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Abstract 

We describe a new multidomain spectral collocation 
method for the solution of compressible flow problems that 
has features lacking in most current methods. Based on a 
staggered grid, it defines the solutions at the nodes of a 
Chebyshev Gauss quadrature rule and the fluxes at the 
nodes of a Chebyshev Gauss-Lobatto rule. The method 
is conservative and free-stream preserving. By way of 
numerical experiments, we show that it is exponentially 
accurate. A significant advantage of the method is that 
subdomain corners are not included in the approximation, 
making complex geometries easier to treat. 

Key words: spectral methods, domain decomposition, 
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I Introduction 

In this paper, we describe a new multidomain spectral col- 
location method for the solution of inviscid compressible 
flow problems. The method is based on a staggered grid, 
analogous to fully staggered grids often used with finite 
difference methods. In our case, however, the solutions are 
defined at the nodes of the Chebyshev Gauss quadrature 
rule, while the fluxes are evaluated at the nodes of the 

Chebyshev Gauss-Lobatto rule. Staggered grid spectral 
approximations were first proposed for the solution of the 
incompressible Navier-Stokes equations (c.f. [1], pg. 234). 
Our grid will be identical to the fully staggered grid of 
Bernardi and Maday [2]. 

When applied to the Euler gas-dynamics equations, the 
staggered grid multidomain concept has many desirable 
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features. First, like the cell averaged method of ref. [3], 
it is conservative. Thus, it should be possible to apply 
shock capturing techniques to the approximation. Only 
flux values are required at interfaces, not their derivatives, 
so discontinuous changes in the grids can occur across in- 
terfaces. The result is that subdomains can be defined in- 

dependently of their neighbors, which makes the method 
geometrically flexible. Also, the interface conditions can 
be computed to the same temporal accuracy as the inte- 
rior points, unlike the correction scheme methods [4]. Most 
important, in multiple space dimensions, the method does 
not include (the Gauss rules being open) the corners of sub- 
domains. Thus the coding of the method does not require 
special cases at corners, and any number of subdomains 
can meet at a point without coding difficulty. 

The paper is divided as follows. After the equations 
that we intend to solve are presented in Section 1, the ap- 
proximation is described in Section 2 for problems in two 
space dimensions. In Section 3, we show that the method 
is both conservative and free-stream preserving. Section 
4 provides three examples of the use of the method for 
two-dimensional problems. The first problem is that of a 
point source flow, for which there is an exact solution. We 
show that exponential accuracy is obtained for this prob- 
lem. The next problem is a steady subsonic flow through 
an array of cylinders in a duct. We then solve a transonic 
flow in a two-dimensional converging-diverging nozzle and 
compare the results to experimental data. Concluding re- 
marks are made in the final section. 

2 The equations 

In this paper, we describe the approximation of the Euler 
equations of gas-dynamics in conservative form, 

OQ OF OG 
ot =ø' 
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where Q is the vector of solution unknowns and F(Q) and 
G(Q) are the advective flux vectors 

pu F = Q= pv 
pe 

pu 

P + pu 2 
puv 

u(pe + p) 

pv 

puv 

P + pv 2 
v(pe + p) 

(2) 
We assume the gas is perfect so that pe = p/(7--1)+p(u 2 q- 
v2)/2 and '7: 1.4. For axisymmetric problems, such as the 
transonic flow in the converging-diverging nozzle discussed 
later, we interpret x as the axial coordinate and y as the 
radial coordinate. In that case we add the vector 

(3) H-- 1 
pv 

puv 

pv 2 
v(pe + p) 

to the right hand side of equation (1). 

