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Abstract 

This paper gives a precise description of regularities of so- 
lutions and their derivatives of all orders for elliptic prob- 
lems on polyhedral domains in the frame of the countably 
normed spaces with weighted Ck-norms in neighborhoods 
of vertices, edges and vertex-edges. Under the guidance of 
the regularity theory, the geometric meshes and P-Q dis- 
tribution (bilinear-linear or linear-uniform) of element de- 
grees are designed accordingly in each of singular neighbor- 
hoods. The algorithms combining the geometric mesh and 
corresponding P-Q distribution of element degree achieve 
the exponential convergence and efficiency of computation. 
The performance of the h, p and h-p versions for a bench- 
mark elasticity problem on a polyhedral domain is given 
and analysed. 
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1 Introduction 

The h-p version, its theory and algorithm, is a new de- 
velopment of the finite element method (FEM) in 1980's 
and 1990's. It was originated in and oriented to the struc- 
tural mechanical problems on nonsmooth domains in R 2 
and R 3, but now its use has been expanded to many other 
fields such as fluid mechanics, thermal analysis, electronic 
engineering, etc.. The methodology developed in the past 
decades has significantly influenced the theory and algo- 
rithm of FEM, the practices of engineering and scientific 
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computation and the industry of commercial FEM codes, 
such as MSC/PROBE, PHLEX, MECHANICAL, STREE 
CHECK, and research code STRIPE (see [34, 35, 39]). The 
h-p version has been one of the most significant achieve- 
ments of FEM's history since 1970's. 

It is well known that the singularities of solutions for 
problems on nonsmooth domains may occur at the ver- 
tices and edges, which severely affect the effectiveness and 
efficiency of finite element solutions. The h-version, which 
reduces the element size h, and the p-version, which in- 
crease the element degree p, may not be able to achieve 
the desired accuracy in practical engineering range. Then 
the h-p version is the only reliable finite element approach 
which is able to provide effective and efficient algorithms. 
It reduces the element size h and increase the element de- 

gree p simultaneously and selectively in order to achieve 
the optimal rate of convergence and the efficiency of com- 
putations. 

The h-p version of FEM in R 2 was introduced in 1980's 
(see [2, 25, 26]) and has been well developed since then. It 
was originated in and oriented to the structure mechani- 
cal problems on nonsmooth domains. Under the guidance 
of the regularity theory in the frame of countably normed 
spaces for the problems on nonsmooth domains (see [3, 4, 
27, 28]), the geometric mesh and the P-distribution of el- 
ement degrees are properly designed, which leads to the 
exponential rate of convergence with respect to cubic root 
of the number of degree of freedom. The exponential con- 
vergence has been seen in numerous computations by us- 
ing commercial and research codes mentioned above. The 
theory and algorithms have been generalized from elliptic 
boundary value problems to interface problems, eigenvalue 
problems, high-order problems, parabolic and hyperbolic 
problems (see [5, 7, 13, 16, 19, 29, 31, 38, 40]). Thus 
the h-p version in R • has already been well established in 
1980's. For survey of the h-p version in R • we refer to [8, 
11]. 

Although the computation and implementation of the h- 
p version in R 3 was started in later 1980's (see [1, 12, 20]), 
there had been no progress on the approximation theory 
until the regularity theory in terms of countably normed 
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spaces for elliptic problems on nonsmooth domains in R 3 
was established in early 1990's (see [20, 22, 23, 24]). There 
are several quite different features of the h-p version in 
three dimensional setting from those in two dimensional 
setting, due to the complexity of singularity at vertices 
and edges. First of all, the geometric meshes are de- 
signed differently in the neiborhoods of vertices, edges and 
vertex-edges. Secondly, in addition to the bilinear or lin- 
ear P-distribution of element degrees, a linear or uniform 
Q-distribution of polynomials of one variable (in the di- 
rection of edges) have to be adopted in edge-neiborhoods 
and vertex-edge neighborhoods in order to achieve the ef- 
ficiency of computations. 

As a major development of the finite element method, 
in theory and practice, the h-p version of FEM in R 3 in- 
volves the regularity theory of PDE on nonsmooth domain, 
the approximation theory of the h-p version, the parallel 
and iterative solvers for large-scale systems resulted from 
the h-p finite element discretization, implementation, ap- 
plications to structural mechanics and engineering com- 
putation, etc.. This paper will focus on the regularity, 
approximation, and algorithm. 

