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Abstract 

•,Ve present estimates for the approximation of boundary 
layer functions by spectral/hp type methods, both for the 
case that a fixed mesh (with one or more elements) or a 
variable mesh (with two elements) is used. We show that 
the best rate possible that is uniform with respect to the 
boundary layer parameter • • (0, 1] with a fixed mesh is 
O(p-•), where p is the polynomial degree. For a variable 
mesh, we show that an exponential rate may be achieved, 
provided the first element is of size O(ps). We emphasize 
that no analytic or numerical matching of outer or inner 
asymptotic problems is required. We apply our results 
to a model singularly perturbed elliptic problem, as well 
as a one-dimensional advection-diffusion problem, obtain- 
ing exponential convergence estimates for each. Numer- 
ical results conform well with our theory. Although the 
results presented in this paper are one-dimensional, they 
can easily be extended to the treatment of boundary lay- 
ers in higher-dimensional problems via (possibly mapped) 
tensor-product elements, even for unsmooth boundaries 
[14]. 

Key words: boundary layer, singularly perturbed prob- 
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I Introduction 

In this paper, we report on recent results in the approxi- 
mation theory for boundary layer functions. 

(1) u(x) = exp(-•x/•) 0 < x < L, 

where • • (0, 1] is a small parameter that can approach 
zero, • = a+ib with a 2+b 2 = i and Red > 0. Here, 

* Department of Mathematics & Statistics, University of Maryland 
Baltimore County, Baltimore MD 21228-5398 

ICOSAHOM'95: Proceedings of the Third International Con- 
ference on Spectral and High Order Methods. (•)1996 Houston 
Journal of Mathematics, University of Houston. 

L _> 1 is a typical length scale of the problem under con- 
sideration. Previous approximation theory work along this 
line for the global error has led to optimal convergence es- 
timates being established when a condition of the form 
N > C/e s is satisfied (where N is the number of degrees 
of freedom used) -- see, e.g, [9] for the h version FEM, [5] 
for spectral element methods, and [7] for spectral meth- 
ods using "mapped" basis functions. Here, we are inter- 
ested in obtaining convergence estimates that are robust, 
i.e. uniform in e, when (1) is approximated by piecewise 
polynomials via p and hp type numerical schemes. Robust 
convergence estimates were obtained for h-versions of the 
finite element method in the one dimensional setting, for 
example, in [4, 13]. 

Let I = (c,d) be an open, bounded interval. By L2(I) 
we denote the space of square integrable functions on I, 
equipped with the usual norm I1'1[0. For k • IN, we denote 
by Hk(I) the Sobolev spaces of order k with norm 
We set further Ho•(I) = H•(I) rq {u(c) = u(d)': 0}. 

2 The model problems 

On I = (-1, 1), consider the elliptic model problem 

(2) L•u = -e2u" + u = f 

and the one-dimensional advection-diffusion problem 

(3) L2u = -eu" + u'= f 

with the boundary conditions 

(4) u(-1)--u(1) =0. 

Here f • L 2 is a given function and 0 < e <_ i is a small 
parameter (all function spaces are understood on I). 

2.1 Variational formulation 

The weak formulation of (2), (4) is: Find u• • H0 • such 
that 

(5) v): r , , uv}x le•u•v + = F(v) 
1 
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for all v • H•. 
For the problem (3), (4) we use a saddie-point formula- 

tion: Find u2 G L 2 such that 

/ (6) B2(u2, v) = u2L•vdx = F(v) 
1 

for all v G/_/2 n/-/•. 
Here r(v) = f• fvdx and L;v = -sv" - v' is the formal 

adjoint to L2. 
On H•, the bilinear form B1 (u, v) is coercive in the en- 

ergy norm 

(7) I1•11• -- (Bl(U, u)) 1/2. 
Hence, for every f E L 2, (5) admits a unique solution. The 
form B2(u. v) is stable, i.e. there exists C > 0 such that 

(S) inf sup IB2(•, v)l >_ C 
O•u• L 2 0•v• H2f•H• 

(cf. [31) so that (6) also admits a unique weak solution 
u2 • L 2 for every fE L 2. 

2.2 Regularity 

Generally. solutions of (2)-(4) exhibit boundary layers, i.e. 
solution components of the form 

u•(x) -- exp(-(1 + x)/s), •(x) = (-(1 - x)/s). 