3 The staggered grid 
approximation 

3.1 Notation 

The staggered grid approximation computes the solution 
values and advective fluxes on different grids. Unlike the 
common approximation [1], which uses only the nodes 
of the Chebyshev Gauss-Lobatto quadrature as colloca- 
tion points, the new method uses both the Gauss and the 
Gauss-Lobatto points. We denote the Lobatto points by 
Xj and the Gauss points by Xj+I/•_, defined by 

- Xj -- • , 

-- i (l_cos(2J+•7r•) Xj+I/2 : • [,2N+2 ] J = 0, 1,..., N - 1 
(4) 
In equation (4), we have mapped the usual collocation 
points defined on [-1, 1] to the more convenient unit in- 
terval. The overbar and half point notation for the Gauss 
points is used only for its value as an analogy to stag- 
gered grid finite difference methods. It is understood that 
the Gauss points do not lie halfway between the Lobatto 
points [1]. 

We also define two polynomial approximations, one for 
the Gauss grid, and one for the Lobatto grid. Let the 
space of polynomials of degree less than or equal to N be 
denoted PN. Let fj (•) • P• be the Lagrange interpolating 

polynomial 

i=O 

defined on the Lobatto grid. On the Gauss grid, we define 
hi+l/2 • F'N-1 to be the polynomial 

(Sb) = II /=o •j+l/2 -- •i+1/2 

Finally, let Qj be a grid point value on the Lobatto grid 
-- 

and Qj+•/2 be a value defined on the Gauss grid. Then we 
write the polynomials that interpolate these values as 

(6a) 
N 

Q(X) = qej(x) 
j=O 

(6b) 
N-1 

•(X) : E •J+l/2hj+I/2(x)' 
•----0 

3.2 Mapping of the subdomains 

In two space dimensions, we subdivide the computational 
domain, f•, into multiple quadrilateral subdomains, 
We make two assumptions about the subdivision in this 
paper. First, we restrict subdomains to intersect only at a 
point or along an entire side. Thus, we do not consider ge- 
ometrically non-conforming approximations here. Second, 
we assume that the subdomain boundaries do not vary in 
time. 

Once defined, the individual subdomains are mapped 
independently onto the unit square by an isoparametric 
transformation. Let the vector function g(s), 0 _< s _< 1 
define a parametric curve. Define also the polynomial of 
degree N, 

N 

(7) re): 
j=0 

that interpolates g at the Gauss-Lobatto points, defined in 
the first part of equation (4). For each subdomain, f•t•, we 
define four such polynomial curves, Fro(s), m = 1,2,3,4 
that bound the subdomain. Finally, we map each f• onto 
the unit square by the linear blending formula 

x(X, v) 

(s) 

(1 - Y)I'• (X) + YF3(X) + (1 - X)F4(Y) 
+XF2(Y) - x•(1 - X)(1 - Y) 
-x2X(1 - Y) - x3XY - x4(1 - X)Y , 
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Figure 1: Diagram of the fully staggered grid in two space dimensions. 

where •he xj's represent the locations of the corners of the 
subdomain. As an added restriction on the method, we 
will require that the polynomial orders on either side of an 
interface match, making the approximation functionally as 
well as geometrically conforming. This requirement means, 
•s•entially, that the grid points from either side coincide 
along an interface. 

Under the mapping •k •_• [0, 1] x [0, 1], the Euler equa- 
tions (1) become 

(9a) 0Q 1 [0• 0(•] o-•+Y •+5-V 

where 

(95) 
•" = y•NF -- x•NG (• = --yxNF + xxNG 
J(X,Y)=x NoN N N X sY -- xy Yx 

Since we assume that the subdomain boundaries do not 

move in time, we can write equation (9a) as 

o• 0•(q) 0•(q) 
(10) Ot + 0--•-- + OY - 0 
where (• - JQ and the fluxes are still defined in equa- 
tion (9b). 

3.3 Computation of the interior fluxes 

A fully staggered grid is used in two space dimensions. 
A schematic of the grid on a single subdomain is shown 

in Figure 1. This grid is the same as the staggered grid 
proposed by Bernardi and Maday [2] for the solution of the 
incompressible Navier-Stokes equations. In what follows, 
we will ignore superscripts that denote which subdomain 
is being considered, unless necessary. 