2 A model problem 

Fig. 1. Polyhedral Domain 

Let f• be a polyhedral domain in R 3 shown in Fig. 1, 
and let Fi,i E 27 = {1,2,3,...,I) be the faces (open), 
A,•,m E A4 = {1,2,3,...,M} be the vertices. By 

-- 

we denote the edge which is the intersection of Pi and Fj. 
Let 17,• be a subset {j E 271 Am • Pj} of 27 for ra E A4. 
Let /2 = {ijli, j • 27, Pi D Pj = A/j}, and let œm denote a 
subset of/2 such that œm = {ij • 12 [ Am • Pi • Pj = Aij }. 
We denote by o:ij the interior angle between Fi and Fj for 
i,jEœ. 

By Hk(f•) we denote usual Sobolev spaces furnished 

with norms 

x/2 

"U"Hk(a)--/ Y] "D•u"L2(a) / 0<1•1<_• 

where a = (ax,a2, a3) and Pø•u = u•:•:•2• and 
e lro = 0}. 

We now consider a problem on the polyhedral domain 

-Au = f u]ro = 0, 
Ou 

in 

where F ø = Ui•7• i and F x = Ui6A:'Fi where • is a subset 
of 27 and Af = 27•. We assume that f and g are analytic 
on • and •'•, respectively. Hence the singularity of the 
solution is caused solely by the unsmooth domain. 

To illustrate effectively our main ideas, we consider here 
the Poisson equation with analytic data except the domain, 
but the regularity, the approximation results, and the al- 
gorithms presented in this paper are applicable to general 
elliptic problems with piecewise analytic data (see [9, 20, 
21, 22, 23, 24]). 

There exists a unique (weak) solution u(x) • Ho•(f•) 
satisfying the variational equation 

(1) 

where B(u,v) = f Vu. Vvdx on H0X(f•) x H•(f•) and 

F(v) -- f fvdx 4- f gvd$ on H•(f•). 
f• F • 

Let $N C H0 x(f•) be a properly selected piecewise poly- 
nomial subspace, and UN be the finite element solution in 
$• satisfying 

B(?IN, v)-•- F(v), Vv • SN. 

There holds the error estimates 

(2) 

Therefore, the accuracy of the finite element solution de- 
pends solely on the preciseness of the description of the 
regularity of the solution, and the selection of the sub- 
space SN. To this end we shall decompose the domain f• 
into various subregions, on which we introduce the count- 
able normed spaces to precisely describe the regularity of 
the solution and its derivatives of all orders, and properly 
design the geometric mesh and P-Q distribution of the 
element degrees to achieve the exponential rate of conver- 
gence. 
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3 Regularity and approximation 
in neighborhoods of edges 

We assume that the edge A•t = (z - (0,0, za) l a ( za ( 
b} lies on the z3-axis, and introduce a neighborhood of the 
edge Ast shown in Fig. 2, U - Ue,6(Ast) = (z • Q]0 ( 
r(x) = dist(x, Ast) ( e,x• • I5 = (a.5/2, b-5/2)) where 
e, 5 • (0, 1) are selected such that U•,5(A•t) • Ft =• for 
• • Z and • • s,t. 

By C • Zo (U) we denote a countably norreed space with 
weighted C•-norm which is a set of continuous functions 
u(x) on • such that for a real number •ij • (0, 1) and any 

and 

Hereafter a! = H•=•a•!,d = (d•,d2, da) and d s 
H•=•d• •, C _> 1 and d• _> 1 are independent of a. 

Ai2 

8/2 

8/2 

Fig. 2. Edge-Neighborhood Ue,5(Ast) 

Theorem a.1 The (weak) solution u(x) of (1) ß C 2 
with ,3ij ß (0, 1) satisfying 

(3) /•ij •_ 1- nij , 

•r Fo F1 2,7, if Fi c , Fj C 
I•ij --- •r otherwise. 

Note that the space C 2 •,•(U) is an anisotropic space 
which the solution belongs to. In the edge-neiborhood the 
solution behaves very differently in the direction parallel to 
the edge and the directions perpendicular to the edge. To 
achieve the best approximation by a piecewise polynomial 
we have to define mesh and element degrees accordingly. 

