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Abstract 

We present two new domain decomposition solvers in 
the context of conforming spectral element discretizations. 
The first is a domain decomposition solver for the discrete 
steady convection-diffusion equation, while the second is a 
domain decomposition solver for the discrete steady Stokes 
or Navier-Stokes equations. The solution algorithms are 
both based on the additive Schwarz method in the context 

of nonoverlapping subdomains. The key ingredients are: 
(i) a coarse global system; (ii) a set of local, independent 
subproblems associated with the subdomains (or spectral 
elements): (iii) a system associated with the unknowns on 
the subdomain interfaces; and (iv) a Krylov method such 
as the CG algorithm or the GMRES algorithm. We present 
numerical results that demonstrate the convergence prop- 
erties of the new solvers, as well as the applicability of the 
methods to solve heat transfer and incompressible fluid 
flow problems. 
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I Introduction 

In this paper we shall discuss the solution of the steady 
convection-diffusion equation as well as the solution of the 
steady, incompressible Navier-Stokes equations. In terms 
of spatial discretization, our primary focus will be the use 
of conforming spectral elements [39, 32], however, the gen- 
eral framework should also apply to the p- or h-p- type 
finite element method [5, 3, 4, 18, 37, 36]. The spectral 
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element method is very similar to the p-type finite ele- 
ment method, but with a particular emphasis on tensor- 
product forms: tensor-product nodal bases, tensor-product 
Gauss quadratures, and tensor-product sum-factorization 
techniques for efficient matrix-vector product evaluations 
[3s, 32]. 

The solution of the resulting set of algebraic equations 
poses a special challenge for high-order methods due to 
the long-range couplings and the severe conditioning as- 
sociated with these methods. Direct methods are very 
computer intensive and therefore rarely practical, espe- 
cially when considering general three-dimensional geome- 
tries and general elemental decompositions. An iterative 
approach seems to be the only viable alternative for such 
problems. 

For the steady Stokes problem, a popular approach has 
been to use a form of the Uzawa procedure [26, 27, 31]. The 
attractive side of this approach is that it decouples a sad- 
dle problem into two symmetric, positive (semi)-definite 
forms, one for the pressure and one for the velocity. The 
solution can thus be obtained by solving a series of elliptic 
problems, with each elliptic problem solved with a stan- 
dard conjugate gradient like method. 

For the steady convection-diffusion problem. the pres- 
ence of the nonsymmetric convection term has prevented 
an efficient iterative solution of the discrete, steady equa- 
tions in the past. The most popular approach for spec- 
tral element discretizations has been to solve an unsteady 
problem, and integrate these equations until a steady state 
has been reached [32, 33]. Following such an approach, 
the nonsymmetric convection term is typically treated ex- 
plicitly, while the symmetric diffusion term is treated im- 
plicitly, thus avoiding a linear system of equations with a 
nonsymmetric matrix. A similar approach has also been 
applied for solving the steady Navier-Stokes equations. 

Iterative techniques for nonsymmetric problems, such as 
the GMRES algorithm [46], has earlier been used in the 
context of solving the fully coupled, discrete Navier-Stokes 
equations. However, the availability of good precondition- 
ers is still very limited. In the context of low-order finite 
element discretizations, the most common precondition- 
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ers are either based upon a diagonal scaling [50], or some 
form of element-by-element preconditioning [51, 42]. In 
the context of high-order finite element/spectral element 
discretizations, even less progress has been made in terms 
of constructing efficient preconditioners. 

The work we present in this paper is an attempt to ad- 
dress this deficiency. The algorithms we propose are in- 
spired by recent progress in domain decomposition tech- 
niques, in particular, iterative substructuring techniques 
[8, 10, 11, 21]. Although an impressive development has 
taken place over the past few years [35, 47, 22, 20, 30], in- 
cluding nonsymmetric problems [53, 14, 15], only very lim- 
ited results seem to have been reported in the area of solv- 
ing Stokes and Navier-Stokes problems [9]. Although our 
algorithms cannot claim to have a polylogarithmic conver- 
gence rate (at least not yet), we believe that they nonethe- 
less represent a significant advance compared to current 
iterative methods for solving steady, incompressible fluid 
flow problems. 

Our approach will be as follows: As a point of departure 
we shall use an additive Schwarz method without overlap, 
that is, we shall use what is also referred to as an iterative 
substructuring method. Recently, polylogarithmic conver- 
gence rates have been reported for elliptic problems in the 
context of three-dimensional spectral element discretiza- 
tions using this class of solution methods [40, 41]. The 
method we propose for the elliptic kernel in this study 
will. however, be less optimal than the solution method 
proposed in [40, 41]. The reason for this is that the method 
we propose for the interface system is very simple and easy 
to invert, and that it can readily be extended as a building 
block for the Navier-Stokes solver that we propose. 

The outline of the paper is as follows: In Section 2 
we present spectral element discretizations for the Pois- 
son problem, the steady Stokes problem, the steady 
convection-diffusion problem, and the steady Navier- 
Stokes problem. In Section 3 we propose iterative sub- 
structuring methods for the resulting discrete systems, 
and in Section 4 we present two-dimensional and three- 
dimensional numerical results. The major conclusions 
from this study are presented in Section 5. 

2 Spectral element discretizations 

2.1 The Poisson equation 

We consider here the solution of the Poisson problem in a 
domain •, 

(1) -V'2u - f in •, 
(2) u = 0 on c•fi, 

where f is the given data and u is the solution. In deriving 
the set of discrete equations we shall assume that • is a 
two-dimensional domain. This assumption simplifies the 
definition and discussion of the spectral element method, 
and is used for reasons of exposition only. Fully three- 
dimensional cases will be considered later. 

As a point of departure for our numerical discretization 
we consider the equivalent variational formulation of prob- 
lem (1)-(2): Find u • 12 -_- H•(•) such that 

(3) a(u, v) = re) w • 12, 

where the bilinear form a ß 12 x 12 -• R and the linear form 

f ß 12 -• R are defined as 

(4) a(u,v) = 

(5) f(v) 

nV'u ß Vv df• , 
/n f vd• . 

Here, 12 = H0•(•2) is the standard Sobolev space. 
Next, we assume that the domain • is broken up into 

K non-overlapping and geometrically conforming quadri- 
lateral elements (or subdomains) f•, 1 _< k _< K. This 
implies that the intersection of two elements • and •t is 
either empty or reduced to a common vertex or a common 
edge; in the latter case we define the open interval F•.t as 

(6) F•,• = O• • O•. 

The discretization of problem (3) consists of choosing 
a finite-dimensional space V that approximates 12: Find 
u5 6 V such that 

(7) a(u•,•,) = f(•), w,, • v. 