Theorem 2.1 

Let f • C*c([). Then for every M • IN, 

(9) u•(x) M = •a•y(•) + •(•) + B•-•(•) 
'• < C(M,f) forg-O, 1, ..,M where AM+ BM + Uasy œ_ ß 

with C(M, F) bounded independently of e. 
Similarly, for every M • [N, 

(10) u2(x) -- u•y(x) + B M (x)•(x) 

where B M •+ u•v t. <-C(M'f) førf=O'l'""M with 
C(M, F) bounded independently of s. 

The proof is standard and can be found in [6, Theorem 
2.2] and [11, Theorem 2.1]. The parameter s is the length 
scale of the boundary layers. We observe that ux(x) has, 
in general, layers at both ends of I whereas u2(x) has only 
one layer at the "outflow" boundary x = 1. 

We note that u•(x) and •(x) are of the form (1) with 
,X = a + ib = 1. The case where b • 0 will be also contained 
in our approximation results in Section 4 ahead, since it 
arises. for example, for elliptic shells, where a = b = 1/x/• 
and • = x/7 in the layer stemming from the simple edge 
effect (see, e.g., [8]) with t denoting the shell thickness. 

3 The finite element methods 

•Ve obtain approximate solutions by restricting the varia- 
tional formulations (5), (6) to finite-dimensional subspaces. 

ByA ={-l=x0 <x• <x2 <... <xm=l}wedenote 
a mesh in [-1, 1] and set Ij - (xj_•,xj), hj- xj-xj_• for 
j - 1,...,ra. We let further/Y- (p(1), ...,p(ra)), p(j) _> 1, 
denote a polynomial degree vector. Then we define 

(11) •ff(h) : {• • Cø(I): •1Ij • IIp(j)(/j), 
j - 1,...,m). 

(12) Sff(A) = 9•(a) n {•1 u(+l): 0} 
Here, Hp(I) denotes polynomials of degree <_ p. 

Evidently, S#(A) C H0 •. The discretization of (5) is: 
Find Ul F• • S•(A) such that 

(13) Bl(UlFE,v) = F(v) Vv 

which, for every s > 0, admits a unique solution. 
To obtain a stable discretization of (6) we use again 

S#(A) as a trial space. Since H2-conforming test func- 
tion spaces are difficult to construct, (6) is reformulated 
on spaces with mesh-dependent norms. 

Let Hø• denote the completion of H0 • with respect to the 
norm 

•/2 

II=11uo• -- I1•110 + • p•' I•(x•)l 'ø 

where pj :- (hi + hj+•)/2, j = 1,...,m- 1. Then Hø• is 
isomorphic to L 2 © IR •-• i.e. , 

u = (•, d•, ..., d,•_•) • Hø• = L 2 (• IR m-• 

and •/2 

(14) II=11Ho• ---- I1•110 + • PJ Idjl •' 

If u • Høa n H •, then • = u and dj = u(xj). As test space 
we introduce 

(15) H2A = Ho• •3 {v : vl,• • H2(Ij)} 
equipped with the norm 

where 

:r(v'(=•)) = v'(=• + 0) - v'(=• - 0) 
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is the jump ofv • at xj. Note that H• C Hø• C L 2 and 4 
H• D H• D H 2 • H•. On Hø• x H•x we define a bilinear 
form BA(',') by 

Ba(u, v) = 
m rn--1 

Clearly, B• restricted to H• x (H • • H•) coincides with 
B•, i.e. B• is an extension of B•(.,-). 

The weak form of (3), (4) to be discretized reads: Find 
u• G H• such that 

(1•) ,•(u•, , = •(, Vv 

We have for every mesh A [3]: 

inf sup 

so that (17) has a unique solution • for every f • L •. 
A conforming discretization of (17) is obtained with the 
L-spline test space 

• (•) • (• • Co(z) ß 
(18) (L•v)I h • npO)_•(I•) if p(j) • 2, 

v(•l) =0). 

Then the discrete form of (17) is: Find u• E e S•(A) such 
that 

(1•) •(•? v)= •(•) W • f (•). - • L• 

We can prove •he followin• specWal s•abili•y resul• [14]. 