First we divide the neighborhood U = U•,,(A•t) into K 
levels along the edge with a uniform height H, which is 
not necessary to be small and will not be reduced when 
the mesh is refined. Then, according to the distance to 
the edge we divide U into n geometric layers. By Fti,j,• we 
denote an element in the i-th layer and the k-th level with 
1 _< j _< J(i, k) _< J (uniformly bounded with respect to i 
and k). The element Fti,j,• are hexahedral, or pentahedral, 
or tetrahedral, with ht denoting the dimensions in the xt 
directions, I = 1, 2, 3. Select a mesh factor a ß (0, 1), the 
the geometric mesh U• = {Fti,j,•, 1 _< i _< n, 1 < k <_ 
K, 1 _< j _< J(i, k)} over the neighborhood U satisfying 

(4) 

hi: h2 = Cl fin-t, ha = H m 1; 
dist(Ftx,j,•, A•t) = 0; 
c2cr n-i <_ dist(•i,j,•, Ast ) _< cacr n-i 

forl<i<n, and allj, k. 

where ct,œ - 1,2,3 are some constants independent of 
i, j, k. A typical geometric mesh U• is shown in Fig. 3. 
For a precise description of the geometric mesh un• we re- 
fer to [6, 9, 20]. 

X• X2 

1 

o • 

Fig. 3. Geometric Mesh U• 

For the proof of the theorem we refer to [23]. We now define finite element space over the geometric 
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mesh U• 

sv, Q(u•) = {0(x) I 0(x)l•,,•,k = •(x•)•(•a), 
0x (x) is a polynomial of degreepi,j,k, and 
02(x3) is a polynomial of degree qi,j,k in x3} 

and S?'Q'i(U•): S?'Q(U;) A HI(U). 
A linear P-distribution {Pi,j,k, 1 < i < n, 1 _< 

k _< K, 1 < j < J(i,k)} and a uniform Q-distribution 
{qi.j.k, 1 _< i _< n, 1 _< k _< K, 1 _< j _< J(i,k)} should be 
associated with the geometric mesh U•, with 

(5) Pi,j,k = [/•i] for all i,j,k 

and 

(6) qi,j.• = [/•n] for all i,j,k 

where/• > 0 is a degree factor. Hereafter [a] denotes the 
smallest positive integer >a. Then the combination of the 
geometric mesh and linear-uniform distribution of element 
degrees leads to the exponential convergence. 

Theorem 3.2 Let u • C 2 • •(U), and let Uo be the ge- 
ometric mesh defined by (g), and P-Q distribution be a 
linear-uniform distribution defined by (5,6) with the degree 
factor tt satisfying 

(• - &,) ln(i/•) 
(7) • > 

ln(1/F•q) 

whereF•q = min (1-c•)1-• 0<c•<l (1 -•-O•) l+c• (ø•dH)C•' t• = miaxd i. The 
there exists cS(x) • SP'Q'•(U•) such that 

(8) II• - O(•)11H•(U> --< ce-bstN1/4 
where N = O(n 4) is the number of the degree of freedom 
of S?'Q'•(U;), b•t depends on cr, tz and 3•t but not on N. 

For the proof of the theorem we refer to [9]. 

Remark 3.1 Algorithms combining the geometric mesh 
and linear-uniform distribution of element degree achieve 
the optimal convergence and the efficiency of computa- 
tions, because this combination reflect exactly the nature 
of singularity of the solution in the edge-neighborhood U. 
Algorithms, associated with meshes which is not refined 
geometrically along the edge, is never able to reach the ex- 
ponential convergence and computational efficiency. If a 
uniform P-distribution with Pi,j,k : qi,j,k -- [/•n] is asso- 
ciated with the geometric meshes, the exponential conver- 
gence may hold but with much smaller bst in (8), which 
will severely affect the efficiency of the computation of fi- 
nite element solution. 

Remark 3.2 The design of long element fii,j,k near the 
edge reflect the fact that the solution is analytic along the 
edge. The polynomial •b2(x3) of high degree qi.j,k = [km] 
is used to approximate u(0, 0, x•) effectively. Although the 
degree of •b2(x3) is higher than the degree of eke(x), the 
cost of computation for these polynomials c)2 (x) in x3 &- 
rection is very minor, and it can be ignored comparing the 
cost of computations for those polynomials ck• (x). An al- 
ternative approach to use of high-degree •b2(x3) is uniform 
refinement in the x3-direction when the meshes are geo- 
metrically refined in the x•-x2 plane, but it will affect the 
efficiency of computation and significantly increase the cost 
of computation. 