Before we define the discrete space V, •ve first define the 
space Q• (•) to be the set of all polynomials of degree less 
than or equal to N in each spatial direction on the refer- 
ence domain • =]- 1, 1[ 2 in R 2. Let F•(•, •2) be the affine 
transformation (or isoparametric mapping) from the refer- 
ence domain • onto •. The polynomial approximation 
space QN(•) is then defined as 

We now proceed by defining the space 1• of piecewise poly- 
nomials as 

(9) • = { •. v•, 1 _< • _< K, • = •l• e Q.¾(•) }. 
The finite-dimensional space V is then defined as 

(10) 
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In order to derive a set of algebraic equations, we need 
to define a quadrature rule in order to evaluate the inte- 
grals (4)-(5) in the variational form, and we also need to 
define a basis for the discrete space 17. It is natural to 
use quadrature formulas of the Gauss-Lobatto Legendre 
type [32, 43], constructed from the zeros •j, 0 _< j _< N in 
the interval A -] - 1, 1[ of the polynomial (1 - •2)L'N(•). 
Here, L•v denotes the Legendre polynomial of degree N 
over A. The quadrature rules for the multi-dimensional 
case are then constructed as the tensor-product extension 
of the one-dimensional Gauss-Lobatto Legendre (GLL) 
points. For the two-dimensional case, the set of points 
•pq = (•p, •q), 0 __• p, q <_ N refer to the GLL points on 
the reference domain • = A x A =] - 1,112. These points 
are then mapped via the aft:inc transformation (or isopara- (12) 
metric mapping) Fk((•, (2) onto f•k, defining the points 
•p•q = (•p•,•q•). 05p, q_•N, l_•kSK. 

A typical integral over the subdomain fl• in the varia- 
tional form is then evaluated in the following way: 

I 1 

jf• o(x,y)dxdy = /_ /_ k 1 1 

N N 

a=0,3=0 

Here, J• is the Jacobian associated with the a•ne trans- 
formation F•, and p•, 0 5 j N N are the GLL quadrature 
weights associated •vith the GLL points •j, 0 5 j 5 N. 
• remark that the numerical quadrature formula is ex- 
act for polynomials 0 • Q=•-•(•) [49]. 

Having defined a numerical quadrature rule we can now 
pose the discrete problem as: Find u5 • V such that 

where • and f in (7) have been replaced by aa and fa to 
indicate integration of the bilinear and linear form by GLL 
quadrature. 

The GLL points are also used to define a tensor-product, 
Lagrangian interpolant basis [32, 43]. These basis func- 
tions are defined over each • • polynomials H• • 
Qx(•) that satisfy 

Vp, q,p',q', 0 • p,q,p',q' 5 N, H•(•,,•,) =Spp, Sqq,. 
(13) 

In order to define a b•is for the space •, these polynomials (14) 
are extended by zero in all the other subdomains. An 

• (•) element v • 17 can then be expressed as 

K N N 

, 
k=l p=O q=O 

where 

w, 5 _< x, = = 

The basis (11) represents a tensor-product, Lagrangian 
inte_rpolant basis where the degrees-of-freedom of elements 
in V are the nodal values 17•q = v•(•p•q), 0 _< p, q _< N, I _< 
k <_ K. In order to represent an element in the discrete 
space V, we also need to honor the C O continuity require- 
ment across the elemental boundaries F = {F•,l}, as well 
as the homogeneous boundary conditions along 0fL 

Choosing appropriate test functions, we are now in a 
position to derive a set of algebraic equations which can 
be expressed in matrix form as 

Here, __A is a symmetric positive definite (SPD) matrix rep- 
resenting the discrete Laplace operator, u is a vector repre- 
senting the nodal unknowns, and f represents the discrete 

-- 

right hand side. 

Remark 2.1 The extension to three-dimensional domains 

follows readily from the application of tensor-product forms 
[38, 32, 

Remark 2.2 For problems including non-homogeneous 
Dirichlet boundary conditions, a standard approach is to 
act on these boundary values with a discrete Laplacian cor- 
responding to Neumann boundary conditions. The result is 
then subtracted from the right-hand side f, and we arrive 
at a system similar to (12), to be solved for the internal 
nodal values u. 

Remark 2.3 In the case of Neumann boundary condi- 
tions, the variational form naturally results in surface in- 
tegrals due to the integration by parts [•8]. The given Neu- 
mann boundary conditions are then inserted into these sur- 
face integrals, and the result is absorbed into the right hand 
side. 

2.2 The steady Stokes equations 

We now turn to the discretization of the steady Stokes 
equations 

-tzV2u+Vp = f in f•, 
V.u = 0 in 

u = 0 on Of•. 

Here, u is the fluid velocity, p is the pressure, /• is the 
viscosity, and f is a body force. Again, for reasons of ex- 
position, we assume that f• is a two-dimensional domain. 
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A spectral element discretization of (13) - (15) is based 
on the equivalent weak form. For two-dimensional prob- 
lems and homogeneous velocity boundary conditions we 
can formulate this problem as: Find u • 122 = [H0X(f•)] 2 
and p • 142 = L20(f•) such that 

a(u,v)+b(v,p) = f(v) Vv•122, 
b(u,q) - 0 Vq•142. 

Here, the bilinear form a: 122 x 122 _• R, the bilinear form 
b: 122 x 142 -• R, and the linear form f: 122 _• R are 
defined as: 

(16) a(u,v) : •jffiVu. Vvdf• , 
(17) b(u.q) : -/n(V.u) qdf•, 
(18) f(v) : f.q fvd. 
Here. W = L•(f•) is the space of all functions which are 
square integrable and have zero average over •. 

The discretization of the steady Stokes problem now con- 
sists of choosing a discrete velocity space V 2 that approx- 
imates 122 and a discrete pressure space W that approx- 
imates M;. For the discrete velocity space V 2, we shall 
consider the space V as defined in (10) for each velocity 
component. As a pressure space W we need to choose a 
compatible space that honors the Brezzi-Babu•ka (inf-sup) 
condition [12, 2]. For spectral element discretizations, a 
good choice is to use the discrete pressure space [6, 32, 34] 

I;V---- {v:' Vk. 1_< k_< K, Wk--Wln k GQN-2(•k), 

}, 
that is. the polynomial degree for the pressure is two or- 
ders lower than for the velocity inside each subdomain (or 
spectral element). We remark that since the pressure needs 
only be square integrable, no continuity requirement for 
the pressure is enforced between the elements. 

As for the Poisson problem, we evaluate all the integrals 
in the variational form by a tensor-product GLL quadra- 
ture rule, and we can pose the discrete problem as: Find 
ue • V 2 and pe • W such that 

(19) a•(ue,v,) +b,(ve,pe) = fe(ve) Vv5 • V 2 , 
(20) b•(u•,q•) = 0 Vq• • W. 

where a, b, and f in (16)-(18) have been replaced by a,, 
b,, and f6 in order to indicate integration of the bilinear 
and linear forms by GLL quadrature. 