Points of type "a" in Figure 3 represent the 
Gauss/Gauss points (•i+l/2,Yj+l/2), i -- 0, 1,..., N - 
1, j - 0,1,...,M- 1. The grid that results from 
these points is the tensor product of the one dimen- 
sional grid defined in equation (4). We approximate 
the solution and the transformation JacobJan at the 

Gauss/Gauss points, and denote them by Qi+l/2,j.l/• and 
Ji+l/2,j+l/2 = J(Xi+l/2,j+l/2, Yi+l/2,j+l/2). From these, 

~ 

we compute the Gauss point values of Qi+l/•,j+l/• - 
Ji+l/2,j+l/•Qi+u•,j+l/•. Finally, the interpolant of the 
solution through the Gauss points is a polynomial in 
PN-1,M-1 -- PN-1 •) PM-i: 

(•) •(X, r) = 
N-1M-1 

Y•. • (•i+1/2,j+1/2 hi+l/2(X) hj+U2(Y) 
i=0 j=O 

The points of type "b" in Figure i form the 
Lobatto/Gauss grid whose points are written as 
(Xi, Yj+l/2), i = 0,1,...,N, j = 0,1,...,M- 1. On 
this grid are evaluated the horizontal flux vector, •' and 
the metric terms y•- and xy. The metric terms are the an- 
alytical derivatives of the polynomial functions defined by 
equation (8) evaluated at these points. Then the horizon- 
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tal flux is the polynomial in P•v,M-• that passes through 
the grid point values 

Fi,j+l/2 
(12) o 

In equation (12), Q(X,¾) is the polynomial of the 
type (11) that passes through the points (•i+1/2,j+1/2/ 
Ji+l/2.j+l/2. Only the interior flux points are computed by 
equation (12). The boundary and interface flux definitions 
are described in the next sub-section. 

The vertical flux and the derivatives yx and xx are 
defined on the Gauss/Lobatto grid, marked by "c" on 
Figure 1. The points on this grid are (•i+•/2,Yj), i: 
0, 1 .... , N - 1, j = 0, 1,..., M, and the vertical flux is the 
polynomial in P,v-•.M that passes through the points 

•,+1/2.j 
(13) 

-Yx(Xi+i/2, Yj) F (•(•i+1/2, •j)) 
N-- 

"•xx(Xt+I/2, •j) G (•(•i+1/2, •j)) ß 

Like equation (12), equation (13) is only applied to the 
calculation of interior point fluxes. 

While it may appear that defining quantities on three 
different grids would lead to a significantly more compli- 
cated method than a single grid Lobatto approximation, 
this turns out not to be the case. First, the definition of 
the fluxes by equations (12) and (13) imply that the re- 
construction procedure, i.e., the interpolation needed to 
compute the fluxes at the Lobatto points, is not a two- 
dimensional operation. Rather, it can be computed by a 
less expensive sequence of one-dimensional interpolations. 
The values of the solution vector that are required to com- 
pute the flux vectors are 

N-1M-1 

•(Xt.•j+i/2) -- Y• Y• •i+1/2,j+1/2 
i=0 j=0 

x h•+l/2(Xi)hj+•/2(Yj+W2) 
N--1 

(14a) -- Z •i+l/2,j+l/2hi+l/2(xi) 
i=0 

and 

N-1 M-1 

i=0 j=0 

X hi+l/2(Xi+l/2)•j+l/2(•j) 
M-1 

(14b) = Z •i+1/2,j+l/2hj+l/2(•j) 
j=0 

since, by construction, 

hm+l/2(Yj+l/2) = 5rn,3 

hn+l/2(Xi+l/2) = 5n,i 

where 5j,• is the Kronecker delta function. 
Next, when derivatives need to be evaluated at the 

Gauss/Gauss points, they can also be done as a sequence 
of one-dimensional derivatives. To compute the derivative 
approximations, the interpolants of the grid point values 
of the fluxes are differentiated, and the result is evaluated 
at the Gauss points. Computationally, this becomes 

(15) 
i+1/2,j+1/2 

i+1/2,j+1/2 

N 

---- Fn.j+l/2gn(Xi+l/2) 
n:O 

N 

---- Gi+l/2,rngrn(rj+l/2) 
rr*=0 

The reconstruction and differentiation operations repre- 
sented by equations (14) and (15) can both be computed 
by matrix multiplication. 