4 Regularity and approximation 
in neighborhoods of vertex- 
edges 

Let A,, be located in the origin. Then a neighborhood 
Os(A,,) of the vertex A,, is defined by 

Os(A,,) = {x • •2 ] 0 < p(x) = dist(x,A,,) < 6} 

X 3 

A23 
A• 

A•2 
Fig. 4. Vertex-Neighborhood O5(A•) 

where 6 e (0, 1) is selected such that Oa(A,•)• • =O 
for 1 • 27,• (see Fig. 4). We further decompose O5(A•) 
into an inner neighborhood and several neighborhoods of 
vertex-edge. To this end we assume the edge Ast, st • œ,• 
lies in the positive xs-direction, and introduce a vertex- 
edge neighborhood shown in Fig. 5 

v = V•,•(A•, &•) = {• e O•(A•), 0 < O < •} 
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X3 solution behaves in this neighborhood very differently in 
• the direction of the edge and in the direction perpendicular 
! to •he edge. Furthermore, note that u(0, 0, x3) is no longer 

I •O)l• I•2 analytic, instead, itbelongstoacountablynormedspace on an interval I5 = (0.5). This features of the regularity 
X2 of solution must be fully considered when we design the 

~ mesh and distribution of element degrees. 

1 

Fig. 5. Vertex-Edge Neighborhood V• •(A,•. A•t) 

where • is the angle between A•t and radical from A,• '•'"' "; 
(the origin) to x, 0 < 5,(• < I such that •&•(A•,A.,t) 
•r,•(A•, œk3) = A• for any st • œ• and kl • œ•,st 
kl. (p, o. •) is the spherical coordinate with respect to 
and Ast. 

Similarly we introduce a countably norreed space 
C•,, •, (V) with weighted Ck-norms, which is a set of con- 
tinuous functions u(x) on •r such that for a pair 3f real 
nmnber $,•..•t = ('•,•, 3•), 0 • •m • 1/2, 0 • •st • 1 and 
for any o. 

•,•.2 (•c)D•(.u(z)_ u(0,0. xa))llco•V ) < cd•a• 
"') x) 3"•'•-•"2 z))&• *'•+•-I and with ,• .... ' "• ;;( (sin • .- 

for I5 • (.0.5) and a: • 0 

neoem 4.X outio of 
to C•.• (V) with 2st • (0, 1) satisfying (J) and 
(0, 1/2) satisfying 

=: 1 + - 
where •) is the smallest positive eigenvalue of the 
Laplace-Beltmmi operator on the polygon S, which is a 
portion of the unit sphere subtended by an infinite cone 
which coincides with • in the neighborhood O5(A•). 

For the proof of the theorem we refer to [24]. 
The spaces C• .... •(V) like the spaces C • , Z•t(U), is an 

anisotropic space which the solution u(x) belongs to. The 

Fig. 6. Geometric Mesh V• 

The neighborhood V is divided into n geometric level 
according to the distance to the vertex A• and n geometric 
layers according to angular distance to the edge Ast. The 
elements fti,j.• located in i-th layer and k-th level with 
1 _• j _• J(i,k) _• J (uniformly bounded with respect to 
i• k) are hexahedral. or pentahedral or tetrahedral. Let 
(0, 1) be a mesh factor, and let hi denote the dimensions 
of element l-)•i,j, k in the x• direction, 1 = 1, 2, 3. Then the 
geometric mesh V• = (•"•i.j,k, 1 __• i __• n, 1 
j _• J(i,k)} satisfies 

hi •'• c10'2n-k-i, h2 •,• C10'2•--k--i, h3 
dist(f•i,jA, A,•) -- 0, dist*(f•l,j,•, Ast) - 0; 

(10)dist[f•i,j,•;A,•) = c•a "-•, for k • I and all i,j; 
ß 

dist*(fti,j,•. As/) = c4c •n-*, for i ;> I and all k,j; 

where = rain • min sin•b(x) is 
x•i,•,• x•i,•,• 

an angular distance between the element •'•i,j,k and Ast. A 
geometric mesh V• n is shown in Fig. 6. For the precise 
description of geometric mesh on V we refer to [6, 9, 20]. 