The basis for an element in V (e.g., a single velocity 
component) is the same as the one defined for the discrete 
Poisson problem, i.e., a tensor-product, Lagrangian inter- 
polant basis associated with the GLL points. The basis 
for an element in W (e.g., the pressure) is also taken to be 
a tensor-product, Lagrangian interpolant basis, however, 
this basis is associated with the internal GLL points [1]. 
Specifically, the basis functions are defined over each • 

as polynomials •pkq • Q2v-2(f•) that satisfy 
Vp, q,p• q', l<p,q,p' q'_<N 1, -k k k , _ , - = 
In order to define a basis for the space W, these polynomi- 
als are extended by zero in all the other subdomains. An 
element w E W can then be expressed as 

K N-1 N-1 

k=l p=l q=l 

where 

, k 

Choosing appropriate test functions. we arrive at a set 
of algebraic equations which can be expressed in matrix 
form as 

(21) Au-•rp = •, 
(22) D u = • . 

Here, A is the discrete viscous operator, • is the discrete 
divergence operator, and its transpose •r is the discrete 
gradient operator. The vector g contains the nodal veloc- 
ity values, p represents the nodal pressure values. and • 
are the nodal forces. 

Remark 2.4 The extension to three-dimensional domains 

follows readily from the application of tensor-product forms 

Remark 2.5 In the case of non-homogeneous Dirichlet 
velocity boundary conditions, we follow a similar procedure 
as for the Poisson problem. 

Remark 2.6 The non-staggered discretization procedure 
outlined above is valid for polynomial approximations N • 
2, that is, the coarsest discretization represents the use of 
a Q2/Qo element. 

2.3 The steady convection-diffusion equa- 
tion 

We now consider the steady, scalar convection-diffusion 
problem 

(23) -0v2+u.V = f in 
(24) 
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where f is the given data, c•0 is the diffusivity, u is a given 
convecting velocity field, and ½ is the solution. 

Using a similar procedure as for the Poisson problem, 
a Galerkin formulation of (23) can be expressed as: Find 
05 • V such that 

a.(,•, •,•) + c(o•, v•) = f(v•), w• • v, 

where the bilinear form c: V x V --, l• is defined as 

(2•) c(½,•) = • V;u. Veda. 
A spectral element discretization of the steady 

convection-diffusion problem (23) results in a set of discrete 
equations which is linear and nonsymmetric, and which can 
be expressed in matrix form as 

(26) [A +___.C]_½ = .f . 

Here. the matrix __A represents the discrete Laplace opera- 
tot (linear and symmetric), while __C represents the discrete 
convection operator (linear and nonsymmetric); the vector 
,0 represents the nodal values of the discrete solution ½5. 

-- 

Remark 2.7 Equation (25) represents the convective 
form of the convection operator. There are alternative 
forms that can be used [gg], however, we shall not consider 
these here. 

Remark 2.8 No upwinding is used in constructing the 
d•.screte, spectral element convection operator. 

2.4 The steady Navier-Stokes equations 

We shall treat each component of the advection term in 
a similar fashion as the convection term in the steady 
convection-diffusion equation. Otherwise, we follow the 
same procedure as outlined for the steady Stokes problem. 
We then arrive at a set of discrete equations which can be 
expressed in matrix form as 

(27) A u + C__(_u) _u- DTp = _f, 
-- 

(2s) •)u = o, 

where C(u_) represents the discrete, nonlinear, nonsymmet- 
ric advection operator. 

3 Iterative substructuring meth- 
ods 

Iterative substructuring methods are solution methods 
based on a decomposition of the original domain into 

nonoverlapping subdomains [10, 11, 21, 47]. This class of 
domain decomposition methods has reached a high degree 
of maturity over the past few years, in particular, for sym- 
metric, positive definite, elliptic problems [20]. A general 
and powerful domain decomposition approach for solving 
the discrete Poisson problem (7) consists of first decom- 
posing the finite-dimensional space V into a sum of M + 1 
subspaces [21, 41], 

M 

and then consider the solution of new, smaller subproblems 
associated with these subspaces. The space V0 typically 
represents a global, coarse space, while V/, i = 1, .... 3// 
are subspaces associated with the individual (local) sub- 
domains, both interior and interfaces. 

In terms of matrix algebra we can summarize the ap- 
proach as follows: Instead of solving the original system 
of algebraic equations, equation (12), we consider the so- 
lution of a preconditioned (or transformed) system 

(29) __B -z A u = __B -z f, 

where the preconditioner B -• is defined as 

i=0 

xvith 

Here __A is the matrix version of the symmetric, positive 
definite, bilinear form a : V x V -• R, while •i is the 
matrix version of a symmetric, positive definite, bilinear 
form •i ' V/x V/-• R. The operator (or matrix) Ri extends 
the nodal representation of an dement in the subspace V/ 
to an element in the global space V, while the operator __R• 
represents the associated restriction operator. 

For each subspace V/we also introduce the operator Ti ß 
V -• V/such that Vv5 • V, Tiv5 • Vi is the solution of the 
following problem on V/ 

ai(Tivs, ws) = cl,(vs, ws) Vw5 • Yi . 

In the case that 5i(.,-) = a(.,.) the operator Ti repre- 
sents an orthogonal projection from V onto V/. However, 
this framework also allows for the consideration of letting 
ai(., .) represent an approxitnation to a(.,-), a possibility 
that we will later exploit in several different ways. 
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If v_ is the nodal representation of an element ve • V, 
the above projection can be expressed in matrix form as 

In particular, we can express the projection of the exact 
solution as 

ri•: je i 
where 

Equation (29) can now be expressed as 

(31) Tu--j e , 

where T__ = E;u=0 T i and •_ = 
The preconditioned (or transformed) system (31) is now 

typically solved by a Krylov method such the conjugate 
gradient method. We remark that if the operators B__ i (or 
T•) are well chosen, the operator T = B-•A will be quite 
well conditioned, and the iterative procedure will converge 
rapidly. From (30) we see that each preconditioning step 
consists of solving M + 1 subproblems. Because of the ad- 
ditive nature of the preconditioner, the solution of these 
subproblems can be performed in parallel. As we shall 
discuss more later, the use of inexact solvers for the lo- 

cal subproblems xvill also allow us to make each precondi- 
tioning step inexpensive relative to the cost of performing 
global matrix vector products, resulting in a cost-effective 
solution algorithm. 

In the next section we shall apply the additive Schwarz 
procedure outlined above to solve the Poisson problem (12) 
in the context of spectral element discretizations. In Sec- 
tion 3.2 we shall propose an extension of the above pro- 
cedure to solve the steady Stokes problem, and in Section 
3.3 and Section 3.4 we shall propose further extensions in 
order to solve the steady convection-diffusion equation and 
the steady Navier-Stokes equations, respectively. 

3.1 An iterative substructuring method 
for the Poisson problem 

Here. we consider the solution of the Poisson problem (12) 
discretized using spectral elements. The method we pro- 
pose employs the following decomposition of the discrete 
space V: 

K 

(32) V = Vo + E Vk + Vt. 
k=l 

With V defined in (10), we also define the particulax real- 
ization V• o to mean that a fixed polynomial approximation 
No is used in every element. With this notation, the space 
V0 can be defined as 

(33) V0 = V• o 1 _< N0 < N. 