Theorem 3.1 Fo• 

inf sup 
•Es•(•) •Es• 2 (•) , 

with the stability constant given by 
1 

C•(p, A)= 1 + p•_•{pj} Now, 
where p = max•j•m{p(j)}. 

For every fi and A there exists a unique solution of (19). 
Moreover, the finite element solutions u• z are quasiop- 

timal, i.e. 

(20) • - •f•l• •II u• - vll• 
and 

(21) •2-• • 
for every v E S#(A). 

The p and hp boundary layer ap- 
proximation 

We analyze the approximation of boundary layer functions 
of the type (1), along the lines of [11]. •'e give proofs of 
the error estimates which are simpler and shorter compared 
to those in [11], but do not explicitly yield the values of 
constants, and cannot be used to establish pre-asymptotic 
error estimates. Nevertheless, these are sufficient to estab- 
lish uniform (in a) exponential convergence as the spectral 
order p tends to oc. In the case of complex A, however, 
they generalize the results of [11]. 

We begin with a basic approximation result on a single 
element. 

Theorem 4.1 Let u,x.•(x) = exp(-A(x + 1)/e), x 
(-1,1) with e > 0, A = a + ib, 22+ b 2 = 1. Then, 
for every p >_ 1, there exists Sp • IIp([) such that 

(22) 8p(-bl) = ux,•(ñl), 

(23) i[u•'• -- 8p[[L2(I) -- (2p + 1)e ' 

• e ) 2p+1 (24) Ilu•,•-•llL(•) s C•p -• (2p;1)• 
Proof It follows kom Thin. 3.3.4 of [2] that there exists 
3p • •p([) satisfying (22), and such that 

,112 < 1 (25) 
and 

(26) Ilu•,•- svll•(z)_< 

where 

! 9 

[u Ik•(z):= 

u(q+•)- •,• (•)1 

I 

' [w-•(z) v(v + 1)(2v - 1)! I-,• 2 

,(1 - sc2) q lu<•+•)(•)l-ø &. 

- e -2(q+x) I,xl 2(q+x) I exp(-,x(z + 1)/z)l 2 
= e-2(q+ •) e-2a(x+l)/• 

since [A[ = 1. Hence, 

/1 [u•,•l•q(•) = •-.•(s+l) (1 - •-•)q e--•(•+l)/• • 
1 

/: (27) _< e -2(q+x) (1 - •2)q d• 
1 

<__ Cs -2(q+l) (q + 1) -•/2. 
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Stirling's formula yields 

(28) (2q)! - 
2q+1/2 

where C is indeqendent of q. Combining (25)-(28), we get 
(23) and (24). [] 

Estimates (23) and (24) imply super-exponential conver- 
gence as p --+ oc, provided 

• e/2e. (29) i5 :=p+ • > 

For small values of e, (29) will only be satisfied for unrealis- 
tically high values ofp. In fact, it is shown in [11] that when 
p is not of the order given by (29), the super-exponential 
convergence deteriorates. Using more refined techniques 
of proof for Theorem 4.1 (see [11]), which involve Bessel 
functions, we may derive pre-asymptotic estimates for the 
range where/3 does not satisfy (29). With such estimates, 
it may be shown [11] that the best rate uniform in e that 
may be obtained by the p or spectral version on a fixed 
mesh is essentially O(p-•). 

Theorem 4.2 Let u),.• be as in Theorem ,{.1. Let •(A) 
correspond to the pure p version (or spectral element 
method) on a fixed mesh A. Then 

C 

C _< sup i•nf• Ilux,•-vll• <; lx•, P •(0,•1 v e SP(A) 
= 

where the constant C is independent of • and p. 

We now consider an hp approximation result, where the 
mesh changes at each step that p is increased. It turns 
out that only the relative size, and not the number of el- and 
ements needs to be altered to already achieve exponential 
convergence (more precisely, this is an "rp" version). (38) 

Theorem 4.3 Let u),,• be as in Theorem ,{. 1. Let, (A,/3) 
be such that for some n independent of p, • satisfying 0 < 
•o _< n < 4/e, 

/7=(p, 1}, A=(--1,--l+n}s, 1} if ni58<2 
/7= (p}, A: (-1, 1} if n/•e > 2. 