The corresponding finite element spaces over the geo- 
metric mesh V• n is defined as 

• (x) is a polynomial of degree Pi,j,k and 
(•2(Z3) is a polynomial of degree qi.j,k in 
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and SP'q•'x(V•) = SP'•?(V•) G Hi(V). 
A bilinear P-distribution {Pi,j,k 1 _< i <_ n,1 _< k _< 

n, 1 _< j _< J(i, k) } and a linear Q-distribution {qi,j,k 1 _< 
i _< n, 1 <_ k <_ n, 1 _< j _< J(i,k)} should be associated 
with the geometric mesh V• with 

(11) Pi.j,u = [t•i + uk - P0] for all i,j,k 

and 

(12) qi,j.• = [•k] for all i,j,k 

where Po >_ 0 is a properly selected integer, /•, u > 0 are 
the degree factors. 

Theorem 4.2 Let u • C 2 n z•,•t(V), and let V• be the 
geometric mesh defined by (10) and P-Q distribution be 
bilinear-linear defined by (i1) and (i2) with I• and • sat- 
isfying 

> (1- 
in(l/a) 

and 

(13) 
u > (1- ,•m)ln(1/o') 

ln(1/F•) 

where F• is the value of Fu at H = 1 given in (7). Then, 
there exists a O(x) • S•'Q'•(V•) such that 

(14) 

where N = O(n •) is the number of degree of freedom, 
depends on •, •,•. •t, t• and •, but not on N. [] 

For the proof of the theorem, we refer to [9]. 

Remark 4.1 The geometric meshes V• are refined both 
in p and in o, and P-distribution is bilinear with re- 
spect to the layer number i and level number k, because 
the solution possesses two different types of singularities: 
edge-singularity and vertex-singularity in the neighborhood 
V&• (A,•, Ast), which have been completely exposed in The- 
orem 4.1. The exponential convergence and the efficiency 
of computation are achieved only by those algorithms us- 
ing a proper combination of geometric meshes and bilinear- 
linear distribution of element degrees. 

Remark 4.2 Asymptotically the exponential rate with re- 
spect to N •/• is the best approximation result we can prove, 
due to the refinement in two directions. But for practical 
range of n e.g., n < 10, the exponential rate with respect 
to N TM is possible by select suitable Po, e.g., Po = n. For 
details, see [9]. 

Remark 4.3 The solution along the edge is not analytic, 
instead, u(0,0, xa) belongs to a countably norreed space 
over an interval. Hence, in order to achieve the expo- 
nential convergence and efficiency of computation, the re- 
finement in xa-direction has to be carried out geometri- 
cally, and a linear distribution of element degrees has to be 
adopted for the polynomials •(xa) so that u(0, 0, xa) can 
be approximated effectively. The increase of the number of 
degree of freedom and the computational cost for ½•(x3) is 
very minor and ignorable comparing the total number of 
degree of freedom and the total cost of computation of the 
finite element solution. 

5 Regularity and approximation 
in inner neighborhoods of ver- 
tices 

We define an inner neighborhood of the vertex Am by ex- 
cluding all vertex-edge neighborhoods V,,•(A.•, Ast), st • 
œ,•, 0 = O•(A,•) • O,t•œ,• V&•(Am, A,t), which is shown 
in Fig. 7. We •sume that A• is located in the origin. 

X3 

Fig. 7. Inner Vertex-Neighborhood •5(Am) 

The countably norreed space C•m(• ) is defined as a 
set of continuous functions u(x) on O such that for a real 
number • • (0, 1/2) and any • 

Ilp(x)•m+lal-l/2na(u(x) - u(O, O, 0)) ilco(5 > 
5 cd 

In this neighborhood the solution possesses only vertex- 
singularity. 
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Theorem 5.1 The (weak) solution of (1) belongs to 
C•m (0) with •m • (0, 1/2) satisfying (9). [] 

For the proof of the theorem we refer to [24]. 
Unlike the space C 2 C 2 •(U) and •,•.•(V), the space 

C• (0) is an isotropic space, the solution is singular in 
p, but behaves equally in the x•-direction, œ = 1, 2, 3. Due 
to this character of the singularity of the solution, the mesh 
is refined in one direction, i.e., in p. •According to the dis- 
tance to the vertex Am we divide O,•(Am) into n levels. 
The elements in the k-th level with h• being the dimen- 
sions in the x• direction, œ = 1, 2, 3, 1 _• j _• J(k) _• J 
(uniformly bounded with respect to k), denoted by f•j,a 
are hexahedral, or pentahedral, or tetrahedral. A geomet- 
ric mesh 0• = {flj.a,1 _< k _< n, 1 < j < J(k)) with a 
mesh factor cr • (0, 1) satisfying 

h• • h2 • h3 • clcrn-i; 
(16) dist(f]j,l,Arn)--O, 

ß 

dist(f•j.a, A,•) =cocr n-•, for k > I and all j. 