The space V0 is thus associated with a coarse discretiza- 
tion of the original problem. Previous studies have demon- 
strated the importance of including a coarse problem as 
part of the preconditioner in order to allow for a global 
information transfer mechanism [52]. 

The subspace Vk is associated with an individual spec- 
tral element (or subdomain), and is defined as 

(34) Vk = (v' v • QN(Qk), Vl&% : 0). 

Finally, the space Vr is defined as 

(35) = w v), 

where F refers to the collection of all the edges F•.t defined 
in (6) for two-dimensional problems, and faces for three- 
dimensional problems. 

In terms of the basis for the subspaces V0, V•,k = 
1, ..., K, and Vr, we use a nodal, Lagrangian interpolant 
basis defined in terms of the tensor product Gauss-Lobatto 
Legendre points, similar to the basis for the global space 
V. Note that an element in the space Vr is extended by 
zero from the element interfaces to the GLL nodes in the 

interior of the elements. 

•Ve now discuss the approximate projection operators 
To, T•, k = 1,..., K, and Tr associated with these sub- 
spaces. First, we let To represent an orthogonal projection 
from V to V0, i.e., a0(.,.) = a(.,.). In matrix form this 
means that we can express A 0 as 

(36) •0 = ---R0•A--R0 ß 

Here the prolongation operator _R 0 represents an operator 
which takes an dement in V0 (the coarse global space) and 
represents it in terms of the basis for the global space V. 
In practice, this is done by taking a global coarse solution 
and performing an interpolation in each spectral dement 
from a polynomial order No to a polynomial order N. 

Next, we let T• represent an approximate p•rojection 
from V• to V. In particular, we let a•(., .) (or A• in ma- 
trix form) represent a linear finite element approximation 
associated with the GLL points, 

(37) = 
In two space dimensions we use linear triangular elements 
based on the GLL nodes, while in three space dimensions 
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xve use linear tetrahedral elements based on the GLL nodes. 

Earlier studies have shown that such a finite element pre- 
conditioner is spectrally close to the original local spectral 
operator (denoted in matrix form as Ak) , with a condition 
number bounded by a constant as the polynomial degree 
.V increases [19]. The reason for using a finite element 
preconditioner is that it reduces the computational com- 
plexity associated with solving the subproblems for the 
individual spectral elements, while still resulting in a good 
conditioning of the transformed problem (31). 

Finally, we consider the approximate projection opera- 
tor Tr. In order to compute the nodal values along the 
subdomain interfaces, we shall simply use the diagonal of 
the discrete Laplace operator, i.e., 

(38) •r -- diag(---A)lr. 

A better choice would, of course, be to use an approxi- 
mation to the Schur complement on the subdomain inter- 
faces. Hoxvever, as we shall see later, the simple diagonal 
preconditioner (38) gives remarkably good results. This is 
particularly true when •ve later on consider solution algo- 
rithms for the steady Stokes problem and for the steady 
Xavier-Stokes problem. 

In summary, the preconditioner __B -t that we use can be 
expressed as 

K 

(39) B-X = B---ø-• + Z B• +B•l 

where 

--1 T 
-Wt = A0 , 

~ -1___.• gZ = 

The system (29) is now solved by the conjugate gradient 
method. We remark that K + 2 subproblems need to be 
solved for each iteration, see 

The coarse system matrix A__ 0 is explicitly assembled and 
then factored using a banded direct solver for symmetric 
systems from the LINPACK library. Hence, only back- 
substitution is needed during the iteration. If No is small, 
both the number of unknowns and the bandwidth will be 

small. 

The local systems matrices -_A•, k = 1, ..., K are also ex- 
plicitly assembled and then factored using a banded direct 
solver for symmetric systems (from LINPACK). We remark 
that the bandwidth for the finite element approximation is 
a factor of N smaller than the bandwidth for the original 
local spectral operators A•, k = 1, ..., K. The operator _Rk 

extends the solution in • by zero to all the other subdo- 
mains. Hence, R• represents the identity operator for the 
nodal values associated with subdomain •, and the zero 
operator for the nodal values associated with the rest of 
the computational domain. 

The matrix '__A r is diagonal, which makes the inversion of 
this operator trivial. The operator __R r represents the iden- 
tity operator for the degrees-of-freedom associated with the 
element interfaces, and the zero operator for the degrees- 
of-freedom associated with the interior of the elements. 

3.2 An iterative substructuring method 
for the steady Stokes problem 

Iterative substructuring methods have shown great 
promise for solving symmetric and nonsymmetric systems 
of equations [35, 47, 14, 53, 41, 16]. However, there are still 
very limited results and experience from applying such al- 
gorithms directly to solving the discrete Stokes or Navier- 
Stokes equations [4]. 

In the past the most commonly used methods to 
solve (21) - (22) have either been iterative methods based 
on a global Uzawa decoupling procedure [26, 27, 31] or di- 
rect solvers. The large bandwidth typcially associated with 
spectral element discretizations makes direct solvers prac- 
tical only for relatively small two-dimensional problems. In 
order to solve three-dimensional systems, it is imperative 
to have good iterative solvers. Even though a global Uzaxva 
procedure results in a relatively well-conditioned system 
for regular geometries [31], the convergence rate can de- 
teriorate significantly for irregular computational domains 
(e.g., large aspect ratios). 

In this section we shall propose an iterative substructur- 
ing method for solving the steady Stokes equations in two 
or three space dimensions. Throughout the rest of this sec- 
tion, we assume that the Stokes problem is discretized us- 
ing spectral elements, that is, we assume a decomposition 
of the original domain into K spectral elements (or sub- 
domains), and a high-order, tensor-product, polynomial 
approximation inside each element. However, we remark 
that the method we propose should in general work for 
systems based upon p- or h-p-type finite element methods 
[5, 3, 4, 37]. 

The general approach will be similar to the additive 
Schwarz method for the elliptic Poisson problem, namely, a 
decomposition of the finite-dimensional velocity and pres- 
sure spaces V • (d = 2, 3) and W in order to define smaller 
and more tractable subproblems: (i) a coarse Stokes prob- 
lem defined over the entire domain fl; (ii) local Stokes 
problems associated with the individual spectral elements 
fl•, k = 1, ..., K; and (iii) a Poisson type subproblem asso- 
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ciated with the subdomain interfaces F. Finally, (iv) due 
to the fact that the (fully coupled) steady Stokes problem 
represents an indefinite saddle problem, a global iterative 
scheme will be based on the GMRES method [46] . 

We start by proposing the following decomposition of 
the finite-dimensional spaces V d and W for the velocity 
and the pressure in d space dimensions. 

K 

w = 

A coarse Stokes problem is associated with the subspaces 
k• d and •1•. Similar to the definition of V0 in (•)• we 
define the coarse velocity and pressure spaces •s 

= vJ 0 
•l• = •0-2. 

With this definition of V• and W0, the coarse Stokes prob- 
lem is defined as the particular realization of the origi- 
nal Stokes problem, defined by K conforming spectral el- 
ements and assuming a (fixed) polynomial degree N0 for 
the velocity and N0 - 2 for the pressure inside each spec- 
tral element (or subdomain). In other words, the coarse 
Stokes problem is the standard P.¾/P.¾-2 method [34, 1] 
with :V = N0 • 2 in each spectral element. 