Then there exists •p • •IX(A) satisfying •p(4-1) 
ux.• (ñ1) and 

(30) IItt,k.e -- ?1pile __• C•1/2 q I•, 

(31) - upl[0 _< Ce•/2q •, 

(32) upll• • Cs-•/2q •. 
Here, the constants are independent of p and s but depend 
on no and q < 1 is given by 

e/2/3e if n/3e >_ 2 (33) q := {ne/4, e -a(•-5)} otherwise max 

with 5 > ln•/2• arbitrary. 

Proof If n/3e > 2, then we obtain the result directly from 
Theorem 4.1, since n < 4/e implies q = e/(2/3e) < 1. 

Suppose n/3e < 2. We then construct the function Up(X) 
element-wise. Let c = -1 + n/3e and I• = (-1, c). Trans- 
forming I• to I = (-1, 1), we see that for t = 0, 1, 

(34) / (dtf• 2 (2)2t-•/ (dtfh 2 • dxtJ dx= • •,dytj dy. 
Here, f(y) denotes the image on I of any function f(x) 
defined on I•. In particular, for g = 2/n/3 we have 

(35) 5x,•(Y) = exp(-A(y + 1)n/3/2) = ux,•(y). 

We apply Theorem 4.1 to u,,•(y). Transforming back, we 
obtain a polynomial Sp • 1-lp(I•) such that 

(36) Sp(--1) = t•X.e(--1 ), Sp(C) = TtA,e(œ'), 

(37) 

= en •_ Ceq2•5 ' 

It is seen by (37), (38) that the error in this first interval 
I• satisfies (30)-(32). 

For simplicity, we will only demonstrate that Up may 
be defined on the second interval so as to satisfy the end 
conditions and the estimate (32). To obtain a function si- 
multaneously satisfying the L 2 estimate (31) as well, some 
technical changes have to be made in the definition of Up, 
the details of which may be found in [11]. 
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First, we note that 

]ttA,z(c)] _• e -an13. 

Then we define Up(X) to be the linear interpolant of u,x,e 
at x-candx-ltoget 

~ 

! 

uniformly in s, c for c < 1. Using the triangle inequality, 
it follows that 

! 

• [[•k,zllL2(Ia) -4-[[•pllLa(Ia) 
< Cs-•/2e-'•'•. 

Then (32) follows from (37), (39). 

The following corollary follows immediately from Theorem 
4.3, by using the interpolation inequality 

_ o 

Corollary 4.1 Let u,x.•, Up be as in Theorem ,•.3. Then 

where q is as in (33) and C is a constant independent of 

These approximation results imply exponential conver- 
gence, uniform in e, of the finite element methods (13), 
(19). To illustrate this for (19), consider the problem (17) 
with f(x) = -1/2 and exact solution 

u,•(x) = exp ((x + 1)/-:)- 1 x + 1 
exp (2/z) - 1 2 

The solution consists of a smooth (polynomial) part and a 
boundary layer at x = 1, as expected from Theorem 2.1. 

Further, from the definition of [[u[[•2 it is easy to see that 

(40) II- vii 2 < - vll + 2 Ilu - ' 
Since the linear part is contained in S#(A), the finite ele- 
ment error is essentially the boundary layer approximation 
error. Hence, using the two-element mesh from Theorem 
4.3, we find with (21) and (40) the error estimate 

i.e. a robust exponential convergence rate. 

5 Numerical results 

We present the results of numerical computations for the 
model problem (5) where 

x+l 

f(x) = 2 
This problem was also considered in [5, 7] and its exact 
solution is 

sinh((as + 1)/s) as + 1 
(41) a• (as) = sinh(2/s) 2 
Evidently, it has only one boundary layer near as = 1, i.e. 
A• = 0 in (9). Since we have, moreover, 

(42) ][u•[[2=B•(u• u•)=(1, u•)=O(1) 

we conclude that the relative error in the energy norm, 

S•(d) = [lux- 

should behave like (I>(z, S•(A))where 

(43) (I>(•, S):= inf [1•1 - 

Since u•v(as ) 6 1-1•(-1, 1) for M _> 1, the asymptotic be- 
havior of the error is completely governed by the bound- 
ary layer approximation error for S•(A). Since, moreover, 
u• in (41) has only one boundary layer near x = 1, i.e. 
AM = 0 in (9), Theorem 4.3 requires SF(A) with 

(44) A = {-1, 1 - n•e, 1}, if= (1,p). 