A geometric mesh 0• is shown in Fig. 8. For the precise 
description on the geometric mesh over O5(Am) we refer 
to [6, 9, 20]. 

A13 

A23 

1 

A12 

Fig. 8. Geometric Mesh 

We define a finite element space over • by 

- I is a polynomial of degree Pj,a} 
and sP'I(O;) 

The character of singularity of the solution in the inner 
vertex-neighborhood is also reflected in the designing of 
element degrees. Only a linear P-distribution {p/,a, 1 _< 
k _< n, 1 _< j < J(k)) is needed with 

pj,• = [yk], for all j, k. 

where v > 0 is the degree factor, because the solution 
behaves equally in all x•-direction and geometric mesh is 
refined in p. 

The algorithms based on the geometric mesh and linear 
P-distribution achieve the exponential convergence. 

Theorem 5.2 Let u • C • ~ • • (0) and let O• be the geomet- 
ric mesh defined by (15) and the linear P-distribution be 
defined by (16) with • satisfying (13). Then there exists a 
•(X) • sP'I(b• n) such that 

(17) Ilu- ce--bmN1/4 
where N = O(n 4) is the number of degree of freedom, bm 
depends on •m, U and or, but not on N. [] 

For the proof of the theorem we refer to [9]. 

6 Regularity and approximation 
of the h-p finite element solution 
on polyhedral domain 

Let f]0 = f] • Ume•405(Am) • Usteœ U•.5 (Ast). Select (5 
and e properly, f]0 will contain no edges and vertecies of 
the domain. f]0 is called the regular region in which the 
sol•tion is analytic. 

Theorem 6.1 The (weak) solution of (1) is analytic on 
•o, and for any r• 

IID%(x)llco½o) 

For the proof we refer to [24]. 
By ,q we denote a multi-index (tim,/•st, m • .M, st • /2), 

with /•m • (0,1/2) and /•st • (0,1), and by C•(•"•) we 
define a countably normed space with weighted C a- norm, 
namely, for u 6 C•(f]), there hold 

Combining Theorem 3.1, 4.1, 5.1 and 6.1, we now have the 
regularity of the solution on whole polyhedral domain. 
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Theorem 6.2 The (weak) solution u(x) of (1) belongs to 
with 2m (0, 1/2),m and &t (0, 1),st C 

satisfying (4) and (9). [] 

Remark 6.1 The regularity results can be given in terms 
of countably norreed spaces with other types of weighted 
norm and in various coordinate systems, for instance, the 
spaces B•(•) with weighted $obolev norms. For the pur- 
pose of numerical approximation we prefer to the descrip- 
tion in terms of the countably normed spaces with weighted 
Ck-norms. The regularity theorems in these countably 
norreed spaces and the relations of these spaces have been 
given in [22]. 

Remark 6.2 The regularity of solution on the polyhedral 
domain is completely described by the local asymptotic ex- 
pansion of singular functions, which contains the power 
of p(x),r(x) and sin(•b(x)) (see[14, 15, 17, 18, 30, 32, 
33, 36. 37]). If the power and forms of leading singular 
functions are known, special elements can be constructed. 
The algebraic rate of convergence of the conventional finite 
element solutions may be improved because of the special 
elements, but the singular basis functions will destroy the 
nice band structure of the stiffness matric and deteriorate 
the condition number. Moreover, in practice the strength 
of singularity and form of singular functions are unknown, 
additional efforts and computations for these information 
are required (see [12]). Hence practically and theoretically 
the h-p finite element solution are the only effective and ef- 
ficient numerical approach for the problems on nonsmooth 
domains, and the regularity theory in the frame of count- 
ably norreed spaces is the only theory which is able to effec- 
tit, ely guide the computational practice and to lead to the 
exponent rate of the convergence. 

l, Ve next design the h-p version finite element algorithms 
on whole polyhedral domain. 