The total work associated with the interpolation and 
differentiation operations in two space dimensions is twice 
that of a method that only uses the Lobatto grid. On the 
other hand, the method requires the same amount of work 
as the cell averaged method [3] in two space dimensions. 
The equivalence of the amount of work is due to the more 
complex nature of the reconstruction for the cell averaged 
method in two space dimensions. 

3.4 Interface and boundary fluxes 

To describe how to compute the interface and boundary 
conditions using the staggered grid approximation, we will 
refer to Figure 2, which schematically represents four sub- 
domains and the locations at which solution and flux val- 

ues are computed. Only the grid points near the bound- 
aries are marked. The circles represent the solution values, 
which are located on the Gauss•/Gauss grid. The locations 
of the horizontal flux values, Fi,j+•/2, are represented by 
solid squares. The locations of the vertical flux values, 
•i+U2,j, are marked by hollow squares. From the dia- 
gram, we see that along the vertical interfaces between 
subdomains 1 and 2 and between subdomains 3 and 4, 
only the horizontal fluxes need to be computed. Along 
horizontal interfaces, like those between subdomains 1 and 
3, only the vertical flux needs to be computed. Because the 
grid is fully staggered, the coupling is through subdomain 
faces only, not through corners. 
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Figure 2: Diagram of four subdomains s_howing locations near interfaces where solutions and fluxes are computed. 
Symbols: circle - solution; solid square - F; hollow square - (•. 

Figure 2 indicates a significant advantage to the use of 
the fully staggered grid over the use of an unstaggered 
approximation, e.g. [4]. An unstaggered approximation 
requires special corner algorithms to be devised to com- 
pute corner solutions to ensure stable propagation of waves 
through the corners. The choice of bi-characteristics that 
determines the domains of dependence becomes more com- 
plex as the number of subdomains/boundaries that come 
together at a point increases. The staggered approxima- 
tion does not include subdomain corners, so conditions do 
not have to be specified at corner points. Thus, any num- 
ber of subdomains can come together at a point without 
the need for special point approximations and code. 

The interpolation of the solution by equation (14) pro- 
duces two solution values at an interface point, one from 
each of the two contributing subdomains. We do not ex- 
pect these two values to coincide, except in the limit of 
infinite resolution. A single flux is calculated by solving an 
approximate Riemann problem that considers waves prop- 
agating normal to the interface. This normal wave approx- 
i•nation is common for finite difference approximations [5] 
and has been used for spectral approximations in [3]. Sev- 
eral solver choices are possible, but we have used Roe's [6] 

solver with the entropy fix. To illustrate the procedure, let 
us consider the situation along vertical interfaces shown 
Figure 2. Formally, given the two states QL and QR that 
have been computed from the interpolation of the Gauss 
point values, Roe's approximate Riemann solver writes the 
horizontal flux as 

(16) •,(QL, QR)= 

2 

where R is the matrix of the right eigenvectors of the Ja- 
cobian of •', computed using the Roe-average of Q•; and 
QR. The matrix A is the matrix of the eigenvalues of •. 
This formula is modified to correct the entropy across sonic 
points. A detailed account can be found in [5]. 