Evidently, N = dimS#(A) = p + I then. 
We will now depict En (d) versus the number of degrees 

of freedom in the finite element method. We compare four 
finite element methods: (a) the p version with one element, 
(b) the h version with p = 1, (c) the hp version with 2 
elements with S#(A) as in (44) and n = I and (d) the 
h version (taking p = 1) with the exponential mesh A = 
{-1, x•,..., x,•_•, 1} where, for m even, 

{ -lifi•0'c•_• , (45) xi= -d/51n 1- ,•_•7, i=l,...ra. 
and c = 1-exp(-1/(d/5)). The mesh (45) is derived in [12], 
[14], where it is shown that when the h version is used with 
p = 1, the error obtained with this mesh is asymptotically 
optimal as ra -• c•. All computations were done in double 
precision on an SGI-2 workstation using MATLAB 4.2a. 

Figures 1, 2 and 3 show the performance of the four 
methods for z = 10-•,• = 10 -4 and • - 10 -8, respec- 
tively. (We obtained graphs analogous to these figures for 
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e•stlon=l 0^(-2) 

non-unlf mesh 

p=l 

h-verslon.unlf mesh,p=1 

• p--version 

hp-verslon 

101 10 2 
Degrees of Freedom 

Figure 1' Comparison of various methods. 

epsllon=10^(-4) 

h-version unlf mesh p=l 

p-vers•n t 
h-verslon.non-unlf mesh p=l 

hp-ver•lon 
10' lO 2 

Degree5 of Freedom 

Figure 2: Comparison of various methods. 

epsdon = 10^(-8) 

h-version unlf mesh. p=l 

- _ _ _ _ _ 
p-version 

b_ h-version non unlf mesh p=l 

hp-ver•lon 

10 • 10 2 
Degrees of Freedom 

Figure 3: Comparison of various methods. 

10 0 
Energy Convergence for heat transfer problem, epsilon=O.01 

10 -3 
hp-version • 

10 ø 10 • 102 103 
Degrees of Freedom 

Figure 4: p and hp energy convergence for (5.6), e = 0.01. 

• ranging from 10 -• to 10-8.) To illustrate that our 
one-dimensional results are, via tensor product arguments, 
also applicable to two- and three-dimensional singularly 
perturbed problems, we consider the following model heat 
transfer problem, the two-dimensional analog of (2). For 
a detailed analysis, we refer to [14]. In the unit circle 
ft={(r,O)'0<O_<2rr,0<r< 1} we consider 

-?Au+u=l inft, 
(46) u = 0 on Oft. 

The exact solution is given by 

u(r,O) _= u(r)= 1 
10(1/•) ' 

xvhere Io(x) is the modified Bessel function of order zero. 
We performed numerical experiments for this model prob- 
lem using the finite element package STRESSCHECK TM, 
for the p and hp versions, with equal number of degrees 
of freedom. The error plots in Figures 4 and 5 show once 
more the convergence in the energy norm. The bound- 
ary layer mesh also gives accurate pointwise function- and 
derivative values. To illustrate this, we show in Figures 6 
and 7 the pointwise convergence of the normal derivative 
on the perimeter of the circle ft. 

Let us summarize some of the observations that can be 

made from the above figures. 

(1) The rate of convergence of the uniform h version is 
O(N -•/2) while the uniform (in •) rate for the p ver- 
sion on a single element is O(N-•), which is double 
the h version rate. For the h version with exponen- 
tial mesh, the optimal algebraic rate of O(N -•) is 
observed, while the hp version shows exponential rate, 
and outperforms all the other methods. 
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10 ø 
•=nergy Convergence for heat transfer problem. epafion-0.001 

10 -• 

10 -2 

•>.10 -3 
LU 10-4 

•5 10-5 

1o -6 
E3: 10-7• ' 

10-• 

10 -9 
100 10 s 102 103 

Degrees of Freedom 

Figure 5: p and hp energy convergence for (5.6), • - 0.001. 

Derivative Convergence for heat transfer problem, epsilon-0.01 
10 • , , 

• 10 ø p-version 

• 10 -• 

•, - •on 

10-3! 
10 ø 10 • 10 • 

[•egrees of Freedom 
10 3 

Figure 6: Normal derivative error at (1, 0), z = 0.01. 