In practice, the polynomial degree N0 that we use for 
the coarse Stokes problem cannot be too high; a typical 
value for N0 is 2 or 3. Hence, a typical spectral element 
for the coarse Stokes problem is either a Q2/Qo element, 
or a Q3/Q• element. The main reason for this choice is 
that larger values for N0 make the solution of the coarse 
Stokes problem too expensive. This is particularly true 
when considering a direct solver for the coarse problem. 
For three-dimensional problems only a quadratic element 
might be practical. However, in this case the Q2/Qo spec- 
tral element is expected to be inferior to the Q2/P• finite 
element [25]. We shall therefore also consider the use of low 
order finite elements for the coarse problem, see Section 4 
for numerical results. 

We now proceed by considering the subproblems associ- 
ated with the individual spectral elements. For each spec- 
tral element (or subdomain) fik we define a local Stokes 
problem with homogeneous velocity boundary conditions. 
That is, for each spectral element fik,k = 1,...,K we 
search for a discrete velocity u,,k • Vff and a discrete 
pressure P6.k • Wk• where 

v[ = k= 

[/V'k : {Wk' Wk • QN-2(•k), /•2 Wkd•:O} ß 
The space V• is defined as 

Hence, V• is defined similarly to Vr for the Poisson prob- 
lem. We remark that there are no pressure degrees-of- 
freedom along F. 

•Ve are now in a position to propose an additive Schwarz 
algorithm for the Stokes problem. We start by first ex- 
pressing the original discrete Stokes equations (21)-(22) in 
the compact form 
(40) Sx = g 

where 

A -D tr ) s= b-_ 

= [_m 

g_ = 0] r. 
•Ve then consider the preconditioned (transformed) 

Stokes system 
(41) Q-•Sx: Q-•g, 

-- 

where Q-• represents the Stokes preconditioner, that is, 
-- 

an operator that approximates the inverse of the original 
discrete Stokes operator and is relatively inexpensive to 
evaluate. Before we discuss the Stokes preconditioner, we 
remark that the indefinite, nonsymmetric system (41) is 
solved using a global iterative procedure based upon GM- 
RES. For each global iteration we need to perform two 
global matrix-vector products of the type y = Q-1 S__x. 
If the preconditioner is well chosen, the number of itera- 
tions will be small, and not very sensitive to the number of 
spectral elements K or the polynomial degree N associated 
with each element (or subdomain) f•k, k = 1, ..., K. 

We now proceed with discussing the Stokes precondi- 
tioner Q-1 which we define as 

-- 

K 

(42) •-• -- •__•o -• + (I +_q•__G) [ E qj•]+ q__• 

where 

___Q;1 = RkSk R___k , k: 1,...,K 
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The first part of the preconditioner represents the solu- 
tion of a coarse Stokes problem similar to the solution of 
a coarse Poisson problem in (30). A coarse version of the 
original Stokes problem can be expressed as 

S0• = go' 

Here the subscript zero indicates that we are searching 
for a solution in the subspaces V0 d and W0 instead of the 
original spaces V d and W. In addition, the subscript zero 
indicates that a low (fixed) polynomial degree -No is used 
in order to construct the individual discrete operators in 

S O as well as the right hand side• The operator •0 that 0' • 

we use in the preconditioner (42 is simply 

The prolongation operator R_R_o can be expressed as 

o 1 _ R_p,o ' 

Here, R•, 0 represents an operator which takes an element 
in 1/• d and represents it in terms of the basis for the global 
space Va. while Rp. o represents an operator which takes 
an element in 15• and represents it in terms of the basis 
for the global space W. In practice, this is done by taking 

a global coarse Stokes solution (U_o, P-0)' and performing an 
interpolation in each spectral element from a polynomial 
order (,¾0, N0 - 2) to a polynomial order (N, -N- 2) in all 
!2k, k = 1, ..., K (in the case of spectral elements). 

\Ve remark that when we apply this coarse Stokes opera- 
tor as part of the preconditioner (42), the associated right 

hand side go = [g-m0'g-p,0 IT will in general be nonzero, 
including g-p,0' In our implementation, the coarse Stokes 
operator is explicitly assembled and then factored using a 
banded direct solver from the LINPACK library. Hence, 
only back substitution is necessary during each GMRES 
iteration. 

•Ve now proceeed by expressing the local (spectral) 
Stokes problems associated with the individual spectral el- 
ements' 

(43) 

where 

(44) S•=(Ak -D• ) D• _0 ' 

Note that subscript k here refers to a particular subdomain 
•k, and should not be confused with summation over re- 
peated indices. 

The operator • that we use in the preconditioner (42) 
will be based upon a modified (approximate) version of Sk 

in (44), defined as 

The original (spectral) viscous operator in (44) is here re- 
placed by a finite element operator; this operator is derived 
by using linear finite elements on the GLL nodes in a simi- 
lar fashion as the subdomain preconditioner for the Poisson 
problem. Hence, instead of solving (43) we solve 

(45) 

Again, we remark that the right hand side g_• - 
[g-u,k' g-p,k IT will in general be nonzero, including gp,•. The 
prolongation operators Rk, k -- 1, ..., K are defined in an 
analogous fashion to the Poisson problem: each operator 
represents an identity operator for the degrees-of-freedom 
associated with f]•, and the zero operator for the remain- 
ing degrees-of-freedom. 

We solve the coupled, saddle Stokes system (45) by first 
applying a Uzawa procedure, that is• by applying a block 
2 x 2 Gaussian elimination. The result is a decoupling of 
the pressure and the velocity into a positive semi-definite 
system for the pressure and a positive definite system for 
the velocity: 

(46) ;• - D• .•[tg•,• UkP-k : •--p,k 
(47) Aknk = •,k+•Sk , 
where the Uzawa pressure operator •k is defined as 

(48) •k = Dk -'•-•'•' Dk T ß 

We construct •k explicitly, and factor the matrix using a 
symmetric solver from the LINPACK library. Hence, only 
back substitution is necessary during the global iteration. 
Note that the Uzawa pressure system is singular, reflecting 
the fact that the pressure pk is only determined up to a 
constant. In order to obtain solvability we therefore fix 
the pressure to be zero at a single (interior) GLL point, 
and later adjust the pressure level such that the average 
pressure is zero in each subdomain. The correct pressure 
level in each subdomain is actually provided by the coarse 
problem. We now make the important observation that the 
coarse problem is not only necessary in order to improve 
the conditioniong of the transformed problem (41); the 
coarse problem is, in fact, essential in order to compute 
the correct solution. 

Once the pressure p_k has been computed, we can solve 
for the velocity by inverting the viscous operator. Again, 
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as for the Poisson problem, we form explicitly the scalar, fi- 
nite element based Poisson operator. Next, we factor this 
scalar operator using a banded, direct solver from LIN- 
PACK. The velocity u k is then computed by performing d 
back-substitutions, one for each velocity component. 