Physical boundaries can be viewed as interfaces betxveen 
the external flow and the computational region. Wall 
boundaries can be computed by imposing an opposing flow 
that enforces zero normal momentum flux across the in- 
terface. Subsonic inflow and outflow boundaries can be 

computed by replacing the solution that would have come 
from a neighboring subdomain by the free-stream values, 
if they are known. Thus, the flux at the boundary on the 
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left of Figure 2 would be computed by •'(Q•c, QR). If the 
full state of the exterior flow is not known, an alternative 
procedure can be used such as that applied for the nozzle 
calculation below. Supersonic outflow boundaries require 
no extra conditions. 

3.5 Discretization of the equations 

From equations (11)-(15), with boundary and interface 
fluxes defined by equation (16), we can now define the 
semi-discrete approximation for the solution unknowns 
within a subdomain: 

dQi+l/2.j+l/2 [OP-• -+ 
i =0,1,...,N-1 
j =0,1,...,M-1 

=0, 

Equation (17) is a system of ordinary differential equa- 
tions that must be integrated in time to get the approxi- 
mate solution values at the Gauss points. In principle, any 
common integration procedure can be used. We have cho- 
sen to use low storage Runge-Kutta methods that require 
only 2-N storage locations. In this paper, we consider only 
the computation of steady-state problems, for which the 
time discretization is only an iterative procedure, so it is 
sufficient to use the low-order nfid-point rule. For each 
subdomain. we compute 

(•rt+l/2 ~ n i+1/2.j+1/2 ---- Qi+l/2.j+l/2 

2 q- i+1/2,j+1/2 
i-- 0,1,...,N- 1 
j-0,1,...,M- i 

(is) 
(•n+l ~ n ,+1/2,j+1/2: Qi+l/2,j+l/2 

i = o, 1,... ,N- 1 
j = O, 1,...,/F/- I 

i+1/2,j+1/2 

where the superscript n denotes the time level. For the 
staggered grid approximation, this method appears to have 
a good balance between the time step required and tem- 
poral damping introduced by the scheme. With additional 
knowledge of the eigenvalue structure of the differentia- 
tion matrices, other choices might include schemes opti- 
mized for rapid convergence to steady-state, such as those 
discussed in [7]. 

4 Properties of the staggered 
grid approximation 

The staggered grid approximation is both conservative and 
free-stream preserving. A net gain or loss of (• is de- 
termined only by a net gain or loss through the exterior 
boundaries. Also, if the solution is constant in space, then 
the solution must remain constant in time also, even in the 
presence of a spatially varying mapping. 

We first show that the staggered grid approximation 
is conservative. It is sufficient to consider four subdo- 

mains as shown in Figure 2. Let the quadrature weights 
Wi+l/2, •]j+l/2 be defined so that 

1 1 N- 1 •¾I- 1 

i=0 j=0 

(19) VP ß P.¾-l.•-i 

By the exactness of the quadrature, the sum of equa- 
tion (17) times Wi+l/2t]j+l/2 over all the points within a 
subdomain is 

(2o) 

N- 1.iV/- 1 ~ 

Y• dd-•t i+l/2.j+l/2•'i+l/2t]j+l/2 i,j=0 

fo• •-• dXdY 
N-1 

Z [• q- •-•]i+1/2,j+1/2 wi+l/2•j+l/2 
i,j=O 

Thus, for each subdomain, 

• (•dXd¾ = - •'(1,¾)d¾ + •'(O,¾)dY 

- + 
(21) 

When equation (21) is summed over all subdomains, the 
interior integrals cancel so that only the boundary contri- 
butions remain: 
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dT • (•idXdY = 

(22) 

(•'q(O, Y) + •'a(O, Y)) dY 

(•'2(1, Y) + •'4(1, Y)) dY 

0) + 0)) 

+ ax 

Tke staggered grid approximation is also free-stream 
preserving, which means that the isoparametric spatial 
mappings do not introduce false source terms. It is suffi- 
cient to consider the approximation within one subdomain, 
since all derivatives are computed locally by subdomain. If 
we take r(Q) = G(Q) = x, then the approximation (17) 
beccmes 