Since the solution u(x) is analytic on •0, we use a fixed 
and coarse mesh • = {•, I _• g_• L). The elements 
•'s are hexahedral, pentahedral, or tetrahedral with hi • 
H • I being their dimensions in the xt-directions, I _• • _• 
3. A uniform P-distribution {pt = p, I _• g •_ L) with 
p coinciding with the highest degree used in elements in 
singular neighborhoods, is associated with the mesh •/, 
and the finite element space is defined by 

I is a polynomial of degree pt = p} 

and SP'I(•-•/) = S P (•/) n H•(•0). 
Note that the accuracy of the finite element solution in 

this region is achieved by uniformly increasing the polyno- 
mial degree, but not by reducing the element sizes. It is 

well-known that for the analytic function u(x) on •0, there 
is a polynomial •b(x) E SP'•(•/) such that 

(18) Ilu - <- ce 
where N is the number of degree of freedom, b0 is inde- 
pendent of N. 

~ 
Let f• be the union of all geometric meshes U•, O•, V• 

and uniform mesh f•, and let P-Q distribution of element 
degree on f• be the union of the linear-uniform P-Q distri- 

H•'s the bilinear-linear P-Q distributions on butions on __• , 
, 

V• the linear P-distribution on O• s and the uniform S, 

P-distribution on •/. Further, by $P'Q(•) we denote 
the finite element space over • of piecewise polynomi- 
als whose restrictions on U•, •,V• and •/ belong to 
the spaces sP'Q(U•n), SP, Q(v•n), sP((•)• n) and SP(•/), 
respectively, and sP'Q'x(12•) = SP'Q(12•)• H•(f•). 

We now come to the conclusion of the approximation of 
the h-p finite element solution. 

Theorem 6.3 Let the geometric mesh f•n and the P-Q 
distribution associated with f•n defined above. Then the h- 
p finite element solution us • SP'Q'•(12•) converges to the 
solution u(x) of (1) exponentially, 

where N is the number of degree of freedom of 
b depends on 2, a, t •, •, but not on N. 

Proof Due to the definition of S P'c2'•(f•) and the com- 
bination of (8), (14), (17) and (18), there exists •b(x) 
$P,Q,I(•n) such that 

where b = min{b•t, bm, bm,•t, b0} depending on 
but not on N, which together with (2) leads to (19) [] 

Remark 6.3 Asymptotically the exponential rate with re- 
spect to N •/• is the best accuracy of finite element solution 
which we can prove. Although the rate is with respect to 
N •/4 in neighborhoods of edges and inner neiborhoods of 
vertices, and N •/• in regular region no, the majority of the 
number of degree of freedom is concentrated in the neigh- 
borhoods of vertex-edges. Hence, as a total performance, 
the h-p finite element solution converges at the exponen- 
tial rate with respect to N •/•. In computational practices, 
if the integer Po in the bilinear P-distribution is properly 
selected and the number of layers and levels are not large, 
then the exponential rate with respect to N TM is possibly 
achievable, as mentioned in Remark 4.3, and also as seen 
in practical computations. 
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7 Numerical example 

A benchmark elasticity problem on a polyhedral domain 
f• with the modulus E = 100 and Poisson ratio v = 0.3, 
shown is Fig. 9, is computed by the h, p and h-p ver- 
sion of finite element method. Let u = (u•,u2, u3) be the 
displacement and T = (T•,T2,T3) be the traction on the 
boundary. The following boundary conditions are imposed 
to this problem: 

i) On 
the 

ii) On the face 
the traction 

iii) On the face 
the traction 

iv) On the face 
the traction 

v) On the face 
vi) On the face 

the faces ACNE, ABDC, AEFB, IJLM, 
traction T=(T•, T•, T3)=0; 

DKLMNC, the displacement ul - 0, 
T•= T3 =0; 
NMJHFE, the displacement u2 - 1, 
T1 ---- T3 -0; 
KGIL, the displacement u• - 0, 
T1 = Ta =0; 
GHIJ, the traction T1 = 1, T• = T3 = 0; 

Fig. 10. Uniform Mesh with h - 1 

The p-version: 
KDBFHG, the displacement u3 = 0, 

the traction T• = T2 = 0. 

W= G •(11,11.11) 

K H 

11 

y 
x 

(0.0,0) 

Fig. 9. Polyhedral Domain f• 

The h-version: 
Uniform meshes of cubic elements with size h - 

1, 1/2, 1/3, 1/4, shown in Fig. 10, are used with the uni- 
form degree p - 2. Table 1 shows the relative error in 
energy norm • 9% when h - 1/4 and N • 300,000 and 
CPU time tl(s) - 29,800sec (single processor). 

h No. of Elm N Ilell,R% t•(s) 
I 331 6708 20.53 120 

1/2 2648 42679 13.32 1890 
1/3 8937 131744 10.56 10130 
1/4 21184 297735 8.99 29800 