Next, having computed x k = [uk,pk]T for all f•k, k = 
1 .... , K, we apply the gradient operator G defined as 

0 +D T ) (49) G_G__ = 0_- 0_--- 
The result from this operation, restricted to F, is added 
to the original contribution along the interfaces F. The 
nodal values along F (velocity degrees-of-freedom only) are 
then computed by inverting the diagonal of the viscous 
operator, that is, 

(50) •r = diag(A)lr ß 

Finall)', the prolongation operator R r represents the iden- 
tit), operator for the velocity degrees-of-freedom along F, 
and the zero operator for the remaining degrees-of-freedom 
in the donmin. Again, we remark that there are no pres- 
sure degrees-of-freedom along the interface F. 

3.3 An iterative substructuring method 
for the steady convection-diffusion 
equation 

We are here interested in solving the discrete system (26) 
using an iterative substructuring approach. As a starting 
point we shall use the algorithm presented for the Pois- 
son problem. which corresponds to solving the system (26) 
without any convection. 

The addition of the linear convection term modifies the 

Poisson algorithm in two ways. First, the system is no 
longer symmetric, so we have to replace the conjugate gra- 
dient algorithm with a GMRES algorithm. This means 
that two global matrix-vector products are required for 
each iteration (as opposed to one for the conjugate gradi- 
ent algorithm). 

Second, the Poisson preconditioner (39) is modified in 
the following way: The coarse problem corresponds to 
a coarse discretization of the original convection-diffusion 
problem, including the convection term, but the local prob- 
lems and the interface problem are left unchanged. 

It is well known that using a coarse, low order discretiza- 
tion to resolve convection-diffusion problems will produce 
wiggles. For the coarse problem we therefore add an 
anisotropic diffusion term [28], which is equivalent to the 
incorporation of a streamline upwinding procedure [13]. 

The modified diffusivity can be expressed as 

Oiij --- Oto q- (•ij 

where a0 is the original (isotropic) diffusivity in (23). The 
added symmetric diffusivity tensor &ij at a particular (in- 
tegration) point in space can be expressed as in [28] 

U H (ui Uj (•iJ = C T ' U 2 )' 
Here, H is the local mesh spacing, U is the magnitude of 
the velocity, and ui,i -- 1, ..,d are the corresponding ve- 
locity components. The constant c is chosen such that the 
grid Peclet number is less than 2 everywhere on the coarse 
grid. We note that there is no diffusion in the direction 
perpendicular to a streamline, hence the name streamline 
diffusion (or streamline upwinding). 

3.4 An iterative substructuring method 
for the steady Navier-Stokes problem 

We start by first expressing the original, nonsymmetric, 
nonlinear, discrete steady Navier-Stokes system (27)-(28) 
in the compact form 

(51) Fx =g , 
-- 

where 

_x - [_u,•_]T , 
g '-- [gu' g_p]T • If, 0]T 

As usual we linearize the system (51) and perform a New- 
ton iteration. For each iteration we have to solve a system 
of the form 

(52) N 5x n = g - Ex n-• 
-- 

where __N represents the linearized Navier-Stokes operator, 
x a is the solution after n Newton iterations, and •x a = 
X n __ X n-- 1. 

The iterative substructuring algorithm we now present 
is for the system (52). Our method can therefore be de- 
scribed as a Newton-Krylov method. We proceed by di- 
rectly considering the preconditioned (transformed), lin- 
earized, steady Navier-Stokes system 

M-•N 5x • = M-•(g- Fx •-•) , 

where M -• represents the Navier-Stokes preconditioner. 
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The Xavier-Stokes preconditioner can be expressed in a 
form similar to that for the steady Stokes equations, 

K 

(53) M -1 = M___.o -1 + (I + M•'IG) ['• M• '1 ] + M• '1 
k=l 

where 

M• = _RkN__k _Rk ,k 

Our choice for the individual components of this precon- 
ditioner will be: 

I•0 • •NO,FE,SU , 
= 

lq r = diag(A)l r . 

Here. N__o.F•.S v represents a coarse discretization of the 
original, linearized Xavier-Stokes operator. For this coarse 
discretization we use low-order finite elements (or low- 
order spectral elements) on the original spectral element 
decomposition. In addition, we also add streamline dif- 
fusion in a similar fashion as for the convection-diffusion 

problem. Hence, our Xavier-Stokes preconditioner is based 
upon a hierarchy of discrete, spatial operators, starting 
with a linearized Xavier-Stokes operator for the coarse, 
global problem, a steady Stokes (mixed) operator for each 
individual, local problem, and finally, an elliptic (Poisson 
type) operator for the interface problem. 

Our experience has been that using streamline upwind- 
ing on the coarse grid is perhaps most useful as a means 
of obtaining a good initial condition at a very low compu- 
tational cost. A good initial condition reduces the initial 
residual on the fine grid (and thus the overall cost), and 
it also provides a good starting point for the initial lin- 
earization in (52). Using upwinding in the construction of 
•---0 does not always seem to make a substantial difference. 
However, more testing is necessary in order to quantify this 
effect more precisely. 

4 Numerical results 

The purpose of this section is to explore the behavior of 
the algorithms that we have just presented. We will study 
the conditioning of the elliptic systems together with the 
convergence rate for the Stokes systems. We shall also 
study the steady convection-diffusion problem as well as 
the full Xavier-Stokes problem. Finally, we will compute 

the error of some model problems in order to verify that 
we indeed end up with the correct solution when we apply 
these algorithms. 

4.1 The Poisson problem 

We shall first study the solution of the Poisson problem (1)- 
(2) in a domain f• =]0, 1[ a, d - 2,3. We choose a forcing 
function f such that the exact solution u can be expressed 
as 

u(x,y) = ux(x)©ux(y) (d=2) 
u(x,y,z) = u•(x)©ux(y)©ux(z) (d=3) 

where 

u•(t)=t(1-e•(t-•)) . 

We have chosen f such that the exact solution represent 
a tensor-product, "boundary-layer" type solution. In all 
the numerical experiments we use a value /3 = 10. V•re 
remark that the solution cannot be represented exactly by 
polynomials, and does not represent an eigenfunction of 
the Poisson operator. 

We break up the computational domain f] into K square 
or cubic spectral elements, each element being of order 
N. For each discretization (characterized by K and N). 
we shall compute the condition number n •3 = hmax//kmin 
for the preconditioned system (29). This is equivalent to 
considering the following eigenvalue problem: 

where __B is the preconditioner defined in (39). X represents 
-- 

an eigenvector, and h represents the corresponding eigen- 
value. 

We start by first looking at the special case K = 1, i.e, 
the pure spectral case. In this case the preconditioner B__ 
does not include any interface system __B r. For illustration 
we shall not include any coarse system either. Hence, the 
preconditioner B consists entirely of a finite element sys- 
tem constructed as a triangulation/tetrahedrazation based 
on the tensor-product Gauss-Lobatto Legendre nodes. 

