •)• + (rh + r•l) a• ' 

we are now ready to state the main result of this section. 
The Lemma will be given without proof, as a detailed proof 
for the Cartesian case may be found in [2]. 

Lemma 3.1 Assume there exists a solution, q, which is 
periodic or held at a constant value at the 62- and •3- 
boundary. If the boundary conditions in the El-direction 
are given such that 

1 TA• 2 •TQTQ _•0 , V(•2,½•) ' -3 Refer e•=_• 
and the fluid properties are constrained by 

•_o, •o, •+•_o, •---•po, •,_•1, 
- Pr - 

then Eq. (5) constitutes a well-posed problem and the solu- 
tion is bounded as 

l d 1 • (OR-13.•.OR• 2 dt II •ll 2 < 

The proof is b•ed on the hct that Bi•. = B•i all are sym- 
metric matrices. Thus, well-posedness is ensured by prov- 
ing the quadratic form under the integral semi-positive. 
This is obtained provided the fluid properties are con- 
strained as given in the Lemma and the mapping is non- 
singular. For details we refer to [2]. 

For most real fluids under non-extreme conditions, it 
is true that • is positive, • is negative and the following 
relationship is obeyed [12] 

> 5+2• • • . 
Pr - 

Thus, the conditions on the fluid properties as given in 
Lemma 3.1 are only natural. In fact, if this is not obeyed, 
Navier-Stokes equations may be shown to violate the sec- 
ond law of thermodynamics [14]. 

As stated in Lemma 3.1, the appropriate boundary op- 
erator must be determined by construction such that 

-- •50 . 
2 Refer - 1 

Since QrQ is a diagonal positive definite, this may conve- 
niently be reformulated • 

where Ai are the wave speeds by which the characteristic 
variables are advected (as given by the diagonal elements 
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of A), and we have introduced e = Reref -1. This for- 
mulation makes it straightforward to devise inflow-outflow 
boundary conditions, which are maximally dissipative and 
ensure well-posedness of the complete problem. 

We note, in particular, that the formulation takes into 
account the off-diagonal terms of the stress tensor, which 
may be of importance if the artificial boundary is intro- 
duced into a strongly vortical region of the flow. 

Using this, the boundary operators on the characteristic 
variables may be expressed as [2] 

Inflow Boundary ß Tg-R - eG-G 
Outflow Boundary ß 7•+•+ sG+• 

We have expressed the operators by introducing 4 di- 
agonal matrices, 7•-, 7• +, •- and •+, which ensures 
the correct construction of the operators. The four ma- 
trices are defined as 7•- = diag[A1, A2, •3, •4, a•5] and 
•- = diag[1, 1, 1, 1, 1] at the inflow boundary with c• = 0 
for subsonic conditions, and c• - i for supersonic condi- 
tions. 

At the outflow we likewise define the operators 7• + = 
diag[0.0.0, 0, 21•51] and •+ = diag[0, 1, 1, 1, 1], where/• = 
1 for subsonic conditions, and/• = 0 for supersonic outflow 
conditions. These result are obtained assuming aini > 0 
at the boundary. Similar results may be obtained in the 
case •irti < O. 

It was shown by Strikwerda [15] that the proper number 
of boundary conditions for an incomplete, parabolic system 
as the compressible Navier-Stokes equations is 5 in the 
inflow region and 4 in the outflow region. Our result clearly 
conforths with that. 

We also note that in the limit of infinite Reynolds num- 
ber, these boundary conditions converge uniformly toward 
the well known characteristic boundary conditions for the 
compressible Euler equations [16]. This property is impor- 
tant because it allows us to avoid weak boundary layers of 
the order exp(-61/• ) [17]. 

At first, it may seem as if all we have accomplished so 
far is to derive proper open boundary conditions to the 
compressible Navier-Stokes equations. When considering 
a multi-domain approach, the important observation to 
make is that we may equally well treat a subdomain bound- 
ary as an open boundary. However, it is a very special 
open boundary since we may at all times obtain boundary 
conditions from the neighboring subdomains. 