Table 1 Performance of the h-version (p = 2) 

Fig. 11. Geometric Mesh f•,n2 with nl = 2, n 2 -- 1 

The finite element solutions of the p-version are com- 
puted on various geometric meshes. The geometric meshes 
of tensor product type are used, namely the meshes are 
heavily refined near the vertex A with layer number n• 
and slightly refined at other vertices with layer number 
n2, because the singularity of solution near A is severe. 
The mesh factor cr- 0.15. A geometric mesh ft• •"•2 with 
nl-2, n•- 1 is shown in Fig. 11. The degreepofele- 
ment uniformly increases from 1 to 10. The performance 
of the p-version on Mesh 3 with n• - 3 and n• - 2 is given 
in Table 2. The relative error in energy norm reduces to 
3% when p - 7 and CPU time t• -- 3305sec (single proces- 
sor). The p-version perform on the geometric mesh much 
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better than the h-version, but on quasi-uniform mesh, the 
p-version converges only as twice fast as the h-version. We 
will make more comments later. 

p N=DOF lieliE,R% 
2 2925 43.84 33 

3 5135 19.28 56 

4 9328 8.21 169 

5 15549 5.04 481 

6 24404 3.78 1308 

7 36496 3.01 3305 

8 52428 2.49 7408 

9 72803 2.11 14860 

10 98224 1.84 31842 

Table 2 Performance of the p-version (on Mesh 3, n• = 3, 
= 2) 

The h-p version: 
The tensor product meshes with the following combination 
of n• and n2 are used: 

Mesh 1: nl = 1, n2 -- 2; 
Mesh 3: nl - 3, n2 = 2; 
Mesh 5: nl = 5, n2 - 2; 
Mesh 7: n• = 7, n2 - 2; 

Mesh(n•) p N=DOF Ilell•,R% tl(s) 
1 4 464 31.39 1 

3 5 15549 5.04 481 

3 6 24404 3.78 1308 

5 7 67567 1.84 13337 

5 8 97374 1.50 29392 

Table 3 Performanc• of the h-p version 
(on Mesh 1,3,5, and uniform degree p = 

100 

%•.. ' h(.,,,. 3•, ' 

N^(1/5) (resp. t1^(1/5) ) 

Fig. 12. Performance of the h-p Version 
Associated with a uniform P-distribution with p -- 

[/•nl],/• = 1.5 --• 2.0. The Table 3 shows that the 1.84% of 
relative error in energy norm is achieved at n• = 5, n2 = 2 
and p = 7, N = 67,567, and the CPU time t• = 13,337sec. 
On the other hand, the p-version on Mesh 3 needs p -- 
10, N - 98,224 CPU time t• -- 31,842. 

The relative error of the h-p version in energy norm 
Ilell.,. v.s. N,-/* and tz are plotted in Fig. 12. The 
comparison between the h, p and h-p versions are shown 
in Fig. 13 and Fig. 14 where the relative error v.s. N and 
CPU time are plotted in log-log scales. 

lOO 

1 
lOO 

'•X-- h-version ,• p-version II-p version 

Log(N) 

Fig. 13. Comparison between h, p and h-p versions: 
Error v.s. DOF 

lOO --1•-' h-version 
• p-version h-p version 

• '•, x.. .......... 

....... i'o ...... i'•o ..... i"o•o .... i'e;o4 .... f;;o5 
Log(CPU) 

Fig. 14. Comparison between h, p and h-p versions: 
Error v.s. CPU 

Remark 7.1 The computations on this benchmark prob- 
lem has shown that the h-p finite element solution can 
achieve the exponential rate in engineering practical range, 
e.g., 3%, as predicted by asymptotic analyses. 

Remark 7.2 The computation of the h-p version in R a 
have not been exhaustive enough, more experience in com- 
putations and implementations are needed, e.g., how to 
generate a geometric mesh, how to implement the P-Q 
distribution of element degrees (no existing 3-dimensional 
code has this feature yet), and what are the optimal mesh 
factors and degree factors, etc.. 

Remark 7.3 The computation has shown that the p- 
version on an over-refined geometric mesh converges to the 
desired accuracy exponentially before entering the asymp- 
totic phase, it could be an alternative to the h-p version 



The h-p Version Of FEM In R 3 499 

in R 3. The practical strategy to achieve the optimal con- 
vergence and ej•ciency for engineering applications in R s 
needs to be developed further. 
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