Finite element preconditioning of spectral systems has 
been used with success in different contexts [19, 19, 24], 
and we shall here verify the good conditioning properties 
for this Galerkin based discretization of the Poisson prob- 
lem. 

Table I reports the computed condition numbers that 
we obtain in d = 2 and d = 3 space dimensions for practi- 
cal values of the polynomial degree N associated with the 
spectral operator. As expected, the condition number is 
0(1). 
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N d=2 d=3 

3 1.34 1.59 

4 1.55 2.01 

5 1.70 2.31 
6 1.79 2.51 

7 1.82 2.44 

8 1.89 2.48 

9 1.95 2.52 

10 1.99 2.57 

11 2.03 2.61 

12 2.06 2.65 

Table 1: Condition number n B (K = 1) 

We proceed by now considering the multi-domain case. 
Unless otherwise stated we construct a coarse, global prob- 
lem based upon K elements, each of order No = 2. Table 2 
reports the condition number for the two-dimensional case, 
while Table 3 reports the condition number for the three- 
dimensional case. The results indicate that the condition 

number n s is independent of the number of elements, K, 
and gro•vs approximately like N 2. This is also consistent 
with our experience that the number of conjugate gradient 
iterations grows approximately linearly with N. 

N K=16 K=64 K=256 

3 3.65 3.70 3.65 

4 5.14 5.20 5.22 

5 7.48 7.55 7.59 

6 10.3 10.4 10.5 
7 13.4 13.5 13.6 

8 17.2 17.3 17.4 

9 21.2 21.3 21.4 

10 25.8 26.0 26.1 

11 30.7 30.9 

12 36.3 36.5 

Table 2: Condition number n B (d = 2) 

N K=27 K=64 K=125 

3 5.49 5.60 5.65 

4 7.88 7.97 7.99 
5 12.2 12.1 12.1 

6 17.4 17.6 17.5 

7 23.6 23.6 23.5 

8 31.0 31.0 31.0 

9 39.2 39.2 39.2 

Table 3: Condition number n s (d = 3) 

In order to verify that the solution algorithm indeed 
computes the correct solution, we also compute the error 

[[ u- u5 [[ between the exact solution u and the numer- 
ical solution u5 in the relative semi-norm. For the two- 

dimensional case (d = 2) we use K = 4 spectral elements, 
each of order N. For the three-dimensional case (d = 3) 
we use K = 8 spectral elements, each of order N. For the 
error calculation we use the discrete semi-norm, however, 
we use a finer mesh in order to avoid quadrature errors. 
For the results presented for the Poisson equation, we use 
a polynomial degree M = N + 3 inside each element in the 
error calculation. The results are reported in Table 4. As 
expected, exponential convergence is achieved as the poly- 
nomial order N is increased with K fixed. It is interesting 
to notice that the relative error is essentially independent 
of the number of spatial dimensions; this is most likely due 
to the tensor-product form of the exact solution. 

N d=2 d--3 

3 2.23.10 -• 2.25.10 -x 
4 6.55.10 -• 6.62.10 -: 
5 1.62.10 -• 1.64- 10 -• 
6 3.44.10 -a 3.46.10 -a 
7 6.30.10 -4 6.34.10 -4 
8 1.02.10 -4 1.02.10 -4 
9 1.46.10 -5 1.47.10 -5 

Table 4: Discretization error II u- 11 /!l u II 

Finally, we look at the Poisson model problem in 
a "stretched" two-dimensional domain fl =]0, a[x]0, 1[. 
Hence, the domain aspect ratio is equal to a. The compu- 
tational domain is now broken up into K rectilinear spec- 
tral elements, each of order N and xvith an element aspect 
ratio equal to ak, k - 1, ..., K. 

In the first experiment, we choose the domain aspect 
ratio a -- 10 and the element (subdomain) aspect ratio 
ak = 1, k = 1,...,K. In order to realize this choice, we 
choose K• = 40 elements in the x-direction, and K2 = 4 
elements in the y-direction. Hence, the total number of 
elements is K = Kx x K2 - 160. In the second experiment 
we choose a = 10 and ak = 10, k = 1, ..., K. Here, we use 
K1 = K• = 4, i.e., K = 16. In each case we compute the 
condition number n • for the preconditioned system (29). 
The results are reported in Table 5. 

We see that the results for the first case, with a = 10 
and au = 1, are almost identical to the results reported 
in Table 2 for the case a = I and au = 1. Hence, we 
conclude that the condition number of the preconditioned 
system is insensitive to the domain aspect ratio. However, 
the second case, with a = 10 and au = 10, indicates that 
the condition number is strongly dependent upon the sub- 
domain aspect ratio. 
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N c•k--1 c•k- 10 
3 3.70 53.9 

4 5.20 75.9 

5 7.58 110 

6 10.4 150 

7 13.6 193 

8 17.4 244 

9 21.4 299 

10 26.1 363 

11 31.0 429 

12 36.6 505 

Table 5: Condition number n 8 (a = 1) 

4.2 The steady Stokes problem 

In this section we shall study the convergence rate for the 
preconditioned Stokes system (41). We shall use the stan- 
dard driven cavity problem in d - 2 and d - 3 space 
dimensions as a sample problem. Since the steady Stokes 
system represents a saddle problem, we will not report the 
condition number as we did for the Poisson problem, but 
rather the number of GMRES iterations, m c•, required in 
order to reduce the initial residual with five orders of mag- 
nitude. 

While the original grid is based on K spectral elements, 
each of order N, the coarse grid will be based on K finite 
elements of the type Q2/P•. As discussed earlier, our ex- 
perience has been that the Q2/P• element is, in general, 
better than the Q2/Qo element, which is the lowest order 
spectral element that we can use. This finding is also con- 
sistent with previous studies [25]. As expected, our experi- 
ence is also that a Q3/Q• element is even better. However, 
this element is expensive to use for large three-dimensional 
Stokes problems given the fact that we are using a direct 
banded solver for the coarse, global problem. For the re- 
suits that we report in the following, the coarse grid is 
based upon using Q2/P• elements on the original spectral 
element decomposition. 

N K=16 K=64 A/'d.o.f. 
3 17 17 1,314 
4 21 21 2,498 
5 22 23 4,066 
6 26 27 6,018 
7 30 30 8,354 
8 32 34 11,074 
9 35 38 14,178 
10 38 41 17,666 

Table 6: Number of iterations ra Q (d = 2) 

N K=27 K=64 Afd.o.f. CPU 
3 25 25 4,505 5 min. 
4 31 32 11,853 9 min. 
5 35 39 24,673 18 min. 
6 43 46 44,501 34 min. 