=0 

Since x N • PN,N, 

that 

(25) d_•[ =0 i=0,1,...,N-1 i+1/2,j+1/2 j = O, 1,..., M - 1 

5 Examples 

In this section, we use the staggered grid approximation 
to compute three steady flow problems. The first problem 
is subsonic flow from a point source. The flow is com- 
puted on a multiply connected geometry to show' that the 
,nethod is suitable for complex geometries. This problem 
has an exact, analytic solution, and we show' that exponen- 
tial convergence is obtained. The next problem is a steady 
subsonic flow through an array of cylinders in a duct. The 
final problem computes a transonic flow in an axisymmet- 
ric converging-diverging nozzle. The solution for the nozzle 
is compared to experimental data. 

5.1 Subsonic point source flow 

As our first example, we consider the flow of a steady, irro- 
rational gas exiting from a point. This flow can be solved 
exactly by a hodograph transformation [8]. The stream- 
lines are radial, and level curves of the Mach number, pres- 
sure and density are circles centered on the source. 

We solve the point source flow on the grid shown in 
Figure 3. The geometry, a square with five circles cut out 
of its interior, was chosen to show that the method can be 
used to compute a flow in a complex, multiply connected 
region. Twenty four subdomains were used to cover the 
computational domain. Shown on the figure are the grid 
lines of the Lobatto grid. The solutions themselves are 
actually defined interior to each "cell" bounded by the grid 
lines. 

Figure 3: Grid for point source problem. 

The boundary conditions were chosen so that the exact 
steady solutiou is radial flow' with a point source at the 
center of the nfiddle circle of Figure 3. The center cutout 
circle was specified as an inflow boundary, with the condi- 
tions chosen so that the Mach number of the incoming flow 
was 3I = 0.6. The boundary conditions along the remain- 
ing cutout circles were either inflow or outflow, depending 
on the direction of the normal velocity. The square outer 
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boundary of the problem was an outflow boundary. For all 
inflow/outflow boundaries, the exact solution was used to 
provide the external flow values required by the Riemann 
solver. 

In Figure 4, we plot the exact and computed Mach num- 
ber contours for the solution of the point source flow. The 
contour lines of the exact solution, which are plotted with 
dashed lines, are coincident with the solid contour lines of 
the computed solution. In this figure, and in those follow- 
ing, contours are plotted using solution values interpolated 
from the Gauss points to the Lobatto points. The inter- 
polation is done for display reasons, since a plot using the 
Gauss points would show gaps between the subdomains, 
representing the fact that the solution is not defined on 
the interfaces. On the other hand, plotting the interpolant 
does give some indication of the size of the jumps in the 
solution at the interfaces. 

/ 

x / 

Figure 4: Solution of the point source flow for the geometry 
shown in Fig. 3. The exact solution is plotted with dashed 
lines, the computed with solid lines. 

Figure 5 shows the maximum error in the density as a 
function of the number of points per sub domain and indi- 
cates exponential convergence of the solution. We see that 
doubling the number of points per subdomain causes the 
error to decay by approximately two orders of magnitude. 

-1.5 

4 6 8 10 12 14 16 

N 
Figure 5: Convergence of the density for the solution shown 
in Fig. 4. 

5.2 Subsonic flow through an array of 
cylinders in a duct 

Our second example is the solution of a flow through 
array of cylinders inside a straight duct (Figure 6). Wall 
boundary conditions were enforced on the upper and lower 
boundaries, in addition to the cylinder surfaces. The 
boundary conditions at the left and right enforced a hori- 
zontal, Mach 0.25 free stream. The initial conditions spec- 
ified the uniform flow everywhere. Solution contours for 
the Mach number are shown in Figure 6b. 

5.3 Transonic flow in a 

converging-diverging nozzle 

To show that the method is applicable to transonic prob- 
lems, we compute the flow in an axisymmetric converging- 
diverging nozzle. We have chosen the nozzle used in the 
experimental investigation of Cuffel et al. [9], which was 
designed to show significant two dimensional effects. The 
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Figure 6a: Grid for flow in a duct. 