The single remaining question is how to impose these 
complicated boundary operators in a spectral model of the 
compressible Navier-Stokes equations in a consistent and, 
preferably, simple way. This is the question we will address 
in the following section. 

3.2 The semi-discrete penalty scheme 

Following the line of thought leading to the asymptotically 
stable penalty scheme for the wave equation, we propose 
a collocation method for enforcing the boundary operator 
derived in the previous section for the compressible Navier- 
Stokes equations as 

Oq O•i 1 
0'--•' + 06'•" = Reref 06i 

Reref 

Here we have defined 

Q-(x): (1 - x)Pk(x ) Q+ (1 + ' = 2g(1) ' 
and the symbols •0 = •(- 1, 62, 63), •0 = •(- 1, 62, 6a), 
and, likewise; Rs = R(1,62,63), G.¾ = G(1,62,63). The 
values at the two boundaries are given through the remain- 
ing symbols depending on whether the boundary is an open 
boundary or a subdomain boundary. Hence, at 6 - -1 we 
obtain in the latter case that R-1 represents the value of 
the characteristic vector in the neighboring subdomain and 

-- 

similarly for the viscous correction vector, G-1. If, on the 
other hand, the inflow is an open boundary, the values of 
R-1 and G-1 must be specified, i.e. 

•-1 -- $-l(jg(t)) , •-1 -- •--•--1•(t) , 

where g(t) gives the values of the state vector and •(t) 
accounts for information of the gradients at the boundary. 
In most cases nothing is known about this and one may 
use •(t) = 0. At the outflow, 61 = 1, the variables • and 
G• are specified in a similar manner. 

At an open boundary we may use the expected value of 
the state vector, g(t), to linearize around; whereas we use 
the value of the state vector at the previous time step as 
linearization vector at a subdomain boundary. 

We now need to specify rl and r2 such that the semi- 
discrete scheme is asymptotically stable. By noting that 
the proposed multi-domain scheme is algebralely equiva- 
lent to a one domain scheme with open boundaries, we 
need only prove stability for one domain with homoge- 
neous boundary conditions. We state the result without 
proof, but refer to [2] for a detailed proof in the Cartesian 
case. 

Lemma 3.2 Assume there exists a solution, q, which is 
periodic or held at a constant value at the 62- and 
boundary, and that the fluid properties of the uniform state, 
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are constrained by 

fi_>0, 5_<0, X+fi_>0 , p•>_0 , 7>1, 
and related as 

> X+2> . 
Pr - - 

The linearized, constant coefficient version of the proposed 
scheme is asymptotically stable at the inflow if 

1 (l+n+•)_>•h_> 1 (l+n lx/'i--•) 
Here 

I I 7•: 
2• Reref Pr•51•ini ] ' 

This result is dependent upon whether the inflow is sub- 
.sonic or supersonic. 

For supersonic outflow 

For subsonic outflow 

__1 (l+n_q_•) >•_o> 1 (l+n+•) -- . 

The value of ,: depends on the choice of basis functions. 
For Legendre polynomials one should use 

2 

N(N + 1) ' 

where N is the number of modes in the expansion. For 
Chebyshev polynomials one gets 

1 

•d-- N2 . 

This last result is based on extensive numerical experi- 
ments [2, 3, 10]. 

We wish to emphasize that the bounds on r• and r2 given 
in Lemma 3.2 remain valid in the limit when the Reynolds 
number approaches infinity. This is realized by expanding 
the bounds for z << 1 to obtain 

1 1 

in the inflow region and 

1 1 

for supersonic and subsonic outflow, respectively. The lin- 
earized, constant coefficient version of the Euler equations 
may be transformed into five independent hyperbolic equa- 
tions for which we should expect the bounds on the penalty 
parameters to be given by the results in Sec. 2. We ob- 
serve that the bounds given above converge uniformly to 
the expected values in the limit of vanishing viscosity and, 
thus, the scheme remains stable. The observation that no 
bounds are necessary on r2 for supersonic outflow simply 
reflects the fact that no boundary conditions are required 
for the Euler equations at such a boundary. 

Note that the presented scheme assumes that the veloc- 
ity, (•ini), is positive, i.e. inflow at • = -1 and outflow 
at ix = 1. However, in [2] stability was proven at inflow 
and outflow independently, and we may thus choose any 
combination of inflow-outflow patching consistent with the 
flow realization while maintaining the asymptotic stability. 

We have used an adaptive 4th order Runge-Kutta 
scheme for temporal integration of the Navier-Stokes equa- 
tions. The boundary conditions and the patching are per- 
formed at each intermediate time step followed by enforc- 
ing continuity across the subdomain boundaries. 

The global time step, At, is found as [18] 

CFL x 

27 /a viv• min Iviui[ + c '• + PrRer•----• p 
where CFL is the CFL-number. We have defined the local 

curvilinear vector as 

v = - 
where A/E1, Aj• 2 and Ak• 3 is the local grid-size along the 
three coordinate axes with respect to the indices (i, j, k). 

4 Numerical examples 

In this section we will present schemes and results for the 
multi-domain solution of steady and unsteady compress- 
ible flows. 

4.1 Quasi-one-dimensional nozzle flows 

Consider the flow in a quasi-one-dimensional Laval nozzle. 
The dynamics of the fluid is then described by a simplified 
set of equations as 

0q OF 1 0F • 
(6) •-+•xx +H-Rer•f Ox ' Ix[_< 1 , t>0 . 
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Here we have 

q= puA , F= 
EA 

o ] F •: Arxx 

Au•-xx + A-•r aT 

puA 
(pu 2 + p)A 
(E + p)uA 

0 

, H dA -- -P•xx 
0 

This set of equations is obtained from Eq.(3) by using 
it = x and •2 = •3 = 0, thus cancelling all u2-and u3- 
components and •2-and •3-derivatives. Additionally, we 
use the fact that for a slowly varying area variation, A(x), 
the quasi-one-dimensional divergence of a vector function, 
f = (f, 0), may be approximated as 

V. f = Of A 

As reference values for non-dimensionalizing the equations, 
we use the val•les at the throat. 

For this problem the wave-speed of the characteristic 
waves becomes 

and the characteristic functions, R, are defined as 

_ ap + z:2 (E + _pa2 _ pu) a 2 

• -2 _ pu•) = p- + 
- • -2 pu•) - + + - 

For simulations of inviscid flows, specification of these 
characteristic functions whenever they enter the compu- 
tational domain leads to a well-posed problem. 

The viscous correction vector, G, becomes 

G1 1 Pr _ Ox 
ePr Ox • G3 • •(•-•) • 4• 

Pr Ox -- • Ox 

where we, for simplicity, introduce 

2• 

7-1 

Here 0(x/0x is a consequence of the normal heat fl•, while 
OG/Ox accounts for the normal stress at the boundary. 

4.1.1 Numerical tests 

As a test case for the proposed multi-domain scheme we 
have chosen a symmetric converging-diverging Laval nozzle 
with a cross-sectional area given as 

A(x)=l-0.8x(1-x) , 0<_z<_ I , 

a) 

1.1 

1.0 

0.9- 
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Figure 1: Steady state solution of the Mach profile for the 
viscous transonic nozzle flow. For the one-domain solu- 

tions (full line) at Re=100, N-32 collocation points were 
used, whereas N=48 were used at Re:250. The solutions 
symbolized by the dots represent the four-domain solution 
with the subdomains being equally sized and with N/4 
modes in each. CFL-3.0 was used in all simulations. 

and a ratio between the stagnation pressure and the back 
pressure of 0.78. This results in a choked flow through 
the nozzle with the supersonic flow being terminated by a 
stationary shock in the divergent part of the nozzle. In the 
inviscid limit, this problem has an analytic solution with a 
shock at x •_ 0.773 with shock Mach number, 34r• = 1.32. 
We have chosen the length of the nozzle, L = 0.1m, the 
stagnation temperature, To = 300øK and M - 1.0, as the 
flow is choked. 

Although the transonic nozzle flow leads to a steady 
state solution, we have implemented the scheme as a fully 
unsteady problem using a 4'th order Runge-Kutta method. 
Additionally, we have in all simulations applied an high or- 
der exponential filter to the solution at each time step. 

As initial condition we used, the inviscid solution, 
smoothed by a 4'th order exponential filter, i.e. it is far 
from the steady state solution. As boundary conditions at 
the open inflow and outflow boundaribs is used the invis- 
cid solution, which, at least at high Reynolds numbers, is 
a very good approximation. 

In Fig. 1 we show the steady state solutions obtained 
for Re = 100 and Re = 250 and we observe good agree- 
ment between the one and the four domain solutions. As 

a way of testing the accuracy of the multi-domain scheme 
we calculate the residual in L2 as 
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Figure 2: History of convergence of the Mach number for 
the one and four domain solutions. 

Residual(f(t + At)) = [If(t + At)- f(t)11 
I[f(t)ll 2 

In Fig. 2 we show the corresponding residuals of the Mach- 
number. The results for other variables are similar. We 

find that the one domain as well as the multi-domain so- 

lution converges to machine-precision with the same rate 
of convergence. The slight difference in the actual physical 
time of convergence is a consequence of the initial accuracy 
of the approximation. As we use the same total number of 
modes in the one domain and four domain solutions and 

both solutions converge at approximately the same physi- 
cal time, we obtain a significant decrease in wall-clock time 
by employing the multi-domain approach. In this case the 
multi-domain scheme is more than 10 times faster than the 

one domain approach. 
As final evidence of the performance of the scheme, we 

show in Fig. 3 the steady state Mach-profiles of the tran- 
sonic nozzle flow at increasing Reynolds number, compared 
with the purely inviscid analytic solution. All viscous so- 
lutions are obtained using a five domain solution, with the 
domains clustered around the viscous shock. We observe 

that for a low Reynolds number, the flow becomes purely 
subsonic and consequently the Mach-profile changes up- 
stream, as well as downstream, of the inviscid shock. For 
transonic flows, the steady state profiles are similar to the 
inviscid solution except in the highly viscous region in the 
neighborhood of the shock. For high Reynolds numbers 
(Re _> 500) we find that the solution converges to the in- 
viscid solution as Re -1/2, as expected. All viscous steady 
state profiles are computed with an œ2-residual less than 
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Figure 3: Steady state Mach profile for the transonic vis- 
cous nozzle flow at Re=100, 250, 500, 1000 and Re=oc. 
All solutions for finite Reynolds number are obtained as 
five domain solutions with CFL=3.0. 

10 -10 ' 

4.2 Flow around a circular cylinder 

As a second test case for validating the proposed scheme, 
we have chosen unsteady compressible flow around an in- 
finitely long circular cylinder. This flow is one of the most 
documented examples of simple exterior flows for which 
there exists an abundant amount of experimental results 
(see [19] and references therein). 

We wish to simulate the unsteady subsonic flow in the 
yon Karman shedding region for 60 < Re < 180, where 
Re is based on the free stream values of the flow and the 

diameter of the cylinder. It is, therefore, sufficient to de- 
velop a two-dimensional model. The dynamics of the flow 
is described by the two-dimensional, compressible Navier- 
Stokes equations as given in Eq.(3), which we have nor- 
malized using the free stream values of the flow. We wish 
to simulate the dynamics of the flow by applying a multi- 
domain approach, where the full computational domain, 12, 
is constructed by several non-overlapping concentric annu- 
lar subdomains. 

Each annular subdomain is mapped onto a rectangular 
computational domain, (•1,•2) • [0,27r] x [-1,1]. The 
branch cut, across which periodicity is enforced, is cho- 
sen at •1 = 0, such that the physical grid relates to the 
computational grid as 

•1 -- /'(•2)COS•(•1) , •2 --' r(•)sing(•l) , 
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where (xz,x2) are the Cartesian coordinates, (r, 0) are the 
corresponding polar coordinates and (•z,•2) are the gen- 
eral curvilinear coordinates. As a consequence of the ge- 
ometry of the problem it is natural to choose a Fourier col- 
location method in • and a Chebyshev collocation scheme 
in •2. 

By writing the problem in general curvilinear coordi- 
nates we obtain that although we treat a two-dimensional 
problem, we need only give boundary conditions and per- 
form domain patching in the •2-direction as boundary con- 
ditions in ix are given through periodicity. Thus, the one 
dimensional approach for patching may be applied for solv- 
ing this problem. 

We obtain the characteristic functions, 

where 

-- Z 

-(mi - pai)ni q- v-.• (t? + «puiui - 

x/V•2' V•2 ' 

is a unit vector pointing along •2. The four corresponding 
eigenvalues are 

yielding the wave speed of the co-propagating sound wave, 
the vorticity wave, the entropy wave and the counter- 
propagating sound wave, respectively. 

Likewise, we obtain the viscous patching vectors, G = 
J(G1. G2, G3, G4) T, as 

where we, for convenience, have introduced the symbols 

2• 
•i--R1 +R4---R3 , •2 :R1-R4 . 

7-1 

The terms depending on Or•/Or account for the effect of 
normal heat flux at the boundaries, while the remaining 
terms in G represent the effects of normal and tangential 
stress at the boundaries. 

Re St St 
computed experiment [19] 

75 0.149 0.149 

100 0.165 0.164 

125 0.177 0.175 

Table 1: Comparison of Strouhal number computed and 
reported from experiments. 

At the subdomain boundaries we use the values of the 

state vector at the previous time-step as linearization pa- 
rameters, and at the open boundary we use the free stream 
values. At the solid cylinder wall we assume no-slip, 
isothermal boundaries, i.e. q(r = L/2) = (p,0, 0, pT•) •, 
where p is determined numerically. 

The scheme has been time-stepped using an adaptive, 
explicit 4'th order Runge-Kutta with the boundary condi- 
tions and the subdomain patching being enforced at inter- 
mediate time steps, where we also enforce continuity of the 
global solution and apply a high order exponential filter to 
the solution. All simulations to be presented were done 
with CFL = 3.0. 

4.2.1 Numerical tests 

We have performed tests with a cylinder of diameter 
L = 0.1m, a free stream Mach number, M : 0.2, and 
a stagnation temperature, To: 300øK. 

We have done simulations at various Reynolds numbers 
using a 5 domain non-conforming grid. We use high or- 
der interpolation between the different grids. In Fig. 4 we 
show contour plots of the normalized density, normalized 
pressure, vorticity and local Mach-number. This clearly 
shows the well known von Karman street rear of the cylin- 
der. We observe that the contour lines are continuous 

across subdomain boundaries, and we note that the vor- 
tices propagate undisturbed across the subdomain bound- 
aries without any reflections from the artificial boundaries. 
Also, the contour lines of the vorticity, X7 x u, remain 
continuous across subdomain boundaries indicating that 
the gradient is continuous across subdomain boundaries as 
well. To evaluate the performance of the algorithm quan- 
titatively, we have performed several computations at var- 
ious Reynolds numbers. In Table 1 we compare the com- 
puted Strouhal number, i.e. the non-dimensional shedding 
frequency St = wL/a, with that found in experiments [19]. 
The Strouhal number is calculated from time traces of the 

pressure in various positions in the computational domain. 
We observe very close agreement between computational 
and experimental results. These results lead us to conclude 
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