Table 7: Number of iterations ra Q (d = 3) 

In Table 6 and Table 7 we report our results. We no- 
tice that, similar to the Poisson problem, the number of 
GMRES iterations, ra Q, seems to be rather insensitive to 
the number of elements (or subdomains), K. The number 
of iterations seems to grow approximately linearly with re- 
spect to the element order, N. In Table 6 and Table 7 
we have also included the number of velocity and pressure 
degrees-of-freedom, A/'•.o.f., for the case with the largest 
number of elements (K - 64). For the three-dimensional 
case, see Table 7, we have also included the total CPU 
time required in order to solve the for the corresponding 
number of degrees-of-freedom, starting from a zero initial 
condition. The computer we used for these experiments 
was a Sun Sparc II workstation with 64 MB of memory. 
All the calculations were done in double precision. It is 
interesting to notice that the CPU time per d.o.f. stays 
almost constant. 

4.3 The steady convection-diffusion prob- 
lem 

We shall here solve the standard two-dimensional driven 

cavity problem as well as an associated convection- 
diffusion heat transfer problem; the computational domain 
is ft =]0, 1[ 2. The boundary conditions for the heat trans- 
fer problem is u = 1 along x = 1, u - 0 along x = 0, and in- 
sulated (zero Neumann) conditions along y = 0 and y = 1. 
•Ve shall solve the problem corresponding to a Reynolds 
number Re - 100 and a Peclet number Pe -- 100. We 

first solve the fluid problem, and then solve the associated 
steady heat transfer problem. 

In Table 8 we report the number of iterations, m c, re- 
quired in order to reduce the initial residual for the scalar 
convection-diffusion problem with 5 orders of magnitude 
starting with a zero initial condition. We show the results 
for three different meshes, K = 16, K = 64, and K - 256, 
and for different values of N. 

For the case K = 16 we also show the number of itera- 

tions, for the pure diffusion case (Pe = 0); we know from 
the results in Table 2 that these results are independent of 
K. We notice that the number of iterations decreases as 

K increases, and approaches the result for the pure diffu- 
sion case. This is due to the fact that, as K increases, the 
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coarse, global problem resolves the exact solution better, 
that is, the grid Peclet number decreases. These results are 
consistent with previous findings for nonsymmetric prob- 
lems [53]. 

N K=16 K=64 K=256 K=16 (Pe=O) 
3 24 15 11 10 

4 22 17 13 12 

5 25 21 15 14 

6 30 24 17 16 

7 34 27 19 18 

Table 8: Number of iterations m c (d = 2, Pe = 100) 

4.4 The steady Navier-Stokes problem 

We no•v illustrate the spatial convergence rate associated 
with the spectral element discretization of the steady two- 
dimensional Navier-Stokes equations. Kovasznay [29] gives 
an analytical solution to the Navier-Stokes equations which 
is similar to the two-dimensional fio•v field behind a peri- 
odic array of cylinders: 

us = 1 - e -xx cos(2,ry) 

A -x• sin(2•ry) -- 

uy = 271' e 

1Re+v / 1 h = • •Re 2+4rr 2, 
where Re is the Reynolds number based on the mean flow 
velocity and separation between vortices. We solve this 

• Re - problem numerically in the case of Re = 40, ,• = [ 
v/¬ Re"- + 47r 2, imposing the analytical velocity solution on 
the domain boundary. 

We break up the computational domain f• =]- 
0.5.1.0] x1 - 0.5, 1.5[ into K = 6 equal quadrilateral spec- 
tral elements, each of order N. We then solve the discrete 
system of equations using the Newton-Krylov algorithm 
proposed in Section 3.4. The main reason for doing this 
test is to confirm that the algorithm computes the correct 
solution. 

N Q2/P• (upwinding) Qa/Q• 
4 6.84.10 -2 6.84.10 -2 
5 1.25.10 -2 1.25.10 -2 
6 2.09.10 -• 2.09.10 -• 
7 3.10.10 -4 3.10- 10 -4 
8 4.08.10 -s 4.08.10 -s 
9 4.73.10 -• 4.73- 10 -• 
10 5.01.10 -7 5.01.10 -7 

Table 9: Discretization error II u- II/II u II 

In Table 9 we show the (relative) velocity error in the 
discrete semi-norm as a function of the polynomial order 
N. The results clearly demonstrate that exponential con- 
vergerice is achieved, both in the case of using a coarse 
grid based upon Q2/Px finite elements with streamline up- 
winding, as well as Qa/Qx spectral elements without any 
upwinding. For a fixed N, the error in both these cases is 
the same. 

5 Conclusions and final comments 

We have presented iterative substructuring algorithms for 
the Poisson problem, the steady convection-diffusion prob- 
lem, the steady Stokes problem, and the steady Navier- 
Stokes problem in the context of using spectral element 
discretizations and an additive Schwarz method without 

overlap. The preconditioners for these problems have three 
main components: (i) the solution of a coarse, global prob- 
lem; (ii) the solution of independent, local problems as- 
sociated with the individual spectral elements (or subdo- 
mains); (iii) the solution of a system for the unknowns on 
the element (subdomain) interfaces. 

Associated with the three components of the Navier- 
Stokes preconditioner is a hierarchy of operators: (a) 
a steady, linearized Navier-Stokes operator (including 
streamline diffusion) for the coarse, global problem; (b) 
a steady Stokes operator for each individual, local prob- 
lem; (c) an elliptic (Poisson type) operator for the interface 
problem. 

Earlier studies have demonstrated the importance of in- 
cluding a coarse, global problem in order to obtain rapid 
convergence for elliptic problems. For the Stokes and 
Navier-Stokes algorithm presented here, the coarse, global 
problem is not only important for the convergence rate; it 
is essential in order to compute the correct solution. 

The steady Stokes operator used for each individual, lo- 
cal problem provides an example of using mixed discrete 
operators. Here, the viscous term is treated using a linear, 
triangular or tetrahedral elements on the tensor-product 
Gauss-Lobatto nodes, while the divergence and gradient 
operator represent the original spectral element operators. 

Numerical experiments indicate that the convergence 
rate is independent of the number of spectral elements 
(subdomains), and also independent of the domain aspect 
ratio. The number of iterations grows approximately lin- 
early with the polynomial order inside the elements as well 
as the element (subdomain) aspect ratio. 

We would like to mention that the solution algorithms 
presented in this paper have also been extended to: (i) 
spectral elements of different polynomial order (including 
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nonconforming matching conditions [7]); (ii) problems with [5] 
variable properties (non-Newtonian flows); and (iii) prob- 
lems using the full stress formulation (including the speci- 
fication of Neumann boundary conditions). However, due 
to space limitation, these results will be reported in a sep- [6] 
arate paper together with illustrative examples [45]. 

Future work will focus on improving the preconditioning 
of the interface system; this part seems to be the weakest 
part of the proposed algorithms, in particular, for meshes [7] 
with large subdomain aspect ratios. It would also be in- 
teresting to try other types of Schwarz algorithms, such 
as the the additive or multiplicative Schwarz algorithms 
including overlap [15, 22]. In terms of new application 
areas we plan to extend the current algorithms to solve 
unsteady problems, thus allowing for fully implicit time [8] 
stepping procedures. 

In order to better understand the proposed solution 
methods, as well as to suggest further improvements, we 

hope that the algorithms and the numerical results that [9] 
we have presented in this paper will be followed up with a 
theoretical analysis. 
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