Figure 6b: Mach contours for the flow in the duct. 

nozzle consists of a converging section with half angle of 
45 ø and a diverging section with half angle of 15 ø. The 
experimental tests were done in air with a stagnation tem- 
perature of 300K and stagnation pressure of 1.01 x 10 -2 
Pa. Figure 7 shows the nozzle geometry and the grid used 
in our computations. 

Figure 7: Grid for the 45ø-15 ø converging-diverging nozzle. 

equations (1)-(3) by p = P*/Ptot,P = P*/Ptot, where 
* represents the dimensional quantity. Under this sca!ing, 
the temperature and entropy become T = T*/Ttot, $tot = 
0. The initial condition for the computation was the ex- 
act solution of the quasi-one-dimensional nozzle having the 
same area as the two-dimensional nozzle. For the inflow 

condition at the left boundary, we specify the tangential 
velocity to be zero, the entropy to be zero, and the tem- 
perature to be equal the total temperature specified by the 
experiment. At the right boundary, the outflow is super- 
sonic, so no boundary condition is necessary there. 

Since not all of the external flow values are known at 

left boundary, particularly the inflow velocity, it is not con- 
venient to use the Riemann solver to impose the boundary 
condition. Instead, we use the following characteristic-like 
method that allows us to specify the known parameters. 
The fact that the inflow condition enforces v = 0 means 

that the flow is essentially one dimensional there. In terms 
of the Mach number, M, and the sound speed, a, the left- 
going Riemann invariant for the one dimensional flow will 
satisfy 

To match the experimental conditions, we scaled the 
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Figure 8: Comparison of computed and measured Mach 
number near the nozzle throat. 

(26) acomp.(Mcomp. 2) 7-1 

where the computed quantities represent values computed 
at the boundary by the reconstruction procedure. Equa- 
:.•n (26), plus the relationship between the Mach number, 
total sound speed and sound speed gives 

1+ 7-1 

Equation (27) can be written as a quadratic equation in the 
Mach number and solved directly. Once the inflow Mach 
number is known, the sound speed can be computed. From 
the Mach number, the sound speed, tangential velocity and 
-ke entropy, all remaining variables and the boundary flux 
can be computed. 

Some results computed for the nozzle are shown in Fig- 
ures 8 and 9. First a comparison of the computed Mach 
cuntours and the measured Mach number in the neigh- 
borhood of the nozzle throat is shown in Figure 8. We see 
good agreement between the computed Mach contours and 
q:e measured values up to about M = 1.6. We note that 
the discrepancies are consistent with the discrepancies ob- 
served with other inviscid flow solvers reported in [9]. A 
comparison between the computed and measured values of 
•he pressure along the upper wall of the nozzle is shown in 
Figure 9. 

0.8 I Computed o Exp 
• 0.6 

0.2 

-2 -1.5 -1 -0.5 0 0.5 I 1.5 2 

X'Xth 
Figure 9: Comparison of computed and measured upper 
wall pressure as a function of distance [rom the nozzle 
throat. 

6 Concluding remarks 

We have described a new, staggered-grid Chebyshev spec- 
tral multidomain method for the solution of inviscid com- 

pressible flow problems. In this method, the solutions are 
defined at the nodes of a Gauss quadrature rule, while 
the fluxes are evaluated at the nodes of a Gauss-Lobatto 

rule. An approximate Riemann solver is used to determine 
the characteristic decomposition needed to advect waves 
through a subdomain interface. •Ve have presented appli- 
cations here to two dimensional problems, but the method 
is also applicable to one dimensional problems, and should 
extend directly to three dimensions. The method should 
also be applicable to the solution of any hyperbolic sys- 
tem in which the flux vector itself can be decomposed 
into wave components. The staggered grid multidomain 
concept has many desirable features. including conserva- 
tion, free-stream preservation, geometric flexibility and 
programming simplicity. 
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