Derivative Convergence for heat transfer problem, epsilon=0.001 

10 -3 
lO 0 10 • lO 2 10 3 

Degrees of Freedom 

Figure 7: Normal derivative error at (1, 0), • = 0.001. 

(2) 

(3) 

(5) 

(5) 

(6) 

The errors for the h version with exponential mesh and 
the hp version both decrease as s becomes smaller, at 
the rate of O(si/2). The other two versions do not 
display this decrease as • -• 0. 

Asymptotically, the p version with a single element 
will always have the best convergence rate for any 
fixed • according to Theorem 4.1. However, as seen 
from Figures 1 - 3, in practice this asymptotic conver- 
gence is not usually observed. In Figure 1, the slope 
of the error curve for the largest p is better than the 
one for the 2 element hp version, showing that at this 
point, the p version is decreasing at a faste rate. How- 
ever, ER(d) for the p version is still several orders of 
magnitude larger than the value for the 2-element hp 
version. 

For a fixed number of degrees of freedom, the error 
with the hp version is seen to be consistently the small- 
est of the four methods. This version is extremely ro- 
bust and efficient -- even for very small values of ,, 
relative energy errors of 10 -s were reached with only 
N = 15 degrees of freedom. 

Although we report here only the relative energy error, 
the pointwise error was found to behave completely 
analogously (as could be expected by Corollary 4.1). 

Our results with the hp method compare very favor- 
ably with the numerical results presented in [7] for 
the same problem, in which a significant improvement 
over the pure spectral element was achieved by using 
special "mapped" polynomials. 

6 Conclusion 

We analyzed spectral element/hp finite element discretiza- 
tions for two one-dimensional, singularly perturbed model 
problems, the solutions of which behave like a smooth (an- 
alytic) function in the interior of the interval but have 
boundary layers at one or both end points. For problem 
(5), a symmetric selection of test and trial spaces leads triv- 
ially to a stable method. For the advection diffusion prob- 
lem, the saddle point formulation (17) going back to [3] is 
discretized. Selecting the L2-spline test function space (18) 
ensures stability (in the sense of Theorem 3.1) if p -• oc. 
We showed theoretically that using a p version FEM or 
spectral element method on a fixed mesh, the best possi- 
ble robust rate uniform in s cannot exceed O(p-i). We 
also showed that an hp version FEM or spectral element 
method with one "boundary layer element" of width O(sp) 
achieves robust (in s) exponential convergence rates, for 



508 ICOSAHOM 95 

both the elliptic-elliptic and advection diffusion problem. 
In numerical experiments, our method consistently outper- 
formed several alternative methods, such as a low order 
(p = 1) method on a strongly refined, asymptotically op- 
timal mesh. The method has been seen to be extremely 
robust and efficient for arbitrarily small boundary layer 
widths (we tested widths down to 0(10 -s) without seeing 
any deterioration in the convergence rate). 

In closing, we comment on the relevance of-one dimen- 
sional model problems. We decoupled completely the sta- 
bility analysis of the scheme from the approximability of 
the solution and obtained exponentially convergent bound- 
ary layer approximation in one dimension. Boundary lay- 
ers in two and three dimensional problems typically show 
the behavior exp(-x/•) only in one direction, namely nor- 
mal to the boundary or the front (see, e.g. the results 
for the Reissner-Mindlin plate in [1]). Therefore, using a 
tensor product argument, our approximation results ap- 
ply directly to these situations [10], [12], [14], provided the 
grids are aligned with the boundary layer. For example, 
for the viscous flows around profiles, the current use of 
highly-refined, body-fitted meshes towards the profile in 
finite difference methods corresponds to the use of the ex- 
ponential mesh in our experiments. A 2-layer mesh for the 
hp method is certainly simpler to generate, once the scale 
parameter • of the laver has been estimated. The savings 
in the number of degrees of freedom in one dimension over 
the low order method with exponential mesh (45) will be 
increased in proportion to the number of degrees of free- 
dom used along the boundary or the front. 

The issue of an efficient numerical implementation of 
the unsymmetric method are, due to the implicit nature 
of the trial functions, to be investigated further, especially 
in higher dimensions